
Applicative Shortcut Fusion

Germán Andrés Delbianco1, Mauro Jaskelioff2, and Alberto Pardo3

1 IMDEA Software Institute, Spain
2 CIFASIS-CONICET/Universidad Nacional de Rosario, Argentina

3 InCo, Universidad de la República, Uruguay

Abstract. In functional programming one usually writes programs as
the composition of simpler functions. Consequently, the result of a func-
tion might be generated only to be consumed immediately by another
function. This potential source of inefficiency can often be eliminated
using a technique called shortcut fusion, which fuses both functions in-
volved in a composition to yield a monolithic one. In this article we
investigate how to apply shortcut fusion to applicative computations.
Applicative functors provide a model of computational effects which gen-
eralise monads, but they favour an applicative programming style. To the
best of our knowledge, this is the first time shortcut fusion is considered
in an applicative setting.

1 Introduction

One of functional programming much advocated benefits is the possibility of eas-
ily constructing large and complex programs through the combination of smaller
or simpler ones [12]. This modular approach, however, often results in programs
which are quite inefficient when compared to their monolithic counterparts: com-
positional design often involves creating an intermediate data structure which is
immediately consumed. In order to alleviate this problem, several formal tech-
niques have been developed that allow the derivation of efficient programs from
simpler modular ones. The way these techniques are usually discovered is by
identifying common patterns in programs, analyzing these patterns, and obtain-
ing algebraic laws for programs that fit the pattern [18].

Among these techniques lies shortcut fusion [11,20] which is concerned with
the elimination of unnecessary list traversals. It is based on a single transfor-
mation: the foldr/build rule which fuses the application of a uniform list-
consuming function, expressed as a fold on lists, to the result of a uniform
list-generating function, expressed in terms of the build combinator. This fusion
rule can be generalised to any inductive datatype, yielding the following generic
rule:

fold k ◦ build g = g k

Shortcut fusion has been extended to cope with cases where the intermedi-
ate structure is produced in certain contexts. For example, shortcut fusion has

been considered for monadic computations [6,13,14], unstructured functors [7],
accumulations [15] and circular programs [5,19].

A recent development is the notion of applicative functor [16]. Applicative
functors provide a novel manner in which effectful computations can be con-
structed that has gained a rapid acceptance among functional programmers.
However, shortcut fusion under an applicative context has not yet been studied.
Precisely, in this article, we investigate shortcut fusion under the context of an
applicative computation, we identify common patterns in which many applica-
tive programs are written, and give algebraic laws that apply to programs that
fit those patterns. Concretely, the contributions of this article are:

– We show how to do shortcut fusion on applicative computations.
– We identify a common pattern in applicative programs which shows the

importance and generality of traversals for generating applicative structures
and their fundamental role in applicative shortcut fusion.

– We provide a combinator (ifold) which models the uniform consumption of
applicative computations.

The paper is organised as follows. In Section 2 we review the concept of short-
cut fusion. In Section 3 we present the notions of applicative and traversable
functors. Section 4 develops the notions of applicative shortcut fusion and ap-
plicative structural recursion. In Sections 2 to 4 our motivating examples are
on lists. In Section 5 we show the datatype-generic formulation of the concepts
and laws presented in previous sections. Finally, in Section 6 we conclude and
discuss future work.

Throughout the paper we asume we are working in the context of a functional
language with a Haskell-like syntax and with a set-theoretic semantics in which
types are interpreted as sets and functions as set-theoretic functions.

2 Shortcut fusion

Shortcut fusion [11] is a program transformation technique for the elimination
of intermediate data structures generated in function compositions. It is a con-
sequence of parametricity properties, known as “free theorems” [21], associated
with polymorphic functions. Given a composition fc ◦ fp, where fc is called the
consumer and fp the producer of the intermediate structure, shortcut fusion re-
quires for its application that both consumer and producer definitions conform
to determinate structural requirements. Like other fusion laws of its kind, short-
cut fusion requires that the consumer be expressible as a fold [4]. The producer,
on the other hand, is required to build the intermediate data structure using
uniquely the constructors of the datatype. This is expressed in terms of a func-
tion, called build, which carries a “template” that abstracts from the function
body the occurrences of those constructors. For example, when the intermediate
structure is a list, fold and build are given by the following definitions:

foldr :: (a → b → b)→ b → [a]→ b
foldr f e [] = e

foldr f e (x : xs) = f x (foldr f e xs)

build :: (∀b.(a → b → b)→ b → c → b)→ c → [a]
build g = g (:) []

where foldr is a well-known function pattern in functional programming [4].
The essential idea of shortcut fusion is then to replace, in the template of

build, the occurrences of the constructors of the intermediate structure ((:) and
[] in the case of lists) by the corresponding operations carried by the fold. The
second-order polymorphism of build ensures that the argument can only manu-
facture its result by using its two arguments. For lists, shortcut fusion is expressed
by the following law, usually referred to as the fold/build law.

Law 1 (foldr/build [11])

foldr f e ◦ build g = g f e

As a result of the application of this law one obtains an equivalent definition that
computes the same as the original consumer-producer composition but avoiding
the construction of the intermediate data structure.

Example 1. To see an application of Law 1 we define a function that computes
the sum of the positionwise differences between two lists of numbers.

sumDiff :: Num a ⇒ ([a], [a])→ a
sumDiff ys = sum ◦ diffList

diffList :: Num a ⇒ ([a], [a])→ [a]
diffList (xs, []) = []
diffList ([], y : ys) = []
diffList (x : xs, y : ys) = (x − y) : diffList (xs, ys)

Function sum has the usual definition as a foldr: sum = foldr (+) 0. When
applied to a pair of lists (xs, ys), diffList computes the list of differences between
values in xs and ys, up to the shorter of the two lists. This function is a good
producer in the sense that it can be expressed in terms of build :

diffList = build gdiff
where

gdiff cons nil (, []) = nil
gdiff cons nil ([],) = nil
gdiff cons nil (x : xs, y : ys) = cons (x − y) (gdiff cons nil (xs, ys))

Once we have consumer and producer expressed in terms of foldr and build we
are in a position to apply Law 1, obtaining the following definition for sumDiff :

sumDiff = gdiff (+) 0

Inlining the definition,

sumDiff (, []) = 0
sumDiff ([],) = 0
sumDiff (x : xs, y : ys) = (x − y) + sumDiff (xs, ys)

In this paper we are also interested in a generalised form of shortcut fusion
which captures the case where the intermediate data structure is generated as
part of another structure. This generalisation has been a fundamental tool for
the formulation of shortcut fusion laws for monadic programs [14,7], and for the
derivation of (monadic) circular and higher-order programs [19,5]. In this paper
our aim is to analyse this generalisation in the case when the effects are given
by applicative functors.

The generalisation of shortcut fusion [7] is based on an extended form of
build. For lists, it has the following definition:

ebuild :: Functor f ⇒ (∀b.(a → b → b)→ b → c → f b)→ c → f [a]
ebuild g = g (:) []

where f acts as a container of the generated list. The type requires f to be an
instance of the Functor class, which ensures that f has an associated function
fmap :: (a → b)→ f a → f b that preserves composition and identity.

Law 2 (foldr/ebuild [7])

fmap (foldr f e) ◦ ebuild g = g f e

The use of fmap means that fusion acts on the occurrences of the list type within
the context structure, maintaining the context structure unchanged.

3 Applicative Functors

An applicative functor (or idiom) [16] is a type constructor f :: ∗ → ∗, equipped
with two operations:

class (Functor f)⇒ Applicative f where
pure :: a → f a
(~) :: f (s → t)→ f s → f t

Intuitively, pure lifts a pure computation into the effectful context defined by
f and ~ performs an effectful application. Instances of pure and ~ must verify
certain laws (see e.g [16] for details).

Example 2 (Maybe). The Maybe applicative functor models failure as a compu-
tational effect.

instance Applicative Maybe where
pure = Just
(Just f) ~ (Just x) = Just (f x)

~ = Nothing

All monads are applicative functors, taking ~ to be monadic application
and pure to be return. However, there are applicative functors which are not
monads, such as the one in the following example.

