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Background

Proof theory is the branch of mathematical logic that studies the structure of
mathematical proofs, seen as mathematical objects. Historically, proof-theory
was introduced by Hilbert, following the work of Peano, Frege, Russell and
Dedekind. Together with model theory, set theory and recursion theory, proof
theory constitutes one of the four pillars of the foundations of mathematics.

In the last fifty years, proof theory has been deeply renewed by the dis-
covery of a strong correspondence between the concepts of proof theory and of
functional programming, known as the Curry-Howard correspondence [1, 4, 2].
According to this correspondence, each formal proof can be seen as a functional
program (a.k.a. the proofs-as-programs paradigm) that meets a specification
given by the proved formula (a.k.a. the formulæ-as-types paradigm). The study
of this correspondence had major theoretical outputs in logic, such as the discov-
ery of type theory and of linear logic. On the practical side, the Curry-Howard
correspondence led to the development of proof assistants such as Coq, MinLog,
Agda, Plastic, NuPrl (based on type theory and its variants) while influencing
the design of functional programming languages such as SML, Caml or Haskell.

The aim of this course is to introduce the main concepts and tools of proof
theory, while explaining the connections with functional programming and type
theory (i.e. the family of formalisms underlying proof assistants such as Coq).
The main questions we shall address are the following ones:

1. What is a proof? What is the difference between a constructive proof and
a non constructive proof? Why and how do proofs compute?

2. How to transform a proof into a program? How to get from a (possibly
non constructive) proof of an existential statement (∃x)A(x) an effective
procedure that computes an x such that A(x) (i.e. a witness).

Organization

The whole course will last four weeks. It will consist of 8 lectures of 2 hours
(4 hours per week) and 4 lectures devoted to exercises (2 hours per week). To
validate the course, students will be given after the last lecture a list of exercises
they will solve and return for correction after a fixed amount of time.

Outline of the course

The series of lectures is split in two parts:
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Part I: Deduction systems This part is devoted to the formal definition
of the notion of proof and to the study of its structural properties. For that,
we shall present two deduction systems—natural deduction and sequent calcu-
lus, while introducing (and motivating) the fundamental distinction between
intuitionistic logic and classical logic. The main tool we shall introduce is the
procedure of cut elimination, from which we shall deduce two important struc-
tural properties of intuitionistic logic: the disjunction property and the witness
property. We shall conclude this part by presenting several methods to translate
classical logic into intuitionistic logic.

• Lecture 1: Natural deduction for intuitionistic logic

• Lecture 2: Sequent calculus for classical logic

• Lecture 3: Translating classical logic into intuitionistic logic

Part II: Typed systems This part is devoted to the correspondence between
formal proofs and functional programs (the Curry-Howard correspondence). We
shall first introduce the Curry-Howard isomorphism in the intuitionistic propo-
sitional calculus, and then show how it naturally extends to more powerful
formalisms, from first-order arithmetic to higher-order arithmetic. We shall
conclude this course by presenting the theory of Pure Type Systems, which is
the logical foundation of modern proof assistants.

• Lecture 4: The Curry-Howard isomorphism

• Lecture 5: Gödel’s system T for first-order arithmetic

• Lecture 6: Girard’s system F for second-order arithmetic

• Lecture 7: From second-order logic to higher-order logic

• Lecture 8: From higher-order logic to Pure Type Systems (PTSs)
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