
UUAG Meets AspectAG: How to make Attribute

Grammars First-Class

Marcos Viera1, S. Doaitse Swierstra2, and Arie Middelkoop2

1Instituto de Computación , Universidad de la República,
Montevideo, Uruguay, mviera@fing.edu.uy

2Department of Computer Science, Utrecht University, Utrecht,
The Netherlands, {doaitse,ariem}@cs.uu.nl

Abstract

The Utrecht University Attribute Grammar Compiler (UUAGC) takes
attribute grammar declarations from multiple source files and generates
an attribute grammar evaluator consisting of a single Haskell source text.
The problem with such generative approaches is that, once the code is
generated and compiled, neither new attributes can be introduced nor
existing ones can be modified without providing access to all the source
code and without having to regenerate and recompile the entire program.

In contrast to this textual approach we recently constructed the Haskell
combinator library AspectAG with which one can construct attribute
grammar fragments as a Haskell value. Such descriptions can be indi-
vidually type-checked, compiled, distributed and composed to construct
a compiler. This method however results in rather inefficient compilers,
due to the increased flexibility.

We show how to combine the two approaches by generating AspectAG
code fragments from UUAGC sources, thus making it possible to trade
between efficiency and flexibility, enabling a couple of optimizations for
AspectAG resulting in a considerable speed improvement and making ex-
isting UUAGC code reusable in a flexible environment.

1 Introduction

The key advantage of using attribute grammar systems is that they allow us
to describe the semantics of a programming language in an aspect oriented
way. A complete evaluator can be assembled from a large collection of attribute
grammar fragments, each describing a specific aspect of the language at hand.

Solutions to the quest for composable language description can be found at
the textual level, as done by most attribute grammar systems [7, 3, 1], or at the
semantic level, where language descriptions become first class values, which can
be composed to build a complete language description.

1

The first approach is supported by, amongst many others, the Utrecht Uni-
versity Attribute Grammar System (UUAGC) [2], which reads in a complete
language definition from a large collection of files, each describing a separate
aspect of the language. These fragments are assembled and analyzed together,
leading to a large, monolithic and eficiënt compiler, which however cannot easily
be adapted once generated and compiled. In the object-oriented world we find
similar weaving based approaches in e.g. Lisa [7] and Jastadd [3], which are
both Java based

At the other extreme we find the attempts to assemble the semantics from
individual fragments, which, in case of Haskell, use monad transformers to stack
a large collection of relatively independent computations over the syntax tree,
each taking care of one of the aspects that together make up a complete compiler
[4, 8]. Unfortunately, the monad-based approach comes with its own problems:
one gets easily lost in the stack of monads, one is sometimes obliged to impose
an order which does not really make sense, and the type system makes it hard
to e.g. compose state out of a number of individual states which probably carry
the same type. Furthermore, the implicit order in which attributes have to be
evaluated becomes very explicit in the way the monads are composed.

Recently we have designed a completely different, non monad-based, ap-
proach to describing first-class language definition fragments; using a collection
of combinators (the AspectAG Haskell package) it becomes possible to express
attribute grammars using an Embedded Domain-Specific Language in Haskell
[10]; unfortunately it is both a bit more verbose than the specific syntax as pro-
vided by the UUAGC system and relatively expensive. In order to provide the
possibility to redefine attributes or to add new attributes elsewhere, we encode
the lists of inherited and synthesized attributes of a non-terminal as an HList-
encoded [5] value, indexed by types using the Haskell class mechanism. In this
way the checking for the well-formedness of the attribute grammar is realized
through the Haskell class system. Once the language gets complicated (in our
Haskell compiler UHC [1] some non-terminals have over 20 attributes), the cost
of accessing attributes may become noticeable. Note that, in contrast to the
weaving based approaches, this approach supports separate compilation of indi-
vidual aspects: each generated fragment is individually checked to be well-typed
and once compiled its source is not modifiable by other extensions.

