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Abstract
Functional programs often combine separate parts using interme-
diate data structures for communicating results. These programs
are modular, easier to understand and maintain, but suffer from in-
efficiencies due to the generation of those gluing data structures.
To eliminate such redundant data structures, some program trans-
formation techniques have been proposed. One such technique is
shortcut fusion, and has been studied in the context of both pure
and monadic functional programs.

Recently, we have extended standard shortcut fusion: in addition
to intermediate structures, the program parts may now communi-
cate context information, and it still is possible to eliminate those
structures. This is achieved by transforming the original function
composition into a circular program. This new technique, however,
has been studied in the context of purely functional programs only.
In this paper, we propose an extension to this new form of fusion,
but in the context of monadic programming: we derive monadic
circular programs from strict ones, maintaining the global effects.
Later, the circularities in the derived programs are traded by high-
order definitions, using a well-known program transformation tech-
nique. We finally obtain very efficient deforested programs.

An important feature of our extensions is that they can be
uniformly defined for a wide class of data types and monads, using
generic calculation rules.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors - Compilers, Optimization; D.1.1 [Program-
ming Techniques]: Applicative (Functional) Programming; D.3.3
[Programming Languages]: Language Constructs and Features;
F.3.3 [Logics and Meanings of Programs]: Studies of Program
Constructors - Program and Recursion Schemes
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1. Introduction
Functional programs often combine separate parts of the program
using intermediate structures for communicating results. In general,
we have programs such as prog = cons ◦ prod , where prod
is called the producer function and cons is called the consumer
function. Programs so defined are modular and have many benefits,
such as clarity and maintainability, but suffer from inefficiencies
caused by the generation of the intermediate data structures that
glue functions cons and prod together.

In response to this problematic, some program transformation
techniques have been studied aiming at the elimination of interme-
diate data structures. One of these techniques is known as short-
cut fusion, or shortcut deforestation [14]. This technique elimi-
nates the generation of the intermediate structure, of type b, when
prod :: a → b, cons :: b → c and prog = cons ◦ prod . Shortcut
fusion has recently been studied and applied also in the context of
monadic functional programs [11, 18].

In [9], we have proposed circular programs as an extension to
standard shortcut fusion. Circular programs were first studied by
Bird [4] as an elegant and efficient technique to eliminate multiple
traversals of data structures. As the name suggests, circular pro-
grams are characterized by having what appears to be a circular
definition: arguments in a function call depend on results of that
same call. That is, they contain definitions of the form:

(..., x , ...) = f (..., x , ...)

Circular programs have also been studied as an optimization tech-
nique to deforest in accumulating parameters [24]. Furthermore,
circular programs are a powerful, elegant and concise technique to
express multiple traversal algorithms and attribute grammars [10].

In [9], we have shown how circular programs can be used to
achieve intermediate structure deforestation in programs such as
prog = cons ◦ prod , but where prod :: a → (b, z ) and cons ::
(b, z ) → c. This means that the producer function may generate,
besides the intermediate structure b, an additional value, of type
z , that the consumer function may need to compute its result.
Later, a calculation rule is applied to prog , which is transformed
into an equivalent circular program that does not construct any
intermediate structure and that traverses the input data (of type
a) only once. The rule applied to prog is generic in the sense
that it can be applied to a wide range of programs and datatypes.
However, it does not handle monadic functional programs, that is,
programs that, for example, rely on a global state or perform I/O
operations. Thus, the rule has a limited applicability scope since
several programs, like compilers, pretty-printers or parsers do rely
on global effects.

Our motivation for the present work is to extend shortcut fusion
to the kind of programs we studied in [9], but in the context of
monadic programming. The goal is to achieve fusion of monadic



programs, maintaining the global effects. We study two cases: the
case where the producer function is monadic and the consumer is
given by a pure function, and the case where both functions are
monadic. For both cases, fusion is achieved by transforming the
original program into a circular one. We do not consider the case
where the producer is given by a pure function (and the consumer
is given by a monadic one) since it can already be fused using the
shortcut fusion rule we presented in [9].

An alternative solution to achieve intermediate structure de-
forestation for programs such as prog is to transform them into
higher-order programs using a well-known program transforma-
tion technique called lambda abstraction [20]. In our particular
context, the idea of the transformation is to derive a new func-
tion prog ′ :: a → (z → c, z ), which returns a function and the
same value of type z that would be generated by prod , such that
prog a = f z where (f , z ) = prog ′ a . Obtaining such higher-
order programs is interesting since its execution is not restricted to a
lazy evaluation setting as it happens with the execution of the circu-
lar ones. Based on this idea, Voigtländer [25] introduced a shortcut
fusion rule for the derivation of pure, higher-order programs from
compositions like prog when lists are the intermediate structure. In
this paper, we extend this result in two ways. First, we present a
generic formulation of the shortcut fusion rule for the derivation of
pure higher-order programs that can be applied to a wide range of
datatypes as intermediate structure. Second, we extend the generic
rule to the context of monadic programming, obtaining shortcut fu-
sion rules for the derivation of monadic higher-order programs.

Experimental benchmarks we have conducted in [10] show that
the performance of the higher-order programs derived from pro-
grams like prog is significantly better (up to 3 times) than the per-
formance of their circular or original equivalents, both in terms of
time and memory consumption, whereas the performance between
circular programs and the ones from which they are derived is es-
sentially the same.

Although the higher-order programs we finally derive in this
paper are the ones with the best running performances, the calcula-
tion of circular programs is of great importance to our future work,
and has strong relations with some of our previous studies [10].
Indeed, there is a close relationship between circular programs and
Attribute Grammars (AGs): circular programs are the natural repre-
sentation of AGs in a lazy setting. In the past [10], we have applied
well-known AG techniques to circular programs, in order to derive
efficient equivalent implementations. The correctness of such tech-
niques, however, has not been formally proved yet, although they
are widely used by the AG community. In order to be able to prove
their correctness, we, therefore, would like to be able to express
such techniques in calculational form. The calculation of circular
programs, in the way presented in this paper and in a previous work
[9], also brings us closer to that goal.

Throughout we will use Haskell notation, assuming a cpo se-
mantics (in terms of pointed cpos), but without the presence of the
seq function [17].

This paper is organized as follows. Sections 2 and 3 present
two motivating examples that serve to illustrate the applicability
of our techniques. The generic constructions that give rise to the
specific program schemes and laws presented in those examples
are developed in Sections 4 and 5. Finally, in Section 6 we draw
some conclusions and describe directions for future work.

2. Bit String Transformation
To illustrate our technique we first consider an example based on
a simple bit string conversion that has applications in cryptogra-
phy [15]. Suppose we want to transform a sequence of bits into a
new one, of the same length, by applying the exclusive or between
each bit and the binary sum (sum modulo 2) of the sequence. We

will consider that the input sequence is given as a string of bits,
which will be parsed into a list and then transformed. It is in the
parsing phase that computational effects will come into play, as we
will use a monadic parser.

Suppose we are given the string "101110110001". To trans-
form this string of bits, we start by parsing it, computing as result
a list of bits [1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1], and its binary sum (1
in this case). Having the list and the binary sum, the original se-
quence is transformed into this one [0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0]
after applying the exclusive or of each bit with 1 (the binary sum).

To construct the parser, we adopt a usual definition of parser
monad (see [16] for more details):

newtype Parser a = P (String → [(a,String)])

instance Monad Parser where

return a = P (λcs → [(a, cs)])

p >>= f = P (λcs → concat [parse (f a) cs ′ |
(a, cs ′)← parse p cs ])

parse :: Parser a → String → [(a,String)]

parse (P p) = p

(〈|〉) :: Parser a → Parser a → Parser a

(P p) 〈|〉 (P q) = P (λcs → case p cs ++ q cs of

[ ] → [ ]

(x : xs)→ [x ])

pzero :: Parser a

pzero = P (λcs → [ ])

item :: Parser Char

item = P (λcs → case cs of

[ ] → [ ]

(c : cs)→ [(c, cs)])

Alternatives are represented by a deterministic choice operator
(〈|〉), which returns at most one result. The parser pzero is a parser
that always fails. The item parser returns the first character in the
input string.

We can use these simple parser combinators to define parsers for
bits and bit strings. The binary sum is calculated as the exclusive or
of the bits of the parsed sequence. We write ⊕ to denote exclusive
or over the type Bit .

data Bit = Z | O

bit :: Parser Bit

bit = do c ← item

case c of ’0’→ return Z

’1’→ return O

→ pzero

bitstring :: Parser ([Bit ],Bit)

bitstring = do b ← bit

(bs, s)← bitstring

return (b : bs, b ⊕ s)

〈|〉 return ([ ],Z )

Now, we implement the transformation function:

transform :: ([Bit ],Bit)→ [Bit ]

transform ([ ], ) = [ ]

transform (b : bs, s) = (b ⊕ s) : transform (bs, s)

In summary, the transformation consists of:



shift :: Parser [Bit ]

shift = do (bs, s)← bitstring

return (transform (bs, s))

We may notice that the above solution constructs an interme-
diate list of bits that we would like to eliminate with fusion. The
fusion law to be used is a law in the style of shortcut fusion, simi-
lar to that conceived for the derivation of purely functional circular
programs [9], but with the difference that now it deals with monadic
functions. Below, we present the specific instance for lists (which
is the type of the intermediate structure), and in Section 4 we show
that both the law and the programs schemes respond to generic def-
initions that can be formulated for several datatypes.

Like in standard shortcut fusion [14], our law assumes that the
producer and the consumer (bitstring and transform in this case)
are expressed in terms of certain program schemes. In standard
shortcut fusion the consumer is required to be given by a structural
recursive definition in terms of a recursion scheme called fold (usu-
ally called foldr in the case of lists [2]). In our law, we also require
the consumer to be given by a structural recursive definition, but in
terms of a variation of fold, called pfold, which admits as input an
additional constant parameter to be used along the recursive calls:

pfoldL :: (z → b, a → b → z → b)→ ([a ], z )→ b

pfoldL (hnil , hcons) = pL

where pL ([ ], z ) = hnil z

pL (a : as, z ) = hcons a (pL (as, z )) z

Like in standard shortcut fusion, we require the producer to
be able to show that the list constructors can be abstracted from
the process that generates the intermediate list. The difference
with the standard case is that we consider producers that generate
the intermediate list as part of a pair which in turn is the result
of monadic computation. This is expressed by a function called
mbuildpL:

mbuildpL :: Monad m

⇒ (∀ b . (b, a → b → b)→ m (b, z ))→ m ([a ], z )

mbuildpL g = g ([ ], (:))

Having stated the forms required to the producer and the con-
sumer it is now possible to formulate the law.

