A Multi-Stage Language with Intensional Analysis

Marcos Viera Alberto Pardo

Instituto de Computadn
Universidad de la Reblica
Montevideo - Uruguay

{mviera,pardo}@fing.edu.uy

Abstract stage. For example, while + 2 evaluates to4, [| 2 + 2 |]
This paper presents the definition of a language with reflection e_valuates to_the representation of the piece of cbde 2. Rel-
fied expressions can be constructed from others by using escape.

primitives. The language is a homogeneous multi-stage IanguageE O luates th . ded 1 de pi
that provides the capacity of code analysis by the inclusion of a pat- scape §(-). evaluates e expression surrounded o a code piece
and then splices it into the expression where it occurs. Thus, the

tern matching mechanism that permits inspection of the structure of luati [2+ $C01 2+ 2 (1) 1] ret th

quoted expressions and their destruction into component subparts £V&'4& Ith 0 R luates it {eturns ine re?resden- d

Quoted expressions include an explicit annotation of their context [AtloN 0f2 + 4. Run evaluates Its arguments to a piece of code an

which is used for dynamic inference of type, where a dynamic typ- executes it. This implements the inverse operation of reification.

ing discipline based on Hinze and Cheney’s approach is used for !t iS €ssential to have reflection that programs can reason about

typing quoted expressions their own state and manipulate it. According to Sheard [17] meta-
This paper follows the approach of Sheard and Pasalic aboutPrograms can be classified into two categoriasalyzersand

the use of the meta-langua@enega as a tool for language design. generators Program analyzers are an important clas_s .Of meta-

In this sense, it is shown how to represent the syntax, the static agPrograms that can be used among other things to optimize, trans-

: ; ; form, maintain and reason about complex systems. Most of multi-
well as the dynamic semantics of the proposed language in terms ' . .
of Omega cozstructs prop guag stages languages, like MetaML [27], lay in the category of program

generators. However, a formal treatment of program analyzers fea-
Categories and Subject DescriptorsD.3.1 [Programming Lan- tures has not being sufficiently developed.
guage¥ Formal Definitions and Theory — Semantics, Syntax; In this paper, we propose a multi-stage language wvitan-
D.3.4 [Programming LanguagésProcessors — Code Generation sional analysisunderstanding intensional analysis as the ability of
a homogeneous meta-system to observe the structure of its object-
programs. This is carried out by a pattern matching mechanism that
Keywords Reflection, Multi-stage Programming, Intensional Anal- iS used to inspect the structure of quoted expressions and destruct
ysis, Dynamics them into their component subparts. o
In most multi-stage languages the type of quoted expressions is
. () (or cod 7), meaning code of, for 7 the type of the expres-
1. Introduction sion being quoted. This typing statically ensures that dynamically
With the evolution of computer systems and their growing com- generated programs are type-safe, but excludes some functions that
plexity it has become more and more important to take into account destruct or traverse the structure of expressions. Other approaches
the way to improve their flexibility. In order to provide systems [20, 8, 22] assign the same typed to all quoted expressions, per-
with the ability to evolve during its own execution, programming forming their type checking at run-time. Such languages make a
languages should suppasflection understanding it as the abil- tradeoff between static and dynamic typing. We follow these ideas
ity to “reason about itself”. Friedman and Wand [7] introduced the using the techniques proposed by Cheney and Hinze [5] and Baars
concepts ofeificationandreflectionto define the processes of con- and Swierstra [2] for encoding dynamic typing. So, our language
verting an interpreter component into an object which the program somehow relaxes static safety in favour of retaining flexibility.
can manipulate and its inverse, respectively. For instance, one of Qur type for quoted expressions is of the fosed®, beingl"
the components that can be reified is the program code. This sort ofa type context reflecting, like Nanevsky [11, 12, I8mes the
reification can be performed bycgotationmechanism. free variables of the expression. When an expression is quoted, its
Multi-stage language$23] are typed languages with quota- type context needs to be explicitly annotated as it is necessary for
tion constructs, analogues to those of Lisp, which define execu- dynamic type inference.
tion stages. These constructs are bracket, escape and run. Brack- e follow the approach of Sheard and Pasalic [19, 18, 21, 14]
ets ([1-11) reify the surrounded expression lifting it into the next about the use of2lmega as a tool for language design. Languages
are encoded as object-program representation that enforces the
semantic invariants of scoping and typing rules. The type system
of Omega then guarantees that all meta-programs respect these
Permission to make digital or hard copies of all or part of this work for personal or - additional object-language properties. In the following subsection
classroom use is granted without fee provided that copies are not made or distributedwe briefly describe some of tlfémega features we use, for further
for profit or commercial advantage and that copies bear this notice and the full citation jhformation see the mentioned works.
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE'06 October 22-26, 2006, Portland, Oregon, USA.
Copyright(© 2006 ACM 1-59593-237-2/06/0010. . . $5.00.

General Terms Design, Languages, Theory

1.1 Qmega

Qmega is based on Haskell, although it is strict and doesn’t have a Types T€T = int|bool |7 —7T|TxT

class system. Some of its most important features are the so-called Contexts reG == -|I,7

Generalized Algebraic Data Types and an extensible kind systems, Ctxt. Stacks P € GS == -[(PI)

which make it possible to state and enforce interesting properties Variables veV u= z[swv

of programs using the type system. Terms e€E u= b|i|(e1,e2) [£st e|snd e
Generalized Algebraic Data Types (GADTS) are a generaliza- AT.e|fix e|v |er ez |

tion of Algebraic Data Types (ADTs). GADTs remove the restric- if e1 then ez else es3

tion for parameterized ADTs which states that the range of every A type 7 can be a base typent or bool, a function type

constructor must be a polymorphic instance of the type constructor - _, - or a binary product x . De Bruijn indices [6] are used

being defined. This is possible by introducing an alternative syntax to encode variables bindings, so variables are natural numbers and
for data types declarations, where the type being defined is giventype contexts are sequences of types.

