
Grammar Fragments Fly First-Class

Marcos Viera1, Doaitse Swierstra2, and Atze Dijkstra2

1Instituto de Computación, Universidad de la República,
Montevideo, Uruguay, mviera@fing.edu.uy

2Department of Computer Science, Utrecht University, Utrecht,
The Netherlands, {doaitse,atze}@cs.uu.nl

Abstract

We present a Haskell library for expressing (fragments of) grammars
using typed abstract syntax with references. We can analyze and trans-
form such representations and generate parsers from them. What makes
our approach special is that we can combine embedded grammar frag-
ments on the fly, i.e. after they have been compiled. Thus grammar
fragments have become fully typed, first-class Haskell values.

We show how we can extend an initial, limited grammar embedded
in a compiler with new syntactic constructs, either by introducing new
non-terminals or by adding new productions for existing non-terminals.
We do not impose any restrictions on the individual grammar fragments,
nor on the structure as a whole.

1 Introduction

There are many different ways to represent grammars and grammatical struc-
tures in a typeful way: be it in implicit form using conventional parser combi-
nators or more explicitly in the form of typed abstract syntax. Each approach
has its own advantages and disadvantages. The former, being a domain specific
embedded language, makes direct use of the typing, abstraction and naming
mechanisms of the host language. This implicit representation however does
have its disadvantages: we can only perform a limited form of grammar analysis
and transformation since references to non-terminals in the embedded language
are implemented by variable references in the host language. The latter ap-
proach, which does give us full access to the complete domain specific program,
comes with a more elaborate naming system which gives us the possibility to
identify references to non-terminals; however transforming such programs in
Haskell necessitates to provide proofs (in our case encoded through the Haskell
type system) that the types remain correct during transformation.

One of the applications of the latter approach is where one wants to compose
grammar fragments. This is needed when a user can extend the syntax of

1

a base language. In doing so he has to extend the underlying context-free
grammar and he has to define the semantics for these new constructs. Once
all extensions have become available the parser for the complete language is
constructed by joining the newly defined or redefined semantics with the already
existing parts. In a more limited way such things can be done by e.g. the quasi
quoting mechanism as available through Template Haskell [9, 13], which however
has its limitations: the code using the new syntax can be clearly distinguished
from the host language. Furthermore the TH code, which is run in a separate
phase, is not guaranteed to generate type correct code; only after the code is
expanded type checking takes place, often leading to hard to understand error
messages.

In an earlier paper [17] we have shown how to define the final semantics of
a composed language in terms of composable attribute grammar fragments and
in [16] we have shown how to compose grammar fragments for a limited class of
grammars, i.e. those describing the output format of Haskell data types. These
latter grammars have a convenient property: productions will never derive the
empty string, which is a pre-condition for the Left-Corner Transform (LCT) [1]
which is to be applied later to remove left-recursion from the grammar which
arises from the use of infix data constructors.

In this paper we describe an unrestricted, applicative interface1 for con-
structing such grammar descriptions, we describe how they can be combined,
and how they can be transformed so they fulfill the precondition of the LCT.
The final result can safely be mapped onto a top-down parser, constructed using
a conventional parser combinator library.

In section 2 we describe the “user-interface” to our library. In section 3 we
introduce the types used to represent our fragments, whereas in section 4 we
describe the internal data structures. In section 5 we discuss some related work
and conclude.

2 Context-Free Grammar

In this section we show how to express a context free grammar fragment. Our
running example is a simple expression language (see Figure 1, the initial lan-
guage). Note that this concrete grammar uses the syntactic categories root , exp,
term and factor to express operator precedences.

