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Abstract. In this paper, we introduce a new type system, the Implicit
Calculus of Constructions, which is a Curry-style variant of the Calculus
of Constructions that we extend by adding an intersection type binder—
called the implicit dependent product. Unlike the usual approach of Type
Assignment Systems, the implicit product can be used at every place in
the universe hierarchy. We study syntactical properties of this calculus
such as the βη-subject reduction property, and we show that the implicit
product induces a rich subtyping relation over the type system in a nat-
ural way. We also illustrate the specificities of this calculus by revisitting
the impredicative encodings of the Calculus of Constructions, and we
show that their translation into the implicit calculus helps to reflect the
computational meaning of the underlying terms in a more accurate way.

1 Introduction

In the last two decades, the proofs-as-programs paradigm—the Curry-Howard
isomorphism—has been used successfully both for understanding the computa-
tional meaning of intuitionistic proofs and for implementing proof-assistant tools
based on Type Theory. Since earlier work of Martin-Löf in the 70’s—themselves
inspired by Russel and Whitehead’s Principia—a large scale of rich formalisms
have been proposed to enhance expressiveness of Type Theory. Among those
formalisms, the theory of Pure Type Systems (PTS) [2]1 plays an important role
since it attempts to give a unifying framework to what seems to be a ‘jungle
of formalisms’ for the one who enters for the first time into the field of Type
Theory. Most modern proof assistants based on the Curry-Howard isomorphism
such as Alf [11], Coq [3], LEGO [10] or Nuprl [7] implement a formalism which
belongs to this family.2

Despite of this, PTS-based formalisms have some practical and theoretical
drawbacks, due to the inherent ‘verbosity’ of their terms, which tends to over-
1 Formerly called Generalized Type Systems.
2 In fact, this is only true for the core language of those proof-assistants, since they

also implement features that go beyond the strict framework of PTS, such as sigma-
types, primitive inductive data-type declarations and recursive function definitions.



use abstraction and application, especially for type arguments. This is especially
true when compared with ML-style languages.

From a practical point of view, writing polymorphic functional programs
may become difficult since the programmer has to instantiate explicitly each
polymorphic function with the appropriate type arguments before applying its
‘real’ arguments.

However, there are good reasons to write those extra-annotations in a PTS.
The first reason is that there is in general no syntactic distinction between types
and terms, so that type abstraction (type application) is only a particular case
of λ-abstraction (application). Another reason is that without such type anno-
tations, decidability of type-checking may be lost provided the considered PTS
is expressive enough—which is the case of system F for example [17].

From a more theoretical point of view, the verbosity of PTS-terms also tends
to hide the real computational contents of proof-terms behind a lot of ‘noise’ in-
duced by all those type abstractions and applications. A simple example is given
by the Leibniz equality which can be defined impredicatively in the Calculus of
Constructions3 by

eq = λA :Set . λx, y :A .ΠP :A → Prop . P x → P x

: ΠA :Set . A → A → Prop

Using that definition, we can prove reflexivity of equality by the following term:

λA :Set . λx :A . λP :A → Prop . λp :P x . p : ΠA :Set .Πx :A . eq A x x.

What is the computational meaning of that proof ? It is simply the identity
function λp . p! To understand that point, let us simply remove type annotations
in all λ-abstractions—since they play no role in the real process of computation—
and write:

λA . λx . λP . λp . p : ΠA :Set .Πx :A . eq A x x.

The term above clearly shows that the first three arguments are only used for
type-checking purposes, but that only the fourth one is really involved in the
computation process. Also notice that the second ‘unuseful’ λ-abstraction is not
a type constructor abstraction.

Many solutions have been proposed to that problem, both on the theoreti-
cal and practical sides. Most proof assistants (Coq [3, 15], LEGO [14]) actually
implement some kind of ‘implicit arguments’ to avoid the user the nuisance of
writing redundant applications that the system can automatically infer.

A Common Practical Approach. Generally, implementations dealing with
implicit arguments are based on a distinction between two kinds of products, ab-
stractions and applications, the ones being called ‘explicit’ and the other being
3 For an explanation about the distinction Prop/Set, see paragraph 2.1.



called ‘implicit’. Although explicit and implicit constructions do not semanti-
cally differ, the proof-checking system distinguishes them by allowing the user
to omit arguments of implicit applications—the ‘implicit arguments’—provided
the system may infer them. Such arguments are reconstructed during the type-
checking process and then silently kept into the internal representation of terms,
since they may be needed later by the conversion test algorithm.

