
Towards a functional run-time for dense NLA domain

Mauro Blanco Pablo Perdomo Pablo Ezzatti Alberto Pardo Marcos Viera
Instituto de Computación, Universidad de la República, Montevideo, Uruguay

{mblanco,pperdomo,pezzatti,pardo,mviera}@fing.edu.uy

Abstract
We investigate the use of functional programming to develop a nu-
merical linear algebra run-time; i.e. a framework where the solvers
can be adapted easily to different contexts and task parallelism can
be attained (semi-) automatically. We follow a bottom up strategy,
where the first step is the design and implementation of a frame-
work layer, composed by a functional version of BLAS (Basic Lin-
ear Algebra Subprograms) routines. The framework allows the ma-
nipulation of arbitrary representations for matrices and vectors and
it is also possible to write and combine multiple implementations
of BLAS operations based on different algorithms and parallelism
strategies. Using this framework, we implement a functional ver-
sion of Cholesky factorization, which serves as a proof of concept
to evaluate the flexibility and performance of our approach.

Categories and Subject Descriptors D.1.1 [Programming tech-
niques]: Applicative (Functional) Programming; D.1.3 [Progra-
mming techniques]: Parallel Programming

Keywords Parallelism; Haskell; NLA; BLAS

1. Introduction
Numerical Linear Algebra (NLA) is a research area that in the
last 40 years has been characterized by the use of libraries that
are de facto standards. Examples are the use of BLAS in the
case of basic operations, such as vector or matrix multiplication,
and LAPACK (Linear Algebra Package) or ScaLAPACK (Scalable
LAPACK [11]) in the case of NLA basic problems, like the solution
of linear systems, linear-least squares problems, and eigenvalue
computations.

These libraries are the kernel of several scientific programs, and
in general, the most costly stage of them in execution time. This
situation has motivated several efforts to improve the performance
of these building blocks. In this line, in the 90s, the concern on
studying automatic optimizations of BLAS routines started to grow.
Examples of these efforts are PHiPAC1 [6] and ATLAS2 [24],
which use empirical performance experiments to tune different
routine parameters.

1 Portable High Performance ANSI C
2 Automatically Tuned Linear Algebra Software

[Copyright notice will appear here once ’preprint’ option is removed.]

More recently, the problem of tuning has become even more
decisive. This is due to the increasing adoption of heterogeneous
hardware like graphic (GPUs) or ARM processors for high per-
formance computing platforms, and the associated propagation of
multi-objective approaches to problem requirements. That is, in ad-
dition to the traditional goal of reducing execution time, nowadays
other requirements, such as low energy consumption and good ra-
tios of GFLOPs (Giga FLoating-point Operations Per Second) per
dollar, are also considered important.

To address this problem the NLA community has studied sev-
eral approaches. One of the most promising ones is the introduc-
tion of run-time systems. These are frameworks where solvers can
be easily adapted to different contexts and task parallelism can be
attained (semi-)automatically. Such systems typically decompose
a problem in two stages: (i) revealing the dependency graph, and
(ii) performing the best possible computation out of it. For the first
stage two different approaches are used. One is to perform an analy-
sis of the task dependencies to build the dependency graph, whereas
the other is based on annotating the data dependencies on the source
code through a simple set of clauses. In the second stage, a dynamic
scheduling guides the computations. The scheduling is built around
the constructed dependency graph and the hardware platform fea-
tures. With this strategy a good level of task parallelism can be at-
tained on each hardware platform. Some examples in the NLA field
are the projects SuperMatrix–FLAME [10], MAGMA-PLASMA3

[2], and SMPSs4 [1].
Considering this trend, in this paper we investigate the use of

functional programming to develop a NLA run-time. Our devel-
opment follows a bottom up strategy, where the first step is the
design of a layer composed by a functional framework for the par-
allel implementation of BLAS operations. This framework, devel-
oped in Haskell [22], provides us with the necessary infrastructure
to write multiple versions of BLAS operations, each one based on
a determinate representation for matrices and vectors, a particu-
lar algorithm and parallelism strategy. Aiming at the validation of
this layer, we present the implementation of the Cholesky factor-
ization, a well-known NLA operation that belongs to the LAPACK
library, as a proof of concept. The goal is to evaluate the flexibility
of our framework around this example. With such a flexible frame-
work we are able to easily implement different variants of the algo-
rithm in order to compare them in terms of performance. We show
some benchmarks obtained by running the Cholesky factorization
with different libraries for parallel programming in Haskell, differ-
ent parallelism strategies, and several matrix and vector represen-
tations.

This work is the first step towards the development of a second
layer (on top of the first one), a framework for LAPACK, with
similar qualities as the framework for BLAS, i.e. flexibility in terms

3 Parallel Linear Algebra for Scalable Multi-core Architectures
4 SMP superscalar

1 2013/8/7

of parallelism strategy and algorithm, and independence of the data
representation.

The rest of the paper is structured as follows. In Section 2 we
describe our approach and the running example employed in this
work, the Cholesky factorization, to develop a proof of concept.
In Section 3, we present a brief summary of the state of the art
in parallel tools in Haskell. The first layer of our framework, i.e.
the functional BLAS routines, is presented in Section 4. After that,
in Section 5, we introduce the functional implementation of the
Cholesky factorization built in terms of our framework. This is
followed by experimental results in Section 6. Finally, in Section 7,
concluding remarks and future work are exposed.

2. Our approach
Before delving into details, we show how our approach works.
As we stated previously, the problem we have chosen as running
example is the Cholesky factorization [14]. This operation takes a
symmetric positive definite (SPD) matrixA and returns a triangular
inferior matrix L, such that L ∗ LT = A (or equivalently, a
triangular superior matrix U such that UT ∗U = A). This is a well-
known operation in the NLA field, implemented in the LAPACK
library [3] by the POTRF family of routines. The implementation of
these routines requires the invocations of several BLAS operations:

• DOT: scalar product
• SCAL: vector scale
• GEMV: general matrix-vector multiplication
• GEMM: general matrix-matrix multiplication
• SYRK: rank k update of symmetric matrix
• TRSM: triangular system resolution

There exists a myriad of possibly implementations of these op-
erations, varying on the used algorithm, structure representation,
parallelization library, etc. Furthermore, BLAS (and LAPACK)
commonly uses a block-based variant of each algorithm to attain
a high performance strategy by blocks, adding the dimension of
the blocks as another parameter. In Section 4 we develop a frame-
work for BLAS which permits the implementation and use of such
variants (as well as many others) of the BLAS operations in a flex-
ible way. Based on this framework we implement two variants of
Cholesky factorization, a blocked variant and an unblocked one,
called chol blk and chol unb, respectively.