an explicit kind, and every constructor is given an explicit type. The typing judgment is of the forn®; T + e : 7, and reads
For example, the type constructberm has kind«0 ~> *0, taking “expressione has typer in local contextl’ under stackP”. The
types to types, and represents a typed object-language: presence of context stacks in the typing rules of Figure 1 is the

only difference from standard-calculus, but can be ignored until

data Term :: *0 "> *0 where we explain their use in the multi-stage extension.
Const :: a -> Term a
Pair :: Term a -> Term b -> Term (a,b)
App :: Term (a -> b) -> Term a -> Term b N LBool
T = . . nt 00
The only restriction on constructors’ type is that their range Pk int P;I'F b:bool
must be a fully applied instance of the type being defined. For
example, the range of the construckarir is a non-polymorphic P;I'Fer:mm P;I'kFex:m i
; ; Pair
instance offerm. Observe that the type argumentTefrm is used P;TF (e1,e2) : 71 X T2
to stand for the object level type of the represented term.
~In th(_a same way types class_ify values, types are classified by P:The:m X7 PiTke:m X7
kinds. Kinds are implicit in functional languages like Haskell, and P T s - Fst T T snd c. Snd
can only be either thdase kind(*0), which classifies types, or ; st e:m ;L Tsnd €: T
higher order kindgx1 ~> k2), which classifies type constructors.
In @mega, new kinds can be introduced bykind declaration, Plinbe:m Abs PBlirhe:r o
which is analogous to data declaration. Instead of introducing P;TEA e:m1 — 72 P;T'Ffix e:T
value constructors, a kind declaration introduces type constructors
that produce types classified by that kind. P;Tker:m—m7
Sheard [18] proposes usifignega to explore the design of new P;T'kex:m P;THov:T
languages by encoding language semantics as meta-programs. The Pl Feies:m App TPTFu T var
language is defined as a GADT. Each GADT represents a judgment,
and its constructors encode the typing rules. Type parameters may P:TF e; : bool
have an arbitrary structure, beca_use of defl_nltlon of new klnds_, P:Tkey:r PiThes:t
and correspond to static semantics properties. These properties Cond

are checked and maintained Bymega’s type systemf2mega’s Pk if e1 then ey else e3:7

type system also guarantees that meta-level programs maintain - - -

object level type-safety. Aig step semanticsan be defined as an Figure 1. BasicA-calculus typing

interpreter or evaluation function, orsaall step semantiasan be

defined in terms of substitutions over the term language. The typing |n the typing rules for variables, the Base rule projects the 0-

of this function maintains object level type-safety. th index type and the Weak rule far n projects recursively the
(n + 1)-th type.

1.2 Structure of the paper

The paper is organized as follows. In Section 2 we introduce a lan-
guage with reflection primitives and present its static semantics. PiTho:n

Section 3 shows how.the static s_emantic_s of the Iangua_lge is en- “PTrFziT Base PT.mFs v:m Weak
coded inQXmega. Section 4 describes a big-step semantics of the

language in the form of afdmega function. We discuss related
work in Section 5. Finally, Section 6 draws some conclusions.

Figure 2. Typing rules for variables

2. Language 2.2 Multi-stage Extension

The aim of this paper is the proposal of a language with linguistic \ve include some staging annotations as part of the language to

reflection primitives that permit us to perform type-safe intensional puijld and combine pieces of code, partitioning the execution of
code analysis. In this section we define the syntax and static semanprograms into computational stages.

tics of that language.

- Types 7e€T == ..|cod"
2.1 Basic Calculus)) Explicit Substitutions © € S == 1 (©)|e/ |17
The core of the language is a Church-style [1] simply typed Terms ecE u= .| [lell{l}|$(e)" |

calculus, with the following syntax: e[®] | run e lex

Annotations include brackets, escape, run and explicit substi- The typing judgment for substitutions is of the foint+ © =
tution. We don't include Cross-Stage Persistence in our language.I". It relates a type context and a substitution with a “resulting”
Like in re F L°°* [8, 9], this decision is based on the observations of type context. Therefore, a substituti€nover an expression typed
Taha [23] that intensional analysis requires reductions not to be al- in local contexfl” results in an expression typed in local contikt
lowed in higher levels, which leads to a loss of confluence if cross- The typing rules are shown in Figure 4.
stage persistence is included.

The typing rules for the staged terms (Figure 3) are inspired by
the “sliding band” of type contexts proposed by Sheard [18], except P:Tke:r
for the “future” stack of contexts which is unnecessary without ——————— Slash ——————— Shift
cross-stage persistence. The “past” stack contains the contexts of Irhe/=T PH=1I,7
the past stages that could be accessed when an escape is applied to
the current context. r-e=r1 Lift

L, (©) =17

2.2.1 Dynamic Typing and Explicit Contexts

The type for quoted expressions dsdrf, whereI'f is a type Figure 4. Explicit substitution typing

context reflecting the free variables of the expression. When an

expression is quoted, a context including the free variables of the Given an expressioma of type 7 in a local contextl’ under
expression must be passed explicitly. ObservelfHadoesn't need any past staclP, a slash ¢/) replaces the first variable byand

to be minimal. That is, iT’? represents all free variables in the decrements the indexes of the remaining variables by one. Shift

bracketed expressioi’ must fulfill the relationl/ = (I'?, '), (17) increments the indexes of all variables by one and appends the
meaning that all free variables in the expression have to B jn type 7 at index 0. Applying lift), the O-index typer remains
but some otherd[{) could be added. unchanged and the substitutié® is applied to the rest of the

Unlike most multi-stage languages this type doesn’t include the context. For example, the expression
type of the expression, so the escape annotation judgment could (int,bool) —bool int bool
type wrong formed expressions. For example the expression (LI7£0 (#17, #277) 1]
' {bool, int, (int, bool) — bool})[1 (9/)]

cod(") cod() y in .
(AT LIS 0% D™ I{-}) [I True 11{-} would reduce to a code, with typed oot (int.boel)=bool " eqppa.