Example 3 (Ziplists). The list functor has an Applicative instance other than
the one obtained from the list monad [16]. This applicative functor models a
transposition effect, and is defined as follows:

instance Applicative [] where
pure x = x : pure x
(f : fs) ~ (x : xs) = f x : (fs ~ xs)

~ = []

An applicative action is a function of type a → f b where f is an applicative
functor. Applicative actions can be used to perform traversals over a certain class
of data structures, threading an effect through the data structure. This class of
data structures is called Traversable:

class (Functor t)⇒ Traversable t where
traverse :: (Applicative f)⇒ (a → f b)→ t a → f (t b)

Alternatively, this class can be defined by means of a distributive law dist ::
f (c a) → c (f a) which pulls the effects out of the data structure. The
functions dist and traverse are interdefinable, with dist = traverse id and
traverse ι = dist◦fmap ι. The latter definition gives a concise description of what
an effectful traversal does: first populate the structure with effects by mapping
the applicative action and then collect them using the distributive law.

Example 4 (Lists). Lists are Traversable data structure, as witnessed by the
following instance:

instance Traversable [] where
traverse ι [] = pure []
traverse ι (x : xs) = pure (:) ~ ι x ~ traverse ι xs

Example 5 (Reciprocal List). We want to define a function that computes the
reciprocals of a given list of numbers, failing if there is any 0 value in the list.
We can think of the computation of the reciprocal of a value as an applicative
action: if the value is nonzero then a computation that produces its reciprocal
is returned, else we fail via Nothing .

recipM :: Fractional a ⇒ a → Maybe a
recipM x = if (x 6≡ 0) then pure (recip x) else Nothing

where recip :: Fractional a ⇒ a → a is such that recip x = 1 / x . We can use this
applicative action to define recipList by structural recursion:

recipList :: Fractional a ⇒ [a]→ Maybe [a]
recipList [] = pure []
recipList (x : xs) = pure (:) ~ recipM x ~ recipList xs

In this definition, we recognise the application of recipM to each element in the
list, and therefore it clearly can be expressed in terms of traverse:

recipList = traverse recipM

On lists as well as on other Traversable inductive datatypes function traverse
can be seen both as a good consumer and good producer: similar to the map
function on the datatype, it traverses its input and generates its output in a uni-
form way. In the remainder of this section we focus on its quality as a consumer;
in the next section we show that it is a good producer as well.

Any Traversable inductive datatype is a good consumer because it can easily
be defined as a fold. For example, for lists,

traverse ι = foldr (λx t → pure (:) ~ ι x ~ t) (pure [])

From this fact, we can state the following law in connection with build.

Law 3 (traverse/build for lists)

traverse ι ◦ build g = g (λx t → pure (:) ~ ι x ~ t) (pure [])

Proof. By the definition of traverse as a fold and Law 1. ut

Example 6 (Hermitian transpose). Given a type for complex numbers Comp, we
will define an algoritm which calculates the Hermitian or conjugate transpose of
a complex matrix.

data Real x ⇒ Comp x = x + x i

The algorithm is quite simple: first calculate the conjugate matrix and then
transpose it. The conjugate matrix is defined elementwise, taking the complex
conjugate of each entry:

hermitian :: (Real a)⇒ [[Comp a]]→ [[Comp a]]
hermitian = transpose ◦map (map scalarconj)

where scalarconj (a + b i) = a + (−b) i

In Example 3, we stated that the ziplists applicative function models a transpo-
sition effect. In fact, matrix transposition is a traversal with the identity function
i.e. transpose = traverse id [16]. Then, by the application of Law 3 the following
definition of the Hermitian transpose is obtained, avoiding the construction of
the intemediate matrix:

hermitian :: (Real a)⇒ [[Comp a]]→ [[Comp a]]
hermitian = foldr (λxs xss → pure (:) ~ fmap scalarconj xs ~ xss) (pure [])

where scalarconj (a + b i) = a + (−b) i

4 Applicative Shortcut Fusion

In this section we analyse situations where the production and consumption of a
data structure is performed in the context of an applicative effect. Our aim is to
obtain a shortcut fusion law for those cases. As with monads [14,7], the extension
of shortcut fusion presented in Section 2 turns out to be an appropriate device
to achieve this goal. Again, our development in this section is performed on lists;
the datatype-generic constructions are shown in Section 5.