To have an advance of how the framework works, let us analyze
the type of the block-based version of the factorization:

chol blk :: (Elt e
,MatrixVector m v e
,DOT dots v e
,GEMV gemvs v m e
,SCAL scals v e
,SYRK syrks v m e
,GEMM gemms v m e
,TRSM trsms v m e)

⇒ Int
→ (StratCxt dots,StratCxt gemvs,StratCxt scals
,StratCxt syrks,StratCxt gemms
,StratCxt trsms)

→ TriangType (m e)
→ ResM (dots, gemvs, scals, syrks, gemms, trsms)

v m e

The type constructors m and v correspond to the used matrix
and vector representations, respectively. The type e is the
type of the elements the input matrix stores. The constraint

MatrixVector m v e assures that some operations to deal with
matrices and vectors are provided.

The constraints DOT , GEMV , SCAL, SYRK , GEMM and
TRSM impose the existence of instances of classes represent-
ing the respective BLAS operations. Each of those instances im-
plements an evaluation strategy for the respective operation. The
first parameter of those instances is an empty data type that spec-
ifies the chosen strategy. For example, the type DefSeq corre-
sponds to sequential algorithms. Thus, an instance of the form
GEMM DefSeq m v e (i.e. with gemms being DefSeq) im-
plements a sequential version of GEMM.

Some strategies may use sub-strategies to solve certain parts of
the algorithm. For instance, the most important properties of block-
based algorithms is that they simply divide matrices into blocks
and then use another algorithm to solve the reduced problem. That
is the case of the block-based matrix product, which needs another
product of matrices. The same happens with block-based triangular
systems which require a matrix product and a resolution of trian-
gular systems. This means that block-based GEMM depends on
another version of GEMM, whereas block-based TRSM depends
on versions of GEMM and TRSM. This dependency can be easily
represented by using parametrized types. In the case of GEMM,
for example, the strategy type GemmParBlk gs is parametrized
by the strategy gs of the inner GEMM. This way not only ease at
strategies combination is achieved, but generality is also obtained,
as sub-strategies are never explicitly mentioned and the responsi-
bility of verifying the consistency of the combinations is delegated
to Haskell’s type system.

The first parameter of chol blk is an integer determining the
size of the blocks. The second parameter is a tuple containing the
context information needed by each strategy of the used BLAS op-
erations. The types of such contexts depend on each strategy. For
example, the simple sequential algorithms usually do not need any
extra information, while the block-based algorithms usually have to
receive the size of the blocks and the context of the sub-strategies.
We specify the context information required by each strategy by
means of a type family [17] StratCxt , which has the strategy as
type argument. The definition of this type family is given in Sec-
tion 4. Then, for example, StratCxt DefSeq is NullCxt , repre-
senting the empty context, and StratCxt (GemmParBlk gs), for
a strategy gs , is defined to be a pair of type (Int ,StratCxt gs)
containing the dimension of the blocks and the context required
by the sub-strategy gs . The third parameter of chol blk is the type
(m e) of the matrix to factorize, wrapped by a constructor that in-
dicates if the matrix is upper or lower. The matrix returned as result
is wrapped in the type ResM which is parametrized by the types
of the used strategies and structures.

Then, for example, given some data types MyMatrix ,
MyVector , and their corresponding instance of MatrixVector , the
following is a possible application of chol blk that uses sequential
versions of all its BLAS ingredients and block size of 256.

chol seq :: TriangType (MyMatrix Double)
→ ResM (DefSeq ,DefSeq ,DefSeq

,DefSeq ,DefSeq ,DefSeq)
MyVector MyMatrix Double

chol seq m = chol blk 256 (NullCxt ,NullCxt ,NullCxt
,NullCxt ,NullCxt ,NullCxt) m

By changing the types specifying the strategies and the contexts
that are passed as argument, we obtain a parallel version:

chol par :: TriangType (MyMatrix Double)
→ ResM (DefSeq ,DefSeq ,DefSeq

,SyrkParBlk DefSeq
,GemmParBlk DefSeq

2 2013/8/7

,TrsmParBlk DefSeq DefSeq)
MyVector MyMatrix Double

chol par m = chol blk 256 (NullCxt ,NullCxt ,NullCxt
, (128,NullCxt)
, (128,NullCxt)
, (128,NullCxt ,NullCxt)) m

This version uses blocked-based parallel versions of SYRK and
GEMM, both with block size of 128 and a sequential sub-strategy,
and a blocked-based parallel version of TRSM with block size of
128 and two sub-strategies, one for internal matrix multiplication
and another for TRSM resolving a minimal sub-problem.

3. Parallelism in Haskell
As technology advances, the intention to solve growing problems
or to obtain more accurate results has led to a cycle in which
the growth of computing need has an exponential behavior. While
computer designers seek to create ever more powerful hardware,
they are limited by physical and economic problems. One option
to tackle these limits is working with multiple computing units to
solve a problem in a coordinated manner, using techniques of High
Performance Computing (HPC), which range from computer archi-
tectures up to program designs. However, an important drawback of
HPC techniques is the increase in the complexity of algorithm de-
sign and development, because not only the requirements of serial
algorithms must be met, but also new requirements are introduced,
e.g. efficient synchronization of tasks. Due to that, in recent years
several lines of work, such as declarative languages and automatic
code analysis, were developed in order to simplify the use of HPC
techniques. One promising line of research to simplify the progra-
mming on parallel hardware consists of using purely functional lan-
guages. Since a purely functional program has no side effects, each
sub-expression has the potential to be evaluated in parallel, which
seems to generate a very convenient environment for parallel pro-
gramming.

There are several libraries that allow the introduction of par-
allelism in Haskell. Some of them are designed to parallelize de-
terministic computations, which means that the result should only
depend on its parameters. This restriction makes it possible to deal
with classical problems associated with parallel programming, such
as deadlock or race conditions, in a transparent manner for the pro-
grammer. Libraries of this kind are Repa [16], DPH5 [9, 21], Ac-
celerate [8], Monad-Par [20] and Sparks [18, 19]. Following we
highlight the main features of each of these libraries.

Sparks provides a model of pure, deterministic parallelism. The
type of parallelism of this library is semi-explicit because the pro-
grammer must indicate possible points of parallelism and the se-
quence of operations, but can not directly control it. Its implemen-
tation is based on combinators which are used as annotations for the
Haskell runtime system to inform possible places where to generate
parallelism.

In the case of Monad-Par, the parallelism is expressed explicitly
through a monadic interface. It provides a simple interface which
prevents the programmer from combining parallelism with lazi-
ness, so sharing and granularity are completely under the control
of the programmer. Its implementation is based on a scheduler that
divides the work as evenly as possible between the available proces-
sors at runtime, by default it uses a simple work-stealing scheduler,
but there are others available [12].