In this paper we seek to alleviate the aforementioned verbosity and inef-
ficiency by generating AspectAG code from the original UUAGC code. We
furthermore take the opportunity to group collections of attributes which are
not likely to be adapted, so we can shorten the HList values, thus relieving the
costs of the extra available expressibility. Only the attributes which are to be
adapted in other language fragments have to be made part of these HList values
at the top level; hence we only pay for the extra flexibility where needed.

In section 2 we describe the way the UUAGC represents grammars and
introduce our running example, which consists of an initial language fragment
and a small extension. In section 3 we describe how to generate AspectAG code
out of the UUAGC sources and in section 4 we describe how we optimize the
generated code.

2

2 Attribute Grammars

2.1 Initial Attribute Grammars

LangDef.ag

DATA Root | Root decls : Decls main : Expr

DATA Decls | Decl name : String val : Expr rest : Decls | NoDecl

DATA Expr | Add l : Expr r : Expr | Val value : Int | Var var : String

ATTR Root Expr SYN sval : Int

SEM Root | Root lhs.sval = main.sval

SEM Expr | Add lhs.sval = l .sval + r .sval
| Val lhs.sval = value
| Var lhs.sval = case lookup var lhs.ienv of Just v → v

ATTR Decls Expr INH ienv : [(String , Int)]

SEM Root | Root decls.ienv = []
main.ienv = decls.senv

SEM Expr | Add l .ienv = lhs.ienv
r .ienv = lhs.ienv

SEM Decls | Decl val .ienv = []
rest .ienv = (name, val .sval) : lhs.ienv

ATTR Decls SYN senv : [(String , Int)]

SEM Decls | Decl lhs.senv = rest .senv
| NoDecl lhs.senv = lhs.ienv

Figure 1: AG specification of the language semantics

An Attribute Grammar is a context-free grammar where the nodes in the
parse tree are decorated with a (usually quite large) number of values, called
attributes. As running example we use a small expression language with declara-
tions, of which the semantics boils down to the evaluation of the main expression.

In Figure 1 we show the semantics in terms of UUAGC input. The grammar
describing the abstract syntax trees of the language is introduced by the DATA
definitions Root , Expr and Decls. Attributes define semantics for the language
in terms of the grammar and in their defining expression may refer to other
attributes. A tree-walk evaluator generated from the AG computes values for
these attributes, and thus provides implementations for the semantics in the
form of compilers and interpreters. We distinguish two kinds of attributes:
synthesized and inherited attributes. For each production we distinguish two
sets of attributes: the input-family, which contains the inherited attribute of
the parent node and the synthesized attributes of the children nodes, and the

3

output-family, consisting of the inherited attributes of the children nodes and the
synthesized attributes of the parent node. For each rule and for each member
of the output family of that rule, we define how it is to be computed in terms
of the members of the input family1.

In our example (Figure 1) we use three attributes: one attribute (SYN sval)
holding the result value, one attribute (INH ienv) in which we assemble the
environment from the declarations (ienv) and one attribute (SYN senv) for
passing the final environment back to the Root to be used in the main expression.

In a SEM block we specify how attributes from the output family are to be
computed out of attributes from the input family. The defining expressions at
the right hand side of the =-signs are almost plain Haskell code, using minimal
syntactic extensions to refer to attributes from the input family. We refer to
a synthesized attribute of a child using the notation child .attribute and to an
inherited attribute of the production itself (the left-hand side) as lhs.attribute.
Terminals are referred to by the name introduced in the DATA declaration.
For example, the rule for the attribute ienv for the child rest of the production
Decl extends the inherited ienv list with a pair composed of the name used in
the declaration and the value sval of the child with name val (val .sval).

Declaration of trivial rules, like the definitions of ienv for the production
Add , are not necessary; they are automatically generated by UUAGC using so
called copy rules, thus avoiding the need to write a lot of “boiler-plate” code.

When the UUAGC compiler weaves its input files into a Haskell program
the rules’ expressions are copied almost verbatim into the generated program:
only the attribute references are replaced by references to values defined in the
generated program. The UUAGC compiler checks whether a definition has been
given for each attribute, whereas type checking of the defining expressions is left
to the Haskell compiler when compiling the generated program.