The major advantage of this method is to keep the semantics of the original
calculus—modulo the ‘coloring’ of the syntax—since implicit arguments are only
implicit for the user, but not for the system. Nevertheless, the user may some-
times be confused by the fact that the system keeps implicit arguments behind
its back, especially when two (dependent) types are printed identically although
they are not internally identical, due to hidden implicit arguments.

A Calculus with ‘really implicit’ arguments. In [6], M. Hagyia and Y. Toda
have studied the possibility of dropping implicit arguments out of the internal
representation of the terms of the bicolored Calculus of Constructions—that is,
the Calculus of Constructions with explicit and implicit constructors. Their work
is based on the idea that if we ensure uniqueness of the reconstruction of implicit
arguments (up to β-conversion), then we can drop implicit arguments out of the
internal representation of terms since the β-conversion test on implicit terms (i.e
terms where implicit arguments have been erased) will give the same result as if
done on the corresponding reconstructed explicit terms.

To achieve this goal, they propose a restriction on the syntax of implicit
terms in order to ensure decidability and uniqueness (up to β-conversion) of the
reconstruction of implicit arguments. But their restriction actually seems to bee
too drastic, since it forbids the use of the implicit abstraction in order to avoid
dynamic type-checking during β-reduction [6].

The theoretical approach of Type Assignment Systems On the theoret-
ical side, many Curry-style formalisms have been proposed as ‘implicit’ counter-
parts of usual Pure Type Systems, such as the Curry-style system F [8]. In [5],
P. Giannini et al. proposed an uniform description of Curry-style variants of the
systems of the cube, which they call the Type Assignment Systems (TAS)—as
opposed to (Pure) Type Systems. This work follows the idea that from a purely
computational point of view, polymorphic terms of the systems of the cube do
not depend on their type arguments (which is called ‘structural polymorphism’).
As a consequence, they show that it is possible to define an erasing function from
Barendregt’s cube to the cube of TAS, which precisely erases all the type depen-
dencies in proof terms, thus mapping PTS-style proof-terms to ordinary pure
λ-terms.

The major difference of that work with the approaches described above is that
the implicit use of the dependent product is not determined by some colorization
of the syntax, but by the stratification of terms. In other words, a dependent
product of TAS is ‘implicit’ if and only if it is formed by the rule of polymorphism
and, in all other cases, it is an ‘explicit’ product. Also notice that in the TAS



framework, the erasing function does not only erase polymorphic applications,
but it also erases polymorphic abstractions and type annotations in proof-term
abstractions.

It is interesting to mention that the (theoretical) approach of TAS raises the
same problem as the (practical) approach of M. Hagiya and Y. Toda, which is
the following: if the erasing function erases too much information, then it will
identify terms which were not convertible originally, so that the isomorphism
between the ‘explicit’ formalism and the ‘implicit’ one is irremediably lost. In
the framework of TAS, such a problem arises in the systems of the cube involving
dependent types [16].

Towards Implicit Pure Type Systems The main limitation of the approach
of Type Assignments Systems is to restrict the ‘implicit’ use of the dependent
product to polymorphism. If we want to generalize this approach to all PTS—
which are not necessary impredicative—it seems natural to equip them with an
implicit product binder, that will be denoted by ∀x :T .U in the following. By
making such a syntactic distinction, we allow the choice of the kind of dependent
product (explicit or implicit) to be disconnected from the stratification.

Another interesting feature is that this approach tends to identify terms
which would not be considered as convertible in a bicolored calculus. As we will
see in section 4, such identifications will help us to understand the computational
meaning of terms. However, this feature has a high theoretical cost, since it
completely changes the underlying semantics.

In the following, we will concentrate our study to the case of the Implicit
Calculus of Constructions. However, our approach is general enough to be ex-
tended to all the other PTS. In particular, most syntactic results of section 3
can be generalized to what we could call Implicit Pure Type Systems.