Figure 1 also shows the almost isomorphic Haskell code encoding of this
language fragment in terms of our combinator library and the Arrow -interface
[7, 11]. A grammar description is an Arrow , representing the introduction of
its composing non-terminals. Since non-terminals can be mutually recursive,
they are declared into a rec block. The function addNT introduces a new
non-terminal together with some initial productions (alternatives) separated
by <|> operators. Each alternative (right hand side of a production) consists
of a sequence of elements, expressed in so-called applicative style, using the

1Available at: http://hackage.haskell.org/package/SyntaxMacros

2

Grammar:

root ::= exp
exp ::= "let" var "=" exp "in" exp | exp "+" term | term
term ::= term "*" factor | factor
factor ::= int | var

Haskell code:

prds = proc ()→ do
rec root ← addNT ≺ T semRoot exp U

exp ← addNT ≺ T semLet "let" var "=" exp "in" exp U
<|> T semAdd exp "+" term U <|> T id term U

term ← addNT ≺ T semMul term "*" factor U <|> T id factor U
factor ← addNT ≺ T semCst int U <|> T semVar var U

exportNTs ≺ exportList root $ export ntExp exp
. export ntTerm term
. export ntFactor factor

gram = closeGram prds

Figure 1: Initial language

idiomatic brackets2 T and U which delineate the description of a production
from the rest of the Haskell code. The brackets T and U are syntactic sugar
for the Haskell function iI and constant Ii. A production consists of a call to
a semantic function, which maps the results of the trailing non-terminals to
the result of this production, and a sequence of non-terminals and terminals,
the latter corresponding to literals which are to be recognized. Since terminal
symbols like "let" and ’*’ do not bear any meaning our idioms automatically
discard these results: the expression T semMul term "*" factor U is equivalent
to pure (λl r → semMul l r) <*> sym term <*> tr "*" <*> sym factor in
the Applicative interface [10]. The semantic functions are defined elsewhere
(using monad transformers, attribute grammars or embedded AG code [17]).
By convention we will let their names start with sem. For elementary parsers
which return values which are constructed by the scanner we provide a couple
of predefined special cases, such as int which returns the integer value from the
input and var which returns a recognized variable name.

An initial grammar is also an extensible grammar. It exports (with exportNTs)
its starting point (root) and a list of exportable non-terminals which actually
stand for a collection of productions to be used and modified in future exten-
sions. Each export-ed non-terminal is labeled by a unique value of a unique
type (by convention starting with nt). The function closeGram takes the list

2http://www.haskell.org/haskellwiki/Idiom_brackets

3

of productions, and converts it into a compiler; in our case a parser integrated
with the semantics for the language derived from the starting symbol root .

2.1 Language Extension

We now extend the language with an extra non-terminal for conditions (Boolean
expressions) and extra productions for conditional expressions and parentheses:

exp ::= ... | "if" cond "then" exp "else" exp
cond ::= exp "==" exp | exp ">" exp
factor ::= ... | "(" exp ")"

This language extension prds ′ is defined as a closed Haskell value by itself,
which accesses an already existing set of productions (imported) and builds an
extended set, as shown in Figure 2.

prds ′ = proc imported → do
let exp = getNT ntExp imported
let factor = getNT ntFactor imported

rec addProds ≺ (exp, T semIf "if" cond "then" exp "else" exp U)

cond ← addNT ≺ T semEq exp "==" exp U <|> T semGr exp ">" exp U
addProds ≺ (factor ,T semPar "(" exp ")" U)

exportNTs ≺ extendExport imported (export ntCond cond)

gram ′ = closeGram (prds +>> prds ′)

Figure 2: Language Extension

For each non-terminal to be extended we retrieve its current list of produc-
tions (using getNT) from the imported non-terminals, and add new productions
to this list using addProds. The if -expression is e.g. added by:

let exp = getNT ntExp imported
addProds ≺ (exp,T semIf "if" cond "then" exp "else" exp U)

New non-terminals can be added as well using addNT ; in the example we add
the non-terminal cond :

cond ← addNT ≺ T semEq exp "==" exp U <|> T semGr exp ">" exp U

Finally, we extend the list of exportable non-terminals with (some of) the newly
added non-terminals, so they can be extended by further fragments elsewhere:

exportNTs ≺ extendExport imported (export ntCond cond)

