
Haskell, Do You Read Me?
Constructing and Composing Efficient Top-down Parsers at Runtime

Marcos Viera
Instituto de Computación

Universidad de la República
Montevideo, Uruguay
mviera@fing.edu.uy

S. Doaitse Swierstra Eelco Lempsink
Department of Computer Science

Utrecht University
Utrecht, The Netherlands

doaitse@cs.uu.nl, emlempsi@cs.uu.nl

Abstract
The Haskell definition and implementation of read is far from per-
fect. In the first place read is not able to handle the associativities
defined for infix operators. Furthermore, it puts constraints on the
way show is defined, and especially forces it to generate far more
parentheses than expected. Lastly, it may give rise to exponential
parsing times. All this is due to the compositionality requirement
for read functions, which imposes a top-down parsing strategy.

We propose a different approach, based on typed abstract syn-
tax, in which grammars describing the data types are composed dy-
namically. Using the transformation libraries described in a com-
panion paper these syntax descriptions are combined and trans-
formed into parsers at runtime, from which the required read func-
tion are constructed. In this way we obtain linear parsing times,
achieve consistency with the defined associativities, and may use
a version of show which generates far fewer parentheses, thus im-
proving readability of printed values.

The described transformation algorithms can be incorporated
in a Haskell compiler, thus moving most of the work involved to
compile time.

Categories and Subject Descriptors D.3.3 [Programming lan-
guages]: Language Constructs and Features; D.1.1 [Programming
techniques]: Applicative (Functional) Programming

General Terms Design, Languages, Performance, Standardiza-
tion

Keywords GADT, Haskell, Left-Corner Transform, Meta Pro-
gramming, Parser Combinators, Type Systems, Typed Abstract
Syntax, Typed Transformations

1. Introduction
In this paper we propose a solution to a few long standing, related
problems in the design of the Haskell Read and Show classes. We
start by explaining the current design, which was considered an
optimal point in the design space available at the time of the design
of Haskell98 (Peyton Jones 2003).

Consider the following data type, together with the fixity decla-
rations of the operators involved:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’08, September 25, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-60558-064-7/08/09. . . $5.00

infixl 5 :<:

infixr 6 :>:

data T1 = T1 :<: T1
| T1 :>: T1
| C1

deriving (Read ,Show)

v = C1 :>: C1 :<: C1 :<: C1

w = (read "C1 :>: C1 :<: C1 :<: C1" :: T1)
x = (read (show v) :: T1)

Given the fixity declarations, the definition of v is fine. Unfortu-
nately the evaluation of w leads to a runtime error, because read is
ignorant of the associativities of :>: and :<:. It is a sad observation
that despite all the effort that went into the design of the language,
we cannot just take a constant expression out of the program, put
it in a file and read it back. Surprisingly, the definition of show is
such that x is well-defined again.

The second problem relates to the efficiency of the standard
implementation of read . In a GHC bug ticket (Petruzza et al.) it is
explained why, with the current implementation of read and show ,
the following expression takes a long time to be processed, and on
some systems may not run at all:

read "((((((((((C1))))))))))" :: T1

To understand what is going on we delve into the internals of the
implementation, and the definitions of read and show from the
Haskell98 Report, using a small example.

T1 (n)→ T1 (5) ":<:" T1 (6)
| T1 (7) ":>:" T1 (6)
| "C1"

| "(" T1 (0) ")"

(n 6 5)
(n 6 6)

Figure 1. Grammar of the type T1

Consider the grammar of Figure 1, in which the parameter indi-
cates the priority level at which the non-terminal may occur in an
expression. Note how the associativity of the operators is encoded
by this parameter: for the first alternative the second occurrence of
T1 in the right hand side has a higher priority.

A second observation is that for n = 5, this grammar is actu-
ally left recursive because of the first alternative, and thus cannot
be parsed by conventional top-down parsing methods, based on re-
cursive descent techniques.

The Haskell98 Report describes how left recursion is avoided
by using a modified grammar, in which the priorities of the chil-

dren are always higher than the priority of the left hand side of
the production. So the language which is actually recognised by
the generated read function is described by the non left-recursive
grammar:

T1 (n)→ T1 (6) ":<:" T1 (6)
| T1 (7) ":>:" T1 (7)
| "C1"

| "(" T1 (0) ")"

(n 6 5)
(n 6 6)

Note that this grammar treats all operators as non-associative. The
derived instance for read is:

left prec = 5
right prec = 6
app prec = 10

instance Read T1 where
readsPrec n r

= readParen (n > left prec)
(λr → [(u :<: v ,w) |

(u, s)← readsPrec (left prec + 1) r ,
(":<:", t)← lex s,
(v ,w)← readsPrec (left prec + 1) t]

) r
++ readParen (n > right prec)

(λr → [(u :>: v ,w) |
(u, s)← readsPrec (right prec + 1) r ,
(":>:", t)← lex s,
(v ,w)← readsPrec (right prec + 1) t]

) r
++ readParen (n > app prec)

(λr → [(C1, s) |
("C1", s)← lex r]

) r

The function readParen requires a pair of parentheses around its
parser argument, if its first argument evaluates to True . The price
we have to pay for avoiding left-recursive grammars, is that we
have to place many more parentheses in our expressions. The good
news, and the reason that the aforementioned x is well-defined, is
that the derived show function generates these extra parentheses;
the derived read is helped to perform its task by the derived show ,
such that read . show = id .

By taking a closer look at this code we can now understand
the source of inefficiency; all three alternatives happily start by
accepting a "("-symbol – the first one expecting to see a :<: after
having seen the corresponding closing parenthesis, the second one
expecting a :>:, and the third one expecting nothing– and if the
second input symbol is a "(" too, all three have three more ways to
proceed, leading to an exponential growth in parsing time.

Now consider a expression of the form C1 :>: (C1 :>: (...)).
Here we do not have the problem of the opening parentheses, but
for expressions with more than 10 C1s the parsing time grows
exponentially too. What is happening? If we split the grammar
according to the precedences we can see the problem:

T1 (0 . . 5) → T1 (6) ":<:" T1 (6) | T1 (6)
T1 (6) → T1 (7) ":>:" T1 (7) | T1 (7)
T1 (7 . . 10)→ "C1"

| "(" T1 (0) ")"

Due to the division of the non-terminal T1 into three non-terminals,
new alternatives pointing directly to the next level have to be added
to T1 (0 . . 5) and T1 (6). Nonterminals T1 (0 . . 5) and T1 (6)
have a common prefix into their productions. So, each "C1" will
be parsed twice before making a decision between the alternatives

T1 (7) ":>:" T1 (7) and T1 (7); and, even worse, this process
is performed twice before deciding between T1 (6) ":<:" T1 (6)
and T (6).