is well typed, because the requirement that the bound code mustSPONdIng to the expressiof:0 (oot koot (g, g ibeoty).

be an integer expression cannot be checked statically. The type, 5

checking of this kind of expressions is deferred until run-time, =

andi”_typed quoted expressions evaluates to the We||_typed value In order to providéntensional code analysiae extend the calculus

[l Fail []. with an alternation primitive, similar to the one proposed in [8],
Therun annotation is similar to the one proposed in [22], where Wwhere variables are bound by a pattern matching mechanism.

a run-time type checking and unification is done to decide if code

Intensional Analysis Extension

expression is executed. In the Run rule, the type of the executed Terms ecE = ..|Ap.eile
quoted expressioa; must be the type of,, called theexception Patterns peEP == i|b|(pi,p2) | |_]| [lpcl]
expressionlf its type is not the expected one or type checking fails Code Patterns pc € PC ::= $(e)" | $(1it)” | _ | fail |
thene: is evaluated. The Run rule assures that only closed code can (pci1,pc2) | £st pe | snd pe|
be evaluated by allowing only expressions with typd ", that is, AT pe| £ixT pe |
without free variables. v | per pes |
if pci then pcy else pes |
[I_11{T} | pc[O] |
(PT)T et . e lpes _
— Br The semantics of patterns is inspired by the pattern matching
P;TF [lell{I'} : cod” mechanism defined by Pasalic and Linger [15]. In that work, a
pattern judgmenf + p : 7 = I involves an “input” type context
P;T ke : cod®) T, a patterrp, which should match a value of typeand a resulting
P;T? e : cod” PiThey:r type contexI”. This context extendB with the types of the pattern
(PT7):TF $(e) < 7 Esc PTFrun eiles:r Run variables. Based on the fact that the only change possible to an

“input” context is its extension with the free variables mfand
, in order to simplify the dynamic semantics of substitutions over
I'tO=TI" P;I'ke:cod" Subst alternations (see section 4.2), we had omitted the “input” context in
P:T+ ¢[O) : codl”’ the pattern judgment. So the judgment is of the férm: 7 = T,
meaning that a pattemgm (matching a value of type) has the free
variables contained if.
The Alt rule for an alternation of type, — 7 relates a pattern
p, which should match a value of type extending a context by
I, an expression; with typer, in local contexf”, I' (I' extended
- _ with T), and an alternative expressien of type 1 — 7. If p
2.2.2 Explicit Substitution matches a value of type;, thene; is evaluated in local context
An explicit substitution operator over quoted expressions is in- T',T”, otherwisee, is evaluated in local context and applied to
cluded in order to provide a simple way of capturing free variables. the matched value.
We use the notation for substitutions &f [3], adding an explicit The simplest pattern is the patteany (_) which matches any
annotation of the new type in the case of shifting. value of typer and leaves the context unchanged. Another basic

Figure 3. Multi-stage extension typing

Fp:m =T
P.I\T"Fei:m

P:TFes:
! 2 T T Alt

P;T'FAp.eilex: 11 — 7

Figure 5. Alternation typing

pattern is the (namelesgariable binding patterr(e™), which dif-

fers from the previous one in the type annotation and the extension
of the context binding the value matched. More than one variable
in a pattern could be bound. The PPair rule shows how variables
are related to the indexes in the resulting context. Given a pair pat-
tern(p1, p2), wherep; andp are related td” andl™” respectively,

its free variables ar€’,I"”’. So the variables of the furthest to the
right subpatternygs) would be those of smaller indices in the con-
text. This can be taken as a general rule for patterns with multiple
variables.

PAN PVar
[y Fe 7= 71
- PLIt ——— PLBool
F4:int = - Fb:bool = -
Fprim =T
F tmp =T
P2 -T2 —,— PPair
F(pi,p2) i1 X2 =1",T
Ik pe=1
pe PCod

F [lpcl] ccod = 17

Figure 6. Pattern typing

Code analysis is carried out with the helpofie patternsTheir
typing rules are shown in Figure 7. The judgmé¥t - pc = I’
expresses that a pattesa, which should match a quoted expression

with type codrf, has the variables containedIif.

Most code patterns consist in destructing the expression and ap-

plying code patterns to the subexpressions.dmg_) code pattern
matches any code, while tliail (fail) code pattern matches only
failed code. Both patterns leave the context unchanged.

The syntax ofvariable binding($(e)™) and literal binding

($(1it)7) code patterns suggest their semantics in the sense that

they only match with expressions that when unquoted haveitype
Having fulfilled this constraint the former matches any value while
the latter matches only quoted literal expressions. Both patterns
extend the context with the code value matched.

Thevariable constanbehaves likditeral constantg: andb). It
matches with code which quoted expression is exactly the variable
v", unchanging the context. Tlamy brackettode pattern matches
any brackets quoted expression with free variafilés. Given a
quoted explicit substitutiong[®’], the substitutioncode pattern
requires®© to be equal tdl'heta’ and matches the code pattern
pc with e.

An example of code analysis is the following:

ALIif #0°°' then $(e)™ else $(e)™|]
. #1cod'»boo1 [True/]
| A= 0114}

———————— PCPAny ——————— PCPFalil
MiF_=. I IF fail = -
PCPVar
I I-$(e)™ = - cod"
PCPLit
I IF$Qit)” = -, cod”
—— PCLInt ——— PCLBool
k= kb=
IRA =T TI'I =T
pe1 pe2 PCPair
¥ I+ (per, pes) = I, T
Ik pe=T1V
PCFst
I IF fst pe= T
' rlkpe=T1' Morlkpe=T1)
PCFix

- XN pe=TV I IF fix™ pe= TV

- pcy = IV
I Ik pey = 17

PCVar
' Ik pey pep = 17,17

CApp ——— —
kv = -
¥ Ik pe; = T
Y iFpe, =17 THIFpey =17

'Y Ik if pep then peo
else pc3 = IV, T, T

PCCond

PCBr

D E C{T) =

I IFpe=TV
I IF pe[©] = T

PCSubst

Iflkper =T TFIFpey =17

PCRun
'Y Ik run peylpey = I, T

Figure 7. Code Pattern typing

This expression takes a code value with tygei "' and

returns one with typeod®”. If the code passed is a quotation of
an “if-then-else” expression, with conditiof#0°°°*, a code with
the “then™ subexpression is returned, with a True literal in each
occurrence of the variablg¢0"°°*. Otherwise, the returned value is
a code of the literal 0.

