
Forcing as a program transformation
Alexandre Miquel

Laboratoire d’Informatique du parallélisme
École Normale Supérieure de Lyon

46, allée d’Italie.
69364 Lyon Cedex 07, France

E-mail: alexandre.miquel@ens-lyon.fr

Abstract—This paper is a study of the forcing translation
through the proofs as programs correspondence in classical
logic, following the methodology introduced by Krivine in [12],
[14]. For that, we introduce an extension of (classical) higher-
order arithmetic suited to express the forcing translation, called
PAω+. We present the proof system of PAω+—based on Curry-
style proof terms with call/cc—as well as the corresponding
classical realizability semantics. Then, given a poset of conditions
(represented in PAω+ as an upwards closed subset of a fixed meet
semi-lattice), we define the forcing translation A 7→ (p A)
(where A ranges over propositions) and show that the cor-
responding transformation of proofs is induced by a simple
program transformation t 7→ t∗ defined on raw proof-terms
(i.e. independently from the derivation). From an analysis of
the computational behavior of transformed programs, we show
how to avoid the cost of the transformation by introducing
an extension of Krivine’s abstract machine devoted to the
execution of proofs constructed by forcing. We show that this
machine induces new classical realizability models and present
the corresponding adequacy results.

I. INTRODUCTION

Forcing has been introduced by Cohen [3], [4] in order to
build models of set theory that fulfil the negation of continuum
hypothesis, thus proving its independence w.r.t. the axioms of
ZFC. (The relative consistency of continuum hypothesis was
already proved by Gödel [7] introducing constructible sets.)
Since then, the theory of forcing has been widely investigated,
and it now constitutes a standard tool of model theory.

On the other hand, the method of forcing has received much
less attention in proof theory, especially in the perspective of
analysing the computational contents of proofs by forcing. One
reason for this is that the correspondence between proofs and
programs (a.k.a. the Curry-Howard correspondence) was for
a long time limited to intuitionistic logic and to constructive
mathematics, so that proof-theoretic analyses of forcing [8],
[1], [5] could only be carried out indirectly—through negative
translations of classical logic to intuitionistic logic—and in
logical frameworks whose proof-theoretic strength is way
below the strength of Zermelo-Fraenkel set theory.

Following the discovery [9] of a connection between clas-
sical reasoning principles and control operators—which led to
the extension of the Curry-Howard correspondence to classical
logic—Krivine introduced the theory of classical realizabil-
ity [13], which is a reformulation of Kleene’s realizability [10]
in which the computational contents of classical proofs can be
analysed directly, and not through a negative translation.

Recently, Krivine showed how to combine forcing with
classical realizability [12], [14], and discovered the existence
of a simple program transformation (defined on classical λ-
terms) that turns any Curry-style proof-term t of a formula A
(in PA2/PA3) into a classical realizer of the formula p A
in the suitable realizability model (where p is an arbitrary
condition). From this, he deduced a method to build a realizer
of a theorem whose proof depends on an axiom that can be
forced using a suitable set of conditions.

The aim of this paper is to present and study (a variant
of) this program transformation in higher-order arithmetic,
using a fully typed setting. For that, we shall present an
extension of higher-order arithmetic with classical proof terms,
called PAω+, and define the forcing relation p A in this
framework. However, the forcing relation has to be designed
carefully throughout the hierarchy of finite types, since we
want that the corresponding transformation on typing deriva-
tions can be lifted at the level of Curry-style proof terms, that
contain much less information.

Finally, we shall study the computational behavior of
transformed classical λ-terms, and we will deduce from this
analysis a way to internalize forcing into Krivine’s Abstract
Machine (KAM) by introducing a special execution mode for
proofs-by-forcing, in which the originating proof does not
need to be transformed anymore. We shall also present the
realizability models coming with this new abstract machine,
together with the corresponding adequacy results.

Contribution of the paper: This work is largely inspired
by the methodology introduced by Krivine in [12], [14]. The
author’s own contributions are the following:
• A reformulation of the forcing translation in higher-order

arithmetic (rather than in PA2/PA3), and the design of
an expressive type system (PAω+) in which the trans-
formation preserves typability on proof-terms. (In [12],
[14], well-typed terms are only mapped to realizers.)

• Some simplifications in the program transformation pre-
sented by Krivine. In particular, we get rid of the two
extra instructions χ and χ′ used in [12], [14].

• A new abstract machine, the KFAM, deduced from a
computational analysis of the program transformation.
This abstract machine extends Krivine’s with a special
execution mode devoted to the evaluation of proofs by
forcing, thus removing the need of the transformation.

• The classical realizability models induced by the KFAM,

as well as the corresponding adequacy results.

II. AN EXTENSION OF HIGHER-ORDER ARITHMETIC

Throughout this paper, we work in a presentation of higher-
order arithmetic called PAω+, that is basically an extension of
(Curry-style) system Fω. As for system Fω, system PAω+ is
stratified into three syntactic categories: kinds, higher-order
terms (that correspond to mathematical objects, including
propositions) and (Curry-style) proof-terms.

A. Kinds

Kinds (notation: τ , σ, etc.) of PAω+ are given by the BNF:

Kinds τ, σ ::= ι | o | τ → σ

Here, ι denotes the kind of individuals, o the kind of propo-
sitions, and τ → σ is the kind of functions from τ to σ.

B. Higher-order terms

1) Definition: We assume given an infinite set of variables
(notation: xτ , yτ , zτ , etc.) for every kind τ . Higher-order
terms (notation: M , N , etc.) of PAω+ are ‘simply kinded’ λ-
terms enriched with extra constructions to represent arithmetic
operations and logical constructions. Formally:

Definition 1 (Higher-order terms): — Higher-order terms
of all kinds are inductively defined as follows:
(Lambda-calculus)
• If xτ is a variable of kind τ , then xτ is a term of kind τ .
• If xτ is a variable of kind τ and if M is a term of kind σ,

then λxτ .M is a term of kind τ → σ.
• If M is a term of kind τ → σ and if N is a term of

kind τ , then MN is a term of kind σ.
(Arithmetic constructions)
• The constant 0 (‘zero’) is a term of kind ι.
• The constant s (‘successor’) is a term of kind ι→ ι.
• For every kind τ , the constant recτ (‘recursor’) is a term

of kind τ → (ι→ τ → τ)→ ι→ τ .
(Logical constructions)
• If M and N are terms of kind o, then M ⇒ N is a term

of kind o.
• If M is a term of kind o possibly depending on a

variable x of kind τ , then ∀xτM is a term of kind o.
• If M and M ′ are terms of kind τ , and if N is a term

of kind o, then 〈M = M ′〉N is a term of kind o. This
ternary construction represents an equational implication
whose meaning will be given below (section II-B3).

In what follows, we shall write FV (M) the set of free vari-
ables of M , and M{xτ := N} the term obtained by replacing
in the term M (of some kind σ) all the free occurrences of
the variable xτ with the term N (of kind τ).