2.2 Attribute Grammar Extensions

In this subsection we show how we can extend the given language without touch-
ing the code written (neither the generated nor the compiled code). In our com-
piler we want to generate error messages, so we introduce an extra synthesized
attribute (serr , Figure 2), in which we report occurences of dual declarations
(name is already an element of the ienv) and absent declarations (name is not
an element of ienv).

To compile this code using UUAGC and ghc we follow the process described
in Figure 3; i.e. use UUAGC to generate a completely fresh Haskell file out of
the two related attribute grammar sources, compile the composite result with
ghc and link it with yet another call to ghc. Keep in mind that by doing so
we only generate the semantic part of the compiler, which has to be completed
with a few lines of main program containing the parsers from which refer to the
generated semantic part.

1We use the following naming convention for attributes: all synthesized attributes start
with ’s’ and all inherited attributes start with ’i’.

4

LangExt.ag

ATTR Root Decls Expr SYN serr : [String]

SEM Root | Root lhs.serr = decls.serr ++ main.serr

SEM Decls | Decl lhs.serr = (case lookup name lhs.ienv of
Just → [name ++ " duplicated"]
Nothing → []) ++ val .serr ++ rest .serr

| NoDecl lhs.serr = []

SEM Expr | Add lhs.serr = l .serr ++ r .serr
| Val lhs.serr = []
| Var lhs.serr = case lookup var lhs.ienv of

Just → []
Nothing → [var ++ " undefined"]

Figure 2: Semantics extended with an attribute that collects errors

Figure 3: Compilation Process with UUAGC

To use AspectAG almost the same code has to be written, but by passing
some extra flags to UUAGC we generate human-readable AspectAG code. This
enables a completely different construction process (Figure 4), which makes
it possible to have a compiled definition of the semantics of a core language
and to introduce relative small extensions to it later, without neither the need
to reconstruct the whole compiler, nor even requiring the sources of the core
language to be available! Thus, for example, a core language compiler and a
set of optional extensions can be distributed (without sources), such that the
user can link his own extended compiler together. Such extensions could also
be written in AspectAG directly.

To switch on this extension in UUAGC we pass the flag --aspectag:

uuagc -a --aspectag LangDef

uuagc -a --aspectag LangExt

With --aspectag we make UUAGC generate AspectAG code out of a set of
.ag files and their corresponding .agi files, as we show in the following sections.

An .agi file includes the declaration of a grammar and its attributes (the
interface), while the SEM blocks, which specify the computation of these at-
tributes, end up in the .ag file (the implementation). Figure 5 shows the at-
tribute grammar specification of Figure 1 adapted to our approach. Notice

5

Figure 4: Compilation Process with our extension of UUAGC

that the code is exactly the same, although distributed over a file Langdef.agi

containing DATA and ATTR declarations, and a file Langdef.ag with the
rules.

In Figure 6 we adapt the extension of Figure 2. In this case a new keyword
EXTENDS is used to indicate which attribute grammar is being extended.
Extensions are incremental. Thus, if we define yet another extension (Figure 7)
which adds a new production representing negating expressions to the attribute
grammar resulting from the previous extension LangExt , the specific rules for
the attributes sval , ienv and serr have to be defined (in case they differ from
the otherwise generated copy rules).

An important feature of the AspectAG library is that, besides adding new
attributes or productions, existing definitions for attributes can be overwritten.
If we want to extend the example language in such a way that an expression
in a declaration may refer to sibling declarations, we can do so by redefining
the definition for the environment we pass to such right-hand side expressions.
In Figure 8 we show how this can be done using := instead of =, the UUAGC
syntactic form of attribute redefinitions.

3 From UUAG to AspectAG

The target of our translation is AspectAG [10], a strongly-typed Haskell library
for attribute grammars, where our individual language fragments become first-
class values which can be compiled, stored, redefined and combined.

In AspectAG families are represented with a type:

data Fam parent children = Fam parent children

where both parent and children are extensible records, which are implemented
using HList [5] typeful heterogeneous collections. HList is implemented using
type-level programming techniques, where types are used to represent type-
level values and classes are used to represent type-level types and functions
[6]. The record parent represents the set of attributes for the parent and the
record children is a type indexed collection of records, each one containing the
attributes for a child. Notice that the labels of the fields in children determine
the production for which a family is defined.