The libraries Repa and DPH provide data parallelism. The first
one focuses on regular data parallelism while the latter focuses on
irregular data parallelism. Repa’s interface provides several repre-
sentations of multidimensional arrays and shape-polymorphic op-

5 Data Parallel Haskell

class Vector v e where
generatev :: Int → (Int → e)→ v e -- Required
fromListv :: [e]→ v e
concatv :: [v e]→ v e

(!v) :: v e → Int → e -- Required
lengthv :: v e → Int -- Required

foldrv :: (e → a → a)→ a → v e → a
mapv :: (e → e)→ v e → v e
zipWithv :: (e → e → e)→ v e → v e → v e

Figure 1. Class for vectors.

erations to handle them; parallelism is automatically generated by
handling the structure and alternating from representations with
its provided operations, but with the caution (or inability) of nest-
ing parallel computations. DPH, on the other hand, provides one-
dimensional arrays and parallel operations that allows the program-
mer to nest parallel computation, it is more useful for irregular par-
allel computations.

Accelerate is a library that generates code to compute on GPUs
through CUDA (Compute Unified Device Architecture). It provides
data parallelism like Repa with a similar interface and the same
programming constraint of nesting parallel computations.

4. A framework for BLAS
In this section we present the building blocks of our functional
framework for the BLAS library. We restrict ourselves to analyze
the BLAS operations used in the implementation of one variant of
the Cholesky factorization.

BLAS (Basic Linear Algebra Subprograms) [7] is a library that
provides basic linear algebra operations such as matrix multiplica-
tion and triangular system resolution. It is divided into three levels:
BLAS-1 which provides vector-vector operations, BLAS-2 with
vector-matrix operations and BLAS-3 with matrix-matrix opera-
tions.

4.1 Vectors and Matrices
It is usual that BLAS libraries provide vector and matrix operations
on a prefixed representation for these structures, allowing one sim-
ply to choose the type of the values to be stored in their cells. Our
approach, in contrast, is to decouple the representation of vector
and matrices from the implementations of the library operations.
We introduce type classes Vector , Matrix and MatrixVector
which define the necessary operations that concrete implementa-
tions of vectors and matrices should provide. Their declarations
shown herein include only the operations necessary for implement-
ing the BLAS operations presented in the paper. The actual decla-
rations of these classes include more methods.

Default definitions are provided for all operations except for
those with a “Required” comment. Therefore, to create an instance
a few operations are in principle necessary to be defined. If desired,
default definitions may be overridden with instance-specific defi-
nitions to benefit from the particularities of the concrete structure
used. For space restrictions we do not show the default definitions
but are in general straightly defined in terms of the required opera-
tions.

The class Vector (see Figure 1) takes as parameters a vector
constructor v and a type e of vector elements. It contains three re-
quired operations: generatev n f constructs a vector of dimension
n with the values f 1, . . . , f n; v !v i returns the i-th element of
vector v ; and lengthv v returns the dimension of v .

3 2013/8/7

class Matrix m e where
generatem :: Int → Int → (Int → Int → e)

→ m e -- Required
fromListm :: Int → Int → [e]→ m e
transposem ::m e → m e

(!m) ::m e → (Int , Int)→ e -- Required
dimm ::m e → (Int , Int) -- Required

subMatrixm :: Int → Int → Int → Int → m e → m e
toBlocksm :: Int → Int → m e → [[m e]]
fromBlocksm :: [[m e]]→ m e

mapm :: (e → e)→ m e → m e
zipWithm :: (e → e → e)→ m e → m e → m e

Figure 2. Class for matrices.

Matrices are represented by a class Matrix (see Figure 2) with
parameters a matrix constructor m and a type e of matrix ele-
ments. Like Vector , this class contains three required operations:
generatem m n f constructs a matrix of dimension m × n
with value f i j at each position (i , j); m !m (i , j) returns
the value contained in m at position (i , j); and dimm m returns
the dimension of m . Function subMatrixm i j rs cs returns
the submatrix of dimension rs × cs starting at position (i , j) of
a given matrix. Functions toBlocksm and fromBlocksm allow to
split/construct a matrix in/from a sequence of blocks. An applica-
tion toBlocksm r c m splits the matrix m into blocks of size r×c
(the blocks at the borders of the matrix can have a lower dimen-
sion), which are returned in a list of lists of matrices such that the
inner lists represent rows of blocks. The function fromBlocksm
is the inverse of toBlocksm . Functions mapm and zipWithm are
conceptually similar to their relatives for lists.

There is a third class MatrixVector (see Figure 3) that contains
operations relating matrix and vector representations. This means
that it is possible to define implementations for matrices and vectors
independently and then connect them through this class.

class (Vector v e,Matrix m e)⇒
MatrixVector m v e where

-- Columns
colmv :: Int → m e → v e
fromColsmv :: [v e]→ m e
toColsmv ::m e → [v e]

-- Rows
rowmv :: Int → m e → v e
fromRowsmv :: [v e]→ m e
toRowsmv ::m e → [v e]

Figure 3. Class that relates matrices and vectors

The three classes include the type of the elements e as one of
their parameters, in order to allow the definition of instances that
need to add constraints to the type e and because BLAS operations
need to restrict the type of the elements contained in vectors and
matrices. The occurrence of e as a parameter of these classes
opens also the possibility to define instances for specific types of
elements, for example, to obtain more efficient implementations of
the class.

class (Eq e,Fractional e)⇒ Elt e where
getConjugate :: e → e
getConjugate = id

instance Elt Double
instance Elt Float
instance RealFloat e ⇒ Elt (Complex e) where

getConjugate = conjugate

Figure 4. BLAS elements.

4.2 Defining BLAS operations
Our intention behind the development of the functional BLAS
routines is to capture the essence of this library. This means, for
example, that operation typing is adapted in order to better fit in a
functional language. Therefore, signatures of the BLAS operations
implemented in the framework do not necessarily conform exactly
to those of their original counterparts.

Since BLAS is a library for linear algebra, its operations only
manipulate real or complex numbers. To deal with this restriction
on elements, we introduce a class Elt (Figure 4) that needs to
be included in the context of every BLAS operation declaration.
The class Elt contains a single method getConjugate that is the
identity function except for complex numbers in which case it
returns the conjugate of a number. This makes it possible to write
instances of the BLAS operations that can be equally used on real
and complex numbers.

Our framework admits the definition of multiple implementa-
tions for BLAS operations, based on different algorithms, parallel
strategies, or structure representations. This is achieved by wrap-
ping each BLAS operation in a class with a single method. Differ-
ent implementations of an operation can then be defined by intro-
ducing alternative instances of the associated class.

The functional BLAS routines are described below.

Dot Product (DOT)

class (Elt e,Vector v e)⇒ DOT s v e where
dot :: StratCxt s → v e → v e → ResS s e

Figure 5. DOT declaration

The dot (or scalar) product, is a BLAS-1 operation, that takes
two equal-length vectors and returns a scalar.

a ∗ b =
n∑

i=1

ai · bi (1)

Associated to this operation we define a class DOT with a sin-
gle method dot . The definition of this class is depicted in Figure 5.
The different implementations of the DOT operation will appear as
instances of this class.