2 The Implicit Calculus of Constructions

2.1 Syntax

From a pure syntactical point of view, the Implicit Calculus of Constructions
(ICC)—or, shortly, the implicit calculus—is a Curry-style variant of the Calcu-
lus of Construction with universes—a.k.a. ECC [9]—in which we make a distinc-
tion between two forms of dependent products: the explicit product, denoted by
Πx :T .U , and the implicit product, denoted by ∀x :T .U . Formally, a term of
the implicit calculus (see figure 1) is either:

– a variable x;
– a sort s;
– an explicit product Πx :T .U , where T and U are terms;
– an implicit product ∀x :T .U , where T and U are terms;
– an abstraction λx . M , where M is a term;
– an application M N , where M and N are terms.



The set of sorts of the implicit calculus is defined by

S = {Prop; Set} ∪ {Typei; i > 0},

where Prop and Set denote the impredicative sorts, and (Typei)i>0 the usual
predicative universe hierarchy of the Extended Calculus of Constructions [9].
Notice that here, we follow the convention of the Calculus of Inductive Con-
structions [18] by making a distinction between two impredicative sorts, since it
is convenient to distinguish a sort for propositional types (Prop) from a sort for
impredicative data types (Set)—although both sorts are completely isomorphic
for the typing rules.

Sorts s ::= Set | Prop | Typei (i > 0)

Terms M, N, T, U ::= x | s
| Πx : T . U | ∀x : T . U
| λx . M | M N

Contexts Γ, ∆ ::= [] | Γ ; [x : T ]

Fig. 1. Syntax of the Implicit Calculus of Constructions

As usual, we will consider terms up to α-conversion. In the following, we will
denote by FV (M) the set of free variables of a term M , and by M{x :=N} the
term build by substituting the term N to each free occurrence of x in the term
M . Notice that the product binders Πx :T .U and ∀x :T .U bind all the free
occurrences of the variable x in U , but none of the occurrences of x in T .

In the following, we will denote by T → U the non-dependent explicit product
Πx :T .U (with x /∈ FV (U)). This convention only holds for the non-dependent
explicit product: there is no corresponding notation for the non-dependent im-
plicit product.4 We will also follow the usual writing conventions of the λ-calculus
by associating type arrows to the right, multiple applications to the left, and by
factorizing consecutive λ-abstractions.

A declaration is an ordered pair denoted by (x : T ), where x is a variable and
T a term. A typing context—or shortly, a context—is simply a finite ordered list
of declarations denoted by Γ = [x1 : T1; . . . ;xn : Tn]. Concatenation of contexts
Γ and ∆ is denoted by Γ ;∆. A declaration (x : T ) belongs to a context Γ if
Γ = Γ1; [x : T ];Γ2 for some contexts Γ1 and Γ2, that we note (x : T ) ∈ Γ .
Contexts are ordered by

– the prefix ordering, denoted by Γ @ Γ ′, which means that Γ ′ = Γ ;∆ for
some context ∆;

4 See paragraphs 2.3 and 3.3 for the discussion about the meaning of the non-
dependent implicit product, which is given by the (Str) typing rule.



– the inclusion ordering, denoted by Γ ⊂ Γ ′, which means that any declaration
belonging to Γ also belongs to Γ ′.

If Γ = [x1 : T1; . . . ;xn : Tn] is a context, the set of declared variables of Γ is
the set defined by DV (Γ ) = {x1; . . . ;xn}. We also extend the notations FV (M)
and M{x :=N} to contexts by setting

FV (Γ ) = FV (T1) ∪ · · · ∪ FV (Tn)

and Γ{x :=N} =
[
x1 : T1{x :=N}; . . . ;xn : Tn{x :=N}

]
,

the latter notation making sense only if x /∈ DV (Γ ). Finally, we will shall use the
notation ∀∆ .U = ∀x1 :T1 . . . .∀xn :Tn . U for any context ∆ = [x1 : T1; . . . ;xn :
Tn] and for any term U .

2.2 Reduction rules

As for the untyped λ-calculus, we will use the notions of β and η-reduction,
defined by

(λx . M) N .β M{x :=N}

λx . (M x) .η M (if x /∈ FV (M)),

(The need of the η-reduction rule, which is not assumed in the theory of Pure
Type Systems, will be explained in paragraphs 2.3 and 3.2.)