6

LangDef.agi

DATA Root | Root decls : Decls main : Expr

DATA Decls | Decl name : String val : Expr rest : Decls | NoDecl

DATA Expr | Add l : Expr r : Expr | Val value : Int | Var var : String

ATTR Root Expr SYN sval : Int
ATTR Decls Expr INH ienv : [(String , Int)]
ATTR Decls SYN senv : [(String , Int)]

LangDef.ag

SEM Root | Root lhs.sval = main.sval

SEM Expr | Add lhs.sval = l .sval + r .sval
| Val lhs.sval = value
| Var lhs.sval = case lookup var lhs.ienv of Just v → v

SEM Root | Root decls.ienv = []
main.ienv = decls.senv

SEM Expr | Add l .ienv = lhs.ienv
r .ienv = lhs.ienv

SEM Decls | Decl val .ienv = []
rest .ienv = (name, val .sval) : lhs.ienv

SEM Decls | Decl lhs.senv = rest .senv
| NoDecl lhs.senv = lhs.ienv

Figure 5: Language semantics

In order to make attribute computation composable we define a rule as a
mapping from the attributes in the input family to a function which extends a
family of output attributes with the new elements defined by this rule:

type Rule sc ip ic sp ic′ sp′ = Fam sc ip → (Fam ic sp → Fam ic′ sp′)

Thus, the composition of two rules is the composition of the two functions after
applying each of them to the input family:

ext :: Rule sc ip ic′ sp′ ic′′ sp′′ → Rule sc ip ic sp ic′ sp′

→ Rule sc ip ic sp ic′′ sp′′

(f ‘ext ‘ g) input = f input . g input

Once the computations are composed, the semantic functions corresponding
to each production can be generated by applying them to the semantic functions
of the children of the production. This is the job of AspectAG ’s function knit ,
which takes a (composite) rule and a record containing the semantic functions

7

LangExt.agi

EXTENDS "LangDef"

ATTR Root Decls Expr SYN serr : [String]

LangExt.ag

SEM Root | Root lhs.serr = decls.serr ++ main.serr

SEM Decls | Decl lhs.serr = (case lookup name lhs.ienv of
Just → [name ++ " duplicated"]
Nothing → []) ++ val .serr ++ rest .serr

| NoDecl lhs.serr = []

SEM Expr | Add lhs.serr = l .serr ++ r .serr
| Val lhs.serr = []
| Var lhs.serr = case lookup var lhs.ienv of

Just → []
Nothing → [var ++ " undefined"]

Figure 6: Language Extension: Errors

LangExt2.agi

EXTENDS "LangExt"

DATA Expr | Neg expr : Expr

LangExt2.ag

SEM Expr | Neg lhs.sval = −expr .sval

SEM Expr | Neg expr .ienv = lhs.ienv

SEM Expr | Neg lhs.serr = expr .serr

Figure 7: Language Extension: Negation

of the children, and builds a function from the inherited attributes of the parent
to its synthesized attributes.

3.1 The Translation

The translation to AspectAG is quite straightforward. In the rest of this section
we will show, with some examples, its most important aspects.

3.1.1 Grammar

Since we use extensible records, labels have to be generated to refer to the chil-
dren of the productions of the grammar. For example, the child label generated
out of the .agi file of Figure 7 is ch expr Neg Expr . A label in an HList is
represented by a plain Haskell value of a singleton type.

8

LangExt3.agi

EXTENDS "LangExt2"

LangExt3.ag

SEM Decls | Decl val .ienv := rest .senv

Figure 8: Language Extension: Attribute ienv redefined to allow the use of
variables in declarations

3.1.2 Attribute Definition

A collection of synthesized or inherited attributes is an extensible record, too.
Thus, for each ATTR declaration in the .agi file, a label has to be generated
to refer to the defined attribute. The declaration ATTR Decls SYN senv :
{ [(String , Int)]}, in Figure 6, generates the label att senv .