A strategy is a possible combination of algorithms that imple-
ments an operation. In our framework, strategies are defined at the
type level and are one of the type parameters of BLAS operations.
Different implementations of an operation can then be obtained by
specifying different strategies. A strategy (name) is specified by in-
troducing an empty data type (a data type without constructors).
Associated with each strategy we have to declare the amount of
context information the strategy requires. The type of that informa-
tion is declared by means of the type family [17] StratCxt :

4 2013/8/7

type family StratCxt s :: ∗
For instance, a possible strategy is DefSeq which corresponds to
sequential algorithms. This strategy is not particularly interesting
since it does not require any context information.

data DefSeq

data NullCxt = NullCxt

type instance StratCxt DefSeq = NullCxt

We enforce the appearance of the strategy s in the result type by
declaring a parameterised data type ResS that takes this type as pa-
rameter. This is required by the compiler to correctly determine the
instance in use. Doing so we avoid passing strategies as parameters
to BLAS operations. The strategy corresponding to an operation
invocation is then deduced at compile time from type information,
which is used to determine the specific instance corresponding to
that invocation and the associated type of the strategy context.

data ResS s e = ResS {unResS :: e }
Notice that s is not used on the right hand side of the definition of
ResS . Such a type is called a phantom type [15].

A call to dot that fixes the DefSeq strategy is given by:

dot seq ::DOT DefSeq v e ⇒ v e → v e → ResS DefSeq e
dot seq = dot NullCxt

Vector Scale (SCAL)

class (Elt e,Vector v e)⇒ SCAL s v e where
scal :: StratCxt s → v e → e → ResV s v e

Figure 6. SCAL declaration

The BLAS-1 operation SCAL, scales a vector by a scalar. Fig-
ure 6 shows the definition of SCAL in our framework. In this case
we use a type ResV to wrap the result:

data ResV s v e = ResV {unResV :: v e }

General Matrix Multiplication (GEMM)
Given matrices A, B and C , and scalar coefficients α and β,
the GEMM operation computes the matrix that results from the
expression:

α · AtA ∗ B tB + β · C , (2)

where, for a matrix X , X tX denotes one of the following matri-
ces: simply X , the transpose XT , or the hermitian (or conjugate
transpose) XH = conjugate (XT).

Figure 7 shows the definition of GEMM in our framework.
TransType is used as a wrapper type for matrices that contains
the information about which matrix has to be considered by the
operation: N (normal), T (transpose) or H (hermitian). So, a call
to this method corresponds to gemm (cxt ,AtA,B tB , α, β,C).

The following functions on a wrapped matrix compute their
result on the matrix directly without applying any transposition.

dimt ::Matrix m e ⇒ TransType (m e)→ (Int , Int)
dimt (N m) = dimm m
dimt (T m) = swap $ dimm m
dimt (H m) = swap $ dimm m

(!t) :: (Elt e,Matrix m e)
⇒ TransType (m e)→ (Int , Int)→ e

data TransType a = N a | T a | H a

class (Elt e,MatrixVector m v e)⇒
GEMM s m v e where

gemm :: StratCxt s
→ TransType (m e)→ TransType (m e)
→ e → e → m e → ResM s v m e

Figure 7. GEMM declaration

(N m) !t (i , j) = m !m (i , j)
(T m) !t (i , j) = m !m (j , i)
(H m) !t (i , j) = getConjugate $m !m (j , i)

The result type of a BLAS-3 function has to include not only
the types of the strategy s , the matrix m and the elements e , but
also the type of the vectors v we use to decompose (and compose)
the matrix.

data ResM s v m e = ResM {unResM ::m e }

We have analyzed three algorithms for computing GEMM: se-
quential, block-based and Strassen algorithm. Below we present the
sequential one.

The sequential algorithm follows directly from GEMM ex-
pression (2). Its Haskell implementation is shown in Figure 8. It
uses the DefSeq strategy which, as we saw above, manipulates
an empty context. The returned matrix is constructed with method
generatem from the class Matrix which, in its function argument,
specifies how to compute each element (i , j) using GEMM for-
mula. Computation of element (i , j) of the product between matri-
ces mA and mB is performed by a separate function matMultIJ ,
which first builds an intermediate vector with the pairwise prod-
ucts of the corresponding positions, and then computes the sum of
the elements of that vector. Notice that the positions of the matri-
ces mA and mB are accessed using function (!t), meaning that we
do not really compute the transpose, but directly access the cor-
responding positions in the “virtual” transpose. The type annota-
tion v e is necessary because the type of the intermediate vector
does not occur in the type of matMultIJ ; for this to work the
ScopedTypeVariables flag of GHC (Glasgow Haskell Compiler)
has to be enabled.

In our implementation of BLAS operations, we are assuming
as pre-condition that the input matrices conform to the matrix
operations involved, that is, their respective dimensions permit
those matrix operations. Having this pre-condition we do not need
to do any conformance testing inside the operation, as can be
observed in the sequential implementation of gemm .

Figure 9 shows the code of a parallel instance of GEMM which
is based on its sequential definition. A data type DefPar is cre-
ated to represent the strategy. Like DefSeq , this new strategy does
not require any context information and therefore the same context
NullCtx is associated to it. In this case Sparks was used to provide
parallelism. Comparing the codes of the sequential and the parallel
versions, it can be observed that very few changes were required to
introduce parallelism. The only difference is that, instead of gen-
erating the matrix directly using generatem , the parallel version
calls function generatePar to build each column of the matrix in
parallel. Such parallel computation is performed using the parMap
funtion, which applies a function to each element of a list in paral-
lel. The parameter rdeepseq , indicates that each application has to
be fully evaluated.

5 2013/8/7

instance (Elt e,MatrixVector m v e)⇒ GEMM DefSeq m v e where
gemm mA mB α β mC

= ResM $ generatem m n (λi j → α ∗matMultIJ i j + β ∗ (mC !m (i , j)))
where

(m, p) = dimt mA
(,n) = dimt mB
matMultIJ i j = foldrv (+) 0 (generatev p (λk → (mA !t (i , k)) ∗ (mB !t (k , j)) :: v e)

Figure 8. Sequential definition of GEMM.

instance (NFData (v e),Elt e,MatrixVector m v e)⇒ GEMM GemmPar m v e where
gemm mA mB α β mC

= ResM $ generatePar m n (λi j → α ∗matMultIJ i j + β ∗ (mC !m (i , j)))
where

(m, p) = dimt mA
(,n) = dimt mB
matMultIJ i j

= foldrv (+) 0 (generatev p (λk → (mA !t (i , k)) ∗ (mB !t (k , j)) :: v e)
generatePar m n gen =

fromColsmv ◦ parMap rdeepseq (λj → generatev m (λi → gen i j) :: v e) $ [0 . . (n − 1)]

Figure 9. Parallel definition of GEMM.

Matrix-Vector Multiplication (GEMV)

class GEMV s m v e where
gemv :: StratCxt s

→ TransType (m e)→ v e
→ e → e → v e → ResV s v e

Figure 10. GEMV declaration

The BLAS-2 operation GEMV can be seen as a special case of
the BLAS-3 GEMM, where the second operand is a vector instead
of a matrix.