One might expect that there is a simple cure for these problems,
since the Haskell compiler itself is able to parse the equivalent
expression. In the example case a compiler could indeed spend a bit
more time in analysing the data type and constructing an equivalent
grammar which does not have the identified shortcomings. This
leads, using the applicative parser interface (McBride and Paterson
2007), straightforwardly to the following combinator based parser
for T1 , using the parser combinators pChainl and pChainr which
are defined in appendix A:

infixr 7‘pChainl ‘, ‘pChainr ‘
pT1 = (":<:", (:<:)) ‘pChainl ‘

(":>:", (:<:)) ‘pChainr ‘
(pParens pT1 <|> pToken "C1")

Both combinators combine an operator, described by its string
representation and a binary function defining its semantics, and a
parser for the operands into a parser which recognises a sequence
of operands separated by operators. When parsing is completed the
combinator pChainl builds the result for a left-associative operator
and pChainr for a right-associative operator.

Unfortunately however the situation is not always so easy to
solve. Consider the following definition:

infix 5 :+:

infix 6 :*:

data T2 a = T2 a :+: T2 a
| a :*: T2 a
| C2

When deriving read for T2 , a Haskell implementation does not
generate a parser, but a function that maps a parser (coming from
the Read dictionary) recognising values of some parameter type a ,
to a parser which recognises values of type T2 a . In this way we
deal with the situation that the complete grammar is not always at
hand when building parsers: the parameter of T2 might be defined
in another module, or may not be defined at all.

It now also becomes clear why the strategy chosen in Haskell
works; we have limited our languages to a class for which we can
build parsers by composing parsers whenever we define new lan-
guages by composing languages. Each module happily generates
its own instances of the class Read , and these values can straight-
forwardly be combined into the required parser. So the question we
answer in this paper is:

“How can we construct efficient parsers for the language of
data types in a compositional way?”.

In the rest of this paper we show how these problems can be over-
come, using a library for transforming typed abstract syntax, the de-
sign of which has been described in an accompanying paper (Baars
and Swierstra 2008).

Before delving into the technical details we start out by sketch-
ing the solution. Parser generators usually perform some form of
grammar analysis, and unfortunately the result of such analyses
cannot easily be combined into the analysis result for a combined
grammar (Bravenboer 2008; Bouwers et al. 2008). Since there is
no easy way to compose parsers, we take one step back and com-
pose grammars instead, and thus we have to represent grammars as
Haskell values. Once the grammars are composed we can build the
required parser.

In order to make grammars first-class values we introduce a
polymorphic data type DGrammar a (DataGrammar), describing
grammatical structures which in their turn describe String values

corresponding to values of type a . By making values of this data
type member of a class:

class Gram a where
grammar :: DGrammar a

we can now provide the type of our read function, gread :

read :: Read a ⇒ String → a -- the original
gread :: Gram a ⇒ String → a -- this paper

In Section 2 we give a top-level overview of the steps involved. In
Section 3 we describe how to represent grammars by typed abstract
syntax, thus preparing them for the transformations in Section 4. In
Section 5 we spend some words on the efficiency of the overall
approach and describe a few open problems and details to pursue
further, whereas in Section 6 we conclude.

2. A Better Read
We obtain a parser for rules of data type t by taking the following
steps.

deriveGrammar Generate an instance of the class Gram . We
provide a function deriveGrammar , defined using Template
Haskell (Sheard and Peyton Jones 2002), which performs this
step, although we would eventually expect a compiler to take
care of this. The instance Gram T1 , describing the structure
of the type T1 is generated by calling:

$ (deriveGrammar “T1)

In this generated description precedences and associativities are
reflected by annotating uses of non-terminals in the right hand
side with the precedence of the position at which they occur,
and by annotating productions with the level at which they may
be applied (as in Figure 1). This is similar to the description
given in the Haskell98 report.

group When a grammar refers to other grammars, which are gener-
ated separately and probably in a different module, we have to
remove these references by combining the separate grammars
into a single complete grammar; this corresponds to the dictio-
nary passing for Read . Once this is done we know all the prece-
dences of all the non-terminals involved, and we may construct
a new grammar using a sufficient number of new non-annotated
non-terminals, in which the precedences and associativities are
represented by the grammar itself.

leftcorner For all resulting left-recursive grammar (or parts thereof)
we perform the Left-Corner transform (Baars and Swierstra
2008). The LC-transform is a relatively straightforward trans-
formation which maps a grammar onto an equivalent grammar
which is not left-recursive.

leftfactoring Apply left-factoring to the resulting grammar, in or-
der to remove the source of inefficiencies we have seen in sec-
tion 1.

compile Convert the grammar into a parser. We use the parser
combinators included in the UU library (Swierstra 2008) pack-
age in order to construct a fast parser. The function compile is
defined in appendix B.

parse Add a call to this parser, a check for a successful result and
the generation of an error message in case of failure.

All these steps are visible as individual functions in gread :

gread :: (Gram a)⇒ String → a
gread = (parse . compile

. leftfactoring . leftcorner

. group) grammar

instance Gram T1 where
grammar = DGrammar 0 envT1

envT1 :: Env DGram (T1 , ()) (T1 , ())
envT1 = consD (nonts 0) Empty

where
nonts T1 = DLNontDefs

[(DRef (T1 , 5)
,DPS [dNont (T1 , 5) .#. dTerm ":<:" .#.

dNont (T1 , 6) .#. dEnd infixL]
)
, (DRef (T1 , 6)
,DPS [dNont (T1 , 7) .#. dTerm ":>:" .#.

dNont (T1 , 6) .#. dEnd infixR]
)
, (DRef (T1 , 10)
,DPS [dTerm "C1" .#. dEnd (const C1)

, dTerm "(" .#. dNont (T1 , 0) .#.
dTerm ")" .#. dEnd parenT]

)
]

infixL e1 e2 = e2 :<: e1
infixR e1 e2 = e2 :>: e1

Figure 2. Representation of the grammar of type T1

Since all these steps, except the first one, are performed at runtime,
we have achieved true runtime compositionality. Modules can be
compiled separately, and the final parsing function is generated just
in time. In the next subsections we look at each step in more detail.

2.1 Deriving Gram

The data type DGrammar describes grammars, and we postpone
its detailed discussion to Section 3. In Figure 2 we give the instance
of the class Gram , containing a value of type DGrammar T1 ,
which is generated for the data type T1 from Figure 1. Without
going into the implementation details, it is easy to see the direct
relationship between the data type T1 and its DGrammar T1
representation. For example the part of the grammar:

| T1 (7) ":>:" T1 (6) (n 6 6)

which corresponds to the second alternative (n 6 6) in the data
type definition, is represented by the pair:

(DRef (T1 , 6)
,DPS [dNont (T1 , 7) .#. dTerm ":>:" .#.

dNont (T1 , 6) .#. dEnd infixR]
)

In the first component of this pair we specify the non-terminal and
its precedence level (which corresponds to a guard behind a set of
production rules), while in the second component we find the set
of corresponding productions (in this case a singleton list). Each
right-hand side consists of a sequence of terminals (dTerm) and
non-terminals (dNont), separated by an operator .#. indicating se-
quential composition. The sequence finishes with a call to dEnd f ,
where f (in this case infixR) is a function which takes the parsing
results of the right-hand side elements into a value of type T1 .