The AspectAG function syndef adds the definition of a synthesized attribute.
It constructs a rule Rule sc ip ic sp ic sp′, where sp′ is the record sp extended
with a field representing the new attribute. We use syndef to generate the code
for the rules for the synthesized attributes, like:

SEM Decls | Decl lhs.senv = rest .senv

Resulting in the code:

senv Decls Decl = syndef att senv $ do rest ← at ch rest Decls Decl
return $ rest # att senv

where at ch rest Decls Decl locates the rest child in the record sc of the envi-
ronment with type Fam sc ip using the label ch rest Decls Decl . Having this
record bound to rest the HList lookup operator # is used to locate the value of
the attribute att senv . The uses of such calls to at will inform the type system
that the input family Fam sc ip has to have a child ch rest Decls Decl with a
defined attribute att senv . Such constraints turn up as class constraints, to be
checked by the Haskell type checker.

The same procedure is followed to generate code for the inherited attributes,
but using the function inhdef . For the declarations:

SEM Decls | Decl val .ienv = []
rest .ienv = (name, val .sval) : lhs.ienv

The following code is generated:

ienv Decls Decl = inhdef att ienv nts ienv $
do
lhs ← at lhs
name ← at ch name Decls Decl

9

val ← at ch val Decls Decl
return {{ ch val Decls Decl .=. []

, ch rest Decls Decl .=. (name, val # att sval) : lhs # att ienv }}

The parameter nts ienv is a list of labels representing the non-terminals for
which the attribute ienv is defined (generated out of the ATTR declarations).
The function lhs returns the record ip (inherited attributes of the parent) from
the input family Fam sc ip. The defined computations for each child are re-
turned in an extensible record2, which is iterated by a “type-level function”
(implemented by a type class called Defs) to extend the corresponding records
in ic.

3.1.3 Generating the Semantic Functions

Thus, when generating AspectAG code, all the rules for the attributes of each
production are composed. In the example of Figure 5 the following composition
is generated for the production Decl :

atts Decls Decl = ienv Decls Decl ‘ext ‘ senv Decls Decl

The semantic functions of the non-terminal Decl is:

sem Decls Decl = knit atts Decls Decl
sem Decls NoDecl = knit atts Decls NoDecl

This code is generated out of the DATA declarations.

3.1.4 Extensions

The keyword EXTENDS indicates that an attribute grammar declaration ex-
tends an existing attribute grammar. In an extension we can both add new
attributes or productions or redefine the computation of existing attributes.

When the code of an extension is generated, the names of context-free gram-
mar and the previously defined attributes have to be imported from the code
generated for the system to extend. We take this information from the (chain
of) .agi file(s) of the extended module.

We also generate a qualified import of the whole module, so we can refer to
already defined rules without name clashes:

import qualified LangDef

So, when introducing new attributes, we can perform the composition for each
production where the attribute is defined, and knit it again. For example:

atts Decls Decl = serr Decls Decl ‘ext ‘ LangDef .atts Decls Decl

sem Decls Decl = knit atts Decls Decl

2We use syntactic sugar {{...}} for extensible records equivalent to the list notation [...].

10

When an attribute is overwritten using :=, a similar approach as when defin-
ing new attributes is taken. Instead of using syndef and inhdef to define at-
tributes, the functions synmod and inhmod are used, which are almost identical
to their respective def functions, with the difference that instead of extending
a record with a new attribute, the value of an existing attribute is updated in
the record.

4 Optimizations

The flexibility provided by the use of list-like structures to represent collec-
tions of attributes (and children) of productions has its consequences in terms
of performance. In this section we propose a couple of optimizations, based on
changing some of the extensible records we use by normal records (Cartesian
products). Both optimizations can be performed automatically by the transfor-
mation.

4.1 Grouping Attributes

If some attributes are fixed and will not be redefined, the use of extensible
records is not necessary: in those cases we can group such a collection of synthe-
sized attributes into a single attribute att syn and such a collection of inherited
attributes into an attribute att inh. The type of a grouping attribute is a (non
extensible) record containing the grouped attributes.