α · AtA ∗ b + β · c, (3)

Figure 10 shows the definition of GEMV in our framework.

Rank-k Update of Symmetric Matrix (SYRK)
Another special case of GEMM, is the BLAS-3 operation SYRK,
which instead of multiplying two different matrices, it multiplies a
matrix with its transpose:

α · AtA ∗A(¬ tA) + β · C (4)

The matrix C is assumed to be symmetric. Figure 11 shows the
definition of SYRK in our framework.

TriangType is a wrapper type that declares which triangle
(Lower or Upper one) of the argument matrix C has to be con-
sidered in the computation.

Triangular System Resolution (TRSM)
A linear system is a set of linear equations involving the same set of
variables. A linear system can be represented as a matrix equation
A ∗ x = b where A is a m ×m-matrix of coefficients, x is a m-
vector of variables, and b is a m-vector of independent terms. If the

data TriangType a = L a | U a

class (Elt e,MatrixVector m v e)⇒
SYRK s m v e where

syrk :: StratCxt s
→ TransType (m e)
→ e → e → TriangType (m e)→ Res s v m e

Figure 11. SYRK declaration

system is nonsingular, in which case A is invertible, then x can be
expressed as x = A−1 ∗ b. This can be easily extended to support
general matrices of variables X and independent terms B , solving
multiple systems A ∗X = B simultaneously by solving a system
for each column of X and B . Again, if A is invertible, then we can
rewrite the matrix equation as X = A−1 ∗B.

A triangular linear system is the case when A is a m × m
lower or upper triangular matrix (that is, a square matrix in which
the elements of the upper/lower triangular matrix are all zero).
The BLAS-3 TRSM operation solves a generalized form of the
extended equation for triangular systems:

X = α · (A−1)tA ∗B (5)

This operation is defined in our framework by declaring the class
TRSM shown in Figure 12. TriangType declares which triangle
of the argument matrix has to be considered. TransType means
the same as in GEMM. UnitType specifies if, in the operation
computation, the argument matrix has to be considered as being
a unit triangular matrix (a matrix with ones on its diagonal). Then,
for a triangular matrix m , Unit m means to consider m with its
diagonal substituted by ones, whereas NoUnit m means simply
m .

6 2013/8/7

data UnitType a = Unit a | NoUnit a

class (Elt e,MatrixVector m v e)⇒
TRSM s m v e where

trsm :: StratCxt s → e
→ TransType (TriangType (UnitType (m e)))
→ m e → ResM s v m e

Figure 12. TRSM declaration.

A possible algorithm to solve a triangular system is to com-
pute the inverse of A and then multiply it by b. However, this is
an expensive alternative. A better solution is to apply forward or
backward substitution, iterative methods to solve lower or upper
triangular systems, respectively. For example, the forward version
implies the following equations:

x1 =
b1
α1,1

(6)

xi =
(bi −

∑i−1
j=1 αi,j · xj)
αi,i

(7)

Where the case xi applies for i = 2 . . . n. Another option to
compute this recursive step is to substitute Equation 7 with the
following one:

bk = (bk − αk,i−1 · xi−1), k = i . . . n

xi =
bi
αi,i

(8)

As in the case of GEMM, there exists a blocked version of
TRSM. The system is divided into blocks and solved following
the same procedure as in the unblocked version, considering these
blocks as computing elements (instead of scalars in the unblocked
version). Thus, addition and multiplication are now matrix opera-
tions (GEMM) and the scalar division is replaced by a triangular
system resolution (TRSM).

X1 = Trsm(A1,1, B1) (9)
Xi = Trsm(Ai,i, (Bi

−[Ai,1, . . . , Ai,i−1] ∗ [X1, . . . , Xi−1]
t)) (10)

Xi = Trsm(Ai,i, ([Bi, . . . , Bn]

−[Ai,i−1, . . . , An,i−1] ∗Xi−1)) (11)

Equations 9, 10 and 11 are, respectively, the analog blocked ver-
sions to equations 6, 7 and 8.

In Figure 13 we show a fragment of the definition of the instance
of TRSM by blocks. The data type TrsmParBlk , representing the
strategy, has kind ∗ → ∗ → ∗, which means that two type pa-
rameters are needed. The first parameter is the strategy for GEMM
and the second is a strategy for the inner TRSM. The context infor-
mation for this strategy includes an integer, indicating the size of
the blocks, and the contexts for the sub-strategies gs and ts . When
declaring the instance for the block-based version of TRSM, it is
required that the corresponding instances GEMM gs m v e and
TRSM ts m v e exist.

5. Cholesky factorization
Figures 14 and 15 present the unblocked and blocked versions of
Cholesky factorization, respectively, following the FLAME6 nota-
tion [13, 23]. These versions are taken from [4, 5].

6 Formal Linear Algebra Methodology Environment

data TrsmParBlk gs ts

type instance StratCxt (TrsmParBlk gs ts) =
(Int ,StratCxt gs,StratCxt ts)

instance (GEMM gs m v e,TRSM ts m v e)
⇒ TRSM (TrsmParBlk gs ts) m v e where

trsm (ctx , gctx , tctx) trt tt dt α mA mB = ...
where

call trsm trt tt dt α mA mB = unResM $
trsm tctx trt tt dt α mA mB :: ResM ts v m e

call gemm tt1 tt2 α mA mB β mC = unResM $
gemm gctx tt1 tt2 α mA mB β mC

:: ResM gs v m e

Figure 13. Architecture of TRSM instance by blocks

Algorithm: A := Chol unb(A)

Partition A→
(
ATL ?

ABL ABR

)
where ATL is 0×0 andABR is n×n

while m(ATL) < m(A) do
Repartition(

ATL ?

ABL ABR

)
→

 A00 ? ?

α10 α11 ?

A20 αT
21 A22


where α11 is a scalar

α11 := α11 − α10α
T
10 (dot)

α11 :=
√
α11

α21 := α21 −A20α
T
10 (gemv)

α21 := α21/α11 (scal)

Continue with(
ATL ?

ABL ABR

)
←

 A00 ? ?

α10 α11 ?

A20 αT
21 A22


endwhile

Figure 14. Unblocked variant of Cholesky factorization.

It should be noted that in both algorithms only the lower part
of the matrix is computed. Consequently, the elements above the
main diagonal are neither computed nor referenced. The blocks in
the upper triangular part of the matrix are then denoted by “?”.

In the unblocked variant of Cholesky factorization (Figure 14),
at a given iteration, the element placed on the main diagonal (the
pivot element α11) is computed by a dot product of vectors and a
scalar square root. Notice that, since theAmatrix is symmetric, the
column-vector αT

10 is the same as α01. Afterwards, the rest of the
column (α21) is updated by a matrix vector multiplication (gemv)
and a scalar vector multiplication (scal).

