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Abstract. We prove that stable ergodicity is Cr open and dense among
conservative partially hyperbolic diffeomorphisms with one-dimensional cen-
ter bundle, for all r ∈ [2,∞].

The proof follows the Pugh-Shub program [29]: among conservative partially
hyperbolic diffeomorphisms with one-dimensional center bundle, accessibility
is Cr open and dense, and essential accessibility implies ergodicity.

1. Introduction

In the second half of the 19th century Boltzmann introduced the term ergodic
within the context of the study of gas particles. Since then, even though in its
initial formulation the Ergodic Hypothesis was ambiguous, ergodic theory grew
up to be a useful tool in many branches of mathematics and physics.

Subsequent reformulations and developments turned the original ergodic hy-
pothesis into the statement: time average equals space average for typical orbits,
that is

lim
n→∞

1

n

n−1∑

k=0

φ(fk(x)) =

∫

M

φ dµ µ − a.e.x

A system is µ-ergodic if it satisfies the hypothesis above for all C0 observables φ,
or equivalently, if only full or null µ-volume sets are invariant under the dynamics.
Around 1930, right after the first ergodic theorems appeared - [23], [3], [4] - it
was conjectured that most conservative systems were ergodic.

With the Kolmogorov-Arnold-Moser (KAM) phenomenon (1954) it came out
that there were full open sets of conservative non-ergodic systems [21]. Indeed,
KAM theory presents, for small perturbations of integrable systems (elliptic dy-
namics), positive volume sets of invariant tori, which prevents ergodicity. These
are examples of a stably non ergodic system.

On the other end of the spectrum, the work of Hopf [19], and later Anosov-
Sinai [1, 2], gave full open sets of ergodic systems, a fact that was unknown up to
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that time. Anosov systems, also called completely hyperbolic dynamics, were for
some time the only known examples of stably ergodic systems. By stably ergodic
is meant a diffeomorphism in the interior of the set of the ergodic ones.

Almost three decades later, Grayson, Pugh and Shub got the first non-hyperbolic
example of a stably ergodic system [17]. These examples have a partially hyper-
bolic dynamics [8], [18]: there are strong contracting and strong expanding invari-
ant directions, but a center direction also appears. Since then, the area became
quite active and many stably ergodic examples appeared, see [30] for a survey.
Let us also mention that there are already examples of conservative stably ergodic
systems that are not partially hyperbolic [35].

In this new context, Pugh and Shub have proposed the following:

Conjecture 1 Stable ergodicity is Cr dense among volume preserving partially
hyperbolic diffeomorphisms, for all r ≥ 2.

As far as we know, the conjecture above was first stated in 1995, at the Inter-
national conference on dynamical systems held in Montevideo, Uruguay [27]. We
thank Keith Burns for this information.

In this paper, we prove this conjecture is true in case the center bundle is one
dimensional:

Theorem (Main). Stable ergodicity is Cr dense among volume preserving par-
tially hyperbolic diffeomorphisms with one dimensional center distribution, for all
r ≥ 2.

In [29], Pugh and Shub proposed a program for the proof of this conjecture.
This approach was based on the notion of accessibility: A diffeomorphism f has
the accessibility property if the only non void set consisting of whole stable leaves
and whole unstable leaves is the manifold M itself. It has the essential accessi-

bility property if every measurable set consisting of whole stable leaves and whole
unstable leaves has full or null volume. Clearly, accessibility implies essential
accessibility. When talking about stable and unstable leaves we are referring
to the leaves of the unique foliations tangent to the contracting and expanding
directions, respectively.

Pugh and Shub suggested the following conjectures:

Conjecture 2: Stable accessibility is dense among Cr partially hyperbolic dif-
feomorphisms, volume preserving or not, r ≥ 2.

In the case dim Ec = 1, the accessibility property is always stable [15]. For
the sake of simplicity, let us denote by PHr

m(M) the set of partially hyperbolic
Cr diffeomorphisms of M , preserving a smooth probability measure m. In this
paper, we prove:

Theorem A. Accessibility is open and dense in PHr
m(M), for all 1 ≤ r ≤ ∞, if

the center distribution is one dimensional.
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In fact, we obtain that accessibility is C1 open and C∞ dense. Observe that
the conjecture is established here only for the conservative case. The conjecture
is settled in the general non conservative case also for center dimension one in
[10] by extending the technics in this work.

Let us make some comments about the history of Conjecture 2. Anosov diffeo-
morphism are easily shown to have the accessibility property. In [33] Sacksteder
gave the first example of an accessible non Anosov diffeomorphism. This was an
affine diffeomorphism of a 3 dimensional nilmanifold. Brin and Pesin proved in [8]
that the time one map of the k-frame flow over a surface of negative curvature is
accessible and proved a theorem about the stable accessibility for some partially
hyperbolic systems [8, Theorem 4.1.]. Grayson, Pugh and Shub proved in [17]
that the time one map of the geodesic flow over a surface of negative curvature is
stably ergodic. Later, Wilkinson extended this to the variable curvature case in
[36]; then Katok and Kononenko extended this to the case of the time one map
of a contact Anosov flow in [20]; and Burns, Pugh and Wilkinson proved in [9]
stable accessibility for mixing Anosov flows. In [24], Niţică and A. Török proved
stable accessibility is Cr dense for one-dimensional center bundle, under certain
hypotheses (for instance, dynamical coherence and compact center leaves). Di-
dier has proven in [15] that accessibility is an open property when the central
dimension is 1. For any central dimension, Pugh and Shub proved in [28] that
accessibility is stable whenever the strong bundles are smooth. Also, Burns and
Wilkinson proved Cr density of stable accessibility among skew products in [11].
Shub and Wilkinson showed in [34] that ergodic linear automorphisms on tori can
be Cr perturbed to become stably accessible and the first author proved in [32]
that some of them are stably essentially accessible when the central dimension is
2. Finally, in [16], stable accessibility is shown by Dolgopyat and Wilkinson to
be dense in the C1 topology with no assumption on the dimension of the center
bundle.

The second conjecture of the Pugh-Shub program is:

Conjecture 3: Essential accessibility implies ergodicity among C2 volume pre-
serving partially hyperbolic diffeomorphisms.

We also prove this conjecture in case the center dimension is one.

Theorem B. Essential accessibility implies Kolmogorov (in particular, ergodic-

ity) in PH2
m(M), if the center distribution is one-dimensional.

Let us mention that K. Burns and A. Wilkinson have recently presented a proof
of Theorem B in [13, Corollary 0.2]. In fact, they deduce Theorem B from a more
general theorem involving a technical condition named center bunching that is
trivially satisfied when the dimension of the center bundle is 1 (see the beginning
of section 4 for detailed definitions). Let us state their theorem:
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Theorem 1. [13, Theorem 0.1] Let f be C2, volume-preserving, partially hyper-
bolic and center bunched. If f is essentially accessible, then f is ergodic, and in
fact has the Kolmogorov property.

Let us mention a little bit of the history of the proof of Theorem B. The first
attempt to prove Conjecture 3 appeared in [17], where M. Grayson, C. Pugh
and M. Shub also proved the stable ergodicity of the time one map of the geo-
desic flows over surfaces of constant negative curvature. In this case, the center
bunching condition was global over M in contrast to the point-wise condition
in Theorem 1. They also needed another hypothesis called dynamical coherence
which essentially means that the center-stable and center-unstable bundles are
integrable. Subsequently, in the papers [36, 28, 29] the center bunching condi-
tion was improved, still in the global setting while the hypothesis of dynamical
coherence was not touched at all. In [12] K. Burns and A.Wilkinson jumped
from the global center-bunching condition to a point-wise, improved one, with
the gain that now the condition is trivially satisfied when the central dimension
is 1. But the dynamical coherence was still needed. Finally, in [13] they removed
the dynamical coherence condition using the notion of fake foliations. The fake
foliations consist, roughly speaking, of families of local foliations which are almost
invariant and almost tangent to the invariant spaces.

In our case, when the central foliation is one dimensional, we were able to
remove the dynamical coherence condition in [12] in a different manner. Instead
of using fake disks, we use true integral curves of the center bundle. This integral
curves are much easier to handle since they are everywhere tangent to the central
bundle. We found this way of removing the dynamical coherence condition (when
dim Ec = 1) independently and simultaneously with [13]. So, for completeness,
and because the proof in our case is a little bit simpler than in [13] we decided
to include it here. See proof of Theorem B.