Attributes defined in extensions cannot be grouped with the original at-
tributes. Thus, in our running example applying grouping does not make much
sense, since every group will have only one attribute. But if the specifications in
Figures 5 and 6 were joined in the generation process we will have the attributes
att inh and att syn for Decls with types:

data Inh Decls = Inh Decls {ienv Inh Decls :: [(String , Int)]}
data Syn Decls = Syn Decls {senv Syn Decls :: [(String , Int)]

, serr Syn Decls :: [String]}

To define and access the grouped attributes, one more level of indirection is
added. Thus, the definition of att syn for the production Decl is:

syn Decls Decl = syndef att syn $
do rest ← at ch rest Decls Decl

return Syn Decls {senv Syn Decls = (senv Syn Decls (rest # att syn))}

By default, all the attributes of every production are grouped, but grouped
attributes cannot be redefined without having to make changes to the entire
group. The flag --nogroup lets us specify the list of attributes we do not want
to be included in the grouping. For example, a following call to uuagc with
flag --nogroup=env generates the AspectAG code for the example with all the
attributes grouped except ienv , which will be redefined in the extensions.

11

4.2 Static Productions

If we do not need the possibility to change the definition of already existing
productions (note that our flexible approach did not forbid this thus far), a
less flexible approach to represent productions can also be taken. The flag
--static activates an optimization where the collection of child attributions are
represented as records instead of extensible records. Thus, instead of defining
the labels for the children of the productions, we define for each production a
record with the children as fields. For example:

data Ch Decls Decl name val rest
= Ch Decls Decl {ch name :: name, ch val :: val , ch rest :: rest }

In this case, the generic knit function cannot be used anymore and thus specific
knit functions are generated for such productions:

knit Decls Decl rule fc ip = sp
where ec = Ch Decls Decl {{ }} {{ }} {{ }}

(Fam ic sp) = rule (Fam sc ip) (Fam ec {{ }})
sc = Ch Decls Decl ((ch name fc) (ch name ic))

((ch val fc) (ch val ic))
((ch rest fc) (ch rest ic))

Then, the semantic functions are also a bit different:

sem Decls Decl sn sv sr
= knit Decls Decl atts Decls Decl (Ch Decls Decl sn sv sr)

We cannot use the generic type-level function Defs to define inherited at-
tributes. We must define a specific instance of Defs for each production, and
adapt the rule definitions to the use of records. For example:

ienv Decls Decl = inhdef att ienv nts ienv $
do lhs ← at lhs

name ← at ch name Decls Decl
val ← at ch val Decls Decl
return Ch Decls Decl

{ch val Decls Decl = []
, ch rest Decls Decl = (name, val # att sval) : lhs # att ienv }

4.3 Benchmarks

We benchmarked our optimizations against AspectAG and UUAGC , in order
to analyze their performance impact.3 Figures 9 and 10 show the effect of
grouping attributes in a grammar represented by a binary tree. Note that these

3Information available at: http://www.cs.uu.nl/wiki/bin/view/Center/Benchmarks

12

atts.

t(s)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

Figure 9: Grouping Syn. Attrs.

atts.

t(s)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

Figure 10: Grouping Inh. Attrs.

represent worst-case scenarios, since we hardly perform any work in the rules
themselves. The y-axis represents the execution time (in seconds) and the x-axis
the number of ungrouped attributes (the rest are grouped) in a full tree with
15 levels. In Figure 9 we show the results for a system with twenty synthesized
attributes. Figure 10 shows the results for twenty inherited attributes and
one synthesized attribute to collect them. In both cases the effect of grouping
attributes becomes clear; for a relative large number of attributes the grouping
optimization achieves good speedup, since whenever an attribute is needed it is
located in constant time instead of linear time in the number of attributes.

arity

t(s)

AspectAG

static

2 4 6 8 10 12 14
0

10
20
30
40
50
60
70
80
90

Figure 11: Static: Syn.

arity

t(s)

AspectAG

static

2 4 6 8 10 12
0

10

20

30

40

50

60

70

Figure 12: Static: Syn. and Inh.