T2 (n)→ T2 (6) ":+:" T2 (6)
| A (7) ":*:" T2 (7)
| "C2"

| "(" T2 (0) ")"

(n 6 5)
(n 6 6)

Figure 3. Grammar of the type T2 a

2.2 Grouping
The first transformation we apply to the grammar is to split it
according to precedences actually used. The result of grouping the
grammar for the type T1 (Figure 1) is:

A → A ":<:" B | B
B → C ":>:" B | C
C → "C1" | "(" A ")"

where A groups all non-terminals from level 0 to 5, B corresponds
to the non-terminal of level 6 and C all non-terminals from level 7
up-to 10. The original reference to T1 (0) between parentheses is
mapped to a reference to A. For non-terminals representing levels
less than 10 (A and B) a new alternative that points to the next level
is added.

When a grammar contains references to non-terminals of other
grammars, we include all the referred grammars. Hence, if we have
the grammar of T2 a (Figure 3), the result of grouping T2 T1 is:

A → B ":+:" B | B
B → F ":*:" C | C
C → "C2" | "(" A ")"

D → D ":<:" E | E
E → F ":>:" E | F
F → "C1" | "(" D ")"

Note that the non-terminal names of the split grammar of T1 have
changed from A, B and C to D , E and F , respectively.

Of course a compiler could do this statically for those types
for which all necessary information is already available; but in the
general case this is something which has to be done dynamically.

2.3 LC-Transformation
Consider the grammar of the data type T1 after applying group.
The production:

A→ A ":<:" B | B
is left-recursive. So, this grammar cannot be parsed by a top-
down parser. We remedy this by applying a Left-Corner transfor-
mation (Johnson 1998), for which a typed implementation is given
in (Baars and Swierstra 2008). Since the complete implementation
is given in this companion paper, we only give a short description
of this transformation, in order to make this paper self-contained.

We use the following notational convention for grammar meta-
variables. Lower-case letters (a, b, etc.) denote terminal symbols.
Low-order upper-case letters (A, B, etc.) denote non-terminals,
while high-order upper-case letters (X, Y, Z) denote symbols that
can either be terminals or non-terminals. Greek lower-case symbols
(α, β, etc.) denote sequences of terminals and non-terminals.

A direct left-corner of a non-terminal A is a symbol X so that
there exists a production for A with X as the left-most symbol on
the right-hand side. The left-corner relation is defined as the tran-
sitive closure of the direct left-corner relation. So, a non-terminal
being left-recursive is equivalent to being a left-corner of itself.

For each (left-recursive) non-terminal A of the original gram-
mar, the function leftcorner applies the following rules to build
new productions for A and productions for new non-terminals

A X , where X is a left-corner of A and a non-terminal A X stands
for that part of an A after having seen an X .

1. For each production A → X α of the source grammar add
A X → α to the target grammar, and add X to the set of left-
corners found for A.

2. For each newly found left-corner X of A:

(a) If X is a terminal symbol b add A → b A b to the
transformed grammar.

(b) If X is a non-terminal B then for each original production
B → Y β add the production A Y → β A B to the
transformed grammar and add Y to the left-corners of A.

The left-corner transformation for the type T1 yields the grammar:

A → "C1" A C1 | "(" A (
A A → ":<:" B A A | ":<:" B
A B → A A | ε
A C → ":>:" B A B | A B
A C1 → A C
A (→ A ")" A C
B → "C1" B C1 | "(" B (
B C → ":>:" B | ε
B C1 → B C
B (→ A ")" B C
C → "C1" C C1 | "(" C (
C C1 → ε
C (→ A ")"

2.4 Left-Factoring
Looking at the grammar of T1 after the LC-transform, we see
that a common prefix has appeared in the productions for the non-
terminal A A. This overlap leads to inefficient parsers, since we
have to parse the same part of the input more than once. The
function leftfactoring removes such common prefixes by applying
the following rule until all left-factors have been removed.

• For each set of productions C = {A → X α1, ..., A →
X αn}, with n > 1, add the productions (A → X A X ,
A X → α1, ..., A X → αn) to the grammar, and remove the
productions in C .

So, by applying leftfactoring to the grammar after the LC-
transform we obtain its optimised version:

A → "C1" A C1 | "(" A (
A A → ":<:" A A lt
A A lt → B A A lt B
A A lt B → A A | ε
A B → A A | ε
A C → ":>:" B A B | A B
A C1 → A C
A (→ A ")" A C
B → "C1" B C1 | "(" B (
B C → ":>:" B | ε
B C1 → B C
B (→ A ")" B C
C → "C1" C C1 | "(" C (
C C1 → ε
C (→ A ")"

3. Representing Data Type Grammars
We represent the grammars as typed abstract syntax, encoded using
Generalised Algebraic Data Types (Peyton Jones et al. 2006). In
the following subsections we introduce this representation and the
issues involved in deriving it from a data type. The main problem
to be solved is how to represent the typed references, and how to
maintain a type correct representation during the transformation
processes.

3.1 Typed References and Environments
Pasalic and Linger (Pasalic and Linger 2004) introduced an encod-
ing Ref of typed references to an environment containing values
of different type. A Ref is labeled with the type of the referenced
value and the type of an environment (a nested Cartesian product)
the value lives in:

data Ref :: ∗ → ∗ → ∗where
Zero :: Ref a (a, env ′)
Suc :: Ref a env ′ → Ref a (x , env ′)

The constructor Zero expresses that the first element of the envi-
ronment has to be of type a . The constructor Suc does not care
about the type of the first element in the environment (it is poly-
morphic in the type x), and remembers a position in the rest of the
environment.

Baars and Swierstra (Baars and Swierstra 2004, 2008) extend
this idea such that environments do not contain values of mixed
type but terms (expressions) describing such values instead; these
terms take an extra type parameter describing the environment to
which references to other terms occurring in the term may point. In
this way we can describe typed terms containing typed references
to other terms. As a consequence, an Env may be used to repre-
sent an environment, consisting of a collection of possibly mutu-
ally recursive definitions (in our case grammars). The environment
stores a heterogeneous list of terms of type t a use , which are the
right-hand expressions of the definitions. References to elements
are represented by indices in the list.

data Env :: (∗ → ∗ → ∗)→ ∗ → ∗ → ∗where
Empty :: Env t use ()
Cons :: t a use → Env t use def ′

→ Env t use (a, def ′)

The type parameter def contains the type labels a of the terms
of type t a use occurring in the environment. When a term is
added to the in environment using Cons , its type label is included
as the first component of def . The type use describes the types
that may be referenced from within terms of type t a use using
Ref a use values. When the types def and use coincide the
type system ensures that the references in the terms do not point
to values outside the environment.

The function lookupEnv takes a reference and an environment.
The reference is used as an index in the environment to locate the
referenced value. The types guarantee that the lookup succeeds, and
that the value found is indeed labeled with the type with which the
Ref argument was labeled:

lookupEnv :: Ref a env → Env t s env → t a s
lookupEnv Zero (Cons p) = p
lookupEnv (Suc r) (Cons ps) = lookupEnv r ps

3.2 Typed Grammar Representations
Baars and Swierstra introduce a data type Grammar for represent-
ing grammatical structures. A Grammar consists of a root symbol,
represented by a value of type Ref a..., where a is the type of the
witness of a successful parse, and an environment Env , containing

for each non-terminal of the grammar its list of alternative produc-
tions. As we require grammars to be closed, we pass the parameter
env both at the use and the def position and because the internal
structure of the grammar is not of interest it is made into an ex-
istential. This enables us to add or remove non-terminals without
changing the type of the grammar as such.

data Grammar a
= ∀ env . Grammar (Ref a env)

(Env Productions env env)

newtype Productions a env
= PS{unPS :: [Prod a env]}

A production is a sequence of symbols, and a symbol is either a
terminal with Token as its witness or a non-terminal, encoded by
a reference.

data Token = Keyw String
| Open
| Close

data Symbol a env where
Nont :: Ref a env → Symbol a env
Term :: Token → Symbol Token env

data Prod a env where
Seq :: Symbol b env → Prod (b → a) env

→ Prod a env
End :: a → Prod a env

The right hand side sequence of symbols terminated by an End f
element. The function f accepts the parsing results of the right hand
side elements as arguments, and builds the parsing result for the
left-hand side non-terminal.

3.3 Typed Grammar Representations for Data Types
For a grammar corresponding to a Haskell data type the situation
is a bit different, since we actually have a whole collection of
non-terminals: for each non-terminal the set is indexed by the
precedences. Furthermore in productions of a non-terminal we can
have references to non-terminals of both the grammar (i.e. data
type) being defined as well as other grammars, corresponding to
parameters of the data type. For example, the grammar of the type
T2 a (Figure 3) has a reference to the 7th precedence level of the
grammar of the type parameter a .

We coin the non-terminal we are finally interested in the
main non-terminal, and our new grammar representation type
DGrammar starts with a reference to the main non-terminal in
the environment. Note that this is the only non-terminal that can be
referred to from outside the grammar!

data DGrammar a
= ∀ env . DGrammar (Ref a env)

(Env DGram env env)

data DGram a env = DGD (DLNontDefs a env)
| DGG (DGrammar a)

Other non-terminals definitions may be included in the environ-
ment as further DGD’s, and all the non-terminals labeled by DGD
can be mutually recursive. In order to be able to refer to other gram-
mars (such as introduced by a type parameter) we introduce an ex-
tra kind of non-terminal (DGG), which is the starting symbol of a
completely new grammar. This imposes a tree like hierarchy on our
non-terminals, with the DGrammar nodes representing mutually
recursive sets of non-terminals.

A reference to a non-terminal has to indicate the place in the
environment where the non-terminal is defined (which can either

be an internal non-terminal or another grammar) and the level of
precedence at the referring position:

newtype DRef a env = DRef (Ref a env , Int)

A non-terminal is defined by a list of productions available at each
precedence level. An occurrence (DRef (r ,n), prods) tells us
that the alternatives prods of the non-terminal r are available for
the levels from 0 to n . For efficiency reasons we order the list in
increasing order of precedence.

newtype DLNontDefs a env
= DLNontDefs [(DRef a env ,DProductions a env)]

The list of alternative productions DProductions is defined similar
to Productions .

newtype DProductions a env
= DPS{unDPS :: [DProd a env]}

data DProd a env where
DSeq :: DSymbol b env → DProd (b → a) env

→ DProd a env
DEnd :: a → DProd a env

data DSymbol a env where
DNont :: DRef a env → DSymbol a env
DTerm :: Token → DSymbol Token env

In order to make our grammar definitions look a bit nicer we
introduce:

infixr 5 .#.

(.#.) = DSeq
consG g es = Cons (DGG g) es
consD g es = Cons (DGD g) es
dNont nt = DNont (DRef nt)
dTerm t | t ≡ "(" = DTerm Open

| t ≡ ")" = DTerm Close
| otherwise = DTerm (Keyw t)

dEnd f = DEnd f
parenT p1 e p2 = e

0 = Zero
1 = Suc 0
2 = Suc 1

Figure 4 shows the DGrammar (T2 a) representation of the
grammar T2 a (Figure 3). It consists of an environment with the
production of T2 a represented at position 0 and the grammar
of the type a at position 1 . So DRef (0 ,n) refers to T2 a at
level n and DRef (1 ,n) refers the grammar of the type a at level
n . Due to the type signature of the environment, the type system
guarantees that the grammar we store as the second component in
the environment is of type DGrammar a .

3.4 Representing Mutually Recursive Data Types
When performing the grammar transformations, we expect the
grammars to be complete, i.e. all referred grammars are inlined
in the grammar from which we want to derive a gread . In case of
mutually recursive data types, like T3 and T4 of Figure 5, if we
derive the instances:

instance Gram T3 where
grammar = DGrammar 0 envT3

instance Gram T4 where
grammar = DGrammar 1 envT4

instance Gram a ⇒ Gram (T2 a) where
grammar = DGrammar 0 envT2

envT2 :: (Gram a)⇒ Env DGram (T2 a, (a, ()))
(T2 a, (a, ()))

envT2 = consD (nonts 0 1) $
consG grammar Empty

where
nonts T2 A = DLNontDefs

[(DRef (T2 , 5)
,DPS [dNont (T2 , 6) .#. dTerm ":+:" .#.

dNont (T2 , 6) .#. dEnd infixP]
)
, (DRef (T2 , 6)
,DPS [dNont (A, 7) .#. dTerm ":*:" .#.

dNont (T2 , 7) .#. dEnd infixT]
)
, (DRef (T2 , 10)
,DPS [dTerm "C2" .#. dEnd (const C2)

, dTerm "(" .#. dNont (T2 , 0) .#.
dTerm ")" .#. dEnd parenT]

)
]

infixP e1 e2 = e2 :+: e1
infixT e1 e2 = e2 :*: e1

Figure 4. Representation of the grammar of type T2 a

data T3 = T3 T4 | C3
data T4 = T4 T3 | C4

T3 T4

data T5 = T5 T6 | C5
data T6 = T6 T7
data T7 = T7 T5 T5

T6

T7

Figure 5. Mutually recursive types with graph representation

we get an unbounded number of copies of each grammar when
trying to inline them. This happens because the generation of the
grammars is mutually recursive too.

Mutual recursion occurs if there is a cycle of data types men-
tioned explicitly. When trying to define the representation of a type
it can be detected, by constructing a directed graph with the ex-
plicit calls to other types. If the type belongs to a strongly con-
nected component there is a cyclic type dependency with the other
components.

We have solved the problem of cyclic dependencies using the
idea of binding groups (Peyton Jones 2003). When a strongly con-
nected component is found, the definitions of all the components
types are tupled together into a single environment. Remember that
our environments (Env) have no problem in describing mutually
recursive definitions. So, in the case of T3 and T4 , we build the
environment:

data T8 = T8 (T2 T8)
| C8 T8 T2

data T9 = T9 (T2 T10)
| C9

data T10 = T10 T9 T10

T9

T2

data T11 = T11 (T2 T11)
(T2 T12)

data T12 = T12 T11 T11

T12

T2

Figure 6. Mutually recursive components with weak edges

envT3T4 :: Env DGram (T3 , (T4 , ())) (T3 , (T4 , ()))
envT3T4 = consD (nonts3 0 1) $

consD (nonts4 1 0) Empty
where

nonts3 T3 T4 = DLNontDefs
[(DRef (T3 , 10)
,DPS [dTerm "T3" .#. dNont (T4 , 0) .#.

dEnd consT3
, dTerm "C3" .#. dEnd (const C3)
, dTerm "(" .#. dNont (T3 , 0) .#.
dTerm ")" .#. dEnd parenT
]

)
]

nonts4 T4 T3 = DLNontDefs
[(DRef (T4 , 10)
,DPS [dTerm "T4" .#. dNont (T3 , 0) .#.

dEnd consT4
, dTerm "C4" .#. dEnd (const C4)
, dTerm "(" .#. dNont (T4 , 0) .#.
dTerm ")" .#. dEnd parenT
]

)
]

consT3 a = const (T3 a)
consT4 a = const (T4 a)

Note that when defining T3 we pass the location of T4 in the en-
vironment, and vice versa. For both types the instances can now be
created using the same environment, only using different references
for the root symbols.

instance Gram T3 where
grammar = DGrammar 0 envT3T4

instance Gram T4 where
grammar = DGrammar 1 envT3T4

As we can see in Figure 6, there are some cases where a type is a
member of a strongly connected component, but it does not contain
explicit references to the other members of its component. This
happens when we have a parametrised type that is instantiated with
a member of the component. This relation is expressed in the figure

as a dashed edge in the graph. We call such edges weak edges, and
the types pointing from a such an edge a weak member.

These types, in the examples T2 , generate the cyclic type de-
pendencies but they do not form part of it: the grammar for T2 is
generated without referring to T8 , T9 , T10 or T11 . But, for ex-
ample, to generate the grammar of T9 (or T10) the definition of
(T2 T10) has to be made part of the environment. So in order to
define the environment for the instances of T9 and T10 :

instance Gram T9 where
grammar = DGrammar 0 envT9T10

instance Gram T10 where
grammar = DGrammar 1 envT9T10

We include a copy of the definition of the non-terminals of T2 a
instantiated with T10 :

envT9T10 :: Env DGram (T9 , (T10 , (T2 T10 , ())))
(T9 , (T10 , (T2 T10 , ())))

envT9T10 = consD (nonts9 0 2) $
consD (nonts10 1 0) $
consD (nonts2 2 1) Empty

where
nonts9 T9 T2 = DLNontDefs

[(DRef (T9 , 10)
,DPS [dTerm "T9" .#. dNont (T2 , 0) .#.

dEnd consT9
, dTerm "C9" .#. dEnd (const C9)
, dTerm "(" .#. dNont (T9 , 0) .#.
dTerm ")" .#. dEnd parenT

]
)

]
nonts10 T10 T9 = DLNontDefs

[(DRef (T10 , 10)
,DPS [dTerm "T10" .#. dNont (T9 , 0) .#.

dEnd consT10
, dTerm "(" .#. dNont (T10 , 0) .#.
dTerm ")" .#. dEnd parenT

]
)

]
nonts2 T2 T10 = DLNontDefs

[(DRef (T2 , 5)
,DPS [dNont (T2 , 6) .#. dTerm ":+:" .#.

dNont (T2 , 6) .#. dEnd infixP]
)
, (DRef (T2 , 6)
,DPS [dNont (T10 , 7) .#. dTerm ":*:" .#.

dNont (T2 , 7) .#. dEnd infixT]
)
, (DRef (T2 , 10)
,DPS [dTerm "C2" .#. dEnd (const C2)

, dTerm "(" .#. dNont (T2 , 0) .#.
dTerm ")" .#. dEnd parenT]

)
]

consT9 a = const (T9 a)
consT10 a = const (T10 a)
infixP e1 e2 = e2 :+: e1
infixT e1 e2 = e2 :*: e1

Note that the instance of Gram T2 does not occur in this environ-
ment; the instance of Gram T2 is the one defined in Section 3.3.

We have to include all the instances of weak edges into a binding
group. In the case of T11 there are two weak edges from T2 .
Hence both (T2 T11) and (T2 T12) are included.

envT11T12 :: Env DGram
(T11 , (T12 , (T2 T11 , (T2 T12 , ()))))
(T11 , (T12 , (T2 T11 , (T2 T12 , ()))))

envT11T12 = consD (nonts11 0 2 3) $
consD (nonts12 1 0) $
consD (nonts2 2 0) $
consD (nonts2 3 1) Empty

3.5 Non Representable Data Types
There are some cases in which we cannot define a representation of
the grammar. In the presence of non uniform data types, we cannot
avoid the generation of infinite grammars. Consider the data type:

data T13 a = T13 (T13 (a, a)) | C13 a

To generate the grammar of T13 a , we need the grammar of
T13 (a, a), that needs the grammar of T13 ((a, a), (a, a)), and
so on. Note that all grammars are of different type, so we cannot
use the approach defined before.

Another type that cannot be represented with our approach,
because is also a kind of non uniform type, is the fix-point type:

data Fix f = In (f (Fix f))

In these cases we have to resort to the current way the read function
works.

3.6 Deriving Data Type Grammars
To automatically derive the data type grammars, we use Template
Haskell. While you can do most of the introspection needed also
with Data.Generics (Lämmel and Peyton Jones 2003, 2004), we
specifically need the fixity information of infix constructors for our
grammar, which is not available from Data.Generics .

We first need to find out if the type is part of a mutually recursive
group. Then we generate code for all types in the group, but only
construct an instance for the type deriveGrammar was called on.

3.6.1 Calculating binding groups
The algorithm that finds the set of types that is mutually recursive
is pretty straightforward: recursively getting the information of the
types used in the constructors, while building a graph of types.

To make sure we do not loop, we stop when we find a type that
is already in the graph. This works fine, but for types of a kind other
than ∗, we need to take the type arguments into account . We bind
the arguments in the environment and we do not recurse if we have
done so with the same arguments before.

3.6.2 Generating Gram instances
Using the binding group, we generate the DLNontDefs for each
of the types. This is straightforward: for a normal constructor we
add a non-terminal at precedence level 10, using the constructor as
term and it is arguments as references to non-terminals. For infix
constructors we use the precedence and associativity information
to add the at the right precedence. For each types we add a special
non-terminal for parentheses.

When we need a reference to another grammar we use a naming
scheme using the type, bindings (if applicable) and a prefix. For
references to grammars that are not known at compile time we use
the argument name, prefixed by the type and a general prefix.

When we have all the generated DLNontDefs we can chain
them together using consD . For types that take arguments, we add
a consG grammar for each argument. In the resulting environ-
ment, there will still be variables for references to grammars that

are not defined yet. We solve this by wrapping the definitions in
two lambda expressions. The inner expression makes the mapping
from the ‘polymorphic’ grammars to names (using explicit poly-
morphic signatures in the patterns). The outer lambda is used to
create the mappings for the parametrised grammars.

As an example, when calling $(deriveGrammar “T8) the
generated code looks like Figure 7.

instance Gram T8
where grammar = DGrammar Zero

((λ t T8 t T2 ′T8 →
(λ(nonts T8 :: ∀ env . Ref T8 env

→ Ref (T2 T8) env
→ DLNontDefs T8 env)

(nonts T2 :: ∀ env a 0 . Ref (T2 a 0) env
→ Ref a 0 env
→ DLNontDefs (T2 a 0) env)

→
consD (nonts T8 t T8 t T2 ′T8)

(consD (nonts T2 t T2 ′T8 t T8) Empty))
(λ r T8 r T2 ′T8 → DLNontDefs

[(DRef (r T8 , 10),DPS [
((.#.) $ dTerm "T8")
((.#.) (dNont (r T2 ′T8 , 0))
(dEnd (λarg1 → T8 arg1)))
, ((.#.) $ dTerm "C8") (dEnd (λ → C8))
, dTerm "("

.#. (dNont (r T8 , 0)

.#. (dTerm ")" .#. dEnd parenT))
])])

(λ r T2 r T2 a → DLNontDefs [...]))
Zero (Suc Zero)
:: Env DGram ((T8 , (T2 T8 , ())))

((T8 , (T2 T8 , ()))))

Figure 7. Generated grammar of type T8

4. Typed Transformations
In this section we present the approach used in implementing the
transformations:

group :: DGrammar a → Grammar a
leftcorner :: Grammar a → Grammar a
leftfactoring :: Grammar a → Grammar a

All these functions are implemented by using the typed transforma-
tion library constructed by Baars and Swierstra (Baars and Swier-
stra 2008). In the following subsections we introduce the library
and describe the implementation of the function group. The func-
tion leftcorner has been presented in the mentioned paper, and
leftfactoring has a quite similar structure. 1

4.1 Transformation Library
The library is based on the type Trafo, which represents typed
transformation steps which modify an Env . Each type parameter
of Trafo is lifted with respect to the final environment, except for
the meta data in the first parameter, which depends on the type of
the maintained environment at the start of the transformation:

1 The code of the library and the transformation functions can be found at
http://www.cs.uu.nl/wiki/bin/view/Center/TTTAS.

Trafo :: (∗ → ∗) -- meta-data
→ (∗ → ∗ → ∗) -- type of the terms
→ (∗ → ∗) -- input
→ (∗ → ∗) -- output
→ ∗

The second argument describes the type of the terms in the main-
tained environment, and the next two arguments provide an arrow
like interface, but of higher kind.

When we run a transformation we start with an empty environ-
ment and an initial value. Since this argument type is labeled with
the final environment, which we do not know yet, is has to be a
polymorphic value.

runTrafo :: Trafo m t a b → (m ())
→ (∀ s . a s)→ Result m t b

The Result contains the meta data, the output type and the final
environment. Since in general we do not know how many new non-
terminals and of which types are introduced by the transformation
the result is existential in the final environment s . Despite this
existentiality, we can enforce the environment to be closed.

data Result m t b = ∀ s . Result (m s) (b s) (Env t s s)

During the transformation we create references to types using
newSRef , which takes as input a typed term, adds this to the envi-
ronment, and returns the reference to the value.

newSRef :: Trafo Unit t (t a) (Ref a)
data Unit s = Unit

We compose transformations in an arrow-like style. Unfortunately
a Trafo is not really an Arrow , because the type arguments are
of kind (∗ → ∗) instead of ∗. We provide a short overview of the
interface.
The arr combinator lifts a function.

arr :: (∀ s . a s → b s)→ Trafo m t a b

The >>> combinator composes two Trafos, connecting the output
of the first to the input of the second one.

(>>>) :: Trafo m t a b → Trafo m t b c
→ Trafo m t a c

The functions first and second apply part of the input (first and
second component, respectively) to the argument Trafo, copying
the rest unchanged to the output. The type Tuple is used to tuple
types that are polymorphic in the final environment, having again
something polymorphic in this environment.

newtype Tuple a b s = TP (a s, b s)

first :: Trafo f t a b → Trafo f t (Tuple a c)
(Tuple b c)

second :: Trafo m t b c → Trafo m t (Tuple d b)
(Tuple d c)

The combinators *** and &&& compose two Trafos in a “parallel”
way. The first one takes the input as a Tuple , splitting it into two
inputs, while the combinator &&& uses the same input for the two
Trafos. The outputs of the combined Trafos are tupled into a single
output in both cases.

(***) :: Trafo m t b c → Trafo m t b′ c′

→ Trafo m t (Tuple b b′) (Tuple c c′)

(&&&) :: Trafo m t b c → Trafo m t b c′

→ Trafo m t b (Tuple c c′)

The function loop takes as argument a Trafo with input of type
Tuple a x and output of type Tuple b x . The second component

is fed-back (the output is passed as input). The function results in a
Trafo with input of type a and output b.

loop :: Trafo m t (Tuple a x) (Tuple b x)
→ Trafo m t a b

The combinator sequenceA composes a list of Trafos with input
a and output b, as a Trafo with input a and output a list of outputs
generated sequentially by each Trafo of the composed list.

newtype List a s = List [a s]

sequenceA :: [Trafo m t a b]→ Trafo m t a (List b)

4.2 Implementation of Grouping
The function group splits the grammar into parts, depending on
the precedence, while changing the representation of the grammar
to the one used in the implementation of the left-corner transform:

group :: DGrammar a → Grammar a

4.2.1 References Mapping
The transformation has to map references in a DGrammar with
explicitly indicated precedences to a representation where all el-
ements represent normal non-terminals. So, we have to transform
the DRef s references into the old representation to Ref s into the
new environment. We introduce a DRef -transformer for this con-
version, where env1 describes the types of the old non-terminals
and env2 those of the new non-terminals:

newtype DT env1 env2
= DT{unDT :: ∀ a . DRef a env1 → Ref a env2 }

With this transformer we map each production into its new repre-
sentation using references into new environment. This is done by
applying unDT to each non-terminal reference in the production:

mapDP2Prod :: DT env1 env2 → DProd a env1
→ Prod a env2

mapDP2Prod t (DEnd x) = End x
mapDP2Prod t (DSeq (DNont x) r)

= Seq (Nont (unDT t x))
(mapDP2Prod t r)

mapDP2Prod t (DSeq (DTerm x) r)
= Seq (Term x)

(mapDP2Prod t r)

The function dp2prod lifts mapDP2Prod using the combinator
arr . Thus, it takes a DProd and returns a transformation that has
as output a Prod , which is a production in the new environment.

dp2prod :: DProd a env
→ Trafo Unit Productions (DT env) (Prod a)

dp2prod p = arr (λenv2s → mapDP2Prod env2s p)

The type of the resulting Trafo indicates that the transformation
creates an environment of Productions (a Grammar).

Each precedence level definition is converted to a non-terminal
in the new grammar, using the function ld2nt . This function takes
a pair of type (DRef a env ,DProductions a env), that de-
fines a level of precedence, and creates the new non-terminal, re-
turning a reference to it. The transformation made by dp2prod is
applied to all the elements of the list of alternative productions
(DProductions) using sequenceA, in order to obtain a list of alter-
native productions in the new grammar (Productions). In parallel,
the function mkNxtLev creates a new production to add to the list,
that directly refers to the next level of precedence, if the represented
level is less than 10.

ld2nt :: (DRef a env ,DProductions a env)
→ Trafo Unit Productions (DT env) (DRef a)

ld2nt (DRef (rnt , i),DPS lp)
= (sequenceA (map dp2prod lp) &&& mkNxtLev)

>>> arr (λ(TP (List ps,PS nl))
→ PS $ nl ++ ps)

>>> newSRef >>> arr (λr → DRef (r , i))
where

mkNxtLev = arr $ λt → PS $
if (i < 10)

then [Seq (Nont $ unDT t $
DRef (rnt , i + 1))

(End id)]
else []

Then the possible new production (or an empty list otherwise) is
appended to the mapped alternative productions, generating the list
that is combined with the creation of a new reference. This new
reference is the new non-terminal, which stores its productions. The
reference and the precedence level that represents are the output of
the transformation.

By applying this transformation to a list of definitions of prece-
dence levels we obtain a list of DRef s:

newtype ListDR a s = ListDR ([DRef a s])

We now apply this transformation to all the defined levels of prece-
dence in all the non-terminal definitions and recursively to all the
referenced grammars. In this way we construct a mapping from the
references in the original environment to references in the trans-
formed one.

newtype DMapping o n = DMapping (Env ListDR n o)

A DRef -transformer can be obtained from the DMapping by con-
structing a function that takes a DRef a env , looks up the refer-
ence in the environment and subsequently locates the appropriate
precedence level in the list:

dmap2trans :: DMapping env s → DT env s
dmap2trans (DMapping env)

= DT (λ(DRef (r , i))
→ case (lookupEnv r env) of

ListDR rs → (plookup i rs))

Having an ordered list of DRef s, the function plookup returns the
first reference (Ref) that applies to a given preference level.

plookup :: Int → [DRef a s]→ Ref a s
plookup i [] = error "Wrong Grammar!!"

plookup i ((DRef (r , p)) : drs)
| i 6 p = r
| otherwise = plookup i drs

4.2.2 Transformation
The function group runs a Trafo that generates the new envi-
ronment and returns as output the reference of the starting point
(precedence level 0 in the main non-terminal). We construct the
new grammar by taking the output and the constructed environment
from the Result .

group :: DGrammar a → Grammar a
group gram

= let r = runTrafo
(gGrammar gram
>>> arr (λ(ListDR rs)→ (plookup 0 rs)))

Unit ⊥
in case r of Result r gram → Grammar r gram

The function gGrammar implements the grammar transformation.
It takes a DGrammar and returns a transformation that constructs
the “grouped” environment and has as output the list of new refer-
ences of the main non-terminal.

gGrammar :: DGrammar a
→ Trafo Unit Productions t (ListDR a)

gGrammar (DGrammar r gram)
= loop $

arr (λ(TP (,menv s))→ menv s)
>>> (arr (λ(DMapping env)→ lookupEnv r env)

&&& (arr (λmenv s → dmap2trans menv s)
>>> gDGrams gram))

The function applies the transformation returned by gDGrams
to the elements of the environment. This transformation takes as
input a DRef -transformer, mapping all non-terminals from the
original environment to the newly generated one. The output is
a DMapping which remembers the new locations of the non-
terminals from the original grammar. To obtain the needed DRef -
transformer for this transformation, the function gGrammar uses
a feed-back loop using the DMapping returned by the transfor-
mation itself. To obtain the list of mapped references for the main
non-terminal it just looks up the reference in the DMapping .

The function gDGrams iterates (by induction) over the envi-
ronment that contains the non-terminal definitions and the gram-
mars referenced by them.

gDGrams :: Env DGram env env ′

→ Trafo Unit Productions
(DT env) (DMapping env ′)

gDGrams env = mapTrafoEnv tr env
where

tr (DGG gram) = gGrammar gram
tr (DGD (DLNontDefs nonts))

= (sequenceA (map ld2nt nonts))
>>> arr (λ(List r)→ ListDR r)

In the case of a grammar, the function gGrammar is invoked. The
output of this transformation is the list of new references assigned
to the main non-terminal of this grammar. The list is added to the
DMapping in the place of the grammar.

In the case of a list of precedences (a non-terminal), we map the
function ld2nt to the list, obtaining a list of transformations. Each
transformation adds a new non-terminal to the new grammar and
returns the new reference and the precedence level that represents.
We execute this transformations sequentially (using sequenceA)
and add the resulting list of references to the DMapping .

The iteration over the environment is performed by the function
mapTrafoEnv .

mapTrafoEnv :: (∀ a . t a env
→ Trafo Unit tf af (ListDR a))

→ Env t env env ′

→ Trafo Unit tf af (DMapping env ′)
mapTrafoEnv Empty

= arr (const (DMapping Empty))
mapTrafoEnv t (Cons x xs)

= (t x &&& mapTrafoEnv t xs)
>>> arr (λ(TP (r ,DMapping rxs))

→ DMapping (Cons r rxs))

5. Efficiency
In this section we show some experimental results about the effi-
ciency of our approach2. First of all compare read and gread in the
presence of infix constructors. Finally we show how the presence
of the left-factoring optimisation influences efficiency.

5.1 gread versus read

In Figure 8 we show the execution times resulting from the use of
read and gread to parse an expression of the form C1 :>: (C1 :>:
...), where n is the number of constructors C1 the expression has.

n

t(s)
read

gread

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

10

20

30

40

50

60

70

Figure 8. Execution times of reading C1 :> (C1 :>: ...)

The function read clearly has an exponential behaviour. It takes 75
seconds to resolve the case with 17 C1s and does not run after 18.
On the other hand, the function gread maintains negligible times. If
we do not use parentheses we can read 50000 C1s within a second.
We obtain similar behaviour with (...:<:C1):<:C1. Note that this
is a bad case for the function read , due to the opening parentheses.
The function read takes 23 seconds to resolve the case with 9 C1s
(does not run after 10), while the function gread requires negligible
times: more than 40000 C1s can be read within a second, without
the extra parentheses.

Data type grammars are usually very small, but in order to test
our approach in its worst case, we defined a large data type of the
form:

data TBig t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
= CB

| TB1 (TBig t1 t2 t3 t4 t5 t6 t7 t8 t9 t10)
| ...
| TBn (TBig t1 t2 t3 t4 t5 t6 t7 t8 t9 t10)

where n is a number between 10 and 100. Note that the type has
10 parameters and no infix constructors. So a relatively large com-
bination and transformation effort is needed, while the optimisa-
tions do not add anything. We tested this type with an expression
TBn (...(TBn CB)...) with 10000 constructors.
We can see in Figure 9 that the function gread has linear be-
haviour. From this case we can conclude that the time needed to
perform the transformations is almost negligible. We have per-
formed the same tests using the expressions TB1 (...(TB1 CB)...)
and TBn

2
(...(TBn

2
CB)...) obtaining similar results.

2 The tests were run in a computer with 1.6 GHz Intel Core Duo processor
and 1 GB RAM.

n(×103)

t(s)

read

gread

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

Figure 9. Execution times of reading a large data type

5.2 gread versus leftcorner

We have shown that the gread function has efficient behaviour in
comparison with the Haskell read . But what happens if we do not
include the left-factoring?

n(×103)

t(s)
only LC

gread

0 5 10 15 20 25 30
0

20

40

60

80

100

120

Figure 10. Execution times of reading C1 :<: ... :<: C1 with and
without left-factoring

As we can see in Figure 10 (expression C1 :<: ... :<: C1)
the inclusion of left-factoring improves the efficiency by avoiding
duplicate parsing.

We have tested both functions in situations where the left-
factoring is not needed and they behave in a similar way; so the
extra transformation work and the few extra non-terminals add lit-
tle to the total cost of parsing. For example, in the case of Table 1
there are no common prefixes in the evaluated productions while
only applying the LC-transform.

6. Conclusions and Future Work
We have shown an alternative way to implement the read (and
consequently also the show) functions. We read data in linear time,
generate shorter output, and the overhead caused by generating the
read functions at runtime does not seem to be a problem; not even
for very large data types. Unfortunately we are not able to handle
nested data types which have infix constructors; for these one has
to write the parsing functions by hand. Note that this problem only
occurs if the nested data type occurs at the left-hand side of an
infix type constructor, and that in such cases also the conventional
solution is problematic.

n (×103) gread (s) only LC (s)
10 0.14 0.14
20 0.33 0.32
30 0.57 0.56
40 0.82 0.82
50 1.13 1.11
60 1.47 1.47
70 1.82 1.81
80 2.23 2.22
90 2.68 2.67
100 3.18 3.15

Table 1. Execution times of reading C1 :>: ... :>: C1 with and
without left-factoring

Besides the completely dynamic implementation which we have
presented in which we compose all grammars at runtime, a large
part of the work could be done by the Haskell compiler at compila-
tion time.

We consider the Template Haskell implementation to be a pro-
totype. Further optimisations are to tuple grammars with their cor-
responding parser. If we know there are no problems with common
prefixes or left-recursion we can resort to simpler parsing methods,
and generate parsers only once by sharing them.

Straightforward extensions are the inclusion of a generator for
record constructors. An open research problem is how to merge
in the techniques for parsing record fields in arbitrary order, since
the proposed solution (Baars et al. 2004) critically depends on the
dynamic generation of parsers; we expect lazy evaluation to save
us here. Finally, we need a more robust naming scheme to deal
with problems due a similarly named types coming from different
modules.

7. Acknowledgments
We thank Simon Peyton-Jones for bringing the problem under
our attention and Koen Claessen for discussing the impossibilities
of simpler approaches. We also thank the anonymous reviewers,
Atze Dijkstra, Andres Löh and Thomas Van Noort who provided
valuable comments on drafts of this paper.

References
Arthur Baars and Doaitse Swierstra. Typed transformations of typed

abstract syntax. UU-CS 21, Utrecht University, 2008.

Arthur Baars, Andres Löh, and Doaitse Swierstra. Parsing permutation
phrases. J. Funct. Program., 14(6):635–646, 2004. ISSN 0956-7968.

Arthur I. Baars and S. Doaitse Swierstra. Type-safe, self inspecting code.
In Haskell ’04: Proceedings of the 2004 ACM SIGPLAN workshop on
Haskell, pages 69–79, New York, NY, USA, 2004. ACM. ISBN
1-58113-850-4. doi: http://doi.acm.org/10.1145/1017472.1017485.

Eric Bouwers, Martin Bravenboer, and Eelco Visser. Grammar
engineering support for precedence rule recovery and compatibility
checking. Electron. Notes Theor. Comput. Sci., 203(2):85–101, 2008.
ISSN 1571-0661.

Martin Bravenboer. Exercises in Free Syntax. Syntax Definition, Parsing,
and Assimilation of Language Conglomerates. PhD thesis, Utrecht
University, Utrecht, The Netherlands, January 2008.

M. Johnson. Finite-state approximation of constraint-based grammars
using left-corner grammar transforms. In COLING-ACL Õ98,
Montreal, Quebec, Canada, pages 619–623. Association for
Computational Linguistics, 1998.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. ACM SIGPLAN Notices, 38

(3):26–37, March 2003. Proceedings of the ACM SIGPLAN Workshop
on Types in Language Design and Implementation (TLDI 2003).

Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection,
zips, and generalised casts. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP 2004),
pages 244–255. ACM Press, 2004.

Conor McBride and Ross Paterson. Applicative programming with effects.
Journal of Functional Programming, 18(01):1–13, 2007. doi:
10.1017/S0956796807006326.

Emir Pasalic and Nathan Linger. Meta-programming with typed
object-language representations. In Generative Programming and
Component Engineering (GPCE’04), volume LNCS 3286, pages 136 –
167, October 2004.

JC Petruzza, Koen Claessen, and Simon Peyton Jones. Derived read
instances for recursive datatypes with infix constructors are too
inefficient. URL
http://hackage.haskell.org/trac/ghc/ticket/1544. GHC
Ticket 1544.

Simon Peyton Jones. Haskell 98 Language and Libraries: the Revised
Report. 2003.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple nification-based type inference for gadts.
SIGPLAN Not., 41(9):50–61, 2006. ISSN 0362-1340.

Tim Sheard and Simon Peyton Jones. Template meta-programming for
haskell. In Proceedings of the ACM SIGPLAN workshop on Haskell,
pages 1–16. ACM Press, 2002. ISBN 1-58113-605-6.

S.D. Swierstra. The Utrecht Parsing Libraries.
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators,
July 2008.

A. Additional Parser Combinators

pChainr op x = r
where r = x <??> (flip <$> op <*> r)

p <??> q = p <**> (q ‘opt ‘ id)
p <**> q = flip ($) <$> p <*> q

pChainl op e = foldl (flip ($))
<$> e <*> pMany (flip <$> pOp op <*> e)

pOp (tok , sem) = const sem <$> pToken tok
pParens p = (λ v → v)

<$> pToken "(" <*> p <*> pToken ")"

B. Parser Generation

newtype Const f a s = C{unC :: f a }
compile :: Grammar a → Parser Token a
compile (Grammar (start :: Ref a env) rules)

= unC (lookupEnv start result)
where

result =
mapEnv

(λ(PS ps)→ C (foldr1 (<|>)
[comp p | p ← ps]))

rules
comp :: Prod a env → Parser Token a
comp (End x) = pLow x
comp (Seq (Term t) ss)

= (flip ($)) <$> pSym t <*> comp ss
comp (Seq (Nont n) ss)

= (flip ($)) <$> unC (lookupEnv n result)
<*> comp ss