3. Static Semantics as afimega GADT

In this section we will encode the typing judgments of section 2
as Qmega GADTSs. A value of each datatype then represents a
derivation of the encoded judgment. This ensures that the properties
of the static semantics are checked and maintained by the meta-
language type system.

The expression judgmer®;T" + ¢ : 7 is represented by the
multiple indexed typ&Exp p n t). The “past” stackP is tracked
by the first index, a nested product type, which contains types of

kind Row *0 representing type contexts. The next index Boa
*(Q tracking the current context tyge. Finally, t tracks the term
typer.

Themega encoding of the rules showed in Figures 1, 3 and 4
is the following:

data Exp :: *0 "> Row *0 "> *0 "> *0 where

ELBool :: Bool -> Exp p n Bool

ELInt :: Int -> Exp p n Int

EPair :: Exppnt ->Exppns
-> Exp p n (t,s)

EPFst :: Exppn (t,s) >Exppnt

EPSnd :: Exp pn (t,s) -> Exppn s

EAbs :: Rep s => Exp p (RCons s n) t
-> Exp p n (s->t)

EFix :: Exp p (RCons t n) t
> Exppnt

EApp :: Exppn (s=>t) >Exppns
> Exppnt

EVar :: Var nt -> Rep t
> Exppnt

ECond :: Exp p n Bool
->Exppnt->Exppnt
->Exppnt

EBr :: Exp (p,Env n) ¢ t -> RepEnv ¢
-> Exp p n (Cod c)

ERun :: Exp pn (Cod RNil) -> Exppn t
->Exppnt

EEsc :: Exp p b (Cod n) -> Rep t
-> Exp (p, Env b) n t

ESubst :: Exp p n (Cod f) -> Subst f fc
-> Exp p n (Cod fc)

EAlt : Pat s ¢ -> Exp p {eapp ¢ n} t
-> Exp p n (s->t)
-> Exp p n (s->t)

Each constructor has the structure of a formal judgment. For
example EApp takes two argument&kp p n (s->t) andExp p
n s. These arguments correspond to the judgméhtb + e; :
79 — 11 andP; T - es @ 72, respectively. If these can be supplied,
the constructor results in the tyBep p n t, encodingP;T" I e;
€2 I T2.

In EAbs, EVar andEEsc a type must be annotated. This is done
by an argument of typRep t, the parametric type representation

defined both by Cheney and Hinze [5] and Baars and Swierstra [2]

for dynamic typing:

data Rep:: *0 > *0 where
Int :: Rep Int
Bool :: Rep Bool
Arr :: Rep a -> Rep b -> Rep(a -> b)
Prod :: Rep a -> Rep b -> Rep (a,b)
Cod :: RepEnv n -> (Rep (Cod n))

These type annotations are used to carry out the run-time type

checking in the same way dynamic typing is handled in the works
mentioned previously.

The Evar constructor includes th&ar n t sub-judgment,
wherevZz andvs encode the rules Base and Weak of Figure 2.

data Var :: Row *0O "> *x0 "> %0 where
VZ :: Var (RCons t env) t
Vs : Var env t -> Var (RCons s env) t

1Row is a kind that classifies list-like data structures at type level, its defini-
tion is: kind Row (x::*1) = RCons x (Row x) | RNil. SORow *0
is a list of types that classifies values.

Observe that a context extensibnr is represented by theow
constructor(RCons t env).

The stacks of contexts are nested pairs. A t#me, which
is indexed by &Row *0, is used to push a context. This is done
because the pair constructor takes only types of kind *0.

data Env :: Row *0O "> *0 where
EnvNil :: Env RNil
EnvCons :: t -> Env r -> Env (RCons t r)

Multi-stage annotations involves expressions with typarf.
The encoding of this type itmega has the following definition:

data Cod ::
Q

Row *0 "> *0 where
(forall p. Exp p n t) -> RepEnv n
-> Cod n

F :: RepEnv n -> Cod n

Because of dynamic typing, it could happen that an expression
evaluates to a bad formed code value. For this reason, th&type
has two constructors: one for well formed quoted expressions and
another for failed ones. A well formed code is an expression at level
0, typed in a given environment. A term at level 0 has no escapes at
level 0. This is captured by requiring that the past contexts stack
is universally quantified. Both in the case of well formed code
like for failed code, a representation of the context is passed as
an argument. This representation has tgppEnv.

data RepEnv:: Row *0 "> *0 where
REnvNil : RepEnv RNil
REnvCons :: Rep t -> RepEnv r
-> RepEnv (RCons t r)

This type classifies lists dfep t and is indexed by 8ow *O0.
Type RepEnv is also used in the constructdBr to represent the
free variables of the expression.