We also denote by .βη = .β ∪ .η the notion of βη-reduction, and for each
reduction rule R ∈ {β; η; βη}, we define

– the one-step R-reduction, denoted →R, as the contextual closure of .R;
– the R-reduction, denoted �R, as the reflexive and transitive closure of →R;
– the R-convertibility equivalence, denoted ∼=R, as the reflexive, symmetric

and transitive closure of →R.

Proposition 1 (Church-Rosser). The β-, η- and βη-reduction are Church-
Rosser.

Notice that in the strict framework of Pure Type Systems, the βη-reduction
does not satisfy the Church-Rosser property [4], due to the presence of a type an-
notation in the λ-abstraction. However, such a problem does not arise in the im-
plicit calculus, since we use a Curry-style λ-abstraction. This point has some im-
portance, since the implicit calculus has a strong requirement on the η-reduction
rule as we shall see in paragraph 3.2.

As for the untyped λ-calculus, any sequence of βη-reductions can be decom-
posed as a sequence of β-reductions followed by a sequence of η-reductions. This
is a consequence of the following lemma:

Lemma 1 (η-reduction delaying). — For any terms M0, M1 and M2 such
that M0 �η M1 and M1 �β M2, there exists a term M ′

1 such that M0 �β M ′
1

and M ′
1 �η M2.



2.3 Typing rules

Before introducing typing rules, we have to define two sets Axiom ⊂ S2 and
Rule ⊂ S3. The set Axiom, defined by

Axiom = {(Prop,Type1); (Set,Type1)} ∪
{(Typei,Typei+1); i > 0},

is used for typing sorts, whereas the set Rule, defined by

Rule = {(s,Prop,Prop); s ∈ S} ∪
{(s,Set,Set); s ∈ S} ∪
{(Typei,Typei,Typei); i > 0},

is used for typing products. Note that the same set is used for typing both
explicit products and implicit products.

We also need to define an ordering relation between sorts, which is called the
cumulative order. This ordering relation, denoted by s1 ≤ s2, is defined by

Prop ≤ Prop, Set ≤ Set,

Prop ≤ Typei, Set ≤ Typei,

Typei ≤ Typej if i ≤ j

The typing rules of the implicit calculus involve two judgments:

– a judgment denoted by Γ `, which says: “the context Γ is well-formed”;
– a judgment denoted by Γ ` M : T , which says: “under the context Γ , the

term M has type T”.

Validity of those judgments is defined by mutual induction using rules of figure 2.
The rules (Var), (Sort), (ExpProd), (ImpProd), (Lam), (App), (Conv) and

(Cum) are the usual rules of ECC, except that we have an extra rule for the
implicit product—which shares the same premises and side-condition as the
rule for the explicit product. Another difference between ECC and the implicit
calculus is that in the latter, the convertibility rule (Conv) now identifies types
up to βη-convertibility.

The rules (Gen) and (Inst) are respectively the introduction and elimination
rules for implicit product types. In contrast to the rules (Lam) and (App), the
rules (Gen) and (Inst) have no associated constructors. Remark that the rule
(Gen) involves a side-condition ensuring that the variable x whose type has to
be generalized does not appear free in the term M .

The purpose of the next rule, called (Ext) for ‘extensionality’, is to enforce
the η-subject reduction property in the implicit calculus. Such a rule cannot
be derived from the other rules, for the same reasons that it cannot be derived
in the Curry-style system F , which is included in ICC. This rule is desirable
here, since it gives smoother properties for the subtyping relation, such as the
contravariant/covariant subtyping rules in products.5

5 See lemma 4 in paragraph 3.2.



Rules for well-formed contexts

[] `
(WF-E)

Γ ` T : s x /∈ DV (Γ )

Γ ; [x : T ] `
(WF-S)

Rules for well-typed terms

Γ ` (x : T ) ∈ Γ

Γ ` x : T
(Var)

Γ ` (s1, s1) ∈ Axiom

Γ ` s1 : s2
(Sort)

Γ ` T : s1 Γ ; [x : T ] ` U : s2 (s1, s2, s3) ∈ Rule

Γ ` Πx : T . U : s3
(ExpProd)

Γ ` T : s1 Γ ; [x : T ] ` U : s2 (s1, s2, s3) ∈ Rule

Γ ` ∀x : T . U : s3
(ImpProd)