Applicative shortcut fusion works on those cases where the container of the
generated intermediate data structure is an applicative functor. The build func-
tion in this case is simply an instance of the extended build that we call ibuild
(for idiomatic build):

ibuild :: Applicative f ⇒ (∀b.(a → b → b)→ b → c → f b)→ c → f [a]
ibuild g = g (:) []

The corresponding instance of extended shortcut fusion (Law 2) is the following:

Law 4 (foldr/ibuild)

fmap (foldr f e) ◦ ibuild g = g f e

Example 7 (traverse). As mentioned at the end of Section 3, function traverse
may not only be considered a good consumer but also a good producer since it
generates its output list in a uniform way as the result of an effectful computa-
tion. In fact, it is very simple to express traverse in terms of ibuild :

traverse ι = ibuild gtrav
where

gtrav cons nil [] = pure nil
gtrav cons nil (x : xs) = pure cons ~ ι x ~ gtrav cons nil xs

which is the same as,

traverse ι = ibuild gtrav
where

gtrav cons nil = foldr (λx t → pure cons ~ ι x ~ t) (pure nil)

It is also interesting to see that the composition traverse ι ◦ build g , which is
the subject of Law 3, can also be expressed as an ibuild :

traverse ι ◦ build g = ibuild g ′

where g ′ f e = g (λx t → pure f ~ ι x ~ t) (pure e)

A common pattern of computation using applicative functors is the one that
applies a fold after having performed an applicative traversal over a data struc-
ture. We identify this pattern with a new program scheme that we call idiomatic
fold, which specifies an applicative notion of structural recursion. For lists,

ifoldr :: Applicative f ⇒ (b → c → c)→ c → (a → f b)→ [a]→ f c
ifoldr f e ι = fmap (foldr f e) ◦ traverse ι

Using the fact that traverse can be expressed as an ibuild we can apply Law 4
obtaining as result that an ifoldr is a foldr :

ifoldr f e ι = foldr (λx t → pure f ~ ι x ~ t) (pure e) (1)

Inlining,

ifoldr f e ι [] = pure e
ifoldr f e ι (x : xs) = pure f ~ ι x ~ ifoldr f e ι xs

Example 8 (Sum of reciprocal list). In Example 5 we defined the function recipList
that computes the reciprocals of a list of numbers. We used the Maybe applica-
tive functor to model the possibility of failure originated by the occurrence of
some 0 in the input list. Now we want to compute the sum of the reciprocals of
a list:

sumRecips :: Fractional a ⇒ [a]→ Maybe a
sumRecips = fmap sum ◦ recipList

Since sum = foldr (+) 0 and recipList = traverse recipM , sumRecips corre-
sponds to an ifold :

sumRecips = ifoldr (+) 0 recipM

Inlining,

sumRecips [] = pure 0
sumRecips (x : xs) = pure (+) ~ recipM x ~ sumRecips xs

Having introduced a notion of applicative structural recursion, we can state
a shortcut fusion law associated with it.

Law 5 (ifoldr/build)

ifoldr f e ι ◦ build g = g (λx y → pure f ~ ι x ~ y) (pure e)

Proof.

ifoldr f e ι ◦ build g
≡ { definition ifoldr }

fmap (foldr f e) ◦ traverse ι ◦ build g
≡ { Example 7, g ′ f e = g (λx t → pure f ~ ι x ~ t) (pure e) }

fmap (foldr f e) ◦ ibuild g ′

≡ { Law 4 }
g (λx t → pure f ~ ι x ~ t) (pure e) ut

Example 9 (Sum of reciprocals of list differences). We now want to compose
the function that calculates the sum of reciprocals of a list of numbers, given
in Example 8, with the function that computes the differences of two list of
numbers, given in Example 1.

sumRecipsDiff :: Fractional a ⇒ ([a], [a])→ Maybe a
sumRecipsDiff = sumRecips ◦ diffList

Since sumRecips = ifoldr (+) 0 recipM and diffList = build gdiff , by Law 5 we
get a monolithic definition that avoids the construction of the intermediate lists:

sumRecipsDiff = gdiff (λx t → pure (+) ~ recipM x ~ t) (pure 0)

Inlining,

sumRecipsDiff (, []) = pure 0
sumRecipsDiff ([],) = pure 0
sumRecipsDiff (x : xs, y : ys) = pure (+) ~ recipM (x − y)

~ sumRecipsDiff (xs, ys)

We conclude this section by showing an example that, unlike the previous
one, does not fit the pattern fold/traverse/build : it is a case where we cannot
factor an occurrence of traverse. The example, however, needs extra structure
on the applicative functor, namely to be an instance of the Alternative class.

Example 10 (Parsing). Suppose we want to compute the exclusive OR of a se-
quence of bits that we parse from an input string. It is in the parsing phase that
effects will come into play, as we will use an applicative parser.

newtype Parser a = P {runP :: String → [(a,String)]}
instance Functor Parser where

fmap f p = P $ λcs → [(f a, cs ′) | (a, cs ′)← runP p cs]

instance Applicative Parser where
pure a = P $ λcs → [(a, cs)]
p ~ q = P $ λcs → [(f v , cs ′′) | (f , cs ′)← runP p cs

, (v , cs ′′)← runP q cs ′]

class Applicative f ⇒ Alternative f where
empty :: f a
(〈|〉) :: f a → f a → f a

instance Alternative Parser where
empty = P $ const []
p〈|〉q = P $ λcs → case runP p cs ++ runP q cs of

[] → []
x : xs → [x]

pSym :: Char → Parser Char
pSym x = P $ λcs → case cs of

c : cs | x ≡ c → [(c, cs)]
otherwise → []

Alternatives are represented by a choice operator (〈|〉), which, for simplicity,
returns at most one result. The parser pSym parsers a determinate character.

Using these combinators we define parsers for bits and bit strings.

bitstring = pure (:) ~ bit ~ bitstring
〈|〉
pure []

bit = pure (const False) ~ pSym ’0’

〈|〉
pure (const True) ~ pSym ’1’

listXor :: [Bool]→ Bool
listXor [] = False
listXor (b : bs) = b ‘xor ‘ listXor bs

xor :: Bool → Bool → Bool
b ‘xor ‘ b′ = (b ∧ ¬ b′) ∨ (¬ b ∧ b′)

We want to compute the composition: xorBits = fmap (listXor) ◦ bitstring .
Since listXor = foldr xor False and bitstring can be expressed as an ibuild :

bitstring = ibuild gbits
where gbits cons nil = pure cons ~ bit ~ gbits cons nil

〈|〉
pure nil

we can apply Law 4 obtaining that xorBits = gbits xor False. Inlining,

xorBits = pure xor ~ bit ~ xorBits
〈|〉
pure False

5 The datatype-generic formulation

In the previous sections, we focused our presentation on the list datatype in
order to give a comprehensive explanation of the main concepts. However, con-
structions such as fold, build and ebuild, and laws like shortcut fusion can be for-
mulated for a wide class of datatypes using a datatype-generic approach [2,3,9].

5.1 Inductive Data types

The structure of data types can be captured using the concept of a functor. A
functor consists of a type constructor f and a map function:

class Functor f where
fmap :: (a → b)→ f a → f b

where fmap must preserves identities and compositions: fmap id = id and
fmap (f ◦ g) = fmap f ◦ fmap g . A standard example of a functor is that
formed by the list type constructor and the well-known map function.

Inductive data types correspond to least fixed points of functors. Given a
data type declaration it is possible to derive a functor f , which captures the
structure of the type, such that the data type can be seen as the least solution
of the equation x ∼= fx [1]. In Haskell, we can encode this isomorphism defining
a type constructor µ :: (∗ → ∗)→ ∗ as follows:

newtype µ f = In {unIn :: f (µ f)}

Example 11 (Naturals). Given a data type for natural numbers,

data Nat = Zero | Succ Nat

its signature is given by a functor FNat defined as follows:

data FNat x = FZero | FSucc x

instance Functor FNat where
fmap f FZero = FZero
fmap f (FSucc n) = FSucc (f n)

So, alternatively, we can say that Nat = µ FNat .

For polymorphic types, it is necessary to use functors on multiple arguments
to capture their signature in order to account for type parameters. For example,
for types with one parameter we need a functor on two arguments, usually called
a bifunctor, to represent their structure.

class Bifunctor f where
bimap :: (a → b)→ (c → d)→ f a c → f b d

Example 12 (Lists). The structure of polymorphic lists, [a], is captured by a
bifunctor FList ,

data FList a b = FNil | FCons a b

instance Bifunctor FList where
bimap f g FNil = FNil
bimap f g (FCons a b) = FCons (f a) (g b)

By fixing the bifunctor argument corresponding to the type parameter a (the
type of the list elements) we get a functor FList a which represents the signature
of lists of type a:

instance Functor (FList a) where
fmap f FNil = FNil
fmap f (FCons a b) = FCons a (f b)

Thus, [a] = µ (FList a).

5.2 Fold

Given a functor f that captures the signature of a data type and a function
k :: f a → a (called an f-algebra), we can define a program scheme, called fold
[3], which captures function definitions by structural recursion on the type µ f .

fold :: Functor f ⇒ (f a → a)→ µ f → a
fold k = k ◦ fmap (fold k) ◦ unIn

The signature corresponding to a type T with n constructors is a functor that
has also n cases. The same occurs with the algebras for that functor; they are
essentially a tuple (k1, . . . , kn) of n component operations, each one with the
appropriate type. For example, an algebra for the functor FList a is a function
k :: FList a b → b of the form:

k FNil = e
k (FCons a b) = f a b

with components e :: b and f :: a → b → b. This is the reason why foldr, the fold
for lists, has type (a → b → b)→ b → [a]→ b.

5.3 Shortcut fusion

The shortcut-fusion law of Section 2 can be generalised from list to all datatypes
expressible as the (least) fixpoint of a functor [8,20]. The generic build can be
defined as follows.

build :: (Functor f)⇒ (∀a.(f a → a)→ c → a)→ c → µ f
build g = g In

Notice that the abstraction of the datatype’s constructors is represented in terms
of an f -algebra. As explained before, the idea of shortcut fusion is then to replace,
in the producer, the occurrences of the abstracted constructors by corresponding
operations in the algebra of the fold that appears as consumer. The datatype-
generic fold/build law is then:

Law 6 (fold/build [8,20])

fold k ◦ build g = g k

5.4 Extended shortcut fusion

The generic formulation of the extended build [7] is as follows:

ebuild :: (Functor f ,Functor h)⇒ (∀a.(f a → a)→ c → h a)→ c → h (µ f)
ebuild g = g In

where h is a functor that represents the container structure of the generated
datatype. As we saw for lists, this is a natural extension of the standard build
function. Using ebuild we can state the extended shortcut fusion law:

Law 7 (extended fold/build [7,14])

fmap (fold k) ◦ ebuild g = g k

Fusion acts on the occurrences of the internal structure, while the context struc-
ture is maintained unchanged.

5.5 Generic traversals

It is possible to define datatype-generic traversals for parametric data structures
corresponding to fixpoints of a parametric bifunctors. In order to define traverse
generically, we must first establish when the signature of a datatype can be
traversed:

class Bifunctor s ⇒ Bitraversable s where
bitraverse :: (Applicative f)⇒

(a → f c)→ (b → f d)→ s a b → f (s c d)

Gibbons and Oliveira [10] present an equivalent characterisation: a bifunctor
s is Bitraversable if for any applicative functor c there exists a natural trans-
formation bidist :: s (c a) (c b) → c (s a b) which serves as a distributive
law between the signature bifunctor and the applicative functor. Such distribu-
tive law exists for any given regular datatype and it can be defined polytipically
i.e. by induction on the structure of the signature bifunctor [2,17]. As in the
case of traverse and dist above, bitraverse and bidist are also interdefinable as
bidist = bitraverse id id and bitraverse f g = bidist ◦ bimap f g . Thus, traverse
can be defined generically for all fixed points of Bitraversable functors.

traverse :: (Applicative f ,Bitraversable s)⇒
(a → f b)→ µ (s a)→ f (µ (s b))

traverse ι = fold (fmap In ◦ bitraverse ι id)

Gibbons and Oliveira [10] also claim that the traverse operator captures “the
essence of the Iterator pattern” and have studied some calculational properties
of idiomatic traversals. In Section 4, we saw that traversals play an important
role in the characterisation of some common applicative forms of computation,
like applicative structural recursion, and are well suited for fusion because of the
fact of being good producers and good consumers simultaneously.

5.6 Applicative shortcut fusion

We define an idiomatic build to be an extended build where the container is an
applicative functor.

ibuild :: (Applicative f)⇒ (∀b.(s a → a)→ c → a)→ c → f (µ s)
ibuild g = g In

The corresponding instance of extended shortcut fusion (Law 7) results:

Law 8 (fold/ibuild)

fmap (fold φ) ◦ ibuild g = g φ

5.7 Applicative structural recursion

Given a bitraversable bifunctor s, an algebra φ :: s b c → c for the functor (s b)
and an applicative action ι ::a → f b for an applicative functor f , we define ifold
by the following equation:

ifold :: (Applicative f ,Bitraversable s)⇒
(s b c → c)→ (a → f b)→ µ (s a)→ f c

ifold φ ι = fmap (fold φ) ◦ traverse ι

which in turn, is equivalent to the following generalization of (1):

ifold φ ι = fold (fmap φ ◦ bitraverse ι id) (2)

Associated with ifold we have the following shortcut fusion law which gives a
monolithic expression for the pattern fold/traverse/build :

Law 9 (ifold/build)

ifold φ ι ◦ build g (I)

=

fmap (fold φ) ◦ traverse ι ◦ build g (II)

=

g (fmap φ ◦ bitraverse ι id) (III)

Proof. (I) = (II) by the definition of ifold . By the definition of ifold in terms
of fold , (2), and Law 6, (I) = (III). ut

Note that in the fold/traverse/build pattern there is no need to use gener-
alised shortcut fusion. The traversal takes care of creating and collecting the
extra structure.

5.8 Composite functors

Applicative Functors are closed under functor composition. Gibbons and Oliveira [10]
exploit this fact to define the sequential composition of applicative actions:

data (m � n) a = Comp {unComp :: m (n a)}
(�) :: (Functor m,Functor n)⇒ (b → n c)→ (a → m b)→ a → (m � n) c
f � g = Comp ◦ fmap f ◦ g

The � operator can not only be used to compose traversals but also to show
they are, in fact, closed under sequential composition i.e.

traverse (f � g) = traverse f � traverse g (3)

Using this equation, we can derive a shortcut fusion law for the sequential com-
position of ifold and traverse as follows.

Law 10 (ifold/�/traverse)

ifold φ ι� traverse κ = ifold φ (ι� κ)

Proof (Sketch). By expanding definitions of � and ifold , using functoriality
and composition of traversals (3).

6 Conclusions and Future Work

We have presented two approaches to shortcut fusion for applicative computa-
tions. One is based on the extended shortcut fusion law tailored to applicative
computations. We aimed at obtaining a more structured fusion law that took
into account the way applicative computations are written. By analysing several
examples we found that traversals are at the core of applicative computations.
Based on this fact we proposed the pattern fold/traverse/build as the core of
structural applicative computations and introduced a law for those patterns.
This pattern elegantly separates the pure part of the computation from the
one producing computational effects. We also introduced a notion of applicative
structural recursion as the composition of a fold with a traversal.

Future Work The proposed pattern arose as a result of the study of several
examples found in the literature (e.g. [16,10]). Despite the elegance of the results,
we would like to obtain a more theoretically founded justification for them such
as an initial algebra semantics for ifold . Related to this is the notion of a category
of applicative computations, but this notion is still missing. Additionally we
would like to extend our results to applicative functors with extra structure,
such as the one in Example 10.

Acknowledgements: We thank the anonymous reviewers for their helpful comm-
ments and suggestions.