The blocked counterpart (Figure 15) proceeds in a similar way,
but working with a b × b matrix (A11) instead of a scalar value
(α11). To leverage the symmetry of the factorized matrix only the
triangular inferior matrix of the A11 block is computed. Further-
more, in this version all the operations are matrix computations,
which makes it more suitable for parallel computation.

7 2013/8/7

Algorithm: A := Chol blk(A)

Partition A→
(
ATL ?

ABL ABR

)
where ATL is 0×0 andABR is n×n

while m(ATL) < m(A) do
Determine block size b
Repartition(

ATL ?

ABL ABR

)
→

 A00 ? ?

A10 A11 ?
A20 A21 A22


where A11 is b× b

A11 := A11 −A10A
T
10 (syrk)

A11 := Chol unb(A11)
A21 := A21 −A20A

T
10 (gemm)

A21 := A21A
−1
11 (trsm)

Continue with(
ATL ?

ABL ABR

)
←

 A00 ? ?

A10 A11 ?
A20 A21 A22


endwhile

Figure 15. Blocked variant of Cholesky factorization.

5.1 Implementation
Figures 16 and 17 show our implementation of the block-based ver-
sion of Cholesky factorization. In this case, we assume the input
matrix is lower triangular. In Figure 16 the function chol blk sim-
ply delegates the job of calculating the factorization of a lower tri-
angular matrix to chol blk l , which receives two extra parameters,
a block counter (that indicates the pivot on which the algorithm
is standing) and an accumulator containing the value of the result
matrix computed so far.

The implementation of chol blk l shown in Figure 17 follows
the description of Figure 15. When the block counter reaches the
number of blocks on the matrix, the function returns the value of
the accumulator (mAL) as result. Otherwise, it computes a new
approximation of the result matrix (mAL′) and makes a recursive
call. Values mA10 , mA11 , mA20 and mA21 are as depicted
of Figure 15. It is important to note that mA11 and mA21 are
sub-matrices of mA, while mA10 and mA20 are sub-matrices of
mAL. Values mA11 ′, mA11 ′′, mA21 ′, and mA21 ′′ correspond
to each step shown in Figure 15. To complete the generation of
mAL′ we append the columns of mA21 ′′ (the final step of Fig-
ure 15) to mAL.

6. Experimental evaluation
In this section we evaluate the performance of several parallel
instances of the Cholesky factorization implemented in terms of
our framework. The experimental evaluation was performed in a
computer with AMD FX 8120 3.1 GHz 8 cores processor, 8 GB
RAM, EVGA GeForce GTX 570 HD 2.5GB graphics card, and
OS Kubuntu 13.04 i686. All the experiments were performed using
GHC-7.6.2.

6.1 GEMM
We first evaluate several options (data types, strategies) to perform
the basic operations on Cholesky factorization. Table 1 summarizes
the execution times (in seconds) for GEMM applied to 512 × 512
and 1024×1024 matrices. We defined instances of Vector , Matrix

chol blk :: (Elt e,MatrixVector m v e
,DOT dots v e
,GEMV gemvs v m e
,SCAL scals v e
,SYRK syrks v m e
,GEMM gemms v m e
,TRSM trsms v m e)

⇒ Int
→ (StratCxt dots,StratCxt gemvs,StratCxt scals
,StratCxt syrks,StratCxt gemms
,StratCxt trsms)

→ TriangType (m e)
→ ResM (dots, gemvs, scals, syrks, gemms, trsms)

v m e

chol blk block ctx (Lower mA)
= ResM $ chol blk l block ctx 0 mA (generatem 0 0 ⊥)

Figure 16. Cholesky.

and MatrixVector for different structures: HMatrix (based on
Data.Packed .Matrix 7), VectorMatrix (vector of column vectors
using Data.Vector 8), LLMatrixByRows (list of lists, inner lists
represent rows), LLMatrixByCols (list of lists, inner lists repre-
sent columns), RepaMatrix (Repa bi-dimensional array in its de-
layed representation) and Accelerate .

512 1024
HMatrix-BindC 0.39 2.47
VectorMatrix-BindC 0.29 2.08
HMatrix-GemmPar 6.40 50.72
VectorMatrix-GemmPar 5.11 45.49
LLMatrixByCols-GemmPar 295.17 4867.92
LLMatrixByRows-GemmPar 230.01 4578.70
Repa-DefSeq 4.93 60.78
Accelerate-AccSeq 0.12 0.92

Table 1. GEMM execution times (in seconds).

For each structure we show the strategy we use to evaluate
it: BindC just binds to a sequential C implementation of BLAS,
GemmPar is the parallel Sparks implementation of Figure 9 (eval-
uated with 8 cores), DefSeq is the sequential implementation of
Figure 8 and AccSeq is a sequential instance created to be able to
use the Accelerate library. Both Repa and Accelerate use sequential
algorithms because they implement data parallelism.

The results for GEMM operations allow identifying three differ-
ent groups of structures according to their performance. The first
group includes the non pure functional variants (HMatrix-BindC,
VectorMatrix-BindC and Accelerate). These versions reach the best
level of performance. In a second group, we can place the efficient
pure functional versions, i.e. HMatrix-GemmPar, VectorMatrix-
GemmPar and Repa-DefSeq, with a middle performance. At the
end, the non efficient variants, based on lists of lists data types.

6.2 Cholesky
Let us now focus on Cholesky factorization. Specifically, we com-
puted several combinations of data types, strategies and block di-
mensions to execute the factorization over our framework. In this

7 http://hackage.haskell.org/package/hmatrix
8 http://hackage.haskell.org/package/vector

8 2013/8/7

chol blk l :: (Elt e,MatrixVector m v e
,DOT dots v e, GEMV gemvs v m e,SCAL scals v e
,SYRK syrks v m e,GEMM gemms v m e,TRSM trsms v m e)

⇒ Int
→ (StratCxt dots,StratCxt gemvs,StratCxt scals,StratCxt syrks,StratCxt gemms,StratCxt trsms)
→ Int → m e → m e → ResM (dots, gemvs, scals, syrks, gemms, trsms) v m e

chol blk l block ctx@(dot ctx , gemv ctx , scal ctx , syrk ctx , gemm ctx , trsm ctx) k mA mAL
| k ≡ cantBlocks = mAL
| otherwise = chol blk l block ctx (k + 1) mA mAL′

where
mA10 = subMatrixm (block ∗ k) 0 block (block ∗ k) mAL
mA11 = subMatrixm (block ∗ k) (block ∗ k) block block mA
mA11 ′ = call syrk (−1) (N mA10) 1 (Lower mA11)
mA11 ′′ = call chol unb (Lower mA11 ′)
mA20 = subMatrixm ((k + 1) ∗ block) 0 (mA dim − (k + 1) ∗ block) (k ∗ block) mAL
mA21 = subMatrixm ((k + 1) ∗ block) (k ∗ block) (mA dim − (k + 1) ∗ block) block mA
mA21 ′ = call gemm (N mA20) (T mA10) (−1) 1 mA21
mA21 ′′ = transposem $ call trsm 1 (N ◦ Lower $NoUnit mA11 ′′) (transposem mA21 ′)

mAx1 = add zeros k block ◦ iif (k ≡ cantBlocks − 1) mA11 ′′ $ concatByCol m mA11 ′′ mA21 ′′

mAL′ = fromCols vm $ (toCols vm mAL :: [v e]) ++ (toCols vm mAx1 :: [v e])

call syrk m1 α β m2 = unResM $ syrk syrk ctx m1 α β m2 :: Res syrks v m e
call gemm m1 m2 α β m3 = unResM $ gemm gemm ctx m1 m2 α β m3 :: Res gemms v m e
call trsm α m1 m2 = unResM $ trsm trsm ctx α m1 m2 :: Res trsms v m e

call chol unb m = unResM $ chol unb (dot ctx , gemv ctx , scal ctx) m :: Res (dots, gemvs, scals) v m e

block = getSqrBlockDim block ctx
cantBlocks = mA dim ‘div ‘ block
mA dim = cantCols m mA

add zeros :: Int → Int → m e → m e
add zeros k block v = concatByCol m (generatem (k ∗ block) (block) (λ → 0) ::m e) v

concatByCol m m1 m2 = let rows m1 = cantRows m m1
cols m1 = cantCols m m1
rows m2 = cantRows m m2
cols m2 = cantCols m m2

in generatem (rows m1 + rows m2) cols m1
(λi j → iif (i > rows m1) (!m (i − rows m1) j m2) (!m i j m1))

Figure 17. Cholesky.

section we present a representative subset of these experimental re-
sults. Since the list of list options implied really large execution
times, we decided to exclude them in our experimental results for
Cholesky. We will also exclude the BindC and Accelerate options,
because we want to rely on pure functional implementations.

Firstly, we evaluate the Repa implementations. Table 2 presents
the execution times (in seconds) to factorize a SPD matrix with
512 columns for the sequential unblocked and blocked variants
of Cholesky factorization. Since Repa employs data parallelism
it is reasonable to reach better results for algorithms with low
data dependencies (even on sequential contexts), such as blocked
methods.

In Figure 18, we describe the performance evolution in a SPD
matrix with 512 columns when different number of cores (1 to
8) are employed. The speedup, or algorithmic speedup, is the
ratio of the runtime for the best sequential version against the
runtime of the given parallel version. In this case we measure

Figure 18. Speedup of Unblocked Cholesky using Repa

9 2013/8/7

Figure 19. Speedup of Blocked Cholesky with sequential SYRK and blocked parallel GEMM and TRSM

Chol unb Chol blk
64 128 256

Repa 2953.56 72.68 84.75 378.45

Table 2. Execution time (in seconds) of unblocked and blocked
variants of Cholesky factorization (matrix of 512 columns).

against a sequential blocked variant with blocks of size 64.
Speedup values reached for this variant are good, close to linear
speedups. However, it should be noted that in the best case its
execution time with one core is approximately 73 seconds, which
is slow considering the sequential unblocked version for HMatrix
and VectorMatrix (see Table 3, for matrices of 1024 columns).
The important data dependencies on Cholesky factorization is
a possible explanation for this performance values. Particularly,
blocked variants of Cholesky avoid part of these dependencies,
although not completely.

Chol unb Chol blk
64 128 256

HMatrix 39.88 52.32 47.05 61.47
VectorMatrix 43.27 64.29 58.92 194.63

Table 3. Execution time (in seconds) of unblocked and blocked
variants of Cholesky factorization (matrix of 1024 columns).

We will follow the study considering the HMatrix and Vector-
Matrix based versions. In this line, Table 3 presents the execution
times (in seconds) to factorize a SPD matrix with 1024 columns
for the sequential unblocked and blocked variants of Cholesky fac-
torization. These experimental results enable us to deduce that in
the case of sequential evaluation, using both HMatrix and Vector-
Matrix, the application of blocked approaches offers no benefit at
all.

In the rest of the section we present algorithmic speedup results
for different variants of the blocked Cholesky factorization, in a
SPD matrix with 1024 columns, measured against the correspond-
ing sequential unblocked variants shown on Table 3 (39.88 seconds
for HMatrix and 43.27 seconds for VMatrix). Specifically, with
a block size fixed in 256 for the Cholesky factorization, we obtain
the following results:

• In Figure 19 we show the speedup of different versions of the
factorization with blocked parallel TRSM, sequential SYRK
and blocked parallel GEMM. We vary the sizes of the GEMM
blocks from 16 to 128 and the TRSM blocks from 8 to 64.

• In Figure 20 we show the speedup of different versions of
the factorization with sequential TRSM, parallel SYRK and
blocked parallel GEMM. We vary the sizes of the GEMM
blocks from 16 to 128.

• In Figure 21 we show the speedup of different versions of
the factorization with sequential GEMM, parallel SYRK and
blocked parallel TRSM. We vary the sizes of the TRSM blocks
from 16 to 128.

• In Figure 22 we show the speedup of different versions of the
factorization with parallel SYRK and blocked parallel GEMM
and TRSM. We vary the sizes of the GEMM blocks from 16 to
128 and the TRSM blocks from 8 to 64.

Considering Figure 19, it should be noted that all blocked vari-
ants (data types–block dimensions) are outperformed by their cor-
responding unblocked sequential versions; i.e. their speedups are
below one. Taking into account that SYRK is one of the most costly
operations in our blocked variant of Cholesky factorization, and
related to the results summarized on Table 3, it was expected to
achieve poor results in this experiment. On the other hand, the re-
sults for the parallel SYRK combinations (Figures 20, 21 and 22)
show different levels of improvement.

One major observation from this analysis is that we can reach
only modest values of speedup, up to 2.8 times for 8 cores. Addi-
tionally, the VectorMatrix based versions attain, in general, better
speedup values than their HMatrix counterparts.

Another relevant remark is the importance that an adjusted se-
lection for block dimensions plays on basic operations. Addition-
ally, this decision is influenced by the operation and the data type
employed. Combined with this observation we can therefore note
that HMatrix versions improve when the parallel versions of the
basic kernels are included. However, VectorMatrix shows a coun-
terintuitive behavior, since the best version (the general best version
also) uses a sequential GEMM.

As a summary of this experimental evaluation we can stress the
importance of the flexibility of our framework, since the use of this
tool allows us to leverage several features on different contexts such
as concurrency processing, avoid data dependencies and improve
data types manipulation.

10 2013/8/7

Figure 20. Speedup of Blocked Cholesky with sequential TRSM, parallel SYRK and blocked parallel GEMM

Figure 21. Speedup of Blocked Cholesky with sequential GEMM, parallel SYRK and blocked parallel TRSM

Figure 22. Speedup of Blocked Cholesky with parallel SYRK and blocked parallel GEMM and TRSM

11 2013/8/7

7. Conclusions and Future Work
We presented the first layer of our framework to implement a func-
tional run-time system for NLA field. Specifically, we described
a flexible framework layer to define parallel implementations of
BLAS operations in Haskell. Moreover, we showed the use of this
tool to leverage the concurrence of the Cholesky factorization, thus
testing its performance increase through multiple strategies in a
painless manner. We use this really known operation of NLA as
a proof of concept.

As main features, our framework permits:

• definition of multiple instances of BLAS operations, each one
associated to a different sequential/parallel strategy;

• definition of multiple representations of vectors and matrices
with a unified interface;

• easy-to-define combinations of strategies;
• arbitrary combination of strategies and structure representations

in instance definitions;
• type-safe manipulation of context information associated to

each strategy.

The framework also provides default definitions for most meth-
ods associated to vector and matrix representations, but it is open to
define specific, possibly more efficient, implementations of them. It
is also possible to define strategies specialized for a given represen-
tation.

Future research lines include experimentation with further com-
binations of strategies, and parallel implementations of our opera-
tions over other hardware platforms.

As there are inherent performance benefits of mutable data
structures, the development of a monadic interface would not only
allow us to handle other data structures but also to achieve a higher
goal in performance, and even to handle in a different manner some
structures we are already using.

Other line of work is the development of the second layer of our
framework, composed by functional parallel LAPACK operations.
In addition, the study of a dynamic optimization module in order
to build a complete dense NLA run-time system.

References
[1] SMP Superscalar (SMPSs) User’s Manual, Version 2.4. Barcelona

Supercomputing Center, Barcelona, 2011.

[2] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov. Numerical linear algebra
on emerging architectures: The PLASMA and MAGMA projects.
Journal of Physics: Conference Series, 180, 2009. .

[3] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz,
A. Greenbaum, S. Hammarling, A. E. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users’ Guide, Third Edition. SIAM, Philadel-
phia, 1999.

[4] R. M. Badia, J. R. Herrero, J. Labarta, J. M. Pérez, E. S. Quintana-Ortı́,
and G. Quintana-Ortı́. Parallelizing dense and banded linear algebra
libraries using smpss. Concurrency and Computation: Practice and
Experience, 21(18):2438–2456, 2009.

[5] P. Bientinesi, B. Gunter, and R. A. v. d. Geijn. Families of algorithms
related to the inversion of a symmetric positive definite matrix. ACM
Trans. Math. Softw., 35(1):3:1–3:22, July 2008. ISSN 0098-3500. .
URL http://doi.acm.org/10.1145/1377603.1377606.

[6] J. Bilmes, K. Asanović, C. whye Chin, and J. Demmel. Optimizing
matrix multiply using PHiPAC: a Portable, High-Performance, ANSI
C coding methodology. In Proceedings of International Conference
on Supercomputing, Vienna, Austria, July 1997.

[7] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo,
K. Remington, and R. C. Whaley. An updated set of basic linear
algebra subprograms (blas). ACM Transactions on Mathematical
Software, 28:135–151, 2001.

[8] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating haskell array codes with multicore gpus. In Proceed-
ings of the sixth workshop on Declarative aspects of multicore pro-
gramming, DAMP ’11, pages 3–14. ACM, 2011. ISBN 978-1-4503-
0486-3.

[9] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton-Jones, G. Keller,
and S. Marlow. Data parallel Haskell: a status report. In DAMP ’07:
Proceedings of the 2007 workshop on Declarative aspects of multicore
programming, pages 10–18. ACM, 2007. ISBN 978-1-59593-690-5. .

[10] E. Chan, F. G. V. Zee, P. Bientinesi, E. S. Quintana-Ortı́, G. Quintana-
Ortı́, and R. A. van de Geijn. Supermatrix: a multithreaded runtime
scheduling system for algorithms-by-blocks. In S. Chatterjee and
M. L. Scott, editors, PPOPP, pages 123–132. ACM, 2008. ISBN 978-
1-59593-795-7.

[11] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK:
A scalable linear algebra library for distributed memory concurrent
computers. In Proceedings of the Fourth Symposium on the Frontiers
of Massively Parallel Computation, pages 120–127. IEEE Comput.
Soc. Press, 1992.

[12] A. Foltzer, A. Kulkarni, R. Swords, S. Sasidharan, E. Jiang, and
R. Newton. A meta-scheduler for the par-monad: composable schedul-
ing for the heterogeneous cloud. SIGPLAN Not., 47(9):235–246, Sept.
2012. ISSN 0362-1340. . URL http://doi.acm.org/10.1145/
2398856.2364562.

[13] A. V. Gerbessiotis. Algorithmic and Practical Considerations for
Dense Matrix Computations on the BSP Model. PRG-TR 32, Oxford
University Computing Laboratory, 1997. URL http://web.njit.
edu/~alexg/pubs/papers/PRG3297.ps.

[14] G. Golub and C. V. Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, 3rd edition, 1996.

[15] R. Hinze. Fun with phantom types. In J. Gibbons and O. de Moor,
editors, The Fun of Programming, Cornerstones of Computing, pages
245–262. Palgrave Macmillan, 2003.

[16] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and
B. Lippmeier. Regular, shape-polymorphic, parallel arrays in haskell.
In Proceedings of the 15th Intl. Conf. on Funct. Progr., ICFP ’10,
pages 261–272. ACM, 2010. ISBN 978-1-60558-794-3.

[17] O. Kiselyov, S. P. Jones, and C. chieh Shan. Fun with type functions.
In A. W. Roscoe, C. B. Jones, and K. Wood, editors, Reflections on the
work of C. A. R. Hoare. Springer, 2010.

[18] S. Marlow, S. L. Peyton-Jones, and S. Singh. Runtime support for mul-
ticore Haskell. In ICFP 2009, Intl. Conf. on Functional Programming,
pages 65–78. ACM, 2009. .

[19] S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, and P. W. Trinder. Seq
no more: Better strategies for parallel Haskell. In Haskell Symposium
2010, Baltimore, MD, USA, Sept. 2010. ACM Press.

[20] S. Marlow, R. Newton, and S. Peyton-Jones. A monad for determinis-
tic parallelism. In Haskell ’11: Proceedings of the Fourth Symposium
on Haskell. ACM, 2011.

[21] S. Peyton Jones. Harnessing the multicores: Nested data parallelism
in haskell. In Proceedings of the 6th Asian Symposium on Progra-
mming Languages and Systems, APLAS ’08, pages 138–138, Berlin,
Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-89329-5.

[22] S. Peyton-Jones et al. The Haskell 98 language and libraries: The
revised report. Journal of Functional Programming, 13(1):0–255, Jan
2003.

[23] E. Quintana-Ortı́, G. Quintana-Ortı́, X. Sun, and R. van de Geijn.
A note on parallel matrix inversion. SIAM Journal on Scientific
Computing, 22(5):1762–1771, 2000.

[24] C. Whaley, A. Petitet, and J. J. Dongarra. Automated Empirical
Optimization of Software and the ATLAS Project. In PARALLEL
COMPUTING, volume 27, 2000.

12 2013/8/7