2) Propositions: We call a proposition any term A of
kind o, preferring the letters A, B, C, etc. to denote them.
We use the standard second-order encodings [6] to represent
negation, conjunction, disjunction, existential quantification
and Leibniz equality.

3) Equational implication: The intuitive meaning of the
proposition 〈M = M ′〉A is:

〈M = M ′〉A ≡

{
A if M equals M ′

> otherwise.

(Here, > denotes the proposition proved by any proof-term,
that will be formally defined in section II-E3.) As suggested by
its name, the equational implication 〈M = M ′〉A is provably
equivalent to the implication M =τ M ′ ⇒ A, where the
symbol =τ stands for Leibniz equality (see above).

In practice, the proposition 〈M = M ′〉A carries over the
same logical contents as the proposition M =τ M

′ ⇒ A, but
with more compact proof terms. While this compact form of
an implication is not strictly needed to define the forcing trans-
lation, it helps to make the translation more understandable at
the level of proof terms. However, the presence of this extra
construction has a cost on the type system of PAω+, since it
makes the typing judgment E ; Γ ` t : A not only depend on
a typing context Γ, but also on an equational theory E .

C. The congruence M ∼=E M ′

We call an equational theory E any finite list of the form

E ≡ M1 = M ′1; . . . ;Mk = M ′k

where for all i ∈ [1..k], Mi and M ′i are (open) higher-order
terms of the same kind τi. (For simplicity, we assume that the
equations M = M ′ are non oriented.) Given two equational
theories E and E ′, we write E ⊆ E ′ when all equations of E
also appear in E ′ (not necessarily in the same order).

Every equational theory E induces a relation M ∼=E M ′

between higher-order terms M and M ′ of the same kind.
Formally, the family of relations ∼=E (where E ranges over
all equational theories) is inductively defined from the rules
given in Fig. 1. We easily check that:

Proposition 1 (Monotonicity and congruence):
1) If M1

∼=E M2 and E ⊆ E ′, then M1
∼=E′ M2.

2) For all equational theories E , the relation M ∼=E M ′ is
a congruence.

D. The proof-system of PAω+

1) Proof-terms and typing contexts: Raw proof-terms (no-
tation: t, u, etc.) of PAω+ are pure λ-terms enriched with a
constant cc (call/cc, for call with current continuation):

Proof-terms t, u ::= x | λx . t | tu | cc

(Here, x, y, z, etc. denote proof-variables that shall not be
confused with higher-order variables xτ , yσ , zρ, etc. we
introduced in II-B.) The set of free variables of a proof-
term t is written FV (t) and the corresponding operation of
substitution, written t{x := u}, is defined as expected.

Typing contexts (notation: Γ, Γ′, etc.) are finite ordered lists
of the form

Typing contexts Γ ::= x1 : A1, . . . , xn : An

where x1, . . . , xn are pairwise distinct proof-variables and
where A1, . . . , An are arbitrary propositions. Given a typing

Reflexivity, symmetry, transitivity and base case

M ∼=E M M ∼=E M ′
(M=M ′)∈E

M ∼=E M ′
M ′ ∼=E M

M ∼=E M ′ M ′ ∼=E M ′′
M ∼=E M ′′

Context closure

M ∼=E M ′
λxτ .M ∼=E λxτ .M ′

M ∼=E M ′ N ∼=E N ′
MN ∼=E M ′N ′

A ∼=E A′ B ∼=E B′
A⇒ B ∼=E A′ ⇒ B′

A ∼=E A′
∀xτA ∼=E ∀xτA′

M1
∼=E M ′1 M2

∼=E M ′2 A ∼=E;M1=M2 A
′

〈M1 = M2〉A ∼=E 〈M ′1 = M ′2〉A′

β-reduction, η-reduction and recursion

(λxτ .M)N ∼=E M{xτ := N}

λxτ .Mx ∼=E M
xτ /∈FV (M)

recτ MM ′ 0 ∼=E M

recτ MM ′ (sN) ∼=E M ′N (recτ MM ′N)

Computationally equivalent propositions

∀xτ∀yσA ∼=E ∀yσ∀xτA ∀xτA ∼=E A
xτ /∈FV (A)

A⇒ ∀xτB ∼=E ∀xτ (A⇒ B)
xτ /∈FV (A)

〈M = M〉A ∼=E A 〈M = M ′〉A ∼=E 〈M ′ = M〉A

〈M = M ′〉〈N = N ′〉A ∼=E 〈N = N ′〉〈M = M ′〉A

A⇒ 〈M = M ′〉B ∼=E 〈M = M ′〉(A⇒ B)

∀xτ 〈M = M ′〉A ∼=E 〈M = M ′〉∀xτA
xτ /∈FV (M,M ′)

Fig. 1. Inference rules of the relation M ∼=E M ′

context Γ ≡ x1 : A1, . . . , xn : An, we write dom(Γ) =
{x1; . . . ;xn} and FV (Γ) = FV (A1) ∪ · · · ∪ FV (An).

2) Typing rules: The proof system of system PAω+ is
based on a typing judgment of the form E ; Γ ` t : A (‘in
the equational theory E and the context Γ, the λ-term t is a
proof-term of A’) that is defined from the rules of Fig. 2.

In what follows, we shall say that a typing rule—or a
deduction step—is computationally transparent if it does not
affect the current proof-term. Most of the rules of Fig. 2 are
computationally transparent: the conversion rule, the intro-
duction and elemination rules of universal quantification, as

E ; Γ ` x : A
(x:A)∈Γ

E ; Γ ` t : A

E ; Γ ` t : A′
A∼=EA′

E ; Γ, x : A ` t : B

E ; Γ ` λx . t : A⇒ B

E ; Γ ` t : A⇒ B E ; Γ ` t : A

E ; Γ ` tu : B

E ,M = M ′; Γ ` t : A

E ; Γ ` t : 〈M = M ′〉A
E ; Γ ` t : 〈M = M〉A

E ; Γ ` t : A

E ; Γ ` t : A

E ; Γ ` t : ∀xτA
x/∈FV (Γ)

E ; Γ ` t : ∀xτA
E ; Γ ` t : A{x := Nτ}

E ; Γ ` cc : ((A⇒ B)⇒ A)⇒ A

Fig. 2. Deduction/typing rules of system PAω+

well as the introduction and elimination rules of equational
implication.

E. Expressiveness

1) Encoding arithmetic reasoning: From the rules of Fig. 2
one can derive the usual introduction and elimination rules of
falsity, negation, conjunction, disjunction, existential quantifi-
cation and Leibniz equality using the encodings given in the
end of Section II-B. The typing rule of cc implements Peirce’s
law, from which we can derive the excluded middle as well
as other classical reasoning principles.