The substitutions judgment is encoded by the datagipest.
Like in the Q constructor forCod, the expression passed to the
SS1sh constructor must carry an universally quantified past con-
texts stack.

data Subst :: Row *0 "> Row *0 "> *0 where
SSft :: Rep t -> Subst n (RCons t n)
SLft : Subst n ¢
-> Subst (RCons t n) (RComs t c)
SSlsh (forall p. Exp p n t)

-> Subst (RCons t n) n

So, the encoding for the explicit substitution example of section
2.2.2is:

(ESubst
(EBr
(EApp
(EVar VZ (Arr (Prod Int Bool) Bool))
(EPair

(EVar (VS VZ) Int)
(EVar (VS VS VZ) Bool)))
(REnvCons (Arr (Prod Int Bool) Bool)
(REnvCons Int (REnvCons Bool REnvNil))))
(SLft (SSlsh (ELInt 9))))

In the EA1t constructor we use thigpe functioneapp to en-
code a list append constrairit’(I'”’). It can be proven by doing
induction on the first argument that this function terminates.

eapp :: Row *0O "> Row *0 "> Row *0
{eapp RNil ys} = ys
{eapp (RCons x xs) ys}

{eapp {eapp xs ys} zs}

RCons x {eapp xs ys}
{eapp xs {eapp ys zs}}

The pattern judgmernt p : = = T' is encoded by the datatype

(Pat t n).
data Pat :: *0 "> Row *0 "> *0 where
PLInt :: Int -> Pat Int RNil
PLBool :: Bool -> Pat Bool RNil
PPair :: Pat t1 c1 -> Pat t2 c2
-> Pat (t1,t2) {eapp c2 ci}
PVar :: Rep t -> Pat t (RCons t RNil)
PAny :: Pat t RNil
PCod :: PatCod f ¢ -> Pat (Cod f) c

The constructor functiorPCod includes a sub-judgment for
code patterns. The definition of the typetCod, representing the

code patterns judgment, is the following:

data PatCod :: Row *O "> Row *0 "> *0 where

PCPVar :: Rep t
-> PatCod f (RCons (Cod f) RNil)
PCPAny :: PatCod f RNil
PCVar :: Var v t -> Rep t
-> PatCod f RNil
PCLInt :: Int -> PatCod f RNil
PCPair :: PatCod f ci

-> PatCod f c2
-> PatCod f {eapp c2 ci}

PCAbs :: Rep s -> PatCod (RComns s f) ¢
-> PatCod f ¢

PCCond :: PatCod f cl
-> PatCod f c2
-> PatCod f c3
-> PatCod f {eapp3 c3 c2 cl}

PCBr :: RepEnv fp
-> PatCod f (RCons (Cod f) RNil)
PCRun :: PatCod f c1 -> PatCod f c2

-> PatCod f {eapp c2 ci}
PCSubst :: PatCod fc c¢ -> Subst f fc
-> PatCod fc c

4. Dynamic Semantics as afimega evaluator

(x,True) -> Q x renv
(x,False) -> F renv
eval (ERun el e2) env
= case (eval el env) of
Q e REnvNil ->
case eqType (getType e)
(getType e2) of
Just Eq -> eval e EnvNil
Nothing -> eval e2 env
_ —> eval e2 env
eval (ESubst e s) env
= case (eval e env) of
Q eb rb —>
case (evalSub s eb rb) of
(en,rn) -> Q en rn
F rb -> F (evalSubR s rb)
eval (EAlt p el e2) env
= \ v -> case (evalPat p v env) of
Just env2 -> eval el env2
Nothing -> (eval e2 env) v

This function is total excepting for deEsc case, which is not
evaluated. In an expression at level 0 will not be an escape, so the
evaluation function must be defined to take expressions at level 0.
This could be enforced defining an evaluation function that can
only be applied to terms polymorphic in their past.

eval0 :: (forall p. Exp pnt) -> Envn -> ¢t
evalO exp env = eval exp env

To avoid infinite loops, th€mega construct for explicit laziness
(1azy) is used in the evaluation @Fix.

4.1 Dynamic Type Checking and Building Code

The type checking is implemented by the unification function
eqType, which takes two type representations, tests them for struc-
tural equality, and possibly returns a proof of their equivalence. Its
signature is:

eqType :: Rep a -> Rep b -> Maybe(Equal a b)

During the evaluation cfRun, after a verification that the code
is well formed, an unification between the types of the quoted ex-
pressiore and the exception expressief is made. If the unifica-
tion succeeds, there’s a witness that the typeisfthe same as2.
So, the expressioa is evaluated in the empty environment (static
type-checking assures thais closed). If the unification fails, the

Dynamic semantics for the language is given by a big-step seman-expressiore2 is evaluated in the environmeatv. The types ok
tics written as an evaluation function. The semantics shows that theande2 are obtained by the type inference functiggt Type, which

evaluation of well typed terms doesn’t go wrong.

The evaluation function has tyfgp p n t -> Env n ->
t. Given any well typed expressi@p p n tand an environment

with shapen, eval returns a value with type.

eval :: Exppnt -> Envn >t
eval (ELInt i) env = i

eval (EPair el e2) env = (eval el env,eval e2 env)

eval (EAbs t e) env = \ v -> eval e (EnvCons v env)

(eval f env)(eval x env)
evalVar v t env

eval (EApp f x) env
eval (EVar v t) env

eval (EFix e) env = lazy ((\ v ->
(eval e (EnvCons v env)))
(eval (EFix e) env))
eval (EBr e renv) env
= case (bd (CountBrZ env) e) of

is based on the typing rules:

getType:: Exp pn t -> Rep t
getType (ELInt i) = Int
getType (ELBool b) = Bool
getType (EPair el e2) = Prod (getType el)
(getType e2)
getType (EPFst e) = case (getType e) of
Prod r1 r2 -> ri

getType (EAbs t e) = Arr t (getType e)
getType (EApp el e2) = case (getType el) of

Arr rl r2 -> r2
getType (EVar v t) =t

getType (EBr e renv) = Cod renv
getType (ESubst e s) = case (getType e) of
Cod renv ->
Cod (evalSubR s renv)

getType (ERun el e2) = getType e2 = EVar v t
getType (EEsc e t) =t evalSubE (SLft s) (EVar VZ t) (REnvCons t r)
getType (EAlt p el e2) = getType e2 = EVar VZ t

evalSubE (SLft s) (EVar (VS v) t) (REnvCons tp r)
= evalSubE (SSft tp)
(evalSubE s (EVar v t) r)
(evalSubR s r)
evalSubE (SSft tp) (EVar v t) (REnvCons t r)
= EVar (VS v) t

Observe that type annotations and the explicit type comren
are used in the type inference algorithm.