In figures 11 and 12 we show the performance impact of the “static pro-
ductions” optimization, as the number of children of the nodes increases. We
tested with complete trees with depth 5; the x-axis represents the arity of the
tree. Figure 11 shows the results for one synthesized attribute, while the results
of Figure 12 include one synthesized and one inherited attribute. Thus, the
optimization helps, and has a big impact on productions with many children,
because we are avoiding iterations over lists of children when evaluating the
semantics for each node. In figures 13 and 14 we compared the performance of
both optimizations and AspectAG in a simple grammar represented by a binary

13

atts.

t(s) AspectAG

static

grouped

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

Figure 13: Static vs Grouped: Syn.

atts.

t(s)

AspectAG

static

grouped

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

Figure 14: Static vs Grouped: Inh.

tree. In this case the x-axis represents the number of (synthesized or inherited)
attributes. As the number of attributes increases, the grouping optimization
has a bigger performance impact. If we apply both optimizations together (fig-
ures 15 and 16) we obtain better times, although we are still quite far from the
performance of UUAGC .

atts.

t(s)

grouped

static+grouped

UUAGC

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

Figure 15: Static + Grouped: Syn.

atts.

t(s)

grouped

static+grouped

UUAGC

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

Figure 16: Static + Grouped: Inh.

5 Conclusions and Future Work

We have shown an approach to write AspectAG code, i.e. a strongly-typed
flexible attribute system, in a less verbose Domain-Specific Language style.

We provide a framework for the generation of flexible compilers by taking a
hybrid approach to their architecture. The core part is composed by a single
monolithic part, which is evaluated efficiently, and a set of redefinable aspects.
Extensions (and redefinitions) can be plugged into this core, albeit at a certain
cost. In a companion paper [9] we proposed a syntax macros-like mechanism
which follows this idea. The semantics of newly introduced syntax is defined in
terms of already existing semantics. Some existing aspects, e.g. pretty-printing,
may be redefined to provide accurate feedback.

14

Summarizing, it can be seen that flexibility still has its cost, but the appli-
cation of the optimizations is a good option as the number of attributes and/or
children of the productions increases. One should keep in mind that the actual
computations done in our examples in the rule functions is trivial. Hence in a
real compiler, where most of the work is actually done in the rules, the overhead
coming with the extra flexibility will usually be far less of a burden.

Possible future work is to add a new optimization, consisting in the gener-
ation of a less type-safe code than AspectAG. This involves the addition of a
Haskell type-checking phase to UUAGC. Furthermore, a drawback of that ap-
proach is that it ties us to the use of UUAGC , not allowing the introduction of
extensions written directly in the target language (e.g. AspectAG).

References

[1] Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The architecture
of the Utrecht Haskell compiler. In Haskell 2009, pages 93–104.

[2] Atze Dijkstra and S. Doaitse Swierstra. Typing Haskell with an Attribute
Grammar. In AFP Summerschool, number 3622 in LNCS, 2004.

[3] Görel Hedin and Eva Magnusson. Jastadd: an aspect-oriented compiler
construction system. Sci. Comput. Program., 47:37–58, April 2003.

[4] Mark P. Jones. Typing Haskell in Haskell. In Haskell Workshop, 1999.

[5] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed hetero-
geneous collections. In Haskell 2004. ACM Press.

[6] Conor McBride. Faking it simulating dependent types in Haskell. J. Funct.
Program., 12(5):375–392, 2002.

[7] Marjan Mernik, Mitja Lenic, Enis Avdicausevic, and Viljem Zumer. Mul-
tiple attribute grammar inheritance. Informatica (Slovenia), 24(3), 2000.

[8] Tom Schrijvers and Bruno C.d.S. Oliveira. Monads, zippers and views:
virtualizing the monad stack. In ICFP 2011, pages 32–44. ACM.

[9] Marcos Viera and S. Doaitse Swierstra. Semantic Macros: Attribute Gram-
mar Combinators. UU-CS 2011-028, Utrecht University, 2011.

[10] Marcos Viera, S. Doaitse Swierstra, and Wouter Swierstra. Attribute gram-
mars fly first-class: how to do aspect oriented programming in Haskell. In
ICFP 2009. ACM.

15