Γ ; [x : T ] ` M : U Γ ` Πx:T . U : s

Γ ` λx . M : Πx : T . U
(Lam)

Γ ` M : Πx:T . U Γ ` N : T
Γ ` M N : U{x := N}

(App)

Γ ; [x : T ] ` M : U Γ ` ∀x : T . U : s x /∈ FV (M)

Γ ` M : ∀x : T . U
(Gen)

Γ ` M : ∀x : T . U Γ ` N : T
Γ ` M : U{x := N}

(Inst)

Γ ` M : T Γ ` T ′ : s T ∼=βη T ′

Γ ` M : T ′ (Conv)
Γ ` T : s1 s1 ≤ s2

Γ ` T : s2
(Cum)

Γ ` λx . (M x) : T x /∈ FV (M)

Γ ` M : T
(Ext)

Γ ; [x : T ] ` M : U x /∈ FV (M) ∪ FV (U)

Γ ` M : U
(Str)

Fig. 2. Typing rules of the Implicit Calculus of Constructions



The meaning of the non-dependent implicit product. The presence of
the last rule—called (Str) for “strengthening”—may be surprising, since the
corresponding rule is admissible in the (Extended) Calculus of Constructions,
and more generally in all functional PTS [4]. In the implicit calculus, this is
not the case, due to the presence of non-dependent implicit product. The main
consequence of rule (Str)—an the reason for introducing it—is the following:

Lemma 2 (Non-dependent implicit product). — Let Γ be a context, and
let T and U be terms such that x /∈ FV (U) and ∀x :T .U is a well-formed type
in Γ . Then, for any term M we have the equivalence:

Γ ` M : ∀x :T .U ⇔ Γ ` M : U

In other words, a non-dependent implicit product ∀x :T .U has the very same
inhabitants as the type U obtained by removing the ‘dummy’ quantification
∀x :T . Without the rule (Str), this result would hold only if the type T is not
empty in the context Γ . In paragraph 3.3, we will discuss about the possible
problems that this rule might pose with respect to the logical consistency of the
calculus.

3 Typing properties

3.1 Subject reduction

The βη-subject reduction of the implicit calculus is surprisingly hard to prove
due to the presence of the rule (Ext) whose premise involves a term structurally
larger than the term in the conclusion. For that, we have to use a trick based on
lemma 1 in order to isolate the rule (Ext). The proof of βη-subject reduction
follows the scheme described below:

Step 1. We prove the η-subject reduction property. This result is quite obvious
because of rule (Ext), and since rule (Conv) identifies βη-convertible terms.

Step 2. To isolate the rule (Ext), we define a notion of η-direct derivation, which
restricts the usual notion of derivation by forbidding the use of rule (Ext) in the
parts corresponding to the destructuration of the currently typed term—but not
in the parts destructuring the context. The corresponding (restricted) judgment
is denoted by Γ d̀ M : T .

Step 3. Using that restriction, we prove inversion lemmas and the β-subject
reduction property for η-direct judgments Γ d̀ M : T only.

Step 4. We show that for any valid judgment Γ ` M : T , there exists an η-
expansion M0 of the term M such that Γ d̀ M0 : T . Using the fact that η-direct
judgments enjoy β-subject reduction together with lemma 1, we can extend the
β-subject reduction property to the unrestricted form of judgment Γ ` M : T .



3.2 Subtyping

One of the most interesting aspects of the Implicit Calculus of Constructions
is the rich subtyping relation induced by the implicit product. This subtyping
relation, which is denoted by Γ ` T 6 T ′, can be defined directly from the typing
judgment as the following ‘macro’:

Γ ` T 6 T ′ ≡ Γ ;x : T ` x : T ′ (x a fresh variable)

Using that definition, we can prove that in a given context, subtyping is a pre-
ordering on well-formed types which satisfies the expected (Sub) rule:

Lemma 3 (Subtyping preordering). — The following rules are admissible:

Γ ` T : s
Γ ` T 6 T

Γ ` T1 6 T2 Γ ` T2 6 T3

Γ ` T1 6 T3

Γ ` M : T Γ ` T 6 T ′

Γ ` M : T ′ (Sub)