EvaluatingEBr involves evaluating a code template in order to
build an expression polymorphic in the past. This is done by the
bd function, which is the one defined in [18] with the addition
of dynamic type checking. Essentially, the function traverses an
expression, generating a copy without embedded escapes at level Eyg|uating the substitution over bracketed expressions implies
0, and a boolean expressing if the code produced is well typed. Theeyaluating a code template with a function, similar tothef sec-
CountBr argument counts the brackets surrounding the expression.tjon 4.1, which traverses the expression and applies the substitution

When aEBr iS found, the counter iS incremented. When thd:)rackets Counteis zZero.

data CountBr :: *0 "> *0 "> %0 where evalSubE s (EBr e renv) r
CountBrZ :: a -> CountBr (b,a) ¢ = EBr (bds (CountSBrZ s r) e) renv
CountBrS :: CountBr a b -> CountBr (a,c) (b,c) evalSubE s (ESubst e sp) r

= ESubst (evalSubE s e r) sp
bd :: CountBr a z -> Exp an t -> (Exp z n t,Bool)

bd env (ELInt i) = (ELInt i,True) To apply a substitution to the Alternation expression we take
... the following steps. First, we leave the pattern unchanged. Then,
bd env (EPair el e2) = 1let (x1,bl) = (bd env el) similarly as done in the Abstraction expression but in a more gen-
(x2,b2) = (bd env e2) eral case, we evaluate the effect of the pattern over the substitution
in (EPair x1 x2, bl && b2) and the context representation of the matched expression. Next we
... apply this new substitution to the matched expression with the new
bd env (EBr e renv) context representation. Finally, we evaluate the original substitution
= let (x,b) = bd (CountBrS env) e over the alternative expression.

in (EBr x renv, b)
evalSubE s (EAlt p el e2) r

bd (CountBrZ env) (EEsc e t) = case (getType e2) of (Arr t1 t2)
= case (eval e env) of -> EAlt p (evalSubE (evalPatS p s)
Q x renv -> el (evalPatR p r t1))
case eqType (getType x) t of (evalSubE s e2 r)

Just Eq -> (x,True)
Nothing -> (getAny t,False)
_ => (getAny t,False)
bd (CountBrS r) (EEsc e t)
= let (x,b) =bdr e
in (EEsc x t, b) evalPatS :: (Pat t eout) -> Subst g gp
-> Subst {eapp eout g} {eapp eout gp}

Observe that the decision taken in section 2.3 of only including
the extensions of type contexts in pattern judgments simplifies
the definition of this operation. For example, the signature of the
auxiliar functionevalPats$ is simply:

For (EEsc e t), if brackets’ counter i¥CountBrZ env), the)] o ,
expressiore is evaluated and, if it is well formed and the type is That is, taking a patterp, with judgmentt- p : = = I,
what was expected, the resulting code is spliced. In other case aand a substitutio®, with judgmentl’; - © = I's, evaluating

dummy expression with typeis generated by the functigret Any the effect ofp over © results in a substitutio®’ with judgment
:: Rept -> Exp p n t. I, T" + © = Ty, I'. That way, we isolate the effect pffrom
I'y andIs.
4.2 Explicit Substitution The function that applies the substitution to the context repre-

The explicit substitution evaluation is divided into two functions, Sentation is separated in three cases. In the Slash case the first type

which apply the substitution to the expression and to the context IS 'émoved, in the Shift case the new type is appended at the begin-

representation, respectively. ning, and, in the Lift case, the first type is left unchanged and the
The core of the expression substitution is the one defined by substitution is applied recursively to the rest of the context.

Sheard and Pa_sallc [21], extended by passing the representation OgvalsubR :: Subst g gp -> RepEnv g —> RepEnv gp
the source environment.

evalSubE :: Subst g gp -> Exp p g t -> RepEnv g evalSubR (SSlsh e) (REnvCons t r) =r
->Exp pgpt evalSubR (SSft t) r = REnvCons t r
evalSubR (SLft s) (REnvCons t r)
evalSubE s (ELInt i) r = ELInt i = REnvCons t (evalSubR s r)

evalSubE s (EPair el e2) r = EPair (evalSubE s el r) 4.3 Pattern Matching
(evalSubE s e2 r) The evaluation of alternatioGEALt p el e2) is done by eval-
uating the patterp, andel or e2 depending on the result of pat-

evalSubE s (EAbs t e) r = EAbs t tern matching. The pattern matching evaluation functéemn,1Pat,
(evalSubE (SLft s) e (REnvCons t r)) has three arguments: a pattern judgment of t{fet t eout), a
evalSubE (SSlsh e) (EVar VZ t) (REnvCons t r) = e value of typet, to match with the pattern, and an input variable of

evalSubE (SSlsh e) (EVar (VS v) t) (REnvCons tp r) typeEnv ein. If pattern matching succeeds, the function returns a

value(Just env), beingenv the extended environment (with type
Env eapp eout ein), andel is evaluated in this environment. If
matching fails, &othing value is returned, aneR is evaluated in
the current context.

For example, ifi is passed when evaluating the pattéPnInt

Q (EPair vl v2) renv ->
case (evalCPat pl
(eval (EBr vl renv) env) env) of
Just envl -> evalCPat p2
(eval (EBr v2 renv) env) envi

i), the same environment passed as argument is returned. On the Nothing -> Nothing

other hand, evaluatingPvar t) never fails, just returning the
current environment extended with the value passed.

evalPat :: (Pat t eout) -> t -> Env ein
-> Maybe (Env {eapp eout ein})

evalPat (PLInt i) v env = if (i==v)
then (Just env)
else Nothing

evalPat (PPair pl p2) (v1,v2) env
= case (evalPat pl vl env) of
Just envl -> evalPat p2 v2 envl

Nothing -> Nothing
evalPat (PVar t) v env = Just (EnvCons v env)
evalPat PAny v env = Just env

evalPat (PCod p) v env = evalCPat p v env

In the case ofPPair pl p2), the patterrp1 is evaluated ex-
tending the current environment and thenis evaluated extending
the environment returned Ipt.

The code patterns are evaluated by the funcéie#ilCPat.

evalCPat :: (PatCod f eout) -> (Cod f) -> Env ein
-> Maybe (Env {eapp eout ein})

evalCPat (PCPVar t) e env
= case e of
Q v renv ->
case (eqType (getType v) t) of
Just Eq -> Just (EnvCons e env)
Nothing -> Nothing
_ —> Nothing
evalCPat PCPAny e env = Just env
evalCPat PCPFail e env
= case e of
F renv -> Just env
Q eq renv -> Nothing
evalCPat (PCLit t) e env
= case e of
Q (ELInt i) renv ->
case (eqType Int t) of
Just Eq -> Just (EnvCons e env)
Nothing -> Nothing
Q (ELBool b) renv ->
case (eqType Bool t) of
Just Eq -> Just (EnvCons e env)
Nothing -> Nothing
_ —> Nothing
evalCPat (PCLInt i) e env
= case e of
Q (ELInt v) renv -> if (i==v)
then (Just env)
else Nothing
_ —> Nothing

evalCPat (PCPair pl p2) e env
= case e of

_ —> Nothing
evalCPat (PCAbs tx pb) e env
= case e of
Q (EAbs tvx vb) renv ->
case (eqType tvx tx) of
Just Eq -> evalCPat pb
(eval (EBr vb
(REnvCons tvx renv)) env) env
Nothing -> Nothing
_ —> Nothing

evalCPat (PCVar v t) e env
= case e of
Q (EVar vv vt) renv ->
case (eqType t vt) of
Just Eq -> if (eqVar v vv)
then Just env
else Nothing
Nothing -> Nothing
_ —> Nothing

evalCPat (PCBr r) e env
= case e of
Q (EBr ve renv2) renv ->
case (eqType (Cod r) (Cod renv2)) of
Just Eq -> Just env
Nothing -> Nothing
_ —> Nothing

evalCPat (PCSubst p s) e env
= case e of
Q (ESubst ve vs) renv ->
if (eqSubst s vs)
then (evalCPat p
(eval (EBr ve renv) env) env)
else Nothing
_ —> Nothing

Consider the case ofPCAbs tx pb). If the value passed is
a code(Q (EAbs tvx vb) renv) andtx represents the same
type thantvx, the code patterpb is evaluated to match with a
guotation ofvb with contextrenv extended bytvx ((REnvCons
tvx renv)).

4.4 Soundness

The soundness of a type system with respect to the semantics means
that, if a term is well-typed, then its evaluation either returns a value
of same type or gives rise to an infinite reduction sequence. In other
words, well-typed terms never go wrong. To prove soundness, sub-
ject reduction and progress must be proved. The former property
means that reduction preserves typing while the latter means that
programs which are well-typed are either values or can be further
reduced (evaluation never gets stuck).

According to the type of the evaluation functidixp p n t
-> Env n -> t, the evaluation of any expressiersatisfying the
type judgmentP; T |- e : 7 yields, if it terminates, a value of type
7. This means that subject reduction is automatically ensured by
Qmega’s type system.

Concerning progress, observe that every well-typed term of the semantics written as an evaluation function, respectively. Since the
language always matches one of the clausesrai. Therefore, if evaluation function has a case defined for any well-typed term, the
the term is not a value, there is a reduction rule that is applicable to (2mega implementation of the semantics showed that the evaluation
it. of well-typed terms doesn’t go wrong.

5. Related Work

Our language is based on multi-stage languages like MetaML [23,
24, 27, 10, 26] and MetaOCaml [25, 4], with the incorporation Dov M. Gabbay, and Thomas S. E. Maibaum, editbtandbook of

of features presented in languages like Template Haskell [20], Logic in Computer Scienc¥ol. 2, chapter 2, pages 118-309. Oxford
reF L [8, 9] and " [11, 12, 13] with the aim of supporting University Press, Oxford, 1992.

intensional analysis in a flexible way. [2] Arthur I. Baars and S. Doaitse Swierstra. Typing dynamic typing. In

Typing MetaML and MetaOCaml have static type checking, as- ICFP '02: Proceedings of the sevent'h ACM SIGPLAN international

sociating a typeode ofr to the quotation of an expression of type conference on Functional programmirgages 157-166. ACM Press,

7. On the other hand, languages like Template Haskel;L*° 2002.

and the one proposed in [22] associate a universal tyeto [3] Zine-El-Abidine Benaissa, Daniel Briaud, Pierre Lescanne, and

all quotations. As a consequence, these languages need to perform Jocelyne Rouyer-Degliv, a calculus of explicit substitutions which

a dynamic type-checking for generated code, excepting for Tem- grgs‘_e“’es752tr2°nlg normalisatiokournal of Functional Programming

plate Haskell which performs compile-time code generation. Our (5):699-722, 1996.

language follows the approach of [22]. We perform dynamic type- [4] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like

checking for generated code, avoiding run-time errors by the inclu- inference for classifiers. In David A. Schmidt, editBrogramming

sion of an exception expression in then construct. Ezrggafgé 4an‘|j SyStSS"SSé 13ﬂfh E“mpﬁan Symgos'”m on gr(_)grammlng,
In our language quoted open expressions are represented by a0es 79_égosur2ﬁ or 20%4ecture otes in Computer Science

annotating the typeodewith a type context, containing the types Pag - Springer, o) o]

of the free variables. These variables can be captured by an explicit [James Cheney and Ralf Hinze. A lightweight implementation of

substitution mechanism provided by the language. This approach is %‘énﬁrgf‘c;%rl‘igly&%rﬂgﬁb hlist'e;!slfe‘%é P;‘;CSSETO%‘S (Xépﬂe;ggi

similar to that ofv™, which uses names to represent free variables 2002. P 9 ' ’

in quoted expressions.