Let us mention that in [13] they also prove that differentiability condition
in Theorem B can be improved to C1+Hölder. We thank A. Wilkinson for this
information.

Acknowledgements. We want to thank M. Shub for his support in a difficult
moment. We also want to thank K. Burns for reading early versions of this
manuscript and for useful remarks. We are also grateful to C. Pugh for many
valuable suggestions. Also we would like to thank the two referees for all the
corrections and comments.

2. Preliminaries, notation and sketch of the proof

Let M be a compact Riemannian manifold, and m be a smooth probability
measure on M . Denote by Diffr

m(M) the set of Cr volume preserving diffeomor-
phisms. In what follows we shall consider a partially hyperbolic f ∈ Diffr

m(M), that
is, a diffeomorphism admitting a non trivial Df -invariant splitting of the tangent
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bundle TM = Es ⊕Ec ⊕Eu, such that all unit vectors vσ ∈ Eσ
x (σ = s, c, u) with

x ∈ M satisfy:
‖Txfvs‖ < ‖Txfvc‖ < ‖Txfvu‖

for some suitable Riemannian metric. It is also required that ‖Tf |Es‖ < 1 and
‖Tf−1|Eu‖ < 1. We shall denote by PHr

m(M) the family of Cr volume preserving
partially hyperbolic diffeomorphisms of M .

It is a known fact that there are foliations Wσ tangent to the distributions Eσ

for σ = s, u (see for instance [8]). A set X will be called σ-saturated if it is a
union of leaves of Wσ, σ = s, u.

In this paper we will consider the case dim Ec = 1. Due to the existence of
solutions of differential equations with continuous vector fields, we can find small
curves passing through each x ∈ M that have everywhere nonzero tangent vector
and are everywhere tangent to the bundle Ec. We shall call these curves center

curves through x, and denote them by W c
loc(x) in order to distinguish them from

the true foliations Wσ, σ = s, u, since a priori they are not the unique integral
curves tangent to Ec. It is easy to see that f takes center curves into center
curves.

We shall denote by Wσ(x) the leaf of Wσ through x for (σ = s, u) and will
write Wσ

loc(x) for a small disk in Wσ(x) centered in x. For any choice of W c
loc(x),

the sets
W σc

loc(x) = Wσ
loc(W

c
loc(x)) =

⋃

y∈W c
loc

(x)

Wσ
loc(y) σ = s, u

are C1 (local) manifolds everywhere tangent to the sub-bundles Eσ ⊕ Ec for
σ = s, u (see, for instance [7, Proposition 3.4.]). The sets above depend on the
choice of W c

loc(x).

Remark 2.1. Observe that for all choices of W sc
loc(x) and y ∈ W sc

loc(x), there exists
a center curve W c

loc(y) through y contained in W sc
loc(x) (see [7]).

Observe also the following key property of the central manifolds that is a con-
sequence of the continuity and transversality of the invariant bundles,

Lemma 2.1. For each small ε > 0 there exists δ > 0 such that if d(z, y) < δ then
Ws

ε (W
c
loc(y)) ∩Wu

ε (z) 6= ∅ or ,what is equivalent, W c
loc(y) ∩ Ws

ε (W
u
ε (z)) 6= ∅ for

any choice of center curve through y.

2.1. Proof of Theorem A. Let us say that a set Γ is σ-saturated if Γ is a
union of leaves of Wσ, σ = s, u. For the proof of Theorem A, we will see that
Cr-generically, the accessibility class of a point x, that is, the minimal s- and
u- saturated set that contains x, is the whole of M if the center bundle is one-
dimensional. This property is known as the accessibility property and is open in
PH1

m(M) if the center bundle is one-dimensional [15].
The proof focuses on the open accessibility classes, and the first step is showing

that for any periodic point, a perturbation can be made so that its accessibility
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class becomes open (Unweaving Lemma). Secondly, we obtain periodic points for
any dynamics in PHr

m(M) having non trivial open accessibility classes that do
not cover M . A Kupka-Smale type genericity argument allows us to conclude:

Proposition A.1. Cr-generically in PHr
m(M), r ≥ 2, either one of the following

properties holds:

(1) f has the accessibility property or
(2) Per(f) = ∅ and the distribution Es ⊕ Eu is integrable

One would expect the second possibility is quite unstable under perturbations
and, indeed, this is the case:

Proposition A.2. Situation (2) described above is meager in PHr
m(M).

We show that the Unweaving Lemma mentioned above also holds for non re-
current points. In this way, integrability of Es ⊕ Eu can be broken by small
perturbations.

In both cases, to have some control on how perturbations affect local invari-
ant manifolds, we need the existence of points whose orbits keep away from the
support of the perturbation (Keepaway Lemma A.4.2).

The two statements together imply Theorem A. This part is developed in §3.

2.2. Proof of Theorem B. For the proof of Theorem B, we shall mainly follow
the lines in [17], [29] and [12]. This theorem was obtained independently of [13],
though Burns and Wilkinson’s result is more general. We decided to include
Theorem B here for completeness, and because our proof is simpler in the sense
that it uses true integral curves instead of fake foliations, which are a difficult
technical step (see discussion after statement of Theorem B). Also, it takes three
steps to characterize Lebesgue density points instead of the seven equivalences
in §4 of [13]. We think that using the weak integrability notion defined in [7], it
should be possible to push our argument to the case of center bundles of higher
dimensions.

Question 2.1. Is it possible to use the techniques here and avoid the fake foli-
ations in case the bunching conditions in [13] hold and Ec is weakly integrable,
that is, there are center leaves everywhere tangent to Ec at every point?

Indeed, Proposition 3.4. of [7] says that when the center bundle is one dimen-
sional, then it is weakly integrable, and this is what allows us to avoid the use of
the fake foliations.

Let us consider a diffeomorphism f having the essential accessibility property,
that is, such that each measurable s- and u-saturated set is of full or null measure.
In order to prove that f is ergodic (each invariant set is of full or null measure)
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it suffices to show, due to Birkhoff’s Ergodic Theorem, that

φ±(x) = lim sup
n→∞

1

n

n∑

k=1

φ(f±k(x)) =

∫

M

φ dm m a.e. x

for all C0 observables φ : M →R. It is not hard to see that, for each c ∈ R,
the set S(c) = φ−1

+ (c,∞) is s-saturated, and the set U(c) = φ−1
− (c,∞) is u-

saturated. Since m(S(c)△U(c)) = 0 due to Birkhoff’s Theorem, we have that
the set S(c) ∩ U(c) differs in a set of null measure from an s- saturated set, and
also from a u-saturated set. In general, we shall say that a measurable set X is
essentially σ-saturated if there exists a measurable σ-saturated set Xσ (an essential

σ-saturate of X) such that m(X△Xσ) = 0. In short, S(c) ∩ U(c) is essentially
s- and essentially u-saturated (with essential s-and u- saturates S(c) and U(c),
respectively).

Pugh and Shub’s adaptation of the usual Hopf’s argument goes on by show-
ing that the set of Lebesgue density points of any essentially s- and essentially
u-saturated set X is in fact s- and u-saturated, whence the essential accessibil-
ity property directly implies ergodicity. When the strong invariant bundles are
smooth this follows directly from the differentiability of holonomies. However,
in the general case the holonomy maps are not differentiable and this problem
is overcome using other notions of density points called julienne density points
introduced by Pugh and Shub.

Proposition B.1. The Lebesgue density points of any essentially s- and essen-
tially u-saturated set X form an s- and u-saturated set.

That is, Lebesgue density points of essentially s− and essentially u−saturated
sets flow through stable and unstable leaves. As we have said before, Pugh and
Shub had suggested in [29] that certain shapes called juliennes would be more
natural, rather than merely Riemannian balls, in order to treat preservation of
density points. Here we follow this line and use certain solid juliennes instead of
balls.

Of course, these new neighborhood bases will define different sets of density
points. We will consider the following generalization of Lebesgue density points:

Let us say that a point x is a Cn-density point of a set X if {Cn(x)}n is a local
neighborhood basis of x, and

lim
n→∞

m(X ∩ Cn(x))

m(Cn(x))
= 1.