Using the recursor recτ , we can easily encode the prede-
cessor and nullity test functions from which one easily derives
that the successor function is injective and non surjective using
appropriate conversions. Finally, reasoning by induction is
mimicked (as in [6], [11]) by relativizing all quantifications
of kind ι using the predicate nat : ι→ o defined by

nat ≡ λxι .∀Z (Z 0⇒ ∀y (Z y ⇒ Z (s y))⇒ Z x) .

2) Equivalence of 〈M = M ′〉A and M =τ M
′ ⇒ A: It is

easy to check that for all terms M , M ′ (of kind τ) and A (of
kind o), the propositions 〈M = M ′〉A and M =τ M

′ ⇒ A
are provably equivalent in PAω+:

` λxy . y x : (〈M = M ′〉A) ⇒ M =τ M
′ ⇒ A

` λx . x (λy . y) : (M =τ M
′ ⇒ A) ⇒ 〈M = M ′〉A

3) The proposition >: We can define the proposition > as
> ≡ 〈tt = ff〉⊥ where tt = λxoyo . x and ff = λxoyo . y.
Using the fact that in the equational theory E = {tt = ff},
all propositions are convertible (since A ∼=E ttAA′ ∼=E
ff AA′ ∼=E A′ for all propositions A and A′), we easily get:

Lemma 1: — For all equational theories E , for all con-
texts Γ and for all proof-terms t such that FV (t) ⊆ dom(Γ),
the judgment E ; Γ ` t : > is derivable.

As a consequence, all raw proof-terms are typable, hence
system PAω+ enjoys no normalization property.

III. CLASSICAL REALIZABILITY SEMANTICS

The operational behavior of proof-terms can be described
via a classical realizability model (based on the λc-calculus)
that constitutes the natural higher-order extension of the model
presented in [13]. (A similar model was presented in [16].)

A. The λc-calculus

The λc-calculus is defined from three kinds of syntactic
entities: terms, stacks and processes, that are inductively
defined as follows:

Terms

Stacks
Processes

t, u ::= x | λx . t | tu
| κ | kπ

π ::= α | t · π
p, q ::= t ? π

(κ ∈ K)

(α ∈ B, t closed)

(t closed)

Formally, the syntax of the λc-calculus is thus parameterized
by two sets: a set K of instructions, that contains (at least)
the instruction cc (‘call/cc’); and a nonempty set B of stack
constants (or stack bottoms).

Terms (notation: t, u, etc.) of the λc-calculus are ordinary
λ-terms enriched with constants of two forms: instructions
κ ∈ K, including the instruction cc (‘call/cc’), and continu-
ation constants kπ , one for every stack π. In particular, the
set of (open) λc-terms is a strict superset of the set of raw
proof-terms introduced in Section II-D. Stacks (notation: π, π′,
etc.) are lists of closed terms terminated by a stack constant;
in particular they are closed objects—so that continuation
constants kπ are actually constant. Finally, processes are pairs
t ? π formed by a closed term t and a stack π.

In what follows, we respectively denote by Λc and Π the
sets of all closed λc-terms and of all (closed) stacks. The set
of all processes is written Λc ?Π.

1) Evaluation: We assume that the set of processes Λc ?Π
comes with a binary relation of evaluation, written p � p′,
that fulfils the following axioms:

GRAB
PUSH
SAVE
RESTORE

λx . t ? u · π � t{x := u} ? π
tu ? π � t ? u · π
cc ? t · π � t ? kπ · π

kπ ? t · π′ � t ? π

Note that these rules do not constitute a definition of evalua-
tion, but a specification of what evaluation should do—at least.
The relation of evaluation is a parameter of the calculus (as
for the sets K and B); and it may follow other rules describing
the computational behavior of extra instructions κ ∈ K.

B. The realizability interpretation

1) Poles: The definition of the classical realizability model
for system PAω+ is actually parameterized by a pole, that is,
by a set of processes ⊥⊥ ⊆ Λc ? Π that is closed under anti-
evaluation, in the sense that p � p′ and p′ ∈ ⊥⊥ imply p ∈ ⊥⊥
for all p, p′ ∈ Λc ?Π.

2) Truth and falsity values: We call a falsity value any set
of stacks S ⊆ Π. Every falsity value S ⊆ Π induces a truth
value S⊥⊥ ⊆ Λc that is defined by

S⊥⊥ = {t ∈ Λc : ∀π ∈ S (t ? π) ∈ ⊥⊥} .

The larger the falsity value S, the smaller the truth value S⊥⊥.
3) Interpreting kinds: In the classical realizability model

(parameterized by the pole ⊥⊥), individuals are interpreted as
natural numbers, propositions as falsity values and higher-
order functions as set-theoretic functions, that is:

JιK = N, JoK = P(Π), Jτ → σK = JσKJτK

A valuation is a function ρ that maps every variable xτ of
kind τ to an element ρ(xτ) ∈ JτK. As usual, we denote by
ρ, xτ ← v the valuation obtained from the valuation ρ by
rebinding the variable xτ to the denotation v ∈ JτK (thus
erasing the value previously bound to xτ in ρ).

4) Interpreting higher-order terms: Every higher-order
term M of kind τ is interpreted as an element JMKρ ∈ JτK
depending on a valuation ρ. Abstraction, application and
arithmetic constructions are interpreted the obvious way using
their set-theoretic equivalents:

JxKρ = ρ(x) J0K = 0

Jλxτ .MKρ = (v ∈ JτK 7→ JMKρ,x←v) JsK = n 7→ n+ 1

JMNKρ = JMKρ
(
JNKρ

)
Jrecτ K = recJτK

(where recJτK denotes the expected set-theoretic recursor over
the set JτK). Implication and universal quantification are
given their standard negative interpretation following [13], and
equational implication is interpreted following the informal
explanation given in II-B3:

JA⇒ BKρ = JAK⊥⊥ρ · JBKρ
=

{
t · π : t ∈ JAK⊥⊥ρ , π ∈ JBKρ

}
J∀xτAKρ =

⋃
v∈JτK

JAKρ,x←v

J〈M = M ′〉AK =

{
JAKρ if JMKρ = JM ′Kρ
∅ otherwise

(Here the empty falsity value denotes the true proposition >,
i.e. the proposition that has non opponent.)

Since the denotation JMKρ (implicitly) depends on the
pole ⊥⊥, we shall write it sometimes JMK⊥⊥,ρ to recall the
dependency. Given a proposition A, a valuation ρ and a closed
term t, we say that t realizes A in the valuation ρ and write
t A[ρ] when t ∈ (JAK⊥⊥,ρ)⊥⊥. Again, this notion is relative to
a particular pole ⊥⊥. Finally, we say that t universally realizes
the proposition A in the valuation ρ and write t � A[ρ] when
t ∈ (JAK⊥⊥,ρ)⊥⊥ for all poles ⊥⊥.