4

The original grammar prds is extended with prds ′ using the combinator (+>>).
Because both prds and prds ′ are proper Haskell values which can be separately
defined in different modules and compiled separately we claim that the term
first class grammar fragments is justified here. It is important to note that
all these productions describe well-typed Haskell values, of which the type is
parameterized with the type of values the expressions represent; so, based on
the type of semIf the Haskell compiler will be able to check that the non-
terminal cond indeed parses Boolean expressions! By being able to compile a
language and its extensions separately, a framework for extensible compilers can
be defined which allows a language to be extended without providing full access
to its source and without having to re-compile the whole compiler.

3 Grammar Representation

Having described how a user describes and combines individual language frag-
ments, we now embark on the description of the internals of our library.

One of the basic requirements we want to fulfill is that components can
be safely composed in all circumstances, without imposing strong requirements
on individual components, since this would soon make the system useless. So
we will have to deal with left-recursive grammars and grammars which are,
once composed, for example not LALR(1). In previous work [3, 1, 16] we have
developed a series of techniques to deal with such grammars, all based on typed
representations and typed transformations of grammars, for example to remove
left recursion. In this section we introduce a typed representation of grammars
that provides an easy way to describe grammars and enables the use of these
techniques.

We represent grammars as typed abstract syntax, using Generalized Alge-
braic Data Types [12] (GADTs). The idea, proposed in [1], is to indirectly refer
to non-terminals via references encoded as types. Such references type-index
into an environment holding the actual descriptions of the non-terminals.

A Ref encodes a typed index into an environment containing values of dif-
ferent types. It is labeled with the type a associated with the referenced value
and the type env of an environment (a nested Cartesian product extending to
the right) into which the reference indexes. The constructor Zero expresses that
the first element of the environment has to be of type a. The constructor Suc
remembers a position in the rest of the environment. It ignores the first element
in the environment by being polymorphic in the type b:

data Ref a env where
Zero :: Ref a (env ′, a)
Suc :: Ref a env ′ → Ref a (env ′, b)

data Env t use def where
Empty :: Env t use ()
Ext :: Env t use def ′ → t a use → Env t use (def ′, a)

5

Since we want to be able represent mutually recursive definitions, an envi-
ronment Env contains terms (in our case productions) which may contain typed
references to other terms: the type of such a term is t a use, where t describes
the kind of terms we store, the type parameter a is the type of the value de-
scribed by the term and use is the type labeling the environment into which
references to other terms occurring in the term may point. The type parame-
ter def contains the type labels a of the terms of type t a use defined by the
environment: whenever the constructor Ext is used to extend and environment
Ent t use def ′ with a term t a use the type label of the resulting environment
is extended with this a (def ′, a).

A type FinalEnv forces environments def and use to coincide, thus mak-
ing sure that all references point to some definition, and that those definitions
describe values of the appropriate types.

type FinalEnv t usedef = Env t usedef usedef

A Grammar consists of a closed environment, containing a list of productions
for each non-terminal, and a reference (Ref a env) to the root symbol, where a
is the type of the witness of a successful parse. Note that the type env is hidden
using existential quantification, so changes to the structure of the grammar can
be made, by adding or removing non-terminals, without having to change the
visible part of its type.

data EG ;data CG

data Grammar s a = ∀ env .Grammar (Ref a env)
(FinalEnv (Productions s) env)

newtype Productions s a env = PS {unPS :: [Prod s a env]}

The type s encodes the state of the grammar, that is: EG if the grammar can
contain empty productions and CG if the grammar does not.