Moreover, product formation acts in contravariant way for the domain part,
and in a covariant way for the codomain part:

Lemma 4 (Subtyping in products). — The following rules are admissible:

Γ ` T ′ 6 T Γ ; [x : T ′] ` U 6 U ′

Γ ` Πx :T .U 6 Πx :T ′ . U ′ (SubExpProd)

Γ ` T ′ 6 T Γ ; [x : T ′] ` U 6 U ′

Γ ` ∀x :T .U 6 ∀x :T ′ . U ′ (SubImpProd)

Notice that the rule (SubExpProd) can not be proven to be admissible with-
out the rule (Ext). In fact, this is the main motivation for introducing the
rule (Ext), which has been proven equivalent to the rule (SubExpProd) in [12].

Besides the notion of subtyping, we can also define a notion of typing equiv-
alence, denoted by Γ ` T ∼ T ′, which is simply the symmetric closure of the
subtyping judgment Γ ` T 6 T ′. We can prove the following equivalences:

Lemma 5. The following rules are admissible:

Γ ` ∀x1 :T1 .∀x2 :T2 . U : s Γ ` ∀x2 :T2 .∀x1 :T1 . U : s′

Γ ` ∀x1 :T1 .∀x2 :T2 . U ∼ ∀x2 :T2 .∀x1 :T1 . U

Γ ` ∀x1 :T1 .∀x2 :T2 . U : s Γ ` ∀x2 :T2 .∀x1 :T1 . U : s′

Γ ` Πx1 :T1 .∀x2 :T2 . U ∼ ∀x2 :T2 .Πx1 :T1 . U

(Notice that the premises imply that there is no mutual dependency in the
quantifications of conclusions, i.e. x1 /∈ FV (T2) and x2 /∈ FV (T1).)



3.3 Partial consistency results

In the implicit calculus, we have two ways for encoding the falsity. The first
way—which is the usual way in the Calculus of Constructions—is to represent
falsity by the type ΠA :Prop . A, which is called the explicit falsity. But in the
implicit calculus, we can also encode the falsity by ∀A :Prop . A, which is called
the implicit falsity. As in the Calculus of Constructions, a proof of the explicit
falsity is a function which takes a proposition as an argument, and returns a
proof of that proposition. On the contrary, a proof of implicit falsity is a proof
of any proposition—since implicit falsity is the intersection of all propositional
types.

However, both falsities are provably equivalent:

λf . f (∀A :Prop . A) : (ΠA :Prop . A) → (∀A :Prop . A)
λp, A . p : (∀A :Prop . A) → (ΠA :Prop . A)

Notice that the last proof is quite general, since we have

λp, x . p : (∀x :T .U) → (Πx :T .U),

which means that an explicit product has at least as much inhabitants as the
corresponding implicit product.

Proposition 2. — In the empty context, a proof of implicit falsity has no weak
head normal form.

As a consequence, we have the following relative consistency result:

Proposition 3. — If the Implicit Calculus of Constructions is strongly normal-
izing, then it is logically consistent.

Unfortunately, the strong normalization of the implicit calculus is still an
open problem. Nevertheless, we have proven in [13] that a large fragment of the
implicit calculus is logically consistent (see section 5). This fragment is precisely
the implicit calculus without the rule (Str)—also called the restricted implicit
calculus.

One may fear that rule (Str) could jeopardize the logical consistency of the
whole calculus. For example, the fact that the strengthening rule allows to remove
any dummy implicit quantification implies that a proof of ∀x :False .False is also
a proof of False (here, False denotes one of the falsities). Nevertheless, we must
remember that explicit and implicit products are not symmetric—we have an
‘explicit’ abstraction in the calculus, but no implicit one—so we can not form
an implicit equivalent of the identity function to provide a trivial inhabitant of
∀x :False .False.

Many arguments—but still no proof—seem to indicate that the (Str) rule
does not jeopardize the consistency of the calculus. The first one is that propo-
sition 3 holds for the whole calculus—but this relies on an open normalization
problem. In fact, we can prove that strong normalization of the implicit calculus
does not depend of the presence of rule (Str):
Proposition 4. — If the restricted implicit calculus is strongly normalizing,
then the (full) implicit calculus is strongly normalizing too.



4 Impredicative encodings

In this section we shall illustrate the expