
Just Do It While Compiling!
Fast Extensible Records In Haskell

Bruno Martinez Aguerre
Instituto de Computación

Universidad de la República
Montevideo, Uruguay
brunom@fing.edu.uy

Marcos Viera
Instituto de Computación

Universidad de la República
Montevideo, Uruguay
mviera@fing.edu.uy

Alberto Pardo
Instituto de Computación

Universidad de la República
Montevideo, Uruguay

pardo@fing.edu.uy

Abstract
The library for strongly typed heterogeneous collections HList
provides an implementation of extensible records in Haskell that
needs only a few common extensions of the language. In HList,
records are represented as linked lists of label-value pairs with
a lookup operation that is linear-time in the number of fields. In
this paper, we use type-level programming techniques to develop
a more efficient representation of extensible records for HList. We
propose two internal encodings for extensible records that improve
lookup at runtime without needing a total order on the labels.
One of the encodings performs lookup in constant time but at
a cost of linear time insertion. The other one performs lookup
in logarithmic time while preserving the fast insertion of simple
linked lists. Through staged compilation, the required slow search
for a field is moved to compile time in both cases.

Categories and Subject Descriptors D.3.3 [Programming lan-
guages]: Language Constructs and Features; D.1.1 [Programming
techniques]: Applicative (Functional) Programming

General Terms Design, Languages, Performance

Keywords Extensible Records, Type-level programming, Staged
Computation, Haskell, HList, Balanced Trees

1. Introduction
Although there have been many different proposals for Extensible
Records in Haskell [5, 9, 10, 14, 15, 19], it is still an open problem
to find an implementation that manipulates records with satisfac-
tory efficiency. Imperative dynamic languages use hash tables for
objects, achieving constant time insertion and lookup. Inserting a
field changes the table in place, destructing the old version of the
object, not allowing for persistency as required in functional lan-
guages. Copying the underlying array of the hash table to preserve
the old version makes insertion slower.

Clojure [6] implements vectors with trees of small contiguous
arrays, so insertion is logarithmic due to structural sharing. Clo-
jure’s hash map, built on top of vectors, then achieves logarithmic
time insertion and lookup.

[Copyright notice will appear here once ’preprint’ option is removed.]

Figure 1. Search l7 in HList

The usual strategies for record insertion in functional languages
are copying all existing fields along with the new one to a brand
new tuple, or using a linked list [5]. The tuple strategy offers the
fastest possible lookup, but insertion is linear time. The linked list
sits in opposite in the tradeoff curve, with constant time insertion
but linear time lookup. Since a record is essentially a dictionary, the
obvious strategy to bridge this gap is a search tree. While lookup
is much improved to logarithmic time, insertion is also hit and
rendered logarithmic.

Hash maps and ordered trees need hashing and compare func-
tions. This ends up being the biggest turnoff for these techniques
in our setting. Types, standing as field labels, do not have natural,
readily accessible implementations for these functions.

This paper aims to contribute a solution in that direction. Our
starting point is the Haskell library for strongly typed hetero-
geneous collections HList [13] which provides an example im-
plementation of extensible records. A drawback of HList is that
lookup, the most used operation on records, is linear time. We pro-
pose two alternative implementations for extensible records as a
Haskell library, using the same techniques as HList. One, called
ArrayRecord , uses an array to hold the fields, achieving constant
time lookup but linear time insertion. The other alternative, called
SkewRecord , is based on a balanced tree structure. It maintains
constant time insertions, but lowers lookup to logarithmic time.

Another contribution of this paper is the trick we use to reduce
the run time work. We have observed that, when looking-up an
element in a HList, the element is first searched at compile time
in order to determine whether it belongs to the list. This search
generates the path the program follows at run time to obtain the
element. In Figure 1 we represent with a dashed arrow the compile
time search, and with a solid arrow the generated path followed at
run time. Since the structure is linear, the search and the path have
the same length.

Thus, the key idea is very simple. When in Haskell we com-
pare, for example, two stings, such as "foo" ≡ "baar", the entire
process of searching the correct instance of Eq to be used is per-
formed at compile time. No work is done at run time to search the
correct instance and discard the incorrect ones. We apply the same

1 2012/12/20

Figure 2. Search l7 in balanced tree

concept to perform the search of a label into a record. Given that a
label is represented by a singleton type we have enough informa-
tion to determine the “path of instances” that goes to it, discarding
any possible wrong path. We also make use of lazy evaluation, to
tell the compiler which path to follow without any cost at run time.

For example, one of our proposed implementations uses an al-
ternative structure for the representation of heterogeneous collec-
tions which is based on balanced trees. Such a structure better prof-
its from the information given by the compile time search, leading
to logarithmic length paths in the run time traversal (see Figure 2).
We show experimental results that confirm this behaviour.

The rest of the paper is organized as follows. We start with a
brief review of the type-level techniques used to implement ex-
tensible records by HList (Section 2). In Section 3 we show how
using the same type-level techniques we can obtain alternative im-
plementations of extensible records with faster lookup operations
at run time. Section 4 presents some experimental results that com-
pare the implementations we propose with HList, both at compile
time and run time. Finally, in Section 5 we draw some conclusions
and present possible directions for future work.

2. HList
HList is a Haskell library that implements typeful heterogeneous
collections, such as heterogeneous lists or records, using extensions
of Haskell for multi-parameter classes [20] and functional depen-
dencies [18]. HList strongly relies on type-level programming tech-
niques by means of which types are used to represent type-level
values, and classes are used to represent type-level functions.

We illustrate the use of type-level programming by means of
two simple examples that will be used later in the paper. We start
with a type-level representation of booleans values. Since we are
only interested in type-level computations, we define empty types
HTrue and HFalse corresponding to each boolean value.

data HTrue ; hTrue = ⊥ ::HTrue
data HFalse; hFalse = ⊥ ::HFalse

The inhabitants hTrue and hFalse of those types are defined
solely to be used in value-level expressions to construct type-level
values by referring to the types of such expressions.

Type-level functions can be described using multi-parameter
classes with functional dependencies. For example, we can encode
type-level negation by defining the following class:

class HNot t t ′ | t → t ′ where
hNot :: t → t ′

The functional dependency t → t ′ expresses that the parameter t
uniquely determines the parameter t ′. Therefore, once t is instan-
tiated, the instance of t ′ must be uniquely inferable by the type-
system. In other words, the relation between t and t ′ is actually
a function. Whereas the class definition describes the type signa-
ture of the type-level function, the function itself is defined by the
following instance declarations:

instance HNot HFalse HTrue where hNot = hTrue
instance HNot HTrue HFalse where hNot = hFalse

If we write the expression (hNot hFalse), then we know that t is
HFalse . So, the first instance of hNot is selected and thus t ′ is in-
ferred to be HTrue . Observe that the computation is completely at
the type-level; no interesting value-level computation takes place.

Another example is the type-level representation of the maybe
type. In this case we are interested in manipulating a value-level
value associated with each type constructor.

data HNothing = HNothing
data HJust e = HJust e deriving Show

We aim to construct a type-level value of the maybe type from a
boolean. For this purpose we define the following multi-parameter
class. The parameter v specifies the type of the values to be con-
tained by a HJust .

class HMakeMaybe b v m | b v → m where
hMakeMaybe :: b → v → m

instance HMakeMaybe HFalse v HNothing where
hMakeMaybe b v = HNothing

instance HMakeMaybe HTrue v (HJust v) where
hMakeMaybe b v = HJust v

Another operation that will be of interest on this type is the one
that combines two values of type maybe.

class HPlus a b c | a b → c where
hPlus :: a → b → c

instance HPlus (HJust a) b (HJust a) where
hPlus a = a

instance HPlus HNothing b b where
hPlus b = b

2.1 Heterogeneous Lists
Heterogeneous lists can be represented with the data types HNil
and HCons , which model the structure of lists both at the value
and type level:

data HNil = HNil
data HCons e l = HCons e l
infixr 2 ‘HCons‘

For example, the value HCons True (HCons ’a’ HNil) is a
heterogeneous list of type HCons Bool (HCons Char HNil).

2.2 Extensible Records
Records are mappings from labels to values. They are modeled by
an HList containing a heterogeneous list of fields. A field with
label l and value of type v is represented by the type:

newtype Field l v = Field {value :: v }
(.=.) :: l → v → Field l v
.=. v = Field v

Notice that the label is a phantom type [7]. We can retrieve the label
value by using the function label , which exposes the phantom type
parameter:

label :: Field l v → l
label = ⊥
We define separate types and constructors for labels.

data L1 = L1
data L2 = L2
data L3 = L3
data L4 = L4

2 2012/12/20

data L5 = L5
data L6 = L6
data L7 = L7

Thus, the following defines a record (rList) with seven fields:

rList =
(L1 .=. True) ‘HCons‘
(L2 .=. 9) ‘HCons‘
(L3 .=. "bla") ‘HCons‘
(L4 .=. ’c’) ‘HCons‘
(L5 .=.Nothing) ‘HCons‘
(L6 .=. [4, 5]) ‘HCons‘
(L7 .=. "last") ‘HCons‘
HNil

The class HListGet retrieves from a record the value part
corresponding to a specific label:

class HListGet r l v | r l → v where
hListGet :: r → l → v

At the type-level it is statically checked that the record r indeed
has a field with label l associated with a value of the type v . At
value-level hListGet returns the value of type v . For example, the
following expression returns the string "last":

lastList = hListGet rList L7

Instead of polluting the definitions of type-level functions with
the overlapping instance extension when comparing two types to
be equal (e.g. labels), HList encapsulates type comparison in HEq .
The type equality predicate HEq results in HTrue in case the com-
pared types are equal and HFalse otherwise. Thus, when compar-
ing two types in other type-level functions (like HListGet below),
these two cases can be discriminated without using overlapping in-
stances.

class HEq x y b | x y → b
hEq ::HEq x y b ⇒ x → y → b
hEq = ⊥

We will not delve into the different possible definitions for HEq .
For completeness, here is one that suffices for our purposes. For a
more complete discussion about type equality in Haskell we refer
to [11].

instance HEq x x HTrue
instance b ∼HFalse ⇒ HEq x y b

At this point we can see that the use of overlapping instances is
unavoidable. This explains why the implementation of HList is
based on type classes and functional dependencies instead of type
families [3, 4, 21] (which do not support overlapping instances).

HListGet uses HEq to discriminate the two possible cases.
Either the label of the current field matches l , or the search must
continue to the next node.

instance
(HEq l l ′ b
,HListGet ′ b v ′ r ′ l v)⇒
HListGet (HCons (Field l ′ v ′) r ′) l v where
hListGet (HCons f ′@(Field v ′) r ′) l =

hListGet ′ (hEq l (label f ′)) v ′ r ′ l

HListGet ′ has two instances, for the cases HTrue and HFalse .

class HListGet ′ b v ′ r ′ l v | b v ′ r ′ l → v where
hListGet ′ :: b → v ′ → r ′ → l → v

instance
HListGet ′ HTrue v r ′ l v

where
hListGet ′ v = v

instance
HListGet r ′ l v ⇒
HListGet ′ HFalse v ′ r ′ l v where
hListGet ′ r ′ l = hListGet r ′ l

If the labels match, the corresponding value is returned, both at
the value and type levels. Otherwise, HListGet ′ calls back to
HListGet to continue the search. The two type-functions are mu-
tually recursive. There is no case for the empty list; lookup fails.

For GHC, the type level machinery not only generates correct
value level code, but efficient code too. At the value level, the
functions hListGet and hListGet ′ are trivial, devoid of logic and
conditions. For this reason, GHC is smart enough to elide the
dictionary objects and indirect jumps for hListGet . The code is
inlined to a case cascade, but the program must traverse the linked
list. For example, this is the GHC core of the example:

lastListCore = case rList of
HCons rs1 → case rs1 of

HCons rs2 → case rs2 of
HCons rs3 → case rs3 of

HCons rs4 → case rs4 of
HCons rs5 → case rs5 of

HCons rs6 → case rs6 of
HCons e → e

3. Faster Extensible Records
Extensible records can double as “static type-safe” dictionaries,
that is, collections that guarantee at compile time that all labels
searched for are available. For example, [24], a library for first-class
attribute grammars, uses extensible records to encode the collection
of attributes associated to each non-terminal. If we wanted to use it
to implement a system with a big number of attributes (e.g. a com-
piler) an efficient structure would be needed. Increasing the size of
GHC’s context reduction stack makes the program compile but at
run time the linear time lookup algorithm hurts performance. The
usual replacement when lookup in a linked list is slow is a search
tree. In that case we would need to define a HOrd type-function
analogue to HList’s magic HEq and port some standard balanced
tree to compile time, tricky rotations and all. As unappealing as this
already is, the real roadblock is HOrd . Without help from the com-
piler, defining such type function for unstructured labels is beyond
(our) reach.

The key insight is that sub-linear behavior is only needed at
run time. We do not worry if the work done at compile time is
superlinear as long as it helps us to speed up our programs at run
time. HListGet already looks for our label at compile time to fail
compilation if we require a field for a record without such label. So
our idea is to maintain the fields stored unordered, but in a structure
that allows fast random access and depends on the compiler to
hardcode the path to our fields.

We will present two variants of faster records. To make code
listing shorter and easier to understand, we implement each vari-
ant with independent interfaces. However, it would be possible to
provide a common class-based interface for all variants.

The first variant follows the conventional approach of storing
the record as a tuple. However, because Haskell does not offer
genericity over the length of tuples as in [23], i.e. efficient access
to the i-th element of an arbitrary length tuple, we will use an array
instead, converting field values to a common type. This implemen-
tation supports linear time insertions and constant time lookups.

3 2012/12/20

Figure 3. Search l7 in Array

The second variant is tree-like, being based on Skew Binary
Random-Access Lists [17], a structure that guarantees constant
time insertions and logarithmic time access to any element. Other,
perhaps simpler, data structures such as Braun trees [8] could have
been chosen, since the key property of searching at compile time
while retrieving at run time works unchanged in any balanced
tree structure. However, those structures do not offer constant time
insertion and are not drop-in replacements for simple linear lists. A
structure with logarithmic insertion slows down applications heavy
on record modification.

3.1 Array Records
An Array Record has two components: an array containing the
values of the fields, and an heterogeneous list used to find a field’s
ordinal for lookup in the array. To allow the storage of elements
of different types in the array, we use the type Any1. Items are
then unsafeCoerced on the way in and out based on the type
information we keep in the heterogeneous list.

data ArrayRecord r =
ArrayRecord r (Array Int Any)

3.1.1 Lookup
Lookup is done as a two step operation. First, the ordinal of a
certain label in the record, and the type (v) of its stored element,
are found with ArrayFind .

class ArrayFind r l v | r l → v where
arrayFind :: r → l → Int

Second, function hArrayGet uses the index to obtain the element
from the array and the type (v) to coerce that element to its correct
type.

hArrayGet ::ArrayFind r l v ⇒ ArrayRecord r → l → v
hArrayGet (ArrayRecord r a) l =

unsafeCoerce (a ! arrayFind r l)

Figure 3 shows a graphical representation of this process.
Dashed arrow represents the compile time search of the field in
the heterogeneous list which results in the index of the element in
the array. Using this index the element is retrieved from the array
in constant time at run time (solid arrow).

ArrayFind follows the same pattern as HListGet shown ear-
lier, using HEq to discriminate the cases of the label of the current
field, which may match or not the searched one.

instance (HEq l l ′ b
,ArrayFind ′ b v ′ r l v n
,ToValue n)⇒

ArrayFind (HCons (Field l ′ v ′) r) l v where

1 A special type that can be used as a safe placeholder for any value.

arrayFind (HCons f r) l =
toValue (arrayFind ′ (hEq l (label f)) (value f) r l)

A difference with HListGet is that the work of searching the la-
bel, performed by ArrayFind ′, is only done at type-level. There
is no value-level member of the class ArrayFind ′; observe that
arrayFind ′ is just an undefined value and nothing will be com-
puted at run time.

arrayFind ′ ::ArrayFind ′ b v ′ r l v n
⇒ b → v ′ → r → l → n

arrayFind ′ = ⊥
data HZero
data HSucc n

class ArrayFind ′ b v ′ r l v n | b v ′ r l → v n
instance ArrayFind ′ HTrue v r l v HZero
instance (HEq l l ′ b,ArrayFind ′ b v ′ r l v n)
⇒ ArrayFind ′ HFalse v ′′ (HCons (Field l ′ v ′) r) l

v (HSucc n)

The types HZero and HSucc implement naturals at type-level. If
the label is found, then the index HZero is returned. Otherwise,
we increase the index by one (HSucc) and continue searching.
Once the index is found it has to be converted into an Int value,
in order to use this value as the index of the array. This is done by
the function toValue .

class ToValue n where
toValue :: n → Int

To perform this conversion in constant time, we have to provide one
specific instance of ToValue for every type-level natural we use.

instance ToValue HZero where
toValue = 0

instance ToValue (HSucc HZero) where
toValue = 1

instance ToValue (HSucc (HSucc HZero)) where
toValue = 2

...

In this implementation of ArrayFind it is very easy to dis-
tinguish the two phases of the lookup process. However, the use
of the function toValue introduces a big amount of boilerplate.
Although these instances can be automatically generated using
Template Haskell, we make use of a couple of optimizations that
are present in GHC to propose a less verbose implementation of
ToValue .

instance ToValue HZero where
toValue = 0

hPrev ::HSucc n → n
hPrev = ⊥
instance ToValue n ⇒ ToValue (HSucc n) where

toValue n = 1 + toValue (hPrev n)

Based on inlining and constant folding, the computation of the
index, which is linear time, is performed at compile time.

3.1.2 Construction
An empty ArrayRecord consists of an empty heterogeneous list
and an empty array.

emptyArrayRecord =
ArrayRecord HNil (array (0,−1) [])

Function hArrayExtend adds a field to an array record.

hArrayExtend f = hArrayModifyList (HCons f)

4 2012/12/20

hArrayModifyList hc (ArrayRecord r) =
let r ′ = hc r

fs = hMapAny r ′

in ArrayRecord r ′ (listArray (0, length fs − 1) fs)

The new field (which includes the type information of the ele-
ment) is added to the heterogeneous list of the old record. The ex-
tended heterogeneous list is then converted to a plain Haskell list
with hMapAny and turned into the array of the new record with
listArray . Note that the array of the old record is not used. In this
way, if several fields are added to a record but lookup is not done on
the intermediate records, the intermediate arrays are not ever cre-
ated by virtue of Haskell’s laziness. Adding n fields is then a linear
time operation instead of quadratic. This optimization is the reason
why an ArrayRecord contains the actual corresponding HList in-
stead of just the field value type relation as a phantom parameter
(i.e. only at the type-level). The function hMapAny iterates over
the heterogeneous list coercing its elements to values of type Any .

class HMapAny r where
hMapAny :: r → [Any]

instance HMapAny HNil where
hMapAny = []

instance
HMapAny r ⇒
HMapAny (HCons (Field l v) r)
where
hMapAny (HCons (Field v) r) =
unsafeCoerce v : hMapAny r

3.1.3 Update and Remove
Functions hArrayUpdate and hArrayRemove , to update and re-
move a field respectively, are similar to the extension function in the
sense that both have to reconstruct the array after modifying the list.
We use the respective functions hListUpdate and hListRemove
from the HList implementation of records.

hArrayUpdate l e
= hArrayModifyList (hListUpdate l e)

hArrayRemove l
= hArrayModifyList (hListRemove l)

With HArrayUpdate we change a field of some label with a new
field with possibly new label and value.

3.2 Skew Binary Random-Access List
We start with a description of Skew Binary Random-Access List
[16] in a less principled but easier and more direct fashion than
[17], which is founded on numerical representations. A skew list is
a linked list spine of complete binary trees.

The invariant of skew lists is that the height of trees get strictly
larger along the linked list, except that the first two trees may be
of equal size. Because of the size restriction, the spine is bounded
by the logarithm of the element count, as is each tree. Hence, we
can get to any element in logarithmic effort. This is a fundamental
property of skew lists we will take advantage of.

Insertion maintaining the invariant is constant time and consid-
ers two cases: (1) when the spine has at least two trees and the first
two trees are of equal size, we remove them and insert a new node
built of the new element and the two trees removed; and (2) we just
insert a new leaf. In Figure 4 we show a graphic representation of
the successive skew lists that arise in the process of construction
of a skew list with the elements of rList from section 2.2. Nodes
connected by arrows represent linked-lists and nodes connected by
lines represent trees. The first two steps (adding elements with la-
bel l7 and l6) are in case (2), thus two leaves are inserted into the

Figure 4. Insertion in a Skew

spine. On the other hand, the third step (adding an element with la-
bel l5) is in case (1), so a node has to be built with the new element
as root and the two previous trees as subtrees.

Skew lists are not optimal for merging records. In the view
of tree instances as numbers, merging is equivalent to number
addition. Some priority queue structures do support fast merging
(or melding), but usually the resulting trees are very deep and do
not support efficient access to some elements.

3.3 SkewRecord
In this subsection we present our implementation of extensible
records using (heterogeneous) skew lists. First, we introduce some
types to model heterogeneous binary trees:

data HEmpty = HEmpty
data HNode e t t ′ = HNode e t t ′

type HLeaf e = HNode e HEmpty HEmpty

and a smart constructor for leaves:

hLeaf e = HNode e HEmpty HEmpty

The element precedes the subtrees in HNode so all elements in
expressions read in order left to right. The common leaf case
warrants the helper type HLeaf and the smart constructor hLeaf .

A (heterogeneous) skew list is then defined as a heterogeneous
list of (heterogeneous) binary trees. The following declarations
define a skew list with the elements of the fourth step of Figure 4:

four =
HCons (hLeaf (L4 .=. ’c’)) $
HCons (HNode (L5 .=.Nothing)

(hLeaf (L6 .=. [4, 5]))
(hLeaf (L7 .=. "last"))) $

HNil

3.3.1 Construction
We define a smart constructor emptySkewRecord for empty skew
lists, i.e. an empty list of trees.

emptySkewRecord = HNil

HHeight returns the height of a tree. We will use it to detect the
case of two leading equal height trees in the spine.

class HHeight t h | t → h
instance HHeight HEmpty HZero

5 2012/12/20

instance HHeight t h ⇒
HHeight (HNode e t t ′) (HSucc h)

HSkewCarry finds out if a skew list l is in case (1) or (2). This
will be used for insertion to decide whether we need to take the two
leading existing trees and put them below a new HNode (case 1), or
just insert a new HLeaf (case 2). In the numerical representation of
data structures, adding an item is incrementing the number. If each
top level tree is a digit, building a new taller tree is a form of carry,
so HSkewCarry returns HTrue .

class HSkewCarry l b | l → b

hSkewCarry ::HSkewCarry l b ⇒ l → b
hSkewCarry = ⊥

If the spine has none or one single tree we return HFalse .

instance HSkewCarry HNil HFalse
instance HSkewCarry (HCons t HNil) HFalse

In case the spine has more than one tree, we return HTrue if the
first two trees are of equal size and HFalse otherwise.

instance
(HHeight t h
,HHeight t ′ h ′

,HEq h h ′ b)⇒
HSkewCarry (HCons t (HCons t ′ ts)) b

All these pieces allow us to define HSkewExtend , which re-
sembles the HCons constructor.

class HSkewExtend f r r ′ | f r → r ′

where hSkewExtend :: f → r → r ′

infixr 2 ‘hSkewExtend ‘

HSkewExtend looks like HListGet shown earlier. HSkewCarry
is now responsible for discriminating the current case, while
HListGet used HEq on the two labels.

instance
(HSkewCarry r b
,HSkewExtend ′ b f r r ′)⇒
HSkewExtend f r r ′ where
hSkewExtend f r =

hSkewExtend ′ (hSkewCarry r) f r

class HSkewExtend ′ b f r r ′ | b f r → r ′ where
hSkewExtend ′ :: b → f → r → r ′

Here HFalse means that we should not add up the first two trees
of the spine. Either the size of the two leading trees are different,
or the spine is empty or a singleton. We just use HLeaf to insert a
new tree at the beginning of the spine.

instance
HSkewExtend ′

HFalse
f
r
(HCons (HLeaf f) r) where

hSkewExtend ′ f r = HCons (hLeaf f) r

When HSkewCarry returns HTrue , however, we build a new tree
reusing the two trees that were at the start of the spine. The length
of the spine is reduced in one, since we take two elements but only
add one.

instance
HSkewExtend ′

HTrue

f
(HCons t (HCons t ′ r))
(HCons (HNode f t t ′) r) where

hSkewExtend ′ f (HCons t (HCons t ′ r)) =
(HCons (HNode f t t ′) r)

3.3.2 Lookup
Now, we turn to the introduction of HSkewGet , which explores all
paths at compile time but follows only the right one at run time.

class HSkewGet r l v | r l → v where
hSkewGet :: r → l → v

Deciding on the path to the desired field is now more involved.
The cases that both the test function and the worker function must
consider are more numerous and long. Thus, we merge both func-
tions. HSkewGet returns a type level and value level Maybe, that
is, HNothing when no field with the label is found, and HJust of
the field’s type/value otherwise. For branching constructors HCons
and HNode , HPlus (presented in subsection 2) chooses the correct
path for us.

We will run HSkewGet on both the spine and each tree, so we
have two base cases. HNil is encountered at the end of the spine,
and HEmpty at the bottom of trees. In both cases, the field was not
found, so we return HNothing .

instance HSkewGet HNil l HNothing where
hSkewGet = HNothing

instance HSkewGet HEmpty l HNothing where
hSkewGet = HNothing

The HCons case must consider that the field may be found on the
current tree or further down the spine. A recursive call is made for
each sub-case, and the results are combined with HPlus . If the field
is found in the current tree, HPlus returns it, otherwise, it returns
what the search down the spine did.

instance
(HSkewGet r l vr
,HSkewGet r ′ l vr ′

,HPlus vr vr ′ v)⇒
HSkewGet (HCons r r ′) l v where
hSkewGet (HCons r r ′) l =

hSkewGet r l ‘hPlus‘ hSkewGet r ′ l

Observe that when doing hSkewGet r l ‘hPlus‘ hSkewGet r ′ l
if the label is not present in r then the type system chooses the
second instance of HPlus (HPlus HNothing b b). Thus, by lazy
evaluation, the subexpression hSkewGet r l is not evaluated since
hPlus in that case simply returns its second argument.
The HNode case is a bigger version of the HCons case. Here three
recursive calls are made, for the current field, the left tree, and the
right tree. Thus two HPlus calls are needed to combine the result.

instance
(HSkewGet f l vf
,HSkewGet r l vr
,HSkewGet r ′ l vr ′

,HPlus vf vr vfr
,HPlus vfr vr ′ v)⇒
HSkewGet (HNode f r r ′) l v where
hSkewGet (HNode f r r ′) l =

hSkewGet f l
‘hPlus‘ hSkewGet r l

‘hPlus‘ hSkewGet r ′ l

Finally, the Field case, when a field is found, is the case that may
actually build a HJust result. As in HListGet for linked lists, HEq

6 2012/12/20

compares both labels. We call HMakeMaybe with the result of the
comparison, and HNothing or HJust is returned as appropriate.

instance
(HEq l l ′ b
,HMakeMaybe b v m)⇒
HSkewGet (Field l ′ v) l m where
hSkewGet f l =
hMakeMaybe

(hEq l (label f))
(value f)

When we repeat the experiment at the end of subsection 2.2, but
constructing a SkewRecord instead of an HList :

rSkew =
(L1 .=. True) ‘hSkewExtend ‘
(L2 .=. 9) ‘hSkewExtend ‘
(L3 .=. "bla") ‘hSkewExtend ‘
(L4 .=. ’c’) ‘hSkewExtend ‘
(L5 .=.Nothing) ‘hSkewExtend ‘
(L6 .=. [4, 5]) ‘hSkewExtend ‘
(L7 .=. "last") ‘hSkewExtend ‘
emptySkewRecord

lastSkew = hSkewGet rSkew L7

the resulting core code is:

lastSkewCore = case rSkew of
HCons t1 → case t1 of
HNode t12 → case t12 of

HNode t121 → case t121 of
HNode e → e

Thus, getting to l7 at run time only traverses a (logarithmic length)
fraction of the elements, as we have seen in Figure 2. Later we will
examine runtime benchmarks.

3.3.3 Update
We now define an update operation that makes it possible to change
a field of some label with a new field with possibly new label and
value.

class HSkewUpdate l e r r ′ | l e r → r ′ where
hSkewUpdate :: l → e → r → r ′

We use the lookup operation HSkewGet to discriminate at type-
level whether the field with the searched label is present or not in
the skew list.

instance (HSkewGet r l m
,HSkewUpdate ′ m l e r r ′)⇒
HSkewUpdate l e r r ′ where

hSkewUpdate l e r =
hSkewUpdate ′ (hSkewGet r l) l e r

class HSkewUpdate ′ m l e r r ′ | m l e r → r ′ where
hSkewUpdate ′ ::m → l → e → r → r ′

In case the label is not present we have nothing to do than just
returning the structure unchanged.

instance HSkewUpdate ′ HNothing l e r r where
hSkewUpdate ′ l e r = r

In the other cases (i.e. when lookup results in HJust v) we call
hSkewUpdate recursively on all subparts in order to apply the
update when necessary. Because of the previous instance (when
lookup returns HNothing), at run time recursion will not enter in

those cases where the label is not present. We start the process in
the spine.

instance
(HSkewUpdate l e t t ′

,HSkewUpdate l e ts ts ′)⇒
HSkewUpdate ′ (HJust v) l e (HCons t ts)

(HCons t ′ ts ′)
where
hSkewUpdate ′ l e (HCons t ts) =

HCons (hSkewUpdate l e t)
(hSkewUpdate l e ts)

On a HNode , hSkewUpdate is recursively called on the left and
right sub-trees as well as on the element of the node.

instance
(HSkewUpdate l e e ′ e ′′

,HSkewUpdate l e tl tl ′

,HSkewUpdate l e tr tr ′)⇒
HSkewUpdate ′ (HJust v) l e (HNode e ′ tl tr)

(HNode e ′′ tl ′ tr ′)
where
hSkewUpdate ′ l e (HNode e ′ tl tr) =

HNode (hSkewUpdate l e e ′)
(hSkewUpdate l e tl)
(hSkewUpdate l e tr)

Finally, when we arrive to a Field and we know the label is the
one we are searching for (because we are considering the case
HJust v), we simply return the updated field.

instance
HSkewUpdate ′ (HJust v) l e (Field l v) e

where
hSkewUpdate ′ l e e ′ = e

At run time, this implementation of hSkewUpdate only rebuilds
the path to the field to update, keeping all other sub-trees intact.
Thus the operation runs in time logarithmic in the size of the record.

3.3.4 Remove
Removing a field is easy based on updating. We overwrite the field
we want to eliminate with the first field in the skew list, and then
we remove the first field from the list. Thus, we remove elements
in logarithmic time while keeping the tree balanced.

First, we need a helper to remove the first element of a skew list.

class HSkewTail ts ts ′ | ts → ts ′ where
hSkewTail :: ts → ts ′

In Figure 5 we show an example of the possible cases we can find.

Figure 5. Tail in a Skew

7 2012/12/20

The easy case is when the spine begins with a leaf. We just
return the tail of the spine list.

instance HSkewTail (HCons (HLeaf e) ts) ts where
hSkewTail (HCons ts) = ts

The other case is when the spine begins with a tree of three or more
elements. Since HLeaf is a synonym of HNode with HEmpty as
sub-trees, we need to assert the case when the sub-trees of the root
HNode are nonempty (i.e. HNodes themselves). By construction,
both sub-trees have the same shape, but doing pattern matching on
the first one only suffices to make sure this case does not overlap
with the previous one. In this case we grow the spine with the sub-
trees, throwing away the root.

instance
HSkewTail
(HCons (HNode e t (HNode e ′ t ′ t ′′)) ts)
(HCons t ((HCons (HNode e ′ t ′ t ′′)) ts))

where
hSkewTail (HCons (HNode t t ′) ts) =
HCons t (HCons t ′ ts)

Last, hSkewRemove takes the first node and calls hSkewUpdate
to duplicate it where the label we want gone was. Then hSkewTail
removes the original occurrence, at the start of the list.

hSkewRemove l (HCons (HNode e t t ′) ts) =
hSkewTail $
hSkewUpdate l e (HCons (HNode e t t ′) ts)

4. Efficiency
In order to chose the best implementation in practice and as a sanity
check, we did some synthetic benchmarks of the code. We compile
and run the programs in a 4 core 2.2 Ghz second genertion (Sandy
Bridge) Intel i7 MacBook Pro Notebook with 8 GB of RAM. We
use GHC version 7.6.1 64 bits under OS X 10.8 Mountain Lion.

We time accessing the last of an increasing number of fields.
The program constructs the list once and runs a 10 million iteration
lookup loop, taking the necessary precautions to avoid the compiler
exploiting the language lazyness to optimize out all our code. Run
time comparisons are shown in Figure 6.

Note how in practice ArrayRecord and SkewRecord take the
same time no matter the length of the record. Actually, sometimes
larger records run faster than smaller records for SkewRecord . For
example, a 31 size skew list contains a single tree, so elements are

field count

time (s)

25 50 75 100 125 150 175 200

2
4
6
8

10
12
14
16
18
20
22
24
26 HListRecord

ArrayRecord
SkewRecord

Figure 6. Lookup: run time

field count

time (s)

50 100 150 200 250 300 350 400

2

4

6

8

10

12

14
ArrayRecord

Figure 7. Extend: run time

at most 5 hops away. But a 28 size skew lists contains trees sized 1,
1, 3, 7 and 15, and getting to the last takes 8 hops.

Up to ten elements, simple linked lists are faster than skew
lists. By fusing the spine list and the tree nodes, skew lists can
be tweaked to improve the performance with few elements. This
results in a single node type, with an element and three child node
references, one to the next node, one to the right subtree, and one
to the node of the next tree. We chose the unfused exposition for
clarity. Another option is to use linked list for small records and
switch to skew list when over 10 fields. Since the test is done at
compile time, the adaptive structure has no run time overhead above
having to copy the 10 fields from the linked list to the tree when the
limit is surpassed.

Next, Figure 7 shows the runtime of inserting one more field to a
record of a given length. To force the worst case for ArrayRecord ,
we disable the insertion optimization by immediately looking up
the field just inserted. The insert-lookup process is run one million
times. Only ArrayRecord is graphed because the other alternatives
are too fast in this case. The graph exposes the linear time behavior
of ArrayRecord , its Achilles’ heel. However, we do not expect real
life applications to fall in this case. In general, multiple adjacent
insertions preceding a lookup would be the common case.

For Figure 8 we compared updating the first and deepest ele-
ment in each implementation. As expected, SkewRecord is negli-
gible. HListRecord is a linear graph picking up somewhat proba-

field count

time (s)

20 40 60 80 100 120 140

15

30

45

60

75

90

HListRecord

ArrayRecord

SkewRecord

Figure 8. Update: run time

8 2012/12/20

field count

time (s)

50 100 150 200 250 300 350 400

5

10

15

20

25

30

35

HListRecord

ArrayRecord

SkewRecord

Figure 9. Lookup: compile time

bly after the CPU cache effects begins to play a role. ArrayRecord
is also linear but much slower.

Figure 9 shows how compile time for the three implementa-
tions grows. SkewRecord is twice as slow as HList records, and
ArrayRecord falls in between. When insertion is rare, we pre-
fer ArrayRecord because of the compile time speed. Otherwise,
SkewRecord is the best choice

5. Conclusions and Future Work
Using type level programming techniques we developed two new
implementations of extensible records for Haskell: An array-like
implementation, with constant time search and linear time inser-
tion, and an impementation based on balanced trees that takes log-
arithmic time for searching and removing elements and constant
time for inserting elements. This run time performance is achieved
by moving most of the effort to compile time.

In the actual implementations we follow [15] in allowing label
repetition. A type-predicate HLabelSet can be added to disallow
this as in [13], with a slight cost in clarity but no cost in run time
performance.

This approach can be used to improve the performance of sys-
tems that make extensive use of extensible records. Some examples
of such systems are the first-class attribute grammars library Aspec-
tAG [24], the OOHaskell [12] library for object-oriented functional
programming, or libraries for relational databases such as CoddFish
[22] and HaskellDB [2].

Although the paper was focused on showing more efficient
implementations of extensible records, our aim was mainly to show
how harnessing type level programming techniques it is possible to
improve the run time performance of some operations by moving
certain computations to compile time. Type level programming
is commonly used to increase the expressivity and type safety
of programs, but in this paper we showed it can also be helpful
for efficiency matters. This is the case specially for type level
programming in Haskell, where there exists a phase distinction
between compile and run time; types are computed at compile time
while values are computed at run time.

Interesting future work is to find a way to reduce compila-
tion time. Experiments demonstrate that GHC memoizes class in-
stances, but some particularity of our instances seem to confuse the
mechanism. [1] suggests constraint reordering and striving for tail
calls to improve performance. It did not work for us and it made the
presentation less clear, so we went with the straightforward version.

To improve performance, the code can be rewritten with type
families. The main reason why we based our development on func-
tional dependencies is the lack of overlapping instances at type
families. In case further investigation on type families solves this
problem we would be able to rephrase our implementation in terms
of type families with a trivial translation, achieving a more func-
tional style implementation.

An interesting aspect of the proposed approach to extensi-
ble records is that it can be encoded as a Haskell library, using
only nowadays established extensions implemented for example
in current versions of GHC. However, better performance could
be achieved if our approach is developed as a built-in implemen-
tation in a compiler. In that case, the ArrayRecord solution re-
duces to the standard tuple-based techniques [5]. On the other
hand, SkewRecord provides a novel encoding with fast lookup
and insertion that would preserve its advantages even as a built-in
solution.

References
[1] Gershom Bazerman. Fixing performance leaks at the type level. URL

http://www.haskell.org/pipermail/haskell-cafe/
2011-July/093974.html.

[2] Björn Bringert, Anders Höckersten, Conny Andersson, Martin
Andersson, Mary Bergman, Victor Blomqvist, and Torbjörn Martin.
Student paper: HaskellDB improved. In Proceedings of the 2004
ACM SIGPLAN Workshop on Haskell, Haskell ’04, pages 108–115.
ACM Press, 2004.

[3] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.
Associated type synonyms. In ICFP ’05: Proceedings of the tenth
ACM SIGPLAN international conference on Functional
programming, pages 241–253, New York, NY, USA, 2005. ACM.

[4] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and
Simon Marlow. Associated types with class. SIGPLAN Notices, 40
(1):1–13, January 2005.

[5] Benedict R. Gaster and Mark P. Jones. A polymorphic type system
for extensible records and variants. NOTTCS-TR 96-3, Nottingham,
1996. URL
http://web.cecs.pdx.edu/~mpj/pubs/polyrec.html.

[6] Rich Hickey. The clojure programming language. In Proceedings of
the 2008 Symposium on Dynamic Languages, DLS ’08, pages
1:1–1:1. ACM, 2008.

[7] Ralf Hinze. Fun with phantom types. In Jeremy Gibbons and Oege
de Moor, editors, The Fun of Programming, pages 245–262. Palgrave
Macmillan, 2003.

[8] Rob Hoogerwoord. A logarithmic implementation of flexible arrays.
In R. Bird, C. Morgan, and J. Woodcock, editors, Mathematics of
Program Construction, volume 669 of Lecture Notes in Computer
Science, pages 191–207. Springer Berlin / Heidelberg, 1993.

[9] Wolfgang Jeltsch. Generic record combinators with static type
checking. In Proceedings of the 12th international ACM SIGPLAN
symposium on Principles and practice of declarative programming,
PPDP ’10, pages 143–154. ACM, 2010.

[10] Mark P. Jones and Simon Peyton Jones. Lightweight extensible
records for haskell. In Proceedings of the 1999 Haskell Workshop,
Paris, France, October 1999.

[11] Oleg Kiselyov. Type equality predicates: from OverlappingInstances
to overcoming them, 2012. URL
okmij.org/ftp/Haskell/typeEQ.html.

[12] Oleg Kiselyov and Ralf Lämmel. Haskell’s overlooked object
system. Draft, 2005.

[13] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed
heterogeneous collections. In Haskell ’04: Proceedings of the ACM
SIGPLAN workshop on Haskell, pages 96–107. ACM Press, 2004.

[14] Daan Leijen. First-class labels for extensible rows. Technical Report
UU-CS-2004-51, Department of Computer Science, Universiteit
Utrecht, December 2004.

9 2012/12/20

[15] Daan Leijen. Extensible records with scoped labels. In Proceedings
of the 2005 Symposium on Trends in Functional Programming
(TFP’05), September 2005.

[16] Eugene W. Myers. An applicative random-access stack. Information
Processing Letters, 17:241–248, 1983.

[17] Chris Okasaki. Purely functional data structures. PhD thesis,
Pittsburgh, PA, USA, 1996. AAI9813847.

[18] Mark P. Jones. Type classes with functional dependencies. In ESOP
’00: Proceedings of the 9th European Symposium on Programming
Languages and Systems, pages 230–244, London, UK, 2000.
Springer-Verlag.

[19] Simon Peyton Jones and Greg Morrisett. A proposal for records in
Haskell, 2003. URL
http://research.microsoft.com/en-us/um/people/simonpj/
haskell/records.html.

[20] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an
exploration of the design space. In Haskell Workshop, June 1997.

[21] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and
Martin Sulzmann. Type checking with open type functions.
SIGPLAN Not., 43(9):51–62, September 2008.

[22] Alexandra Silva and Joost Visser. Strong types for relational
databases. In Haskell ’06: Proceedings of the 2006 ACM SIGPLAN
workshop on Haskell, pages 25–36, New York, NY, USA, 2006.
ACM. ISBN 1-59593-489-8.

[23] Mark Tullsen. The zip calculus. In In Fifth International Conference
on Mathematics of Program Construction (MPC 2000, pages 28–44.
Springer-Verlag, 2000.

[24] Marcos Viera, S. Doaitse Swierstra, and Wouter Swierstra. Attribute
grammars fly first-class: how to do aspect oriented programming in
haskell. In Proceedings of the 14th ACM SIGPLAN international
conference on Functional programming, ICFP ’09, pages 245–256.
ACM, 2009.

10 2012/12/20