LAW 2.1 (PFOLD/MBUILDP FOR LISTS). Let m be a recursive
monad.

do (xs, z )← mbuildpL g

return (pfoldL (hnil , hcons) (xs, z ))

=

mdo (v , z )← let knil = hnil z

kcons x y = hcons x y z

in g (knil , kcons)

return v

This law transforms a monadic composition, where the producer
is an effectful function but may not necessarily the consumer be,
into a single monadic function with a circular argument z . Indeed,
z is a value computed by g (knil , kcons) but in turn used by knil
and kcons . An interesting feature of this law is the fact that the
introduction of the circularity needs the use of a recursive binding
within a monadic computation, and therefore require the monad
to be recursive [8]. A recursive do (mdo-notation) is supported
by Haskell for those monads that are declared an instance of the
MonadFix class.

class Monad m ⇒ MonadFix m where

mfix :: (a → m a)→ m a

The parsing monad presented above can be declared an instance
of this class:

instance MonadFix Parser where

mfix f = P (λcs → mfixL (λ̃ (x , y)→ parse (f x ) cs))

where

mfixL f = case fix (f ◦ head) of

[ ] → [ ]

(x : )→ x : mfixL (tail ◦ f )

To see the law in action, we write transform and bitstring in
terms of pfoldL and mbuildpL, respectively:

transform = pfoldL (hnil , hcons)

where hnil = [ ]

hcons b r s = (b ⊕ s) : r

bitstring = mbuildpL g

where g (nil , cons) = do b ← bit

(bs, s)← g (nil , cons)

return (cons b bs, b ⊕ s)

〈|〉 return (nil ,Z )

Then, by applying Law 2.1 we obtain:

shift = mdo (bs, s)← g ([ ], λb r → (b ⊕ s) : r)

return bs

Inlining, we get the following circular monadic program:

shift = mdo (bs, s)← let gk = do b ← bit

(bs ′, s ′)← gk

return ((b ⊕ s) : bs ′,

b ⊕ s ′)

〈|〉 return ([ ],Z )

in gk

return bs

The above program avoids the construction of the intermediate
list of bits, by introducing a circular definition. Indeed, we may
notice that s (the modulo 2 sum of an input sequence of bits) is
used (in b⊕ s) in the function call to gk . However, s is also a result
of that same call, hence the circularity.

3. A Simple Programming Environment
Let us now consider that we wish to construct a program to deal
with the scope rules of a simple programming language1.

A program in our language, such as the one presented below,
consists in a sequence of instructions, where each instruction may
either be the declaration or the use of a variable.

[use x ; decl x ; decl x ; use y ; ]

In order to be well formed, programs in our language must
follow these scope rules:

1. all used variables must be declared. The declaration of a
variable, however, may occur after its first use;

2. a variable must be declared at most once.

We aim to develop a semantic function that analyzes a sequence
of instructions and computes a list containing the variable identi-
fiers of the instructions which do not obey to the rules of the lan-
guage. When such an instruction is found, we also want to output

1 Due to space limitations, we consider a simplified version of the Algol 68
rules only. The complete definition may be found in [7], and is used as a
generic library for the name analysis task of the Eli system [27].



an error message explaining the programming error encountered.
In order to make the problem more interesting, and also to make
it easier to detect which identifiers are incorrect, we require that
the list of invalid identifiers follows the sequential structure of the
input program. Thus, the semantic meaning of processing the ex-
ample sentence is [x , y ]: variable x has been declared twice, and
the use of variable y has no binding occurrence at all. As a side-
effect of computing this list, the following error messages must be
displayed:

Duplicate: decl x
Missing: decl y

Because we allow an use-before-declare discipline, a conven-
tional implementation of the required analysis naturally leads to a
program which traverses the abstract syntax tree twice: once for ac-
cumulating the declarations of identifiers and constructing the en-
vironment, and once for checking the uses of identifiers, according
to the computed environment.

The uniqueness of names is detected in the first traversal: for
each newly encountered declaration it is checked whether that iden-
tifier has already been declared. In this case an error is computed.
The second traversal receives the global environment of the pro-
gram and detects the variables that are used without being declared.

In a straightforward implementation of the semantic function,
this strategy has two important consequences: the first is that a
“gluing” data structure has to be constructed to explicitly pass
the detected errors from the first to the second traversal in order
to compute the final list of errors in the desired order; the second
is that, in order to be able to compute the missing declarations of a
program, it is necessary to pass from the first to the second traversal
the names of the variables that are used in the program.

The abstract syntax of the language may be described by the
following data type definitions:

type Prog = [It ] data It = Decl String

| Use String

In order to pass the necessary information from the first to the
second traversal of a program, we define:

type Prog2 = [It2 ] data It2 = Dupl2 String

| Use2 String

Errors resulting from duplicate declarations are passed using
constructor Dupl2.

According to the strategy defined earlier, we compute the se-
mantic errors that occur in a program as follows:

semantics :: Prog → IO [String ]

semantics p = do (p′, env)← duplicate [ ] p

missing (p′, env)

The function duplicate detects duplicate variable declarations
by collecting all the declarations occurring in a program. It is a
monadic function since it needs to output error messages result-
ing from the errors it detects. The definition of such function is as
follows2:

duplicate :: [String ]→ Prog → IO (Prog2, [String ])

duplicate ds [ ] = return ([ ], ds)

duplicate ds (Decl v : p)

= do (p′, ds ′)← duplicate (v : ds) p

if (v ∈ ds)

then do put ("Duplicate: decl" ++ v)

return (Dupl2 v : p′, ds ′)

2 We abbreviate putStrLn as put .

else return (p′, ds ′)

duplicate ds (Use v : p)

= do (p′, ds ′)← duplicate ds p

return (Use2 v : p′, ds ′)

Besides detecting the invalid declarations, function duplicate also
computes a data structure, of type Prog2, that is later traversed in
order to detect variables that are used without being declared. This
detection is performed by function missing , which is monadic as
it also outputs error messages:

missing :: (Prog2, [String ])→ IO [String ]

missing ([ ], ) = return [ ]

missing (Dupl2 v : p, env)

= do r ← missing (p, env)

return (v : r)

missing (Use2 v : p, env)

= do r ← missing (p, env)

if (v ∈ env)

then return r

else do put ("Missing: decl" ++ v)

return (v : r)

We would like to eliminate the intermediate structure of type
Prog2 generated by duplicate . If we attempted to directly apply
Law 2.1 for that aim, then we would see that in this case the result
of the law is a function that returns a monadic computation which in
turn yields a monadic computation (and not a value) as result, that
is, something of type m (m a), for some a . This is because the
consumer is also monadic. To obtain a value and not a computation
as final result, it is simply necessary to run the computation. This
gives the following shortcut fusion law, which requires the same
schemes for consumer and producer as Law 2.1 but is able to fuse
effectful functions.

LAW 3.1 (EFFECTFULL PFOLD/MBUILDP FOR LISTS). Let m be
a recursive monad.

do (xs, z )← mbuildpL g c

pfoldL (hnil , hcons) (xs, z )

=

mdo (m, z )← let knil = hnil z

kcons x y = hcons x y z

in g (knil , kcons) c

m

Observe that, in this case, hnil :: z → m b and hcons ::
a → m b → z → m b, for some monad m , and therefore
pfoldL (hnil , hcons) :: ([a ], z )→ m b. Also, notice that,

mbuildpL :: Monad m

⇒ (∀ b . (b, a → b → b)→ c → m (b, z ))

→ c → m ([a ], z )

that is, mbuildpL g is a function of type c → m ([a ], z ). It is in
this way that it will be considered in Section 4 when we will define
the generic formulation of the laws. However, in Section 2 it was
defined as a value of type m ([a ], z ) because that form is more
appropriate for writing monadic parsers.

For the present example we do not need to provide the instance
of the MonadFix class for the IO monad as it is automatically
provided by the Glasgow Haskell Compiler (GHC), which is the
reference compiler we are using.



Now, if we write missing and duplicate in terms of pfoldL and
mbuildpL, respectively,

missing = pfoldL (hnil , hcons)

where

hnil = return [ ]

hcons (Dupl2 v) mr env

= do r ← mr

return (v : r)

hcons (Use2 v) mr env

= do r ← mr

if (v ∈ env)

then return r

else do put ("Missing:decl" ++ v)

return (v : r)

duplicate ds p = mbuildpL (g ds) p

where

g ds (nil , cons) [ ] = return (nil , ds)

g ds (nil , cons) (Decl v : p)

= do (p′, ds ′)← g (v : ds) (nil , cons) p

if (v ∈ ds)

then do put ("Duplicate:decl" ++ v)

return (cons (Dupl2 v) p′, ds ′)

else return (p′, ds ′)

g ds (nil , cons) (Use v : p)

= do (p′, ds ′)← g ds (nil , cons) p

return (cons (Use2 v) p′, ds ′)

we can apply Law 3.1 to semantics obtaining a deforested circular
definition, which, when inlined, gives the following:

semantics p

= mdo{
(m, env)← let

gk ds [ ] = return (return [ ], ds)

gk ds (Decl v : p)

= do (p′, ds ′)← gk (v : ds) p

if (v ∈ ds)

then do put ("Duplicate:decl" ++ v)

return (do r ← p′

return (v : r)

, ds ′)

else return (p′, ds ′)

gk ds (Use v : p)

= do (p′, ds ′)← gk ds p

return (do r ← p′

if (v ∈ env)

then return r

else do put ("Missing:" ++ v)

return (v : r)

, ds ′)

in gk [ ] p;

m; }
Regarding the above program we may notice that it does not

construct the intermediate Prog2 structure that was used in the
original semantics program to glue the functions duplicate and
missing together. The deforestation of such structure was achieved
introducing a circular definition on the global environment of an
input program (i.e., on the list of all the variables declared in such

program). Indeed, env is used, in the call to gk , whenever an
instruction Use v is found in an input program, to check whether
v is an element of env or not. However, env is also a result of the
same gk call, which means that env is used at the same time it is
being constructed, hence the circular definition.

4. Calculating circular programs, generically
In this section, we show that the definition of the program schemes
pfold and mbuildp, and the pfold/mbuildp laws, presented for lists
in the previous sections, are instances of generic definitions valid
for a wide class of datatypes.

We write π1 :: (a, b) → a and π2 :: (a, b) → b to denote the
product projections. Let (f × g) (x , y) = (f x , g y).

4.1 Data types
Generically, the structure of datatypes can be captured using the
concept of a functor. A functor consists of a type constructor F and
a function mapF :: (a → b) → (F a → F b), which preserves
identities and compositions: mapF id = id and mapF (f ◦ g) =
mapF f ◦mapF g . A standard example of a functor is that formed
by the list type constructor and the well-known map function.

Semantically speaking, recursive datatypes correspond to least
fixed points of functors. Given a datatype declaration it is possible
to derive a functor F such that the datatype is the least solution to
the equation τ ∼= Fτ . It is usual to write µF to denote the type
corresponding to that solution. The isomorphism between µF and
F µF is provided by two strict functions, called inF :: F µF →
µF and outF ::µF → F µF , inverses of each other, and that pack
the constructors and destructors of the datatype, respectively (see
[1, 12] for details).

Let us consider, for example, a datatype for simple arithmetic
expressions:

data Exp = Num Int | Add Exp Exp

Corresponding to this datatype we can derive a functor E such that:

data E a = FNum Int | FAdd a a

mapE :: (a → b)→ E a → E b

mapE f (FNum n) = FNum n

mapE f (FAdd a a ′) = FAdd (f a) (f a ′)

In this case, µE ∼= Exp and

inE :: E µE → µE

inE (FNum n) = Num n

inE (FAdd e e ′) = Add e e ′

outE :: µE → E µE

outE (Num n) = FNum n

outE (Add e e ′) = FAdd e e ′

In the case of lists, the structure is captured by a bifunctor L
(a functor on two variables) because of the presence of the type
parameter. That is, µ(La) ∼= [a ].

data L a b = FNil | FCons a b

mapLa :: (b → c)→ L a b → L a c

mapLa f FNil = FNil

mapLa f (FCons a b) = FCons a (f b)

4.2 Fold
Given a functor F (signature of a datatype) and a function h ::
F a → a , fold (or catamorphism) [3, 12] is defined as the least
function such that



fold :: (F a → a)→ µF → a

fold h ◦ inF = h ◦mapF (fold h)

A function h :: F a → a is called an F -algebra. If functor F is
given by n constructors,

data F a = FC1 σ1,1 · · ·σ1,r1 | · · · | FCn σn,1 · · ·σn,rn

then an algebra h :: F a → a has n component functions
(h1, . . . , hn), each with type hi :: σi,1 → · · · → σi,ri → a.
For example, an algebra corresponding to the functor E is a func-
tion h :: E a → a of the form:

h (FNum n) = num n

h (FAdd a a ′) = add a a ′

with component functions num ::Int → a and add ::a → a → a .
In the specific instance of fold for this datatype,

foldE :: (Int → a, a → a → a)→ Exp → a

foldE (num, add) (Num a)

= num a

foldE (num, add) (Add e e ′)

= add (foldE (num, add) e) (foldE (num, add) e ′)

we write an E -algebra simply as a pair (num, add).
For the list datatype we can do something similar, we can write

an algebra h :: L a b → b as a pair (nil , cons). Then,

foldL :: (b, a → b → b)→ [a ]→ b

foldL (nil , cons) [ ] = nil

foldL (nil , cons) (a : as) = cons a (foldL (nil , cons) as)

The same can be done with algebras associated to other datatypes.
Fold enjoys many algebraic laws that are useful for program

transformation. A well-known example is shortcut fusion [14, 13,
23] (also known as the fold/build rule), a law that is derived from a
free theorem [26].

LAW 4.1 (FOLD/BUILD). For strict h ,

fold h ◦ build g = g h

where

build :: (∀ a . (F a → a)→ c → a)→ c → µF

build g = g inF

The standard example is the case for lists:

LAW 4.2 (FOLD/BUILD FOR LISTS).

foldL (nil , cons) ◦ buildL g = g (nil , cons)

where

buildL :: (∀ b . (b, a → b → b)→ c → b)→ c → [a ]

buildL g = g ([ ], (:))

4.3 Fold with parameters
Some recursive functions use context information in the form of
constant parameters for their computation. We are interested in
functions of the form f :: (µF, z ) → a , defined by structural
recursion on µF and with context information of type z . Our
method will assume that consumers are functions of this kind.

Such functions can be defined in different ways. One alternative
consists of fixing the value of the context information; this can be
written as a fold, f (t , z ) = fold h t , such that a reference to the
value z may eventually occur in the algebra h. Another alternative

is to define a function of type µF → (z → a) in terms of a higher-
order fold.

In this work, we consider a third alternative consisting of defin-
ing f :: (µF, z ) → a in terms of a program scheme called pfold
(a fold with parameters) [19]. The definition of pfold relies on
the concept of strength of a functor F , a polymorphic function
τF :: (F a, z ) → F (a, z ) that satisfies certain coherence axioms
(see [19, 6] for details). The strength distributes the value of type z
to the variable positions (of type a) of the functor. For instance, the
strength corresponding to functor E is given by:

τE :: (E a, z )→ E (a, z )

τE (FNum n, z ) = FNum n

τE (FAdd a a ′, z ) = FAdd (a, z ) (a ′, z )

The strength plays an important role in the definition of pfold
as it represents the distribution of the context information to the
recursive calls.

Let (f M g) x = (f x , g x ). Given a functor F and a function
h :: (F a, z ) → a , pfold [19] is defined as the least function such
that:

pfold h ◦ (inF × id) = h ◦ ((mapF (pfold h) ◦ τF ) M π2)

A function h is something similar to an algebra, but it also accepts
the value of the parameters. In fact, if functor F is given by n
constructors,

data F a = FC1 σ1,1 · · ·σ1,r1 | · · · | FCn σn,1 · · ·σn,rn

then, similar to an algebra, h :: (F a, z ) → a has n component
functions (h1, . . . , hn), now each with type hi :: σi,1 → · · · →
σi,ri → z → a. Like with the algebras, in the specific instances of
pfold we write the tuple of components functions instead of h . For
example, for the E functor,

h :: (E a, z )→ a

h (FNum n, z ) = hnum n z

h (FAdd a a ′, z ) = hadd a a ′ z

where hnum :: Int → z → a and hadd :: a → a → z → a are
the component functions. Pfold for expressions is then defined by:

pfoldE :: (Int → z → a, a → a → z → a)→ (Exp, z )→ a

pfoldE (hnum, hadd) = pE

where

pE (Num n, z ) = hnum n z

pE (Add e e ′, z ) = hadd (pE (e, z )) (pE (e ′, z )) z

The following equation shows one of the possible relation-
ships between pfold and fold. For h with component functions
(h1, . . . , hn), fixing the value z we have that:

pfold h (t , z ) = fold k t where ki x̄ = hi x̄ z (1)

Observe that k is an algebra with components (k1, . . . , kn). We
denote by x̄ a sequence of values x1 · · ·xri .

The laws for deriving monadic circular programs we are propos-
ing are a monadic extension of the following one, devoted to the
derivation of purely functional circular programs [9]. It takes a
composition of a producer p :: a → (t , z ) followed by a consumer
c :: (t , z ) → b, and returns an equivalent deforested, circular pro-
gram that performs a single traversal over the input value. The law
assumes that t is a recursive datatype, the consumer c is defined
by structural recursion on t , and the intermediate value of type z
is a constant parameter for c; in other words, it assumes that c is
a pfold. In addition, it is required that p is a “good producer”, in
the sense that it is possible to express it in terms of a kind of build.
Examples of the use of this law and a proof can be found in [9].



LAW 4.3 (PFOLD/BUILDP). Let h with components (h1, . . . , hn).

pfold h (buildp g c)

= let (v , z ) = g k c

ki x̄ = hi x̄ z

in v

where

buildp :: (∀ a . (F a → a)→ c → (a, z ))→ c → (µF, z )

buildp g = g inF

4.4 Extended shortcut fusion
Shortcut fusion laws for monadic programs can be obtained as a
special case of an extended form of shortcut fusion that captures
the case when the intermediate data structure is generated as part
of another structure given by a functor [18, 11]. Such extension is
based on an extended form of build: Given a functor F (signature
of a datatype) and another functor N , we can define

buildN :: (∀ a . (F a → a)→ c → N a)→ c → N µF

buildN g = g inF

This is a natural extension of the standard build. In fact, build can
be obtained from buildN by considering the identity functor as N .
Moreover, buildp is also a particular case obtained by considering
the functor N a = (a, z ).

Using buildN it is possible to state an extended form of shortcut
fusion (see [18, 11] for a proof):

LAW 4.4 (EXTENDED FOLD/BUILD). For strict h and strictness
preserving N ,

mapN (fold h) ◦ buildN g = g h

Similarly, we can also consider an extension for buildp:

buildpN :: (∀ a . (F a → a)→ c → N (a, z ))

→ c → N (µF, z )

buildpN g = g inF

with the following shortcut fusion law:

LAW 4.5 (EXTENDED FOLD/BUILDP). For strict h and strictness-
preserving N ,

mapN (fold h × id) ◦ buildpN g = g h

Proof By considering N ′ a = N (a, z ), we have that buildpN g =
buildN ′ g and mapN ′ f = mapN (f × id). Then, the left-
hand side of the equation can be rewritten as: mapN ′ (fold h) ◦
buildN ′ g . Finally, we apply Law 4.4. 2

4.5 Monadic shortcut fusion
The case we are interested in is when the functor N is the compo-
sition of a monad m with a product: For some type z ,

N a = m (a, z ) and mapN f = mmap (f × id)

where

mmap :: Monad m ⇒ (a → b)→ (m a → m b)

mmap f m = do {a ← m; return (f a)}
is the map function for the monad m . The producer then corre-
sponds to a monadic version of buildp:

mbuildp :: Monad m

⇒ (∀ a . (F a → a)→ c → m (a, z ))

→ c → m (µF, z )

mbuildp g = g inF

A monadic shortcut fusion law can be directly obtained as an
instance of Law 4.5. We unfold the definition of mmap so that we
get a formulation in terms of do-notation:

LAW 4.6 (FOLD/MBUILDP). For strict k and strictness preserving
mmap,

do {(t , z )← mbuildp g c; return (fold k t , z )} = g k c

This is a version for mbuildp of the shortcut fusion law introduced
by Manzino and Pardo [18].

Using this law we can state a first monadic extension of the
pfold/buildp rule. Observe that the introduction of the circularity
on z requires the monad to be recursive [8] as it is necessary the
use of a circular binding within a monadic computation. In Haskell
terms, this can be expressed using the mdo-notation provided that
the monad is an instance of the MonadFix class.

LAW 4.7 (PFOLD/MBUILDP). Let m be a recursive monad with
strictness-preserving mmap. For h with components (h1, . . . , hn)
and strict,

do {(t , z )← mbuildp g c; return (pfold h (t , z ))}
=

mdo{(v , z )← let ki x̄ = hi x̄ z in g k c; return v }

Proof

do {(t , z )← mbuildp g c; return (pfold h (t , z ))}
= { (1) }

do (t , z )← mbuildp g c

let ki x̄ = hi x̄ z in return (fold k t)

= { definition of π1 }
do (t , z )← mbuildp g c

let ki x̄ = hi x̄ z in return (π1 (fold k t , z ))

=

do (t , z ) ← mbuildp g c

(v , z ′)← let ki x̄ = hi x̄ z in return (fold k t , z )

return v

= { circularity introduction }
mdo (t , z ) ← mbuildp g c

(v , z ′)← let ki x̄ = hi x̄ z ′ in return (fold k t , z )

return v

= { Law 4.6 }
mdo{(v , z ′)← let ki x̄ = hi x̄ z ′ in g k c; return v }

2

The circularity introduced is safe and therefore computations
can be ordered under lay evaluation. In fact, to compute v it is
necessary to compute z ′, which in turn depends on z . That is, even
with the introduction of the circularity, the computation of the final
value depends on the computation of the second value computed
by the mbuildp g c.

When the consumer is also an effectful function, it is possible
to state two other laws, similar to Laws 4.6 and 4.7, respectively,
but that deal with fusion of effectful functions. The formulation of
these laws follow the approach presented by Chitil [5] and Ghani
and Johann [11].



LAW 4.8 (EFFECTFUL FOLD/MBUILDP). For strict k ::F (m a)→
m a and strictness preserving mmap,

do {(t , z )← mbuildp g c; v ← fold k t ; return (v , z )}
=

do {(m, z )← g k c; v ← m; return (v , z )}

Proof

do {(t , z )← mbuildp g c; v ← fold k t ; return (v , z )}
= do (t , z ) ← mbuildp g c

(m, )← return (fold k t , z )

v ← m

return (v , z )

= do (m, z )← do (t , z )← mbuildp g c

return (fold k t , z )

v ← m

return (v , z )

= do {(m, z )← g k c; v ← m; return (v , z )}
2

Using this law we can now state a shortcut fusion law for the
derivation of monadic circular programs in those cases when both
the producer and consumer are effectful functions. Again, like in
Law 4.7, the monad is required to be recursive because of the in-
troduction of a recursive binding within the monadic computation.

LAW 4.9 (EFFECTFUL PFOLD/MBUILDP). Let m be a recursive
monad with strictness-preserving mmap. For h :: (F (m a), z )→
m a with components (h1, . . . , hn) and strict,

do {(t , z )← mbuildp g c; pfold h (t , z )}
=

mdo{(m, z )← let ki x̄ = hi x̄ z in g k c; m }

Proof

do {(t , z )← mbuildp g c; pfold h (t , z )}
=

do (t , z )← mbuildp g c

m ← return (pfold h (t , z ))

m

= { Law 4.7 }
mdo{(m, z )← let ki x̄ = hi x̄ z in g k c; m }

2

5. Higher-order shortcut fusion
There exists an alternative way to transform compositions between
pfold and buildp such that, instead of circular programs, higher-
order programs are obtained as result. Obtaining higher-order pro-
grams is attractive since the execution of such programs is not re-
stricted to a lazy evaluation setting. Furthermore, the running per-
formance of a higher-order program is often better than the perfor-
mance of its circular equivalent.

The alternative transformation presented in this section is based
on the fact that every pfold can be expressed in terms of a higher-
order fold: For h :: (F a, z )→ a ,

pfold h = apply ◦ (fold ϕh × id) (2)

where ϕh :: F (z → a)→ (z → a) is given by

ϕh = curry (h ◦ ((mapF apply ◦ τF ) M π2))

and apply :: (a → b, a) → b by apply (f , x ) = f x . Therefore,
fold ϕh :: µF → (z → a) is the curried version of pfold h .

With this relationship at hand we can state the following short-
cut fusion law, which is the instance to our context of a more gen-
eral program transformation technique called lambda abstraction
[20]. The specific case of this law when lists are the intermediate
structure was recently introduced by Voigtländer [25].

LAW 5.1 (HIGHER-ORDER PFOLD/BUILDP). For left-strict h ,3

pfold h ◦ buildp g = apply ◦ g ϕh

Like in the derivation of circular programs, g ϕh returns a pair,
but now composed by a function of type z → a and an object of
type z . The final result then corresponds to the application of the
function to the object. That is,

pfold h (buildp g c) = let (f , z ) = g ϕh c in f z

Of course, this law can be generalized in the sense of extended
shortcut fusion.

LAW 5.2. For left-strict h and strictness-preserving N ,

mapN (pfold h) ◦ buildpN g = mapN apply ◦ g ϕh

Proof

mapN (pfold h) ◦ buildpN g

= { (2) }
mapN apply ◦mapN (fold ϕh × id) ◦ buildpN g

= { Law 4.5 }
mapN apply ◦ g ϕh

2

Like in Subsection 4.5, we can consider the particular case when
N is the functor of a monad. Unlike the transformation to circular
programs, now we do not need to require the monad to be recursive.
Again, in first place we state the case when the pfold is a pure
function.

LAW 5.3 (HIGHER-ORDER PFOLD/MBUILDP). For left-strict h
and strictness-preserving mmap,

do {(t , z )← mbuildp g c; return (pfold h (t , z ))}
=

do {(f , z )← g ϕh c; return (f z )}

To see an example of the application of this law we consider
again function shift from Section 2:

shift :: Parser [Bit ]

shift = do (bs, s)← bitstring

return (transform (bs, s))

and write the higher-order fold corresponding to transform:

transformho :: [Bit ]→ (Bit → [Bit ])

transformho = foldL (ϕn, ϕc)

where ϕn = λ → [ ]

ϕc b r = λs → (b ⊕ s) : r s

Then, by applying Law 5.3 we obtain:

shiftho = do (f , s)← g (ϕn, ϕc)

return (f s)

3 By left-strict we mean strict on the first argument, that is, h (⊥, z ) = ⊥.



Inlining,

shiftho = do (f , s)← gϕ

return (f s)

where gϕ = do b ← bit

(f , s)← gϕ

return (λs ′ → (b ⊕ s ′) : f s ′, b ⊕ s)

〈|〉 return (λ → [ ],Z )

Finally, we present the case when the consumer is also an
effectful function.

LAW 5.4 (EFFECTFUL HIGHER-ORDER PFOLD/MBUILDP). For
left-strict h :: (F (m a), z ) → m a and strictness-preserving
mmap,

do {(t , z )← mbuildp g c; pfold h (t , z )}
=

do {(f , z )← g ϕh c; f z }

Proof

do {(t , z )← mbuildp g c; pfold h (t , z )}
=

do (t , z )← mbuildp g c

m ← return (pfold h (t , z ))

m

= { Law 5.3 }
do m ← do {(f , z )← g ϕh c; return (f z )}

m

=

do {(f , z )← g ϕh c; f z }
2

We conclude this section with an example of the application
of this law. To this end we consider again the function semantics
presented in Section 3:

semantics :: Prog → IO [String ]

semantics p = do (p′, env)← duplicate [ ] p

missing (p′, env)

To apply the law we need the expression of the algebra of
the higher-order fold, which corresponds to the curried version of
missing :

missingho :: Prog2 → ([String ]→ IO [String ])

missingho = foldL (ϕn, ϕc)

where

ϕn = λ → return [ ]

ϕc (Dupl2 v) mr

= λenv → do r ← mr env

return (v : r)

ϕc (Use2 v) mr

= λenv → do r ← mr env

if (v ∈ env)

then return r

else do put ("Missing:decl" ++ v)

return (v : r)

Then, by Law 5.4 we obtain:

semanticsho = do (f , env)← g (ϕn, ϕc)

f env

Inlining this definition, we finally derive the higher-order pro-
gram:

semanticsho = do (f , env)← gϕ

f env

where

gϕ ds [ ] = return (λ → return [ ], ds)

gϕ ds (Decl v : p)

= do (p′, ds ′)← gϕ (v : ds) p

if (v ∈ ds)

then do put ("Duplicate:decl" ++ v)

return (λenv → do r ← p′ env

return (v : r)

, ds ′)

else return (p′, ds ′)

gϕ ds (Use v : p)

= do (p′, ds ′)← gϕ ds p

return (

λenv →
do r ← p′ env

if (v ∈ env)

then return r

else do put ("Missing:decl" ++ v)

return (v : r)

, ds ′)

6. Conclusions and Future Work
6.1 Contributions
In this paper, we have presented shortcut fusion rules for the deriva-
tion of circular and higher-order monadic programs. The rules are
generic, as they can be instantiated for a wide class of algebraic data
types and monads. We have also shown two example applications
which demonstrate the practical interest of the rules.

It is possible to obtain a prototype implementation of the rules
using the rewrite rules (RULES pragma) of the Glasgow Haskell
Compiler (GHC). Experimental results showing time and space
comparisons for a set of examples are available in the webpage
http://www.fing.edu.uy/~pardo/ExtendedShortcut/.

The main contributions of this paper can be summarized as
follows:

(i) using an extension to shortcut fusion that captures the cases
when the intermediate structures are generated as part of an-
other structure given by a functor, we obtained shortcut fusion
rules that transform compositions of monadic programs into cir-
cular programs. This extends to monadic programs the work we
have presented for pure programs in [9].

(ii) we generalized the shortcut fusion rule for deriving pure higher-
order programs presented in [25] so that it can be applied
to compositions of programs with an arbitrary data type as
intermediate structure.

(iii) we presented an extension of the above rule for the derivation
of higher-order programs to the case of monadic programs.

The following diagram summarizes the results that have been
achieved so far:



cons ◦ prod
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The arrow from cons ◦ prod to circular programs corresponds
to the rules developed in this work and in [9]. The arrow from
cons ◦ prod to higher-order programs corresponds to (ii) and (iii)
above. The arrows from circular programs to cons ◦ prod and
higher-order programs correspond to the transformations based on
Attribute Grammar techniques presented in [10].

6.2 Future work
Various aspects of the ideas presented in this paper deserve further
elaboration.

Multiple intermediate structure elimination The examples we
presented in this paper consist of compositions of a single pro-
ducer and consumer functions. We would like, however, to be able
to achieve the same fusion goals for programs consisting in an arbi-
trary number of function compositions. Indeed, we are now study-
ing how to generalize our work in order to optimize programs of the
form fn ◦ ... ◦ f1 such that in each composition a data structure ti
and a value zi are produced. We will describe such a generalization
in a forthcoming paper, already under preparation.

Relation with Attribute Grammars Circular programs, monads
and attribute grammars (AGs) are closely related [21]. Indeed, AG
techniques are used to model and manipulate circular programs in
order to derive efficient non-lazy equivalent programs [10], and
several circular-based AG systems have been developed [22, 28]. In
particular, we would like to express the transformations in [10] (the
dashed arrows in the diagram above) in a calculational form, so that
their correctness can be proved. Indeed, although these techniques
are largely used by the AG community, their correctness remains to
be formally proved! The techniques studied in this paper also serve
the purpose of increasing the knowledge on the relation between
circular programs and AGs, and, therefore, bring us close to our
goal of building a proved correct AG system.
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