In particular, the Lebesgue density points will be the {Brn(x)}n≥1-density points,
where Brn(x) is the Riemannian ball centered at x with radius rn, r ∈ (0, 1). The
choice of r is irrelevant, since x is a Brn-density point of X if and only if

lim
ε→ 0

m(X ∩ Bε(x))

m(Bε(x))
= 1.
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A cu-julienne Jcu
n (x) of x is a dynamically defined local unstable saturation of a

center curve, its radius depending on x and n, and going to 0 subject to certain
rates related to contraction rates in the bundles (see precise definitions in §4.1,
formulas (4.6)). We shall define a solid julienne Jscu

n (x) of x as a local stable
saturation of some cu-julienne (precise definitions in §4.3). Let us point out that
the definition of Jscu

n (x) is not symmetric under exchange of u and s and dual
juliennes Jusc

n (x) will also be used. The family {Jscu
n (x)}n≥1 is a measurable

neighborhood basis of x. For this family we obtain

Proposition B.2. The set of Jscu
n -density points of an essentially s-saturated

set X is s-saturated.

By changing the neighborhood basis, we have solved the problem of preserv-
ing density points, that is we have established Proposition B.1 but for julienne
density points. However, we need to know now what the relationship is between
the julienne density points, and Lebesgue density points. Given a family M of
measurable sets, let us say that two systems {Cn}n and {En}n are Vitali equivalent

over M, if the set of Cn-density points of X equals (as sets, not only a.e.) the set
of En-density points of X for all X ∈ M. The argument is completed by showing
that

Proposition B.3. The family {Jscu
n (x)} is Vitali equivalent to Lebesgue over

essentially u-saturated sets.

Hence, over essentially s- and u-saturated sets, the set of Lebesgue density
point is s- saturated. A symmetric argument shows it is also u-saturated.

This ends the proof of Proposition B.1 and, actually, it shows essential acces-
sibility implies ergodicity. To show that, in fact, it implies Kolmogorov property,
[25] states that it suffices to see that the Pinsker algebra (the largest subalgebra
for which the entropy is zero) is trivial. But after [8], sets in the Pinsker algebra
are essentially s- and essentially u-saturated, which proves Theorem B.

3. Accessibility is Cr open and dense

Let AC(x) denote the accessibility class of the point x. We will show that the
set

D = {f ∈ PHr
m(M) : AC(x) is open for all x ∈ Per(f)}

is Cr generic, where Per(f) denotes the set of periodic points of f . Afterwards,
as stated in Proposition A.1, it will be shown that D may be decomposed into a
disjoint union

(3.1) D = A ∪ B
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where A consists of diffeomorphisms with the accessibility property and B con-
sists of diffeomorphisms without periodic points and satisfying that the distribu-
tion Es ⊕ Eu is integrable. Moreover, B will be shown to be meager. This will
prove Proposition A.2 and, in fact, Theorem A.

We shall set for a given subset X ⊂ M ,

Wσ
loc(X) =

⋃

x∈X

Wσ
loc(x) with σ = s, u.

3.1. A lamination in the complement of open accessibility classes. Fix
f ∈ PHr

m(M), and let U(f) be the set of points whose accessibility classes are
open, and Γ(f) = M \U(f) be the complement of U(f). We say that a partition
L of a set N ⊂ M by disjoint pathwise-connected subsets is a lamination if for
every x ∈ N there is a neighborhood of x, Ux ⊂ N , a set Tx ⊂ N containing x,
called a transversal, and a homeomorphism φx : Tx × D→Ux where D ⊂ Rk is a
neighborhood of 0, such that for every z ∈ Tx,

φx(z, 0) = z, φx(z × D) ⊂ L(z)

and φx(z × D) is the connected component of L(z) ∩ Ux containing z, here L(y)
denotes the element of the partition containing y. We say that each element of
the partition is a lamina or a leaf. Observe that, even though we do not require
any smoothness of the lamination, in our case the leaves will be C1 manifolds.
But we shall not need this property here.

Proposition A.3. Γ(f) is a compact, invariant set laminated by the accessibility
classes.

Let us begin the proof with the following general proposition valid for any
center dimension.

Proposition A.4. For a given point x ∈ M the following statements are equiv-
alent

(1) AC(x) is open.
(2) AC(x) has non empty interior.
(3) AC(x) ∩ W c

loc(x) has nonempty interior for any choice of W c
loc(x).

The idea of the proof of this proposition is already in [32, Section 5].

Proof. We shall prove that 2) ⇒ 1) ⇒ 3) ⇒ 2).
To begin with the proof, let us see that 2) ⇒ 1). Let y be in the interior of

AC(x), take z ∈ AC(x) and let us see that z is in the interior of AC(x). Take
an su-path joining z and y. Let z = x0, x1, . . . , xn−1, xn = y be points in the
su-path such that xi and xi+1 are in the same σ-leaf (for σ either s or u). Take
U ⊂ AC(x) an open neighborhood of y. Let us define inductively Un = U and
Ui = Wσ(Ui+1), i = 1, . . . , n, where σ is s or u depending on whether the xi is
in the s or u-leaf of xi+1 respectively. Observe that xi ∈ Ui for every i and that
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Ui is open for every i since the strong manifolds Wσ form C0 foliations. Hence,
since Ui ⊂ AC(x) for every i we get that z ∈ U0 and U0 ⊂ AC(x) and hence z is
in the interior of AC(x) (see Figure 1).

Figure 1. An su path from z to y

1) ⇒ 3) follows from definition of relative topology since x ∈ AC(x) and AC(x)
is open.

So let us prove that 3) ⇒ 2). Take W c
loc(x) and assume that there is an open

set V ⊂ W c
loc(x) ∩ AC(x). To prove that AC(x) has nonempty interior, let us

define, for

W sc
loc(x) = Ws

loc(W
c
loc(x)) and W usc

loc (x) = Wu
loc(W

sc
loc(x))

the map

pus : W usc
loc (x)→W c

loc(x)

that is obtained by first projecting along Wu and then along Ws (see Figure 2).
The map is continuous because the strong foliations are C0. Also because Wσ

loc(x)
depends continuously on x, it follows that W usc

loc (x) is an open set. So we have
that p−1

us (V ) is open and p−1
us (V ) ⊂ AC(x). But p−1

us (V ) is clearly inside AC(x),
hence AC(x) has nonempty interior. �

Proof of Proposition A.3. Let ACx(y) denote the connected component of
AC(y) ∩ W usc

loc (x) containing y. We shall also make use of the following:

Theorem 2. [18] If f ∈ PHr
m(M) then there are continuous functions γσ :

M →Embr(Dσ, M), σ = s, u, where Embr(Dσ, M) is the set of Cr embeddings
from the disk of dimension σ into M , such that Wσ

loc(z) = γσ(z)(Dσ) for σ = s, u.

Let us see that the partition AC(x) forms a lamination of Γ(f). Given a point
x ∈ Γ(f) let us fix a center curve through x, W c

loc(x), and take the neighborhood
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Ûx = W usc
loc (x). Take the transversal T̂x = W c

loc(x), and the disk D = Ds × Du

where Dσ is as in Theorem 2, σ = s, u. Define the homeomorphism φ : T̂x ×
D→ Ûx by

φ(z, t) = γu (γs(z)(ts)) (tu),

where t = (ts, tu). φ is continuous since γσ are continuous. φ is clearly onto. Let
us see that φ is 1 to 1. Assume that φ(z, t1) = φ(z′, t2) = y, where ti = (tsi , t

u
i ),

i = 1, 2. Then we have that z = z′ since pus(φ(z, t)) = z for every z and t. By
transversality we have that

γs(z)(tsi ) = Wu
loc(y) ∩ W sc

loc(c)

for i = 1, 2 and hence γs(z)(ts1) = γs(z)(ts2) and hence ts1 = ts2 because γs(z) is
injective. So we get that

γu(γs(z)(ts1))(t
u
1) = γu(γs(z)(ts1))(t

u
2)

and this implies again that tu1 = tu2 by injectivity of γu(γs(z)(ts1)). Hence φ is a
homeomorphism by the invariance of domain theorem. Clearly φ(z, 0) = z. So,

if we set Ux = Ûx ∩ Γ(f) the neighborhood of x in Γ(f), and Tx = T̂x ∩ Γ(f) the
transversal, we get that the restriction of φ : Tx × D→Ux is a homeomorphism.
Observe that

φ(z × D) = Wu
loc(W

s
loc(z)) = p−1

us (z).

Let us see that φ(z × D) = ACx(z). This is done in the following lemma.