References
[1] Henk Barendregt. Lambda calculi with types. In Samson Abramsky,

—

—

fla.ar

[6] N. G. de Bruijn. Lambda calculus notation with nameless dummies,

Intensional Analysis Neither MetaML nor MetaOCaml are pro- a tool for automatic formula manipulatioindagationes Mathemati-
posed as code analyzers, they focus on code generation and its op- ~ cae 34:381-392, 1972.
timization. Taha [23, 24] argued that by introducifigeduction at [7] Daniel P. Friedman and Mitchell Wand. Reification: Reflection

higher levels and code inspection the property of coherence is vi- Without Metaphysics. IrConference Record of the 1984 ACM
olated. Therefore there exists many optimizations that can only be Symposium on LISP and Functional Programmipgges 348-355,
applied to code at stage 0. Moreover, cross-stage persistence, one 1984.

of the most distinguishing features of these languages, can not be [8] Jim Grundy, Tom Melham, and John O’Leary. A reflective functional

present as well. language for hardware design and theorem proving. Technical Report
In Template Haskell code is represented by an algebraic data PRG-RR-03-16, Programming Research Group, Oxford University

type, allowing its inspection. In contrast, our language uses a high- Computing Laboratory, October 2003.

level pattern matching interface to intensional analysis, in the line [9] Sava Krstic and John Matthews. Semantics oféfi€Ctlanguage. In

of v andreF L. In L7 pattern matching is only defined over Proceedings of the 6th International ACM SIGPLAN Conference on

the simply typedi-calculus fragment of the language. Our pattern Principles and Practice of Declarative Programmingages 32-42,

matching mechanism is similar to the one proposerkifi Le*. 2004.

Q for | desian Th £ for d | [10] Eugenio Moggi, Walid Taha, Zine-El-Abidine Benaissa, and Tim
izmega for language design Ihe use oli.mega tor develop- Sheard. An idealized MetaML: Simpler, and more expressive. In
ing the semantics of our language is inspired in the encoding of European Symposium on Programmipgges 193207, 1999.

MetaML done by Sheard in [19]. [11] Aleksandar Nanevski. Meta-programming with names and necessity.

. In ICFP '02: Proceedings of the seventh ACM SIGPLAN Interna-
6. Conclusions tional Conference on Functional programmirgages 206-217, New

In this paper we presented an homogeneous functional multi-stage York, NY, USA, 2002. ACM Press.

language with support for intensional analysis. A pattern matching [12] Aleksandar NanevskiFunctional Programming with Names and
mechanism was defined as a high-level interface to perform code NecessityPhD thesis, School of Computer Science, Carnegie Mellon
inspection. The type of quoted expressions reflects the free vari- University, June 2004.

ables of the expression but not its type, which is inferred at run- [13] Aleksandar Nanevski and Frank Pfenning. Staged computation
time. Although ill-typed quoted expressions can be generated at with names and necessityJournal of Functional Programming

run-time only well-typed generated code can be evaluatesihy 15(6):893-939, 2005.
An explicit substitution operator over quoted expressions was in- [14] Emir Pasalic.The Role of Type Equality in Meta-ProgrammirRhD
cluded too. thesis, Oregon Health and Sciences University, The OGI School of

The proposed language may seem impractical due to its type Science and Engineering, 2004.
annotations. However, like in [8] and [22], a type annotation al- [15] Emir Pasalic and Nathan Linger. Meta-programming with typed

gorithm from implicitly typed terms to annotated terms could be object-language representations. Generative Programming and
defined to avoid this. This algorithm would be essentially an exten- Component Engineering: Third International Conference, GPCE
sion of the Hindley-Milner type inference algorithm. 2004 pages 136-167. Springer, 2004.

Static and Dynamic Semantics were representedrirega by [16] T. Sheard, Z. Benaissa, and M. Martéhtroduction to Multistage

encoding the typing judgments as GADTs and defining a big-step Programming Using MetaML Pacific Software Research Center,

Oregon Graduate Institute, 2 edition, 2000.

[17] Tim Sheard. Accomplishments and Research Challenges in Meta-
programming. InSAIG 2001: Proceedings of the Second Interna-
tional Workshop on Semantics, Applications, and Implementation of
Program Generationpages 2—44. Springer-Verlag, 2001.

[18] Tim Sheard. Playing with type systems. Presented at GPCE 05
MetaOCaml Workshop, 2005.

[19] Tim Sheard. Putting curry-howard to work. Haskell '05:
Proceedings of the 2005 ACM SIGPLAN workshop on Hagkafles
74-85. ACM Press, 2005.

[20] Tim Sheard and Simon Peyton Jones. Template metaprogramming
for Haskell. INACM SIGPLAN Haskell Workshop Ogages 1-16,
oct 2002.

[21] Tim Sheard and Emir Pasalic. Meta-programming with built-in type
equality. InWorkshop on Logical Frameworks and Meta-Languages
(LFM’04), pages 106-124, jul 2004.

[22] Mark Shields, Tim Sheard, and Simon Peyton Jones. Dynamic typing
as staged type inference. Rrinciples of Programming Languages
(POPL 98) pages 289-302, January 1998.

[23] Walid Taha.Multi-stage Programming: Its Theory and Applications
PhD thesis, Oregon Graduate Institute of Science and Technology,
November 1999.

[24] Walid Taha. A sound reduction semantics for untyped CBN mutli-
stage computation. or, the theory of metaML is non-trival (extended
abstract). InProceedings of the 2000 ACM SIGPLAN Workshop
on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM '00), pages 34-43, 2000.

[25] Walid Taha. A gentle introduction to multi-stage programming. In
Domain-Specific Program Generatigmages 30-50, 2003.

[26] Walid Taha and Michael Florentin Nielsen. Environment classifiers.
In POPL ’'03: Proceedings of the 30th ACM SIGPLAN-SIGACT
symposium on Principles of programming languagesges 26-37,
New York, NY, USA, 2003. ACM Press.

[27] Walid Taha and Tim Sheard. MetaML and multi-stage programming
with explicit annotations.Theor. Comput. S¢i248(1-2):211-242,
2000.