Again, this construction is nothing but the straightforward
extension of Krivine’s model to higher-order arithmetic, and
formulas of second-order arithmetic PA2 ⊂ PAω+ are inter-
preted in our model the very same way as in [13]. In particular,
the classical extraction techniques described in [15] are still
valid in this framework.

C. Soundness properties

Lemma 2 (Substitution): — For all higher-order terms Mτ

and Nσ and for all valuations ρ we have

JM{xσ := N}K = JMKρ,xσ←JNKρ .

We write ρ |= E when JMKρ = JM ′Kρ for all equations
(M = M ′) ∈ E . We easily check that:

Lemma 3 (Conversion): — If M ∼=E M ′, then for all
valuations ρ such that ρ |= E we have JMKρ = JM ′Kρ.

Proposition 2 (Adequacy): — If the judgement

E ; x1 : B1, . . . , xn : Bn ` t : A

is derivable in system PAω+, then for all valuations ρ such
that ρ |= E and for all closed λc-terms u1, . . . , un such that
u1 B1[ρ], . . . , un Bn[ρ] we have

t{x1 := u1; . . . ;xn := un} A[ρ] .

In the particular case of an empty equational theory and of
an empty context, the property of adequacy simply expresses
that if ` t : A is derivable in system PAω+, then t is a
universal realizer of A in any valuation ρ.

IV. REPRESENTING FORCING CONDITIONS

We follow Krivine [12], [14] by representing forcing con-
ditions as the elements of an upwards closed subset C of a
meet semi-lattice (κ, ·, 1) over a fixed sort κ. This slightly non
standard presentation of forcing conditions will be justified
by the computational analysis of the underlying program
transformation we will present in section V-F, and we shall
give an example of such a structure in section IV-C.

A. Forcing parameters

Formally, we fix a kind κ of conditions (notation: p, q, r,
etc.) with a relativization predicate C of kind κ→ o delimiting
the class of well-formed conditions. Given a condition p, we
write C[p] (‘p is a well-formed condition’) for C p.

We assume that the kind κ comes with
• A term 1 (of kind κ) representing the largest condition.
• A binary operation (of kind κ→ κ→ κ) that associates

to every pair of conditions p and q the product of p and q,
written pq.

Finally, we assume that the predicate C comes with the
following combinators, that is, proof-terms

α∗ : C[1]
α1 : ∀pκ ∀qκ (C[pq]⇒ C[p])
α2 : ∀pκ ∀qκ (C[pq]⇒ C[q])
α3 : ∀pκ ∀qκ (C[pq]⇒ C[qp])
α4 : ∀pκ (C[p]⇒ C[pp])
α5 : ∀pκ ∀qκ ∀rκ (C[(pq)r]⇒ C[p(qr)])
α6 : ∀pκ ∀qκ ∀rκ (C[p(qr)]⇒ C[(pq)r])
α7 : ∀pκ (C[p]⇒ C[p1])
α8 : ∀pκ (C[p]⇒ C[1p])

(This set of combinators is not minimal: for instance, α2, α6

and α8 can be defined from the other combinators.)

Intuitively, these axioms express that the set C is upwards
closed w.r.t. the ordering induced by the binary meet operation
(p, q) 7→ pq. (The preorder on conditions will be formally
defined from these parameters in section IV-B.)

We say that two conditions p and q are compatible when
C[pq] holds. The proposition C[pq] (‘p and q are compatible’)
obviously implies that both conditions p and q are well-formed
(from axioms α1 and α2), but the converse is not true in
general. (This point is crucial in the definition of forcing.)

In what follows, we shall also need the following derived
combinators:

α9 ≡ α3 ◦ α1 ◦ α6 ◦ α3

: ∀p ∀q ∀r (C[(pq)r]⇒ C[pr])
α10 ≡ α2 ◦ α5

: ∀p ∀q ∀r (C[(pq)r]⇒ C[qr])
α11 ≡ α9 ◦ α4

: ∀p ∀q (C[pq]⇒ C[p(pq)])
α12 ≡ α5 ◦ α3

: ∀p ∀q ∀r (C[p(qr)]⇒ C[q(rp)])
α13 ≡ α3 ◦ α12

: ∀p ∀q ∀r (C[p(qr)]⇒ C[(rp)q])
α14 ≡ α5 ◦ α3 ◦ α10 ◦ α4 ◦ α2

: ∀p ∀q ∀r (C[p(qr)]⇒ C[q(rr)])
α15 ≡ α9 ◦ α3

: ∀p ∀q ∀r (C[p(qr)]⇒ C[qp])

B. Preorder on conditions

We define the relation p ≤ q between conditions by letting

p ≤ q ≡ ∀rκ (C[pr]⇒ C[qr]) .

It is easy to check that ≤ is a preorder with greatest element 1

λc . c : ∀p (p ≤ p)
λxyc . y(xc) : ∀p ∀q ∀r (p ≤ q ⇒ q ≤ r ⇒ p ≤ r)
α8 ◦ α2 : ∀p (p ≤ 1)

and that non well-formed conditions are smallest elements:

λxc . x (α1 c) : ∀p ∀q (¬C[p]⇒ p ≤ q)

(so that all non well-formed conditions are actually collapsed
w.r.t. the equivalence induced by the preorder). Moreover, the
product of two conditions is their least upper bound:

α9 : ∀p ∀q (pq ≤ p)
α10 : ∀p ∀q (pq ≤ q)
λxy . α13 ◦ y ◦ α12 ◦ x ◦ α11

: ∀p ∀q ∀r (r ≤ p⇒ r ≤ q ⇒ r ≤ pq)

C. An example of a set of conditions

The typical—and historical—example of a set of forcing
conditions is the set of finite functions from a given set τ to
the pair {0; 1}. (When τ is taken large enough, such a set of
conditions can be used to force the negation of the continuum
hypothesis [3], [4], [2].)

In our framework, this set is modelled as follows.

From a fixed sort τ , we define the sort κ ≡ τ → ι→ o of
binary relations between objects of sort τ and ι. The product
of two relations p and q is their union

pq ≡ λxy . p x y ∨ q x y

and the unit in the empty relation: 1 ≡ λxy .⊥. Well formed
conditions are then defined as the binary relations p : κ that
are finite functions from τ to {0; 1}, that is:

C[p] ≡ ∀xτ ∀yι (p x y ⇒ y = 0 ∨ y = 1) ∧
∀xτ ∀yι1 ∀yι2 (p x y1 ⇒ p x y2 ⇒ y1 = y2) ∧
p finite

It is a straightforward exercise to check that for any two well-
formed conditions p and q, the ordering p ≤ q defined in
section IV-B coincides with the reverse inclusion p ⊇ q.