Figure 2. A point in U(f) (open accessibility class)

Lemma A.4.1. If z ∈ Γ(f) ∩ W c
loc(x) then p−1

us (z) = ACx(z).
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Proof. Since ACx(z) is connected and pus is continuous we have that pus(ACx(z))
is a connected subset of W c

loc(x), see figure 2. Thus if pus(ACx(z)) contains more
than one point, it would have non empty interior since W c

loc(x) is one dimensional.
Hence, by Proposition A.4 AC(z) would be open, contradicting that z ∈ Γ(f).
Since z is clearly in ACx(z) and pus(z) = z we have that pus(ACx(z)) = z and
hence ACx(z) ⊂ p−1

us (z). The other inclusion follows since p−1
us (z) = Wu

loc(W
s
loc(z))

is connected and p−1
us (z) ⊂ AC(z) ∩ W usc

loc (x) . �

So we get that Γ(f) is laminated by the accessibility classes and this ends the
proof of Proposition A.3. �

Let us observe the following consequence of our proof.

Remark 3.1. There is an ε > 0 such that if x ∈ Γ(f), y ∈ Wu
loc(x) and z ∈

Ws
loc(x) are ε-close to x then

Ws
loc(y) ∩Wu

loc(z) 6= ∅,

see Figure 3.

Proof. Let us first see that given two points, a and b such that a ∈ Γ(f) and
b ∈ Wu

ε (a), we have that Ws
ε (b) ⊂ Wu

loc(W
s
loc(a)). In fact, for some ε > 0 small,

Ws
ε (b) ⊂ W usc

loc (a), hence, since b ∈ Wu
loc(a), we get that Ws

ε (b) ⊂ ACa(a) and so
pus(W

s
ε (b)) = a, that is, Ws

ε (b) ⊂ Wu
loc(W

s
loc(a)).

So, taking a = y and b = x we have proved that Ws
ε (x) ⊂ Wu

loc(W
s
loc(y)). Hence,

if z ∈ Ws
ε (x), then z ∈ Wu

loc(r) for some r ∈ Ws
loc(y). But then, r ∈ Wu

loc(z) and
r ∈ Ws

loc(y), and hence r ∈ Ws
loc(y) ∩Wu

loc(z) 6= ∅. �

3.2. Keepaway Lemma. Let f be a diffeomorphism preserving a foliation W
tangent to a continuous sub-bundle E ⊂ TM . Call W(x) the leaf of W through

Figure 3. A point in Γ(f)



ACCESSIBILITY AND STABLE ERGODICITY 13

x and Wε(x) the set of points that are reached from x by a curve contained
in W(x) of length less than ε. Given a (small) disk V transverse to W whose
dimension equals the codimension of E, define Bε(V ) = ∪{Wε(y); y ∈ V }; also
define Cε(V ) = B5ε(V ) \ Bε(V ).

The following lemma was already proved by R. Mañé in [22, Lemma 5.2.] when
the dimension of E is 1. His proof generalizes to higher dimensions with some
changes and here we present this generalization.

Lemma A.4.2 (Keepaway Lemma). Let us assume that ||Tf−1|E|| < µ < 1. Let
N be such that µ−N > 5. Given V a small disk transverse to W and ε > 0, if

fn(Cε(V )) ∩ Bε(V ) = ∅ ∀n = 1, . . . , N

then given y ∈ V there is z ∈ W5ε(y) \ Wε(y) such that fn(z) /∈ Bε(V ) for all
n ≥ 0.

Proof. Let y ∈ V and w ∈ W5ε(y) be such that Wε(w) ⊂ Cε(V ). Set D0 =

Wε(w). We shall construct, by induction, a sequence of closed disks Dn such
that f−1(Dn) ⊂ Dn−1 ∀n > 0 and Dn ∩ Bε(V ) = ∅. Thus z will be any point in⋂
{f−n(Dn); n ∈ N} (in fact in our construction this intersection will consist of

a unique point).
For the following construction, observe that for any δ and x ∈ M we have that

Wδ(f(x)) ⊂ Wµ−1δ(f(x)) ⊂ f(Wδ(x)). The construction is as follows:

(1) If n < N put Dn = fn(D0).
(2) For the N th iterate, observe that still fN(D0) ∩ Bε(V ) = ∅ but fN(D0)

contains a round ball around fN(w) of radius 5ε, that is,

W5ε(fN(w)) ⊂ fN(D0).

So we may change from iterates of D0 to round balls, that is, put Dn =
W5ε(fn(w)) for n = N, . . . , n1 − 1 where n1 is the first iterate such that

W5ε(fn1(w))∩Bε(V ) 6= ∅. Observe that Dn ⊂ f(Dn−1) and Dn∩Bε(V ) =
∅ for n = 0, . . . , n1 − 1.

(3) For the nth
1 iterate, we can not take W5ε(fn1(w)), since this disk intersects

Bε(V ). So, either the intersection Wε(fn1(w)) ∩ Bε(V ) is empty or not.

If it is empty then take the point wn1
= fn1(w) and Dn1

= Wε(wn1
). If it

is nonempty, then any point wn1
∈ W5ε(f

n1(w)) with d(wn1
, fn1(w)) = 4ε

will satisfy Wε(wn1
) ⊂ Cε(V ), see Figure 4, so take this point wn1

and

take Dn1
= Wε(wn1

). Observe that in either case

f(Dn1−1) ⊃ W5ε(f
n1(w)) ⊃ Dn1

.

(4) Now, to continue the construction, go to step 1, replace D0 by Dn1
and w

by wn1
.
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D0w

y

Bε(V )

Cε(V )

wn1

f(Dn1−1)

Dn1

Figure 4. Keepaway Lemma

This algorithm gives the desired sequence of disks, and hence the point z,
proving the lemma. �

We would like to thank Keith Burns for pointing out some inaccuracies in first
versions of the proof of the Keepaway Lemma and the the following Corollary.

We have the following corollary of the Keepaway Lemma that deals with the
abundance of nonrecurrent points.

Corollary A.1. Let f : M →M leave invariant an expanding foliation W.

(1) For every x ∈ M the set of points {y ∈ W(x) : y /∈ ω(y)} is dense in
W(x), that is, the points that are nonrecurrent in the future are dense in
W(x) for every x.

(2) If f is partially hyperbolic then for every x ∈ M and for every ε > 0 there
is a point y ∈ Ws

ε (W
u
ε (x)) such that y /∈ ω(y) and y /∈ α(y), in particular,

the nonrecurrent points (for the future and the past) are dense in M and
can be found in any accessibility class.

Proof. Let us prove the first property. Take a point x and le us prove that the
points that are not recurrent in the future are dense in W(x). Take z ∈ W(x)
and let us approach it inside W(x) by points nonrecurrent in the future. We
may assume z is not periodic since periodic points can always be approached by
non-periodic ones inside the same W leaf. If z /∈ ω(z) then z approaches itself.
So, let us assume that z ∈ ω(z).
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Take ε0 such that the ε0 ball around z does not return in the first N iterates,
where N is the N of the Keepaway Lemma (this is always possible since z is not
periodic). Let us fix ε much smaller than ε0, something like ε0/100. Now, since z
is forward recurrent, take a very big positive iterate fn(z) such that the distance
between z and fn(z) is so small that if we take a small transversal V through
fn(z), Cε(V ) ⊂ Bε0

(z). Moreover, we may require also that Bε/2(z) ⊂ Bε(f
n(z)).

Using the Keepaway Lemma, take a point ȳ in W5ε(f
n(z)) such that the positive

orbit of ȳ do not enter Bε(f
n(z)). Take y = f−n(ȳ) and observe that y is as close

as wanted to z because n is as big as we want, so, in particular, we may assume y
is in Bε/2(z). Finally, y cannot be forward recurrent since if it were recurrent then
the forward orbit of ȳ will approach y and hence should enter Bε/2(z) ⊂ Bε(f

n(z)).
The second property is an application of the first and of the fact that if a point

y does not return in the future to a small neighborhood of y, then points in its
stable manifold do not return either. �

Set I = {f ∈ PHr
mM ; Es ⊕Eu is integrable}. Observe that I is a closed set

and B ⊂ I (see definition of B in page 8).
In the partially hyperbolic setting the Keepaway Lemma A.4.2 has as corollaries

that I has empty interior and that, given a periodic point x, f can be perturbed
in such a way that the accessibility class of x for the perturbed diffeomorphism
is open. This is shown in the following subsections.