References

1. Abramsky, S., and Jung, A. Domain Theory. In Handbook of Logic in Computer
Science Volume 3, S. Abramsky, D. Gabbay, and T. S. E. Maibaum, Eds. Oxford
University Press, 1994, pp. 1–168.

2. Backhouse, R., Jansson, P., Jeuring, J., and Meertens, L. Generic program-
ming — an introduction. In LNCS (1999), vol. 1608, Springer-Verlag, pp. 28–115.
Revised version of lecture notes for AFP’98.

3. Bird, R., and de Moor, O. Algebra of programming. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1997.

4. Bird, R. S. Introduction to Functional Programming Using Haskell. Prentice-Hall,
1998.

5. Fernandes, J. P., Pardo, A., and Saraiva, J. A shortcut fusion rule for circular
program calculation. In Haskell (2007), G. Keller, Ed., ACM, pp. 95–106.

6. Ghani, N., and Johann, P. Monadic augment and generalised short cut fusion.
Journal of Functional Programming 17, 6 (2007), 731–776.

7. Ghani, N., and Johann, P. Short cut fusion of recursive programs with compu-
tational effects. In Trends in Functional Programming (2009), P. Achten, P. Koop-
man, and M. Morazán, Eds., vol. 9 of Trends in Functional Programming, Intellect,
pp. 113–128. ISBN 978-1-84150-277-9.

8. Ghani, N., Uustalu, T., and Vene, V. Build, augment and destroy, univer-
sally. In APLAS (2004), W.-N. Chin, Ed., vol. 3302 of Lecture Notes in Computer
Science, Springer, pp. 327–347.

9. Gibbons, J. Datatype-generic programming. In Datatype-Generic Programming,
R. Backhouse, J. Gibbons, R. Hinze, and J. Jeuring, Eds., vol. 4719 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2007, ch. 1,
pp. 1–71–71.

10. Gibbons, J., and d. S. Oliveira, B. C. The essence of the iterator pattern.
Journal of Functional Programming 19, 3-4 (2009), 377–402.

11. Gill, A., Launchbury, J., and Peyton Jones, S. A short cut to deforestation.
In FPCA ’93: Proceedings of the conference on Functional Programming Languages
and Computer Architecture (New York, NY, USA, 1993), ACM Press, pp. 223–232.

12. Hughes, J. Why functional programming matters. Comput. J. 32, 2 (1989),
98–107.

13. Johann, P., and Ghani, N. Monadic fold, monadic build, monadic short cut fu-
sion. In Proceedings of the 10th Symposium on Trends in Functional Programming
(TFP’09) (2009), pp. 9 – 23.

14. Manzino, C., and Pardo, A. Shortcut fusion of monadic programs. Journal of
Universal Computer Science 14, 21 (2008), 3431–3446.

15. Mart́ınez, M., and Pardo, A. A shortcut fusion approach to accumulations. In
Simpósio Brasileiro de Linguagens de Programacao (SBLP 2009) (2009).

16. McBride, C., and Paterson, R. Applicative programming with effects. Journal
of Functional Programming 18, 01 (2008), 1–13.

17. Meertens, L. Functor pulling. In Proc. Workshop on Generic Programming
(1998), R. Backhouse and T. Sheard, Eds.

18. Meijer, E., Fokkinga, M. M., and Paterson, R. Functional programming with
bananas, lenses, envelopes and barbed wire. In Proceedings of the 5th ACM Confer-
ence on Functional Programming Languages and Computer Architecture (London,
UK, 1991), Springer-Verlag, pp. 124–144.

19. Pardo, A., Fernandes, J. P., and Saraiva, J. Shortcut fusion rules for the
derivation of circular and higher-order monadic programs. In PEPM (2009),
G. Puebla and G. Vidal, Eds., ACM, pp. 81–90.

20. Takano, A., and Meijer, E. Shortcut deforestation in calculational form. In In
Proc. Conference on Functional Programming Languages and Computer Architec-
ture (1995), ACM Press, pp. 306–313.

21. Wadler, P. Theorems for Free! In Proceedings of the 4th ACM Conference on
Functional Programming Languages and Computer Architecture, FPCA’89 (New
York, 1989), ACM Press, pp. 347–359.