V. THE FORCING TRANSLATION

From the parameters κ, C, (p, q) 7→ pq, 1 and the combi-
nators α∗, α1, . . . , α8 introduced in section IV, we now want
to define the forcing translation A 7→ (p A) on proposi-
tions together with the corresponding program transformation
t 7→ t∗ on proof-terms. Some care has to be taken in the
definition of the proposition p A in PAω+, since we do not
only want to define the corresponding proof transformation at
the level of derivations, but at the level of proof-terms, that
contain much less information. In practice, this means that the
proposition p A has to be defined in such a way that all the
computationally transparent deduction steps in the proof of A
remain computationally transparent in the proof of p A.

For that we shall proceed in two steps. First, we shall define
an auxiliary translation M 7→ M∗ over all the higher-order
terms, through which a proposition A will be translated into
a set A∗ of forcing conditions (i.e. of kind κ → o). Then
we shall define the forcing relation p A from the set of
conditions A∗ in such a way that the set of all p A is an
element of the complete Boolean algebra generated by the set
of forcing conditions [2]. (See section V-C.)

A. Translating kinds

Every kind τ is translated into a kind τ∗ defined by
induction on τ as follows:

ι∗ ≡ ι, o∗ ≡ κ→ o, (τ → σ)∗ ≡ τ∗ → σ∗ .

From this definition, we can already see that the forcing trans-
lation will essentially affect propositions (i.e. terms of kind o),
that will be interpreted as sets of conditions (kind κ→ o), but
that individuals (kind ι) will not be affected.

B. The auxiliary translation M 7→M∗

We now define an auxiliary translation mapping each
term M of sort τ to a term M∗ of sort τ∗. This translation
simply propagates through abstractions and applications, and
is trivial on arithmetic constructions:

(xτ)∗ ≡ xτ
∗

0∗ ≡ 0

(λxτ .M)∗ ≡ λxτ
∗
.M∗ s∗ ≡ s

(MN)∗ ≡ M∗N∗ (recτ)∗ ≡ recτ∗

Universal quantification and equational implication—whose
deduction are computationally transparent—are translated in
a quite obvious way:

(∀xτA)∗ ≡ λrκ .∀xτ∗A∗r
(〈M1 = M2〉A)∗ ≡ λrκ . 〈M∗1 = M∗2 〉A∗ r

All the complexity of the translation actually lies in impli-
cation, that is, in the only connective whose deduction rules
have a real computational contents:

(A⇒ B)∗ ≡
λrκ .∀q ∀r′ 〈r = qr′〉(∀s (C[qs]⇒ A∗s)⇒ B∗r′) .

(This definition will be justified in section V-D4.)
The translation M 7→ M∗ immediately extends to equa-

tional theories E = {M1 = M ′1; . . . ;Mk = M ′k} by letting

E∗ = {M∗1 = M ′
∗
1; . . . ;M∗k = M ′

∗
k} .

C. The forcing translation A 7→ (p A)

Given a condition p and a proposition A, we define the
relation of forcing p A by letting

p A ≡ ∀rκ (C[pr]⇒ A∗r)

(where r is a fresh variable). To understand the meaning of this
definition, let us introduce some terminology and notations.

We say that two conditions p and q are incompatible and
write p ⊥ q when ¬C[pq]. Given a set of conditions S (of
kind κ→ o) we write

S⊥ = λqκ .∀pκ (S p⇒ p ⊥ q)

the set of all conditions that are incompatible with all the
elements of S. In the theory of Boolean valued models [2], it
is well known that the set of sets

B = λSκ→o . S =ext S
⊥⊥

(where =ext denotes extensional equality between sets) formed
by all the sets of conditions that are (extensionally) equal to
their bi-orthogonal forms a complete Boolean algebra (ordered
by inclusion) generated by the set of conditions (C,≤)1.

Coming back to the definition of the forcing relation, we
have the (classical) equivalence:

p A ⇔ ∀rκ(¬A∗r ⇒ p ⊥ r)

which means that the set of all conditions forcing A is defined
as {p : p A} = ({A∗)⊥ (using suggestive notations).
Therefore the set {p : p A} is equal to its bi-orthogonal, and
thus belongs to the Boolean algebra B. (On the other hand,
there is no relationship of inclusion between the sets A∗ and
{p : p A} in general.)

The notation p A is extended to arbitrary typing contexts
Γ ≡ x1 : A1, . . . , xn : An by letting

p Γ ≡ x1 : (p A1), . . . , xn : (p An) .

1The elements of this algebra are also known to be the regular open subsets
of the set of conditions (for the topology whose open sets are the downwards
closed sets of conditions).

D. Properties of forcing

1) Substitutivity and congruence: The auxiliary translation
is substitutive and compatible with the congruence ∼=E :

Lemma 4:
1) (M{xτ := N})∗ ≡ M∗{xτ∗ := N∗}.
2) If M ∼=E M ′, then M∗ ∼=E∗ M ′∗

The same holds for the forcing relation:
Lemma 5:
1) p (A{xτ := N}) ≡ (p A){xτ∗ := N∗}

(provided xτ /∈ FV (p))
2) If p ∼=E p′ and A ∼=E A′, then (p A) ∼=E∗ (p′ A′).
2) Universal quantification and equational implication:

From the definition of the forcing relation p A and of the
congruence M ∼=∅ M ′ we immediately get:

Lemma 6:
1) p ∀xτ A ∼=∅ ∀xτ

∗
(p A) (if xτ /∈ FV (p))

2) p 〈M = M ′〉A ∼=∅ 〈M∗ = M ′
∗〉(p A)

Since the two propositions p (∀xτA) and ∀xτ∗(p A)
are convertible (in any equational theory), they are logically
equivalent in PAω+, which is mandatory in any definition of
forcing. (The same remark holds for equational implication.)
However, this stronger property of convertibility will give us
more: it will allow us to translate every deduction step that
does not affect the current proof-term (i.e. a conversion step, an
introduction or an elimination of a universal quantification or
of an equational implication) into a combination of deduction
steps that do not affect the current proof-term. This property
will be crucial to lift the forcing translation at the level of
proof terms—and not only at the level of typing derivations.

3) General closure properties: Before considering the sub-
tle case of implication, let us establish some provable closure
properties of the forcing relation:

Proposition 3: — In PAω+ we have:

β1 ≡ λxyc . y (x c)
: ∀p ∀q (q ≤ p⇒ (p A)⇒ (q A))

β2 ≡ λxc . x (α1 c) : ∀p (¬C[p]⇒ p A)
β3 ≡ λxc . x (α9 c) : ∀p ∀q ((p A)⇒ (pq A))
β4 ≡ λxc . x (α10 c) : ∀p ∀q ((q A)⇒ (pq A))

In other words, the forcing relation is anti-monotonic: if
a proposition A is forced by some condition p, then A is
forced by all the conditions q ≤ p (β1). In particular, non
well-formed conditions force all propositions (β2). The last
two items (β3 and β4) are particular cases of the property of
anti-monotonicity that will be quite useful in the following.

4) The case of implication: From our definition of the
forcing relation, we have:

p A⇒ B ≡ ∀r (C[pr]⇒ (A⇒ B)∗r)
∼= ∀r (C[pr]⇒ ∀q ∀r′ 〈r = qr′〉((q A)⇒ B∗r′))

On the other hand, the theory of forcing requires that:

p A⇒ B ⇔ ∀q ((q A)⇒ pq B) .

This equivalence comes from the following proposition:

Proposition 4: — In PAω+ we have:

γ1 ≡ λxcy . x y (α6 c)
: (∀q ((q A)⇒ (pq B)) ⇒ p A⇒ B)

γ2 ≡ λxyc . x (α5 c) y
: (p A⇒ B) ⇒ ∀q ((q A)⇒ (pq B))

γ3 ≡ λxyc . x (α11 c) y
: (p A⇒ B) ⇒ (p A) ⇒ (p B)

γ4 ≡ λxcy . x (y (α15 c))
: ¬A∗ p ⇒ p A⇒ B

Intuitively, the proof-term γ1 ‘folds’ a proof of the propo-
sition ∀q ((q A)⇒ (pq B)) into a proof of p A⇒ B,
while γ2 performs the corresponding unfolding operation.
The proof-term γ3 is a specialized form of γ2 corresponding
to the modus ponens (or application) through the forcing
transformation. We also introduce a proof-term γ4 that will
be a key ingredient of the translation of continuations.

5) Forcing Peirce’s law: We can already check that the law
of Peirce is forced by any condition:

Proposition 5: — In PAω+ we have:

cc∗ ≡ λcx . cc (λk . x (α14 c) (γ4 k))
: p ((A⇒ B)⇒ A)⇒ A .

E. Translating proof-terms
We can now define the translation t 7→ t∗ on raw proof-

terms as follows:
x∗ ≡ x

(t u)∗ ≡ γ3 t
∗ u∗

(λx . t)∗ ≡ γ1 (λx . t∗{xi := β3xi}ni=1{x := β4x})
cc∗ ≡ λcx . cc (λk . x (α14 c) (γ4 k))

(In the definition of (λx . t)∗, we assume that x, x1, . . . , xn
are all the free variables of the proof-term t.)

Basically, the translation t 7→ t∗ inserts the combinator γ1

in front of every abstraction, and the combinator γ3 in front of
every application, while translating the call/cc constant into
the proof-term cc∗ of Prop. 5.

The main subtlety of the translation lies in the treatment of
variables: at each abstraction, the translation inserts the combi-
nator β3 in front of every free occurrence of a variable xi that
is not bound by the abstraction, while inserting the combinator
β4 in front of every free occurrence of the variable x (that is
bound by the abstraction) in the term t. It is easy to see that,
when applied to a closed term t, the translation reveals the de
Bruijn structure of t, since every occurrence of a variable x in
the term t is translated into the term βn3 (β4x), where n is the
de Bruijn index of that occurrence (starting indices from 0).

We now have all the necessary material to prove that the
program transformation t 7→ t∗ is sound w.r.t. typing:

Proposition 6 (Soundness): — If the judgment E ; Γ ` t : A
is derivable in PAω+, then for all conditions p, the sequent
E∗; (p Γ) ` t∗ : (p A) is derivable in PAω+ too.

Proof: We actually prove the result in the case where p
is a fresh condition variable, by induction on the derivation of
E ; Γ ` t : A, using the types of the combinators γ1, γ3, β3,
β4, cc∗ and the properties of substitutivity for system PAω+.
The general case follows by substitutivity.

F. Analysis of the computational behavior of t∗

Before analyzing the computational behavior of the trans-
lated term t∗, we need to recall that the term t∗, that has a
type of the form p A ≡ ∀r (C[pr] ⇒ A∗r), is intended
to be evaluated in front of a stack whose first argument c has
type C[pr], where p and r are some forcing conditions. As we
shall see, the condition p represents logical invariants attached
to the current term t∗ that is currently evaluated, whereas the
condition r represents logical invariants attached to the stack
facing t∗ during evaluation. In what follows, we shall call a
computational condition—as opposed to a logical condition—
any closed term c of type C[pr] (or any realizer of C[pr]) for
some conditions p and r.

Using the definition of the combinators γ1, γ3, cc∗ and γ4,
we easily discover the following evaluation scheme for the
translated program t∗:

Proposition 7: — For all terms tx such that FV (tx) ⊆ {x},
for all closed terms t, u, c and for all stacks π we have:

(λx . tx)∗ ? c · u · π �∗ t∗x{x := β4u} ? α6 c · π
(tu)∗ ? c · π �∗ t∗ ? α11c · u∗ · π

cc∗ ? c · u · π �∗ u ? α14c · k∗π · π
k∗π ? c · u · π′ �∗ u ? α15c · π

writing k∗π as a shorthand for γ4 kπ .
From this picture, we can see that the translated program t∗

essentially behaves the same way as the initial program t, with
the difference that the first slot of the stack is now reserved
to the computational condition that evolves during evaluation.
All the stack operations are thus performed one slot further
in the stack (slots are thus intuitively re-indexed), while each
operation updates the current computational condition (in the
first slot of the stack) by inserting the appropriate combinator.

Most notably, the translated call/cc operator cc∗ does not
save the current computational condition, as well as the trans-
lated continuation constant k∗π (that is dynamically generated
by cc∗) does not restore any formerly saved computational
condition—it just updates the current computational condition
using the appropriate combinator. As noticed by Krivine [12],
[14], the first slot of the stack2 is thus subtracted from the
normal save/restore mechanism induced by call/cc, and now
behaves as a mutable reference (or as a ‘global memory’
according to Krivine’s terminology).

Let us now study the types (cf section IV-A) of the combi-
nators α6, α11, α14 and α15 that are inserted in the first slot
of the stack at each step of the evaluation of t∗:

GRAB
PUSH
SAVE
RESTORE

α6 : C[p(qr)] ⇒ C[(pq)r]
α11 : C[pr] ⇒ C[p(pr)]
α14 : C[p(qr)] ⇒ C[q(rr)]
α15 : C[p(qr)] ⇒ C[qp]

2In Krivine’s work [12], [14], the current computational condition c
is actually stored in the very last slot of the stack, using two specific
instructions χ and χ′ swapping the first and last elements of the current
stack. Our work shows that we can do the same by reserving the first slot
of the stack instead of the last one, thus removing the need of the two extra
instructions χ and χ′.

These figures suggest the following scenario, which is that
logical conditions are actually attached to pieces of data—
and even to particular closures3—within the currently executed
process, and that the evolution of the current logical condition
pr (given by the type C[pr] of the current computational
condition) simply reflects the move of these pieces of data
during evaluation.

For instance, the type of α6 reflects the fact that, during
a GRAB step, the first element of the stack (the condition q
is attached to) is removed from the stack (the condition r
is attached to) and then incorporated in the environment of
the term t (the condition p is attached to). Similarly, the
type of combinator α11 reflects the fact that, during a PUSH
step, the environment of the currently executed term (the
condition p is attached to) is duplicated and that a closure
containing a copy of it is then put on the top of the stack (the
condition r is attached to). A similar analysis can be done
for SAVE and RESTORE steps, noticing that a continuation
constant generated by call/cc is always labelled with the same
condition as the corresponding stack.

In the author’s opinion, all these features are reminiscent
from well-known techniques in computer architecture, such
as virtualization or protection rings, that allow the system
to execute a program by only giving it access to a part of
the resources (here: the tail of the stack), thus allowing the
system to maintain and update critical information (here: the
computational condition) in the back of the executed program.
The difference is that these features are implemented here via a
program transformation while in most computer architectures,
these are hardwired in processors that usually provide several
execution modes, or protection rings.

In the next section, we shall see that we can also put
the forcing transformation ‘into the hardware’ by introducing
a variant of Krivine’s Abstract Machine (KAM) with two
execution modes (regular mode versus forcing mode), thus
avoiding the cost of the program transformation.

VI. AN ABSTRACT MACHINE FOR FORCING

A. Krivine’s Forcing Abstract Machine (KFAM)

We now present an abstract machine—the KFAM—that
extends the standard Krivine Abstract Machine (with explicit
environments). The main novelty of this abstract machine is
that it distinguishes two kinds of closures: regular closures,
that are intended to be executed the usual way, and forcing
closures (bearing a star as a superscript), that are intended to
be executed as through the program transformation defined in
section V-E. The current execution mode of the machine will
thus be given by the mode of the currently executed closure4.

1) Syntactic entities: The KFAM manipulates five kinds of
syntactic entities—terms, environments, closures, stacks and

3This notion will be given a precise meaning in section VI.
4In particular, we do not need a special instruction to switch from one

mode to the other. This design (where closures bear their execution mode) is
mostly dictated by the realizability results we shall present in section VI-C.

processes—that are defined by the following BNF:

Terms
Environments
Closures

Stacks
Processes

t, u ::= x | λx . t | tu | cc
e ::= ∅ | e, x←c
c ::= (t|e) | kπ (FV (t)⊆dom(e))

| (t|e)∗ | k∗π (FV (t)⊆dom(e))

π ::= � | c · π
P ::= c ? π

Here, terms are classical proof-terms (with call/cc), environ-
ments are finite ordered association lists assigning closures to
variables, whereas stacks are finite lists of closures.

The KFAM uses two different kinds of regular closures:
closures of the form (t|e), where t is a term whose free vari-
ables are all assigned in the environment e, and continuation
closures of the form kπ (where π is an arbitrary stack) that are
generated by the call/cc instruction during evaluation. There
are also starred versions (t|e)∗ and k∗π of these closures, that
are intended to be executed in forcing mode. (Here, the star
is just a mark put on the closure.)

B. Evaluation

1) Evaluation in regular mode: The evaluation rules for
regular closures are the standard evaluation rules of the KAM
with continuations and explicit environments:

(x|e, y←c) ? π � (x|e) ? π (y 6≡x)

(x|e, x←c) ? π � c ? π
(λx . t|e) ? c · π � (t|e, x←c) ? π

(tu|e) ? π � (t|e) ? (u|e) · π
(cc|e) ? c · π � c ? kπ · π

kπ ? c · π′ � c ? π

Here we can find the usual rules GRAB, PUSH, SAVE and
RESTORE (adapted to the new setting), plus two specific rules
to lookup a variable in the current environment.

2) Evaluation in forcing mode: The evaluation rules for
forcing closures are similar to the rules for regular closures,
except that in this case, the first slot is now reserved for the
computational condition—a closure—that is updated at each
evaluation step by the insertion of one of the 6 combinators
α6, α9, α10, α11, α14 and α15. These combinators are now
fixed closures that are parameterizing the machine. (At this
stage, these parameters can be taken arbitrarily.)

(x|e, y←c)∗ ? c0 · π � (x|e)∗ ? α9 c0 · π (y 6≡x)

(x|e, x←c)∗ ? c0 · π � c ? α10c0 · π
(λx . t|e)∗ ? c0 · c · π � (t|e, x←c)∗ ? α6 c0 · π

(tu|e)∗ ? c0 · π � (t|e)∗ ? α11c0 · (u|e)∗ · π
(cc|e)∗ ? c0 · c · π � c ? α14c0 · k∗π · π

k∗π ? c0 · c · π′ � c ? α15c0 · π

(In the above rules, the application of a combinator αi to a
closure c0 is defined by αic0 ≡ (xy|x←αi, y←c0)).

The last four rules clearly mimic the computational behavior
of transformed programs such as described by Prop. 7. Also
note that lookup operations also insert their own combi-
nators (α9 and α10) in the first slot of the stack. These

two combinators—that were actually hidden in the proof-
terms β3 and β4 (cf sections V-D3 and V-F)—simply reflect
the destruction of the current environment during lookup.

C. Realizability models induced by the KFAM

It is now time to relate the abstract machine introduced
above with logic and forcing.

For that, it suffices to remark that the KFAM describes a
small step operational semantics that naturally induces new
classical realizability models. Provided we give to closures the
role formerly played by closed λc-terms, and provided we use
our new definitions for stacks, processes and for the relation
of evaluation5, the construction of these realizability models
is exactly the same as the one presented in section III-B. We
shall not rewrite the defining equations of these models since
they are the same as in section III-B; only the sets in which
these equations have to be understood are different.

As usual, there are as many realizability models as poles
(in the sense of the KFAM), and given a fixed pole ⊥⊥, the
realizability relation is written c A[ρ], where c is a closure,
A a proposition and ρ a valuation in the corresponding model.
Up to the end of this section, we assumed fixed a pole ⊥⊥.

The presence of two kinds of closures (regular or forcing)
now induces two properties of adequacy.

1) Adequacy in regular mode: The first property of ade-
quacy is the exact analogous of Prop. 2:

Proposition 8 (Adequacy in regular mode): — If the typ-
ing judgment E ;x1 : A1, . . . , xn : An ` t : B is derivable
in PAω+, then for all valuations ρ such that ρ |= E and for
all closures c1 A1[ρ], . . . , cn An[ρ], we have

(t|x1←c1, . . . , xn←cn) B[ρ] .

Note that here, we close the term t with an environment
rather than with a substitution. Up to such minor changes, the
proof of Prop. 8 is the same as for Prop. 2. Also note that this
proposition does not make any assumption on the combinators
α6, α9, α10, α11, α14 and α15, that can be taken arbitrarily.
The reason is that none of the evaluation rules of the forcing
mode is involved in the proof of Prop. 8.

2) Adequacy in forcing mode: In order to state the adequacy
property corresponding to the forcing mode—that is: to forcing
closures—we now need to make suitable assumptions on the
combinators α6, α9, α10, α11, α14 and α15. Formally, we say
that these combinators are adequate to the notion of forcing
induced by (κ,C, ·, 1) and to the pole ⊥⊥ if:

α6 ∀p ∀q ∀r (C[p(qr)]⇒ C[(pq)r])
α9 ∀p ∀q ∀r (C[(pq)r]⇒ C[pr])
α10 ∀p ∀q ∀r (C[(pq)r]⇒ C[qr])
α11 ∀p ∀q ∀r (C[pq]⇒ C[p(pq)])
α14 ∀p ∀q ∀r (C[p(qr)]⇒ C[q(rr)])
α15 ∀p ∀q ∀r (C[p(qr)]⇒ C[qp])

5Formally, the set of closures together with the set of stacks, the set of
processes and the relation of evaluation (according to the new definitions)
constitute a realizability algebra in the sense of [14], which is thus suitable
to the definition of classical realizability models.

Thanks to Prop. 8, we can take for instance αi = (ti|∅), where
ti is a proof-term of the appropriate proposition.

Proposition 9 (Adequacy in forcing mode): — If the com-
binators αi are adequate to the notion of forcing induced by
(κ,C, ·, 1) and to the pole ⊥⊥, and if the typing judgment

E ;x1 : A1, . . . , xn : An ` t : B

is derivable in PAω+, then for all valuations ρ such that ρ |=
E∗, for all pairwise distinct condition variables p0, p1, . . . , pn
(of kind κ) and for all closures c1 (p1 A1)[ρ], . . . , cn
(pn An)[ρ], we have

(t|x1←c1, . . . , xn←cn)∗
(
((p0p1) · · · pn) B[ρ]

)
.

Note that here, we need to attach a condition variable pi
to each closure ci so that the closure (t|x1←c1, . . . , xn←cn)∗

(in forcing mode) realizes the formula ((p0p1) · · · pn) B[ρ]
(where p0 is another condition variable).

The proof of Prop. 9 is quite tedious, but it essentially
consists to rephrase the ingredients of the proof of the syntactic
result of Prop. 6 into semantic terms.

D. The underlying methodology
The typical example of use of the KFAM is the following:

Let us assume that we have a proof-term t of some theorem T
that depends on a free variable x0 representing some axiom A.
If we are able to force this axiom using a suitable set of
conditions (κ,C, ·, 1), that is, if we can build a closed proof-
term t0 of 1 A, then by Prop. 8 we know that the regular
closure c0 = (t0|∅) is a realizer of 1 A. Hence by Prop. 9
the forcing closure c = (t|x0←c0)∗ is a realizer of 1 T .

Intuitively, we have embedded the user program t into a
forcing closure in order to force its evaluation in forcing mode.
Each time the variable x0 representing the axiom A comes into
head position (at each system call), the control is given to the
regular closure c = (t0|∅) that has a full access to the stack,
and that can thus perform all the necessary operations using
the current computational condition.

VII. CONCLUSION

In this paper we have presented and studied the program
transformation underlying the forcing translation through the
Curry-Howard correspondence in classical logic. We also
introduced an abstract machine (the KFAM) devoted to the
evaluation of proofs built by forcing techniques.

However, much work remains to be done in order to
understand the difference between the realizers of p A and
the realizers of A and to adapt extraction techniques such as
described in [15] to the framework described here. (Part of
this work has been already done in [14].)

Moreover, it could be interesting to see how forcing works
in concrete cases, such as the ones described in [12], [14].
But before considering difficult problems such as the com-
putational meaning of the continuum hypothesis, we could
first investigate simple cases of forcing by studying the com-
putational behavior of proofs of p A (for very simple
formulæ A) that do not come from an already existing proof
of A, and to understand how such ‘extra proofs’ behave.

Discovering new logical transformations

This paper is more generally an illustration of a fruitful
methodology in logic: start from a logical translation A 7→ A∗

(here: p A), deduce from it a program transformation t 7→ t∗

(on Curry-style proof-terms) and then internalize the program
transformation into the abstract machine (or into the language)
in such a way that the transformation becomes identity.

Historically, this methodology was already used for classical
logic: starting from negative translations A 7→ A¬¬, we get
the corresponding CPS-transform t 7→ t¬¬, before removing
the need of CPS-transforms by adding control operators in the
language. (Of course, real history was much less linear than
this simplistic picture.)

But the reminiscence we observed in section V-F suggests
that it could be interesting to try using this methodology
the other way around: starting from a particular feature of
computer architecture, we could first mimic this feature using a
suitable program transform (in some λ-calculus) before finding
the corresponding logical translation. In the author’s opinion,
this idea opens interesting perspectives in the discovery of new
logical transformations similar to forcing.

REFERENCES

[1] J. Avigad. Forcing in proof theory. Bulletin of Symbolic Logic,
10(3):305–333, 2004.

[2] J. L. Bell. Boolean-Valued Models and Independence Proofs in Set
Theory. Oxford, 1985.

[3] P. J. Cohen. The independence of the continuum hypothesis. Proceedings
of the National Academy of Sciences of the United States of America,
50(6):1143–1148, December 1963.

[4] P. J. Cohen. The independence of the continuum hypothesis II.
Proceedings of the National Academy of Sciences of the United States
of America, 51(1):105–110, January 1964.

[5] T. Coquand. Forcing and type theory. In E. Grädel and R. Kahle, editors,
CSL, volume 5771 of Lecture Notes in Computer Science, page 2.
Springer, 2009.

[6] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge
University Press, 1989.

[7] K. Gödel. Consistency of the axiom of choice and of the generalized
continuum-hypothesis with the axioms of set theory. Proceedings of the
National Academy of Sciences of the United States of America, 24(12),
1938.

[8] N. Goodman. Relativized realizability in intuitionistic arithmetic of all
finite types. Journal of Symbolic Logic, 43(1):23–44, 1978.

[9] T. Griffin. A formulae-as-types notion of control. In Principles Of
Programming Languages (POPL’90), pages 47–58, 1990.

[10] S. C. Kleene. On the interpretation of intuitionistic number theory.
Journal of Symbolic Logic, 10:109–124, 1945.

[11] J. L. Krivine. Lambda-calculus, types and models. Masson, 1993.
[12] J.-L. Krivine. Structures de réalisabilité, RAM et ultrafiltre sur N.

Manuscript, available on the author’s web page, 2008.
[13] J.-L. Krivine. Realizability in classical logic. In Interactive models

of computation and program behaviour, volume 27 of Panoramas et
synthèses, pages 197–229. Société Mathématique de France, 2009.

[14] J.-L. Krivine. Realizability algebras : a program to well order R.
Manuscript, available on the author’s web page, 2010.

[15] A. Miquel. Existential witness extraction in classical realizability and
via a negative translation. Logical Methods for Computer Science, 2010.

[16] C. Raffalli and F. Ruyer. Realizability of the axiom of choice in HOL
(An analysis of Krivine’s work). Fundamenta Informaticae, 84(2):241–
258, 2008.