3.3. D is generic. After the following property, genericity of D follows from a
Baire type argument like in the proof of Kupka-Smale Theorem:

Lemma A.4.3 (Unweaving Lemma). For each x ∈ Per(f) there exists g Cr-close
to f such that x ∈ Per(g) and ACg(x) is open.

Proof. Assume that ACf(x) is not open for some periodic point x of period k.
Then, as stated in Remark 3.1, for all y ∈ Wu

loc(x) and all z ∈ Ws
loc(x) ε-close to

x, Ws
loc(y) ∩Wu

loc(z) 6= ∅ .
The idea is to perturb a small neighborhood of x, so that x ∈ Per(g) and

Ws
g,loc(y

′) ∩Wu
g,loc(z

′) = ∅ for some y′ ∈ Wu
g,loc(x) and z′ ∈ Ws

g,loc(x) close to x.
This will obviously prove ACg(x) is open.

We shall use the Keepaway Lemma A.4.2 to find these points. To find a suitable
transversal V let us state the following:

Theorem 3. [18]Center-Stable Manifold. Given a periodic point of period k whose
derivative admits an invariant by Dfj(x)f

k splitting Tfj(x)M = Es
fj(x) ⊕ Ec

fj(x) ⊕
Eu

fj(x), for j = 0, . . . , k − 1, which is partially hyperbolic, there are center-stable

manifolds W cs
loc(f

j(x)) tangent to Es
fj(x) ⊕Ec

fj(x) at f j(x) satisfying the following:

for every N > 0 there is δ > 0 such that if 0 ≤ j ≤ N , then f j(W cs
δ (x)) ⊂

W cs
loc(f

j(x)) where we denote by W cs
δ (f j(x)) the center-stable manifold W cs

loc(f
j(x))

intersected with the ball centered at f j(x) and radius δ.
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Figure 5. Unweaving Lemma: Before and after perturbing
around a periodic point x

So we shall take V = W cs
δ (x) where δ is as in the Center-Stable Manifold

Theorem for the N of the Keepaway Lemma. Observe that W cs
loc(x) is a priori

different from W sc
loc(x) and hence we know it is tangent to Ec ⊕Es only at x, but

this is enough because we only require V to be transversal to Eu.
Now, if we take ε small in the Keepaway Lemma, it is not hard to see that

V satisfies its hypotheses. Hence, we obtain a point y ∈ Wu
5ε(x) such that its

forward orbit does not intersect Bε(V ). Analogously, applying the Keepaway
Lemma to f−1, we obtain a point z ∈ Ws

5ε(x) that does not return for the past

to a similar neighborhood of x, say Bε(V̂ ).
Now, if we take j big enough, for some δ > 0 small, we have that f−jk(y) and

f jk(z) are very close to x and hence Wu
δ (f jk(z)) ∩Ws

δ (f
−jk(y)) is not empty by

Remark 3.1; let us denote the point of intersection by w, see the left figure in
Figure 5. Let y′ = f−jk(y) and z′ = f jk(z). We may assume that δ > 0 is so

small that Ws
δ (y

′), Wu
δ (z′) and w are contained in Bε := Bε(V ) ∩ Bε(V̂ ).

Since y ∈ Wu
5ε(x) does not return to Bε(V ) in the future and z ∈ Ws

5ε(x)

does not return to Bε(V̂ ) in the past, we can choose U , a sufficiently small
neighborhood of w, in such a way that fn(Ws

δ (y
′)) and f−n(Wu

δ (z′)) does not
intersect U for all n ≥ 1. Also we can require U not to intersect Wσ

ε (fn(x)) for
σ = u, s, (see Figure 6).

We now show that if we perform any perturbation whose support is in U then
Ws

ε (x), Wu
ε (x), Wu

δ (z′) and f(Ws
δ (y

′)) do not change, i.e. if g = f ◦ h for some
diffeomorphism h satisfying h(a) = a for every a /∈ U then

Ws
ε (x, g) = Ws

ε (x, f), Wu
ε (x, g) = Wu

ε (x, f), Wu
δ (z′, g) = Wu

δ (z′, f)

and Ws
δ (y

′, g) = h−1(Ws
δ (y

′, f)).
In fact, observe that if a set A is such that fn(A)∩U = ∅ for every n ≥ 0, then

fn|A = gn|A for every n ≥ 1. In the same way, if f−n(A)∩U = ∅ for every n ≥ 1,
then f−n|A = g−n|A for every n ≥ 1. This, plus the characterization of the strong
invariant manifolds and the choice of U gives us the first three identities. The
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Wu
5ε(x)

Ws
5ε(x)

W c
loc(x)

wf(Ws
δ (y

′))

f−1(Wu
δ (z′))

y′

z′

x

y

z

U

Figure 6. Unweaving Lemma: the neighborhood U

fourth one follows essentially in the same manner. In fact, by the characterization
of the strong invariant manifolds, to prove the forth identity it is enough to see
that gn(h−1(Ws

δ (y
′, f))) = fn(Ws

δ (y
′, f)) for every n ≥ 1. This is obvious for

n = 1 by definition of g, and for n ≥ 2 because fn(f(Ws
δ (y

′, f))) ∩ U = ∅ for
n ≥ 0.

So, let us take h to be the time t map of a flow generated by a C∞ divergence
free vector-field X which is 0 outside U and such that X(w) is a unit vector
transverse to Es ⊕ Eu at w. h is clearly volume preserving and if t is small
enough we have that h is C∞ close to the identity and hence g is C∞ close to f .

Moreover, since X(w) is transverse to Es ⊕ Eu at w, if t is small enough, we
get that h(W u

δ (z′, f)) ∩ W s
δ (y′, f) = ∅. Since Ws

δ (y
′, g) = h−1(Ws

δ (y
′, f)) this im-

plies that W u
δ (z′, g) ∩ W s

δ (y′, g) = ∅ and this implies, using Remark 3.1, that the
periodic point x cannot be in Γ(g) and hence that its accessibility class ACg(x)
is open.

Using a Baire type argument like the one in the proof of Kupka-Smale Theorem,
we get, using the Unweaving Lemma above, that Cr-generically

Per(f) ⊂ U(f).
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This means, the set D is Cr-generic. The following proposition shows that, in case
Γ(f) is a proper subset, there are always periodic points in Γ(f). This situation
is meager.

Proposition A.5. If ∅  Γ(f)  M , then Per(f) ∩ Γ(f) 6= ∅.

For the proof of this proposition let us state the following reformulation of
Lemma 2.1 in page 5.

Lemma A.5.1. For each small ε > 0 there exists δ > 0 such that if d(y, z) < δ
and z ∈ W c

δ (x), then W c
loc(y)∩Ws

ε (W
u
ε (x)) 6= ∅, regardless of the choice of center

leaves of x and y, see Figure 7.

Note that in Figure 7 x ∈ Γ(f), but the lemma holds for all x ∈ M .

Figure 7. Lemma A.5.1, case x ∈ Γ(f)

Proof of Proposition A.5. Let us prove there is a periodic point in the boundary
∂Γ(f) of Γ(f). Observe that ∂Γ(f) is a compact, f -invariant, su-saturated set.
We will assume M and Ec are orientable. Indeed, by taking a double covering if
necessary, we can assume M is orientable. If Ec is not orientable, we take again
a double covering M̃ of M in such a way that Ẽc, the lift of Ec, is orientable.
Let f̃ be a lift of f to M̃ , then f̃ 2 is partially hyperbolic, Ẽc is its center bundle
and f̃ 2 preserves the orientation of Ẽc. Any point x ∈ Γ(f) lifts to a point

x̃ ∈ Γ̃(f̃ 2) ⊂ M̃ . The set Γ̃(f̃ 2) is locally diffeomorphic to Γ(f), and is f̃ 2

invariant. So a periodic point for f̃ 2 in Γ̃(f̃ 2) will project to a periodic point for f
in Γ(f). So we shall assume that M and Ec are orientable, and that f preserves
orientation of Ec.

Given any center curve W c
loc(x), we shall identify it with an interval in the line

in such a way that the orientation of Ec coincides with the standard orientation
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in the line. Take a point x ∈ ∂Γ(f) such that there is an open interval I =
(ax, cx) ⊂ W c

loc(x) \ Γ(f) with ax = x, and cx /∈ Γ(f). Take ε > 0 so small that
V = Ws

ε (W
u
ε (I)) verifies

(3.2) V ∩ Γ(f) = Ws
ε (W

u
ε (x)) ⊂ ∂Γ(f)

In what follows, we shall reduce the interval I to an interval of the form (ax, bx),
with bx < cx. However, Equality (3.2) holds for any such interval. Note that
fk(V )∩Γ(f) = ∅ for all k ∈ Z. Let δ > 0 be as in Lemma A.5.1, and consider the
set U = V ∩ Bδ(x). We lose no generality in assuming I ⊂ U . Given y ∈ U and
a choice of W c

loc(y), let us denote by (ay, by) the connected component of the set
W c

loc(y) ∩ V containing y. Lemma A.5.1 implies that W c
loc(y) ∩Ws

ε (W
u
ε (z)) 6= ∅

for all z ∈ I. Since ay is the left end point of the interval (ay, by) with respect to
the orientation of Ec then ay ∈ Ws

ε (W
u
ε (x)). Note that (ay, by) ∩ Γ(f) = ∅.

Figure 8. Finding periodic orbits - Proposition A.5

Since the non-wandering set of f is M , there exists y ∈ U such that fk(y) ∈ U
for some k > 0. Now, fk(y) ∈ (fk(ay), f

k(by)) = fk(ay, by), and fk(ay, by) ∩
Γ(f) = ∅. So, (fk(ay), f

k(y)) ⊂ (afk(y), bfk(y)), whence fk(ay) ∈ V . On the

other hand, ay ∈ Γ(f), so fk(ay) ∈ Γ(f). Therefore, (3.2) implies that fk(ay) ∈
Ws

ε (W
u
ε (x)). In this way, we have shown that there is ay ∈ M such that both ay

and fk(ay) are in Ws
ε (W

u
ε (x)).

Finally, the proof follows from the following version of the Anosov Closing
Lemma (see for instance Lemma 3.8, page 76 in [5] for a proof):
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Lemma A.5.2. Anosov’s Closing Lemma There is ε0 > 0 such that if x ∈ Γ(f)
satisfies fk(Ws

ε0
(Wu

ε0
(x))) ∩ Ws

ε0
(Wu

ε0
(x)) 6= ∅ for some k > 0, then there is a

periodic point in Ws
ε0

(Wu
ε0

(x)).

�

After Proposition A.5, we have the following possibilities for f ∈ D :

(1) Γ(f) = ∅, that is, f has the accessibility property, i.e. f ∈ A

(2) Γ(f) = M with Per(f) = ∅, i.e. f ∈ B.

The situation ∅  Γ(f)  M cannot happen for f ∈ D , since it implies there is
a periodic point in Γ(f). This proves Proposition A.1.

3.4. Proposition A.2. Recall that I = {f ∈ PHr
m(M); Es ⊕Eu is integrable}

is a closed set and B ⊂ I , next proposition implies Proposition A.2.

Proposition A.6. I has empty interior.

Proof. If there is a periodic point, then we apply the Unweaving Lemma A.4.3
and we get the proposition. So let us assume the set of periodic points is empty.

The proof is similar to that of the Unweaving Lemma A.4.3, but the choice of
the points is done in the opposite way. In fact, we first find the point w, which
is the point where the perturbation will be realized and then we find the points
x, y and z.

Using Corollary A.1 we can find a nonrecurrent point w. Let us then assume
that ε is such that fn(w) /∈ Bε(w) for every n 6= 0. Since w is nonrecurrent
and the N in the Keepaway Lemma is fixed, we can find, for some ε′ < ε,
points y ∈ Ws

ε (w) and z ∈ Wu
ε (w), y, z 6= w, such that f−n(y) /∈ Bε′(w) and

fn(z) /∈ Bε′(w) for n ≥ 1. Let us take x = Wu
loc(y) ∩Ws

loc(z).
Now, as in the Unweaving Lemma, we can find a small neighborhood U ⊂

Bε(w) of w such that fn(Ws
ε (y)) and f−n(Wu

ε (z)) do not cut U for all n ≥ 1.
Also we can require U not to intersect fn(Ws

loc(x)) and f−n(Wu
loc(x)) for all n ≥ 0.

Indeed, let us see how to get that fn(Ws
ε (y)) does not cut U for all n ≥ 1 and

that f−n(Wu
loc(x)) does not cut U for all n ≥ 0, the others follow the same idea.

Taking U small enough, we have three possibilities: we have what we want,
fn(Ws

ε (y)) cuts U infinitely many times, or w ∈ fn(Ws
ε (y)) for some n > 0. This

last possibility can not occur since in this case we will get that w ∈ fn(Ws
ε (y)) ⊂

fn(Ws(w)) and hence there will be a periodic point. The second possibility
can not occur either, because in this case we will get that ω(y) ∩ U 6= ∅, but
ω(y) = ω(w) and hence this contradicts that w is nonrecurrent.

Taking U even smaller if necessary we will have what we want or that f−n(Wu
loc(x)),

n ≥ 0, cuts U infinitely many times or that for some n ≥ 0, w ∈ f−n(Wu
loc(x)).

In this last case, by the choice of y and z we have that n 6= 0, so we will have that
w ∈ f−n(Wu

loc(x)) for some n > 0, but this implies the existence of a periodic
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point by the Anosov closing Lemma A.5.2. If f−n(Wu
loc(x)), n ≥ 0, cuts U infin-

itely many times then α(x) ∩ U 6= ∅ and since y ∈ Wu
loc(x), then α(y) ∩ U 6= ∅,

contradicting the choice of y.
Once we get that the invariant manifolds do not return, the same perturbation

as in the Unweaving Lemma works.

4. Essential accessibility implies ergodicity

4.1. Definitions. Let us consider smooth functions ν, ν̂, γ, γ̂ : M →R+ satisfy-
ing, for all unit vectors vi ∈ Ei with i = s, c, u and x ∈ M ,

‖Txfvs‖ < ν(x) < γ(x) < ‖Txfvc‖ < γ̂(x)−1 < ν̂(x)−1 < ‖Txfvu‖

where ν, ν̂ < 1 and ‖.‖ is an adapted Riemannian metric as at the beginning of
Section 2. We may also assume that d and ν, ν̂, γ, γ̂ satisfy:

(4.3)
d(f(x), f(x′)) ≤ ν(x) d(x, x′) for x′ ∈ Ws

loc(x)

d(f−1(x), f−1(x′)) ≤ ν̂(f−1(x)) d(x, x′) for x′ ∈ Wu
loc(x)

(4.4)
d(f(x), f(x′)) ≤ γ̂(x)−1d(x, x′) for x′ ∈ W c

loc(x)

d(f−1(x), f−1(x′)) ≤ γ(f−1(x))−1d(x, x′) for x′ ∈ W c
loc(x)

Remark 4.1. Inequalities (4.3) and (4.4) do not depend on the choice of the
center curve through x.

Note that ν, ν̂ < 1 and γγ̂ < 1 for any partially hyperbolic diffeomorphism.
Moreover, since dim Ec = 1, γγ̂ may be chosen so close to 1 that ν < γγ̂ and
ν̂ < γγ̂. This is the center bunching condition. We can do so since f acts on Ec

conformally. If Ec is higher dimensional then this is no longer the case, f may
act far from conformally.

Let us introduce a smooth function σ : M →R satisfying

(4.5)
ν(x)

γ(x)
< σ(x) < min(1, γ̂(x)).

Consider, for α = ν, ν̂, γ, γ̂, σ and n ≥ 0 the multiplicative cocycles:

αn(x) :=

n−1∏

i=0

α(f i(x)) α−n(x) := αn(f−n(x))−1

For each W c
loc(x), define the set

Bc
n(x) = W c

σn(x)(x)
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and consider also:

(4.6) Ju
n(x) = f−n(Wu

νn(x)(f
n(x))) and Jcu

n (x) =
⋃

y∈Bc
n(x)

Ju
n(y)

The sets Jcu
n (x) will be called center-unstable juliennes of x or cu-juliennes.

We now state two lemmas which will be useful in what follows.

Lemma B.6.1. For any Hölder continuous α : M →R+, there is a fixed constant
C > 1 such that for all n ≥ 0, if y ∈ Ws

loc(B
c
n(x)) ∪ Ju

n(x), then

1

C
≤

αn(x)

αn(y)
≤ C

Proof. See for instance [12, Proposition 1.6]

The following is proved in [14, Theorem 0.2.]:

Proposition B.7. If f : M →M is C1+α partially hyperbolic with some center
bunching condition (trivially satisfied for one-dimensional center bundle) then
for any point x admitting a center-stable manifold W sc

loc(x) everywhere tangent
to Es ⊕ Ec (manifold that always exists when dim Ec = 1, see discussion before
Remark 2.1) the stable foliation restricted to W sc

loc(x) is C1 with uniform bounds
(here uniform means that do not depend on x).

In [26, Theorem 2.1.] the reader may find the case when the diffeomorphism is
C2 and the center dimension is 1.

4.2. Controlling stable holonomy. In this section we will prove that the defor-
mation suffered by the cu-juliennes under the stable holonomy can be controlled
in the following sense:

Proposition B.8. There exists k ∈ Z+ such that, if x′ ∈ Ws
loc(x), then for all

choices of W c
loc(x) and W c

loc(x
′) contained in W sc

loc(x), the stable holonomy map
from W cu

loc(x) to W cu
loc(x

′) satisfies

Jcu
n+k(x

′) ⊂ hs(Jcu
n (x)) ⊂ Jcu

n−k(x
′) ∀n ≥ k.

The proof splits into two parts. On one hand, we prove that the holonomy
does not distort center leaves too much, as is seen in Lemma B.8.1. On the other
hand, each unstable fiber on a certain center leaf is transformed, under the stable
holonomy, into a curve contained in a larger julienne. This is seen in Lemma
B.8.2 and Figure 9.

Lemma B.8.1. There exists k ∈ Z+, not depending on x, such that for all choices
W c

loc(x), W c
loc(x

′) of center curves through x, x′ contained in some W sc
loc(x), with

x′ ∈ Ws
loc(x), the stable holonomy map hs from W c

loc(x) to W c
loc(x

′), satisfies

hs(Bc
n(x)) ⊂ Bc

n−k(x
′) ∀n ≥ k
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Proof. Recall that by Proposition B.7 the stable holonomy between center man-
ifolds is C1. Let L be its Lipschitz constant. Let C > 1 be as in and Lemma
B.6.1. Take k > 0 such that σ−k(x) > LC for all x ∈ M (recall that σ < 1), then

hs(Bc
n(x)) ⊂ W c

Lσn(x)(x
′) ⊂ W c

LCσn(x′)(x
′) ⊂ W c

σn−k(x′)(x
′) = Bc

n−k(x
′)

and the lemma follows.

The following lemma is the second part of the proof of Proposition B.8:

Lemma B.8.2. There exists k ∈ Z+, depending neither on x nor on the choice of
the center curves, such that, under the hypotheses of Proposition B.8, the stable
holonomy map hs from W cu

loc(x) to W cu
loc(x

′) satisfies

hs(Ju
n(z)) ⊂ Jcu

n−k(x
′) ∀n ≥ k

for all z ∈ Bc
n(x).

Proof. Consider x′ ∈ Ws
loc(x), and center curves W c

loc(x), W c
loc(x

′) through x, x′

respectively, contained in W cs
loc(x). Consider y ∈ Ju

n(z), with z ∈ Bc
n(x), and let

y′ = hs(y), z′ = hs(z).
Let us find k > 0 satisfying:

(1) y′ ∈ Ju
n−k(w

′) ⊂ Jcu
n−k(x

′) with

z z′

y

y′

w′

Ws(z)

Ws(y)

Bc
n(x)

Bc
n−k(x

′)

Ju
n(z)

Ju
n−k(w

′)

hs(Ju
n(z))

Figure 9. Lemma B.8.2
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(2) w′ ∈ Bc
n−k(x

′) ⊂ W c
loc(x

′).

Since the point fn(y) is in Wu
νn(z)(f

n(z)), we have d(fn(y), fn(z)) ≤ νn(z). On the

other hand, y′ ∈ Ws
loc(y) and z′ ∈ Ws

loc(z) and since f contracts stable manifolds
by a factor of ν we have:

d(fn(y′), fn(z′)) ≤ d(fn(y′), fn(y)) + d(fn(y), fn(z)) + d(fn(z), fn(z′))

≤ νn(y′) + νn(z) + νn(z′) ≤ Kνn(z′)

for a fixed constant K > 0, not depending on z, z′, y, y′ (see Lemma B.6.1).
Let w′ ∈ Wu

loc(y
′) ∩ W c

loc(x
′). Since the angle between Ec and Eu is uniformly

bounded from below and since the unstable foliation restricted to W uc
loc is uniformly

C1, see Proposition B.7, it follows by projecting along unstable manifolds inside
W uc

loc(f
n(x′)) that there is a constant C ′ > 0 such that

(4.7) d(fn(y′), fn(w′)) ≤ C ′νn(y′) and d(fn(w′), fn(z′)) ≤ C ′νn(z′).

Hence (1) follows from the first inequality above by taking any l0 > 0 satisfying
ν−l0(y) > C ′ for all y ∈ M . Indeed,

d(fn−l(y′), fn−l(w′)) ≤ d(fn(y′), fn(w′)) ≤ C ′νn(y′) ≤ νn−l(y
′)

for all l ≥ l0. Using Lemma B.6.1 again, one obtains k > 0 such that ν−k(y) > C
for all y ∈ M , and so y′ ∈ Ju

n−k(w
′).

From the second inequality in (4.7), and inequalities (4.4) and (4.5) in §4.1 we
derive

d(w′, z′) ≤ C ′γ−n(z′)νn(z′) ≤ C ′σn(z′) ≤ σn−l(z
′).

Now, previous lemma implies z′ ∈ Bc
n−l(x

′) for some sufficiently large l > 0, so
using Lemma B.6.1 again and taking into account that z′ ∈ Bc

n−l(x
′), we find a

(uniform) k > 0 so that d(x′, w′) ≤ σn−k(x
′) for all n ≥ k.

4.3. A characterization of Lebesgue density points. In this paragraph, we
shall see that the following three systems are Vitali equivalent over essentially
u-saturated sets:

(1) Qn(x) =
⋃

w∈Jsc
n (x) W

u
σn(x)(w) where Jsc

n (x) =
⋃

y∈Bc
n(x) W

s
σn(y)(y),

(2) Jusc
n (x) =

⋃
y∈Jsc

n (x) Ju
n(y),

(3) Jscu
n (x) =

⋃
y∈Jcu

n (x) W
s
σn(y)(y).

The first system Qn(x) consists of “cubic” balls, so it is not difficult to see it is
Vitali equivalent to Lebesgue. The second system Jusc

n (x) consists of dynamically
defined local unstable saturation of local center-stable leafs. Both systems are
local unstable saturations of the same center-stable leaf, and in both cases the
local unstable fibers are “uniformly” sized, so over essentially u-saturated sets,
they have the same density points. This is a consequence of absolute continuity of
the unstable foliation. Finally, the systems Jusc

n (x) and Jscu
n (x) are comparable,
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in the sense that they are nested, their volumes preserving a controlled ratio. So
the three systems are Vitali equivalent over essentially u-saturated sets:

Lemma B.8.3. The system {Qn(x)}x∈M is Vitali equivalent to Lebesgue.

In the sequel the following characerizations of density bases will be useful, its
proof is left to the reader. We thank M. Hirayama for pointing us a mistake in a
previous statement of Proposition B.9.

Proposition B.9. Each of the following are sufficient conditions for two systems
{Bn(x)}x and {Cn(x)}x to be Vitali equivalent over a given σ-algebra M:

(1) There exist k ∈ Z+ and D > 0 such that

Bn+k(x) ⊂ Cn(x) ⊂ Bn−k(x) with
m(Bn+k(x))

m(Bn(x))
≥ D for all x ∈ M.

(2) There exists D > 0 such that

1

D
≤

m(X ∩ Bn(x)) m(Cn(x))

m(X ∩ Cn(x)) m(Bn(x))
≤ D ∀n ∈ Z+ ∀X ∈ M.

Proof of Lemma B.8.3. Observe that the system {Bσn(x)(x)} is Vitali equivalent
to Lebesgue since σn+1(x)/σn(x) = σ(x) and 1/C < σ(x) < C for some C > 1.
Observe also that, by Lemma B.6.1, if y ∈ Bc

n(x) then 1/C < σn(x)/σn(y) < C.
Now, if z ∈ Qn(x), then there are y ∈ Bc

n(x) and w ∈ Ws
σn(y)(y) such that

z ∈ Wu
σn(x)(w). So, we have that

d(z, y) ≤ d(z, w) + d(w, y) + d(y, x) ≤ σ(x) + σ(y) + σ(x) ≤ (2 + C)σ(x).

Hence, for some fixed k, that do not depend on n, nor on x, Qn(x) ⊂ Bσn−k(x)(x).
To get the other inclusion, Bσn(x)(x) ⊂ Qn−k(x) for some fixed k, that does

not depend on n or on x, we shall use the following lemma, which appeared in
[12, Lemma 1.1] and is a consequence of the uniform continuity of the invariant
bundles.

Lemma B.9.1. There are δ > 0 small and C > 0 such that given four points,
p0, p1, p2, p3 satisfying p1 ∈ W c

loc(p0), p2 ∈ Ws
loc(p1) and p3 ∈ Wu

loc(p2) then, if
d(p0, p3) < δ we have that d(pi, pi+1) ≤ Cd(p0, p3) for i = 0, 1, 2.

Proof. The lemma follows by taking the line segments si from pi to pi+1, i = 0, 1, 2
and proving that the tangent vectors to this segments are uniformly linearly
independent and this is true since this vectors are close to be in the corresponding
bundles which form a uniform splitting. �

Let us finish the proof of Lemma B.8.3. Take z ∈ Bσn(x)(x) and let us take
the points, w = Wu

loc(z) ∩ W sc
loc(x) and y = Ws

loc(w) ∩ W c
loc(x). Then, applying

Lemma B.9.1 to the points x, y, w, z in the position of p0, p1, p2, p3 respectively we
get that d(x, y), d(y, w) and d(w, z) are less than some constant C times d(x, z)
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and hence less that Cσn(x). Hence y ∈ W c
Cσn(x)(x) so using Lemma B.6.1 we

can take some C ′ > C such that Cσn(x) < C ′σn(y). Finally we get, taking k
such that C ′σn < σn−k for ever n ≥ 0, that y ∈ Bc

n−k(x), w ∈ Ws
σn−k(y)(y) and

z ∈ Wu
σn−k(x)(w), that is, z ∈ Qn−k(x).

The proof now follows from item (1) of Proposition B.9. �

Remark 4.2. Observe that the definition of Qn(x) depends on the choice of
W c

loc(x), but Lemma B.8.3 gives us that any choice will give equivalent basis and
in fact equivalent to Lebesgue.

Recall that a measurable set X is essentially u-saturated if there exists a measur-
able u-saturated set Xu (an essential u-saturate of X) such that m(X△Xu) = 0.

Proposition B.10. The system {Jusc
n (x)}x∈M is Vitali equivalent to {Qn(x)}x∈M

over essentially u-saturated sets.

Proof. For measurable (small) sets X, let us denote by mu(X) and msc(X) the
induced Riemannian volume of X in Wu

loc and W sc
loc respectively (the choice of

W sc
loc is fixed a priori). Since Wu is absolutely continuous, given any esentially

u-saturated X, and any essential u-saturate Xu of X, we have

(1) m(Xu ∩ Qn(x)) =
∫

Xu∩Jsc
n (x)

mu(W
u
σn(x)(y))dmsc(y),

(2) m(Xu ∩ Jusc
n (x)) =

∫
Xu∩Jsc

n (x)
mu(J

u
n(y))dmsc(y).

Observe that there exists a constant D > 1 such that, for all y ∈ Jsc
n (x),

(4.8)
1

D
≤

mu(J
u
n(y))

mu(Ju
n(x))

≤ D

(see Lemma 4.1. of [12]). Hence, we have,

1

D2

msc(Xu ∩ Jsc
n (x))

msc(Jsc
n (x))

≤
m(Xu ∩ Jusc

n (x))

m(Jusc
n (x))

≤ D2msc(Xu ∩ Jsc
n (x))

msc(Jsc
n (x))

.

And also,

1

D2

msc(Xu ∩ Jsc
n (x))

msc(Jsc
n (x))

≤
m(Xu ∩ Qn(x))

m(Qn(x))
≤ D2msc(Xu ∩ Jsc

n (x))

msc(Jsc
n (x))

.

So
1

D4

m(X ∩ Qn(x))

m(Qn(x))
≤

m(X ∩ Jusc
n (x))

m(Jusc
n (x))

≤ D4m(X ∩ Qn(x))

m(Qn(x))
.

The claim follows now from Proposition B.9, part (2).

Proposition B.11. The system {Jscu
n (x)} is Vitali equivalent to {Jusc

n (x)} over
all measurable sets.
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Proof. We shall find l ∈ Z+ and D > 0 such that

Jscu
n+l(x0) ⊂ Jusc

n (x0) ⊂ Jscu
n−l(x0) and

m(Jusc
n+l(x0))

m(Jusc
n (x0))

≥ D

for all x0 ∈ M and n > l. The proof follows then from item (1) of Proposition
B.9.

Let us consider k1 > k, where k is the positive integer of Proposition B.8.2,
satisfying minx∈M σ−k1

(x) > C2 where C is as in Lemma B.6.1. If z ∈ Jusc
n (x0),

then z ∈ Un(y), with y ∈ Jsc
n (x0). By Lemma B.8.1 and the choice of k1, we have

y ∈ Bc
n−k1

(x), with x ∈ Ws
loc(x0). Applying Lemma B.8.2 to the holonomy map

hs going from Jcu
n−k1

(x) to W cu
loc(x0), we have hs(Jcu

n−k1
(x)) ⊂ Jcu

n−2k1
(x0). Then,

from the fact that the angles between distributions is bounded from below, we
have that, for some k2 > k1, z ∈ Jcu

n−k1
(x) ⊂ Jscu

n−k2
(x0)

The other inclusion is simpler, since, for z ∈ Jscu
n (x0), we have z ∈ Ws

σn(y)(y)

with y ∈ Jcu
n (x0). But W uc

loc(z)∩Ws
loc(x0) = {x}, and hence directly from Lemma

B.8.2 we have that z, belonging to hs(Jcu
n (x0)), is contained in Jcu

n−k1
(x). Hence

z ∈ Jusc
n−k1

(x0).
To finish the proof, let us see that m(Jusc

n+l(x))/m(Jusc
n (x)) is bounded from

below for all n > 0 and x ∈ M . Proceeding as in Lemma B.10, we obtain that
there is a constant c > 0 such that, for all x ∈ M and n > 0

1

c
≤

m(Jusc
n (x))

mu(Ju
n(x))ms(Ws

σn(x)(x))mc(Bc
n(x))

≤ c.

It is easy to see that ms(W
s
σn+l(x)(x))/ms(W

s
σn(x)(x)) and mc(B

c
n+k(x))/mc(B

c
n(x))

are uniformly bounded. Now, using Lemma B.6.1, we have that

K−1
mu(W

u
νn(x)(f

n(x))

Jac(fn)′(x)|Eu

≤ mu(J
u
n(x)) ≤ K

mu(W
u
νn(x)(f

n(x))

Jac(fn)′(x)|Eu

for some uniform K > 0, so mu(J
u
n+k(x))/mu(J

u
x (x)) is uniformly bounded too.

For a detailed proof of this last estimation see Lemma 4.4 of [12].

So let us prove Proposition B.3.
Proof of Proposition B.3. By Proposition B.11 we get that the system {Jscu

n (x)}
is Vitali equivalent to the system {Jusc

n (x)} over all measurable sets. On the
other hand, Proposition B.10 says that {Jusc

n (x)} is equivalent to {Qn(x)} over
u-saturated sets. Finally, by Lemma B.8.3 we know that {Qn(x)} is equivalent to
Lebesgue over all measurable sets. hence we get that {Jscu

n (x)} is Vitali equivalent
to Lebesgue over u-saturated sets.

Finally we finish with the proof of Proposition B.2.
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Proof of Proposition B.2. Let Xs be an essential s-saturate of X. And assume x
is a Jscu

n - density point of X, hence of Xs. Calling ms(A) the induced Riemannian
volume of A in Ws, and mcu(A) the induced Riemannian volume of A in some
(fixed a priori) W cu

loc we have, due to the fact that Xs is s-saturated:

1

K
≤

m(Xs ∩ Jscu
n (x))

σn(x)mcu(Xs ∩ Jcu
n (x))

≤ K

Now, due to Proposition B.8 we have

mcu(h
s(Xs ∩ Jcu

n+k(x))) ≤ mcu(Xs ∩ Jcu
n (hs(x))) ≤ mcu(h

s(Xs ∩ Jcu
n−k(x)))

The proof follows from the fact that

1

K
≤

mcu(h
s(X))

mcu(X)
≤ K

for some uniform K > 0.
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