For productions we choose a representation which differs slightly from the
one used in [1, 16]. Here we represent productions in an applicative-style; i.e.
using a couple of constructors Pure and Seq analogous to the pure function and
<*> operator of applicative functors:

data Prod s a env where
Pure :: a → Prod s a env
Seq :: Prod s (a → b) env

→ Prod s a env → Prod s b env
Sym :: Symbol a t env → Prod s a env

Sym is a special case of pure that lifts a symbol to a production. A symbol is
either a terminal or a non-terminal encoded by a reference pointing to one of
the elements in an environment labeled with env . A normal terminal contains
the literal string it represents. We define a category of attributed terminals,
which are not fixed by a literal string. Every attributed terminal refers to a
lexical structure. In contrast to the normal terminals which do not bear a

6

semantic value, for attributed terminals the parsed values are used and the type
a instantiates to the type of the parsed value.

data TTerm;data TNonT ;data TAttT

data Symbol a t env where
Term :: String → Symbol String TTerm env
Nont :: Ref a env → Symbol a TNonT env
TermInt :: Symbol Int TAttT env
TermVarid :: Symbol String TAttT env

The type parameter t indicates, at the type-level, whether a Symbol is a ter-
minal (type TTerm) for which the result is (usually) discarded, a non-terminal
(TNonT) or an attributed terminal (TAttT) in the value of which we are inter-
ested. In order to make our code more readable we introduce the smart con-
structors trm, int and var , for the terminals Term, TermInt and TermVarid ,
respectively.

3.1 From Grammar to Parser

A grammar can be compiled into a top-down parser, which can then be used to
parse a String into a ParseResult containing a semantic value of type a:

compile :: Grammar CG a → Parser a
parse :: Parser a → String → ParseResult a

We translate to the uu-parsinglib (or any other) parser combinator library
[14], that has an Applicative (and Alternative) interface. Thus, compile trans-
lates a Productions list as a sequence of parsers combined by <|>. The Prod
constructors Seq and Pure are translated to <*> and pure, respectively. Ter-
minals are translated to terminal parsers and non-terminal references are re-
trieved from an environment containing the translated productions for each
non-terminal. Notice that only CG grammars can be compiled.

3.2 Applicative Interface

We want the type Productions to be an instance of the Haskell classes Applicative
and Alternative themselves as we have seen in the examples. However, this is
impossible due to the order of its type parameters; we need a to be the last pa-
rameter3. Thus, we define the type PreProductions for descriptions of (possibly
empty) alternative productions.

newtype PreProductions env a = PP {unPP :: [Prod EG a env]}

The translation from PreProductions to Productions is trivial:

3We cannot just redefine Productions with this order, because we need the current order
for the transformations we will introduce later.

7

prod :: PreProductions env a → Productions EG a env
prod (PP ps) = PS ps

Now we can define the (PreProductions env) instances of Applicative and Alternative:

instance Applicative (PreProductions env) where
pure f = PP [Pure f]

(PP f) <*> (PP g) = PP [Seq f ′ g ′ | f ′ ← f , g ′ ← g]

instance Alternative (PreProductions env) where
empty = PP []

(PP f) <|> (PP g) = PP (f ++ g)

We are dealing with lists of alternative productions, thus the alternative oper-
ator (<|>) takes two lists of alternatives and just appends them. In the case
of sequential application (<*>) a list of productions is generated with all the
possible combinations of the operands joined with a Seq .

We also defined smart constructors for symbols: sym for the general case
and tr for the special case where the symbol is a terminal.

sym :: Symbol a t env → PreProductions env a
sym s = PP [Sym s]

tr :: String → PreProductions env String
tr s = sym (Term s)

4 Extensible Grammars

In this section we present our approach to define and combine extensible gram-
mars (like the one in Figure 1) and grammar extensions (Figure 2). The key
idea is to see the definition, and possibly future extensions, of a grammar as a
typed transformation that introduces new non-terminals into a typed grammar.

4.1 TTTAS

Grammar definitions and extensions are defined as typed transformations of
values of type Grammar . For example, both prds and prds ′ of Figures 1 and 2
are typed transformations: while prd starts with an empty context-free gram-
mar and transforms it by adding the non-terminals root , exp, term and factor ,
the grammar extension prd ′ continues the transformation started by prd and
modifies the definition of some of the non-terminals and adds some new ones.
Notice that a Grammar is a collection of mutually recursive typed structures;
thus, performing transformations while maintaining the whole collection well-
typed is non-trivial. The rest of this sub-section is a short introduction to the
API of TTTAS4 (Typed Transformations of Typed Abstract Syntax), the li-
brary we use to implement our transformations. TTTAS is based on the Arrow

4http://hackage.haskell.org/package/TTTAS

8

type Trafo, which represents typed transformation steps, (possibly) extending
an environment Env :

data Trafo m t s a b

The arguments are the types of: the meta-data m (i.e., state other than the
environment we are constructing), the terms t stored in the environment, the
final environment s, the arrow-input a and arrow-output b. Thus, instances
of the classes Category and Arrow are implemented for (Trafo m t s), which
provides a set of functions for constructing and combining Trafos. Some of these
functions which we will refer to are:

Identity arrow: returnA :: Arrow a ⇒ a b b

Lifting functions: arr :: Arrow a ⇒ (b → c)→ a b c

Left-to-right comp.: (>>>) :: Category cat ⇒ cat a b → cat b c → cat a c

The class ArrowLoop is instantiated to provide feedback loops with:

loop :: ArrowLoop a ⇒ a (b, d) (c, d)→ a b c

A transformation is run with runTrafo, starting with an empty environment
and an initial value of type a. The universal quantification over the type s
ensures that transformation steps cannot make any assumptions about the type
of the (yet unknown) final environment.

runTrafo :: (∀ s.Trafo m t s a (b s))→ m ()→ a → Result m t b

The result of running a transformation is encoded by the type Result , con-
taining the final meta-data, the output type and the final environment. It is
existential in the final environment, because in general we do not know how
many definitions will be introduced by a transformation and which are their
associated types. Note that the final environment has to be closed (hence the
use of FinalEnv).

data Result m t b = ∀ s.Result (m s) (b s) (FinalEnv t s)

New terms can be added to the environment by using the function newSRef .
It takes the term of type t a s to be added as input and yields as output a
reference of type Ref a s that points to this term in the final environment:

newSRef :: Trafo Unit t s (t a s) (Ref a s)
data Unit s = Unit

The type Unit is used to express the fact that this transformation does not
record any meta-information.

Functions of type (FinalEnv t s → FinalEnv t s) which update the final
environment of a transformation can be lifted into the Trafo and composed using

9

updateFinalEnv . All functions lifted using updateFinalEnv will be applied to
the final environment once it is created.

updateFinalEnv :: Trafo m t s (FinalEnv t s → FinalEnv t s) ()

If we have, for example:

proc ()→ do updateFinalEnv ≺ upd1
...
updateFinalEnv ≺ upd2

the function (upd2 .upd1) will be applied to the final environment, produced by
the transformation.

4.2 Grammar Extensions

In this subsection we present the API of a library for defining and combining
extensible grammars (like the one in Figure 1) and grammar extensions (Fig-
ure 2).

A grammar extension can be seen as a series of typed transformation steps
that can add new non-terminals to a typed grammar and/or modify the def-
inition of already existing non-terminals. We define an extensible grammar
type (ExtGram) for constructing initial grammars from scratch and a grammar
extension type (GramExt) as a typed transformation that extends a typed ex-
tensible grammar. In both cases a Trafo uses the Productions as the type of
terms defined in the environment being carried.

type ExtGramTrafo = Trafo Unit (Productions EG)

type ExtGram env start ′ nts ′

= ExtGramTrafo env () (Export start ′ nts ′ env)
type GramExt env start nts start ′ nts ′

= ExtGramTrafo env (Export start nts env) (Export start ′ nts ′ env)

4.2.1 Exportable non-terminals

Both extensible grammars and grammar extensions have to export the starting
point start ′ and a list of exportable non-terminals nts ′ to be used in future
extensions. The only difference between them is that a grammar extension has
to import the elements (start and nts) exported by the grammar it is about
to extend, whereas an extensible grammar, given that it is an initial grammar,
does not need to import anything.

The exported (and imported, in the case of grammar extensions) elements
have type Export start nts env , including the starting point (a non-terminal,
with type Symbol start TNonT env) and the list of exportable non-terminals
(nts env).

data Export start nts env = Export (Symbol start TNonT env) (nts env)

10

The list of exportable non-terminals has to be passed in a NTRecord , which is an
implementation of extensible records very similar to the one in the HList library
[8], with the difference that it has a type parameter env for the environment
where the non-terminals point into. A field (l ∈ v) relates a (first-class) non-
terminal label l with a value v . A NTRecord can be constructed with the
functions (.*.), for record extension, and ntNil , for empty records. The function
getNT is used to retrieve the value part corresponding to a specific non-terminal
label from a record. We have defined some functions to construct Export values:

exportList r ext = Export r (ext ntNil)
export l nt = (.*.) (l ∈ nt)

Thus, the export list in Figure 1 is equivalent to:

Export root (ntExp ∈ exp .*. ntTerm ∈ term .*. ntFactor ∈ factor .*. ntNil)

In order to finally export the starting point and the exportable non-terminals
we chain an Export value through the transformation in order to return it as
output.

exportNTs :: NTRecord (nts env)
⇒ ExtGramTrafo env (Export start nts env) (Export start nts env)

exportNTs = returnA

Thus, the definition of an extensible grammar (like the one in Figure 1) has the
following shape, where exported nts is a value of type Export :

prds = proc ()→ do { ...; exportNTs ≺ exported nts }

The definition of a grammar extension, like the one in Figure 2, has the shape:

prds ′ = proc (imported nts)→ do { ...; exportNTs ≺ exported nts }

where imported nts and exported nts are both of type Export . We have defined
a function to extend (imported) exportable lists:

extendExport (Export r nts) ext = Export r (ext nts)

4.2.2 Adding Non-terminals

To add a new non-terminal to the grammar we need to add a new term to the
environment.

addNT :: ExtGramTrafo env (PreProductions env a) (Symbol a TNonT env)
addNT = proc p → do {r ← newSRef ≺ prod p; returnA ≺ Nont r }

The input to addNT is the initial list of alternative productions (PreProductions)
for the non-terminal and the output is a non-terminal symbol, i. e. a reference
to the non-terminal in the grammar. Thus, when in Figure 1 we write:

11

term ← addNT ≺ T semMul term "*" factor U <|> T id factor U

we are adding the non-terminal for terms, with the alternative productions
T semMul term "*" factor U and T id factor U, and we bind to term a symbol
holding the reference to the added non-terminal thus making it available to be
used in the definition of this or other non-terminals. Because Trafo instantiates
ArrowLoop, we can define mutually recursive non-terminals using the keyword
rec, like in figures 1 and 2.

4.2.3 Adding (and Removing) Productions

Adding new productions to an existing non-terminal translates into the con-
catenation of the new productions to the existing list of productions of the
non-terminal.

addProds :: ExtGramTrafo env
(Symbol a TNonT env ,PreProductions env a) ()

addProds = proc (Nont r , prds)→ do
updateFinalEnv ≺ updateEnv (λps → PS $ (unPP prds) ++ (unPS ps)) r

In Figure 2 we have seen examples of adding productions to the non-terminals
exp and factor . It is easy to define a function remProds, to remove all the
productions of a non-terminal, based on the code of addProds. The difference
is that the function which updates the environment is now (\ → PS []). Note
that removing the non-terminal completely would be much harder.

4.2.4 Grammar Extension and Composition

Extending a grammar boils down to composing two transformations, the first
one constructing an extensible grammar and the second one representing a gram-
mar extension.

(+>>) :: (NTRecord (nts env),NTRecord (nts ′ env))
⇒ ExtGram env start nts → GramExt env start nts start ′ nts ′

→ ExtGram env start ′ nts ′

g +>> sm = g >>> sm

We defined (+>>) to restrict the types of the composition. Two grammar ex-
tensions can be composed just by using the (>>>) operator from the Arrow
class.

If we want to compose two extensible grammars g1 and g2 with disjoint
non-terminals sets, we have to sequence them, obtain their start points s1 and
s2 and add a new starting point s with s1 and s2 as productions.

(<++>) :: (NTUnion nts1 nts2 nts)
⇒ ExtGram env start nts1 → ExtGram env start nts2
→ ExtGram env start nts

12

g1 <++> g2 = proc ()→ do (Export s1 ns1)← g1 ≺ ()
(Export s2 ns2)← g2 ≺ ()

s ← addNT ≺ sym s1 <|> sym s2

returnA ≺ Export s (ntUnion ns1 ns2)

The function ntUnion performs the union of the non-terminal labels both at
value and type level. It introduces the constraint NTUnion, which also ensures
the disjointedness of the sets. If we have a function ntIntersection, returning for
each intersecting non-terminal its position on each grammar (nt1 ,nt2), then we
can define a general composition of grammars. We have to extend (<++>) with
the transformation (addProds (nt1 ,T id nt2 U) >>> addProds (nt2 ,T id nt1 U))
for each non-terminal belonging to the intersection.

4.3 Closed Grammars

To close a grammar we run the Trafo, in order to obtain the grammar to which
we apply the Left-Corner Transform. By applying leftcorner we prevent the re-
sulting grammar to be left-recursive, so it can be parsed by a top-down parser.
Such a step is essential since we cannot expect from a large collection of lan-
guage fragments, that the resulting grammar will be e.g. LALR(1) or non-left-
recursive. The type of the start non-terminal a is the type of the resulting
grammar.

closeGram :: (∀ env .ExtGram env a nts)→ Grammar CG a
closeGram prds = case runTrafo prds Unit () of

Result (Export (Nont r)) gram
→ (leftCorner .removeEmpties) (Grammar r gram)

The leftcorner function is an adaptation to our representation of Prod of
the transformation proposed in [2] which preprocesses the grammar such that
empty parts at the beginning of productions have been removed:

removeEmpties :: Grammar EG a → Grammar CG a
leftCorner :: Grammar CG a → Grammar CG a

The function removeEmpties takes a grammar that can have empty produc-
tions (Grammar EG a) and returns an equivalent grammar (Grammar CG a)
without empty productions and without left-most empty elements. In a com-
panion technical report [15] we provide a complete implementation of the trans-
formation, which basically consists of removing the empty production of each
non-terminal and adding it to the contexts where the non-terminal is referenced.
Thus, if the root symbol has an empty production, allowing the parsing of the
empty string, this behavior will not be present after the removal. For simplic-
ity reasons we avoid this situation by disallowing empty productions for the
root symbol of the grammars we deal with. It is easy to remove this constraint
by re-adding the empty production to the start non-terminal of the grammar
resulting from the whole (leftCorner .removeEmpties) transformation. But in
practice we do not expect this to be necessary.

13

5 Related Work and Conclusions

This paper builds on our previous work on typed transformations of typed gram-
mars [2, 1, 16], although we here stuck more to the conventional applicative style
in order to make it more accessible to the everyday programmer who knows
Haskell. The major contribution of this paper is the introduction of a set of
combinators to describe, extend and combine grammar fragments using arrow
notation. In order to avoid problems with the constructed grammars we have
introduced a preprocessing step before applying the LCT.

Of course there exist a myriad of other approaches to represent context-free
grammars and grammar fragments, but we are not aware of the existence of
a typeful way of representing grammar fragments using an embedded domain
specific language as we have presented here. Because of the embeddedness it
remains possible to define one’s own grammar constructs such as sequences,
optional elements and chains of elements, thus keeping all the advantages com-
monly found in combinator parser based approaches.

Devriese and Piessens [6] propose a model for explicitly recursive grammars
in Haskell, which provides an applicative interface to describe productions. By
using generic programming techniques from [18] their representation supports a
wide range of grammar algorithms, including the Left-Corner Transform.

Brink et al. [5] introduced a framework to represent grammars and grammar
transformations in the dependently typed programming language Agda. In such
a language they are able to prove correctness properties of the transformations,
more than the preservation of semantic types.

On one hand both claim to be less complex than our technique, but on the
other hand, they are both based on closed non-terminal domains, and thus they
lack of grammar extension and composition which form the core of this paper.

Finally note that the way in which we eventually construct parsers out of the
constructed grammar in no way precludes other approaches. So it is a trivial
extension to generate parsers which can deal with ambiguous grammars by
using suitable combinators (like the amb combinator from the uu-parsinglib

library). If one wants to use very general parsing techniques or scannerless
parsing techniques [4] there is nothing that prevents one from doing so. No
information is lost in the final representation.

References

[1] Arthur Baars, S. Doaitse Swierstra, and Marcos Viera. Typed
transformations of typed grammars: The left corner transform. Electron.
Notes Theor. Comput. Sci., 253:51–64, September 2010.

[2] Arthur Baars, S. Doaitse Swierstra, and Marcos Viera. Typed
transformations of typed abstract syntax. In TLDI 2009, pages 15–26.

[3] Arthur I. Baars and S. Doaitse Swierstra. Typing dynamic typing. In
ICFP 2002, pages 157–166.

14

[4] Martin Bravenboer. Exercises in Free Syntax. Syntax Definition, Parsing,
and Assimilation of Language Conglomerates. PhD thesis, Utrecht
University, Utrecht, The Netherlands, January 2008.

[5] Kasper Brink, Stefan Holdermans, and Andres Löh. Dependently typed
grammars. In Mathematics of Program Construction, volume 6120 of
Lecture Notes in Computer Science, pages 58–79. 2010.

[6] Dominique Devriese and Frank Piessens. Explicitly recursive grammar
combinators: a better model for shallow parser dsls. In PADL 2011, pages
84–98.

[7] John Hughes. Generalising monads to arrows. Sci. Comput. Program.,
37(1-3):67–111, 2000.

[8] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed
heterogeneous collections. In Haskell 2004, pages 96–107.

[9] Geoffrey Mainland. Why it’s nice to be quoted: quasiquoting for Haskell.
In Haskell 2007, pages 73–82, 2007.

[10] Conor McBride and Ross Paterson. Applicative programming with
effects. Journal of Functional Programming, 18(01):1–13, 2007.

[11] Ross Paterson. A new notation for arrows. In ICFP 2001, pages 229–240.

[12] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for gadts.
SIGPLAN Not., 41(9):50–61, 2006.

[13] Tim Sheard and Simon Peyton Jones. Template meta-programming for
Haskell. SIGPLAN Not., 37:60–75, December 2002.

[14] S. Doaitse Swierstra. Combinator parsers: a short tutorial. In A. Bove,
L. Barbosa, A. Pardo, , and J. Sousa Pinto, editors, Language
Engineering and Rigorous Software Development, volume 5520 of LNCS,
pages 252–300. Spinger, 2009.

[15] Marcos Viera, S. Doaitse Swierstra, and Atze Dijkstra. Grammar
fragments fly first-class. UU-CS 032, Utrecht University, 2011.

[16] Marcos Viera, S. Doaitse Swierstra, and Eelco Lempsink. Haskell, do you
read me?: constructing and composing efficient top-down parsers at
runtime. In Haskell 2008, pages 63–74.

[17] Marcos Viera, S. Doaitse Swierstra, and Wouter Swierstra. Attribute
grammars fly first-class: how to do aspect oriented programming in
haskell. In ICFP 2009, pages 245–256.

[18] Alexey Rodriguez Yakushev, Stefan Holdermans, Andres Löh, and Johan
Jeuring. Generic programming with fixed points for mutually recursive
datatypes. In ICFP 2009, pages 233–244.

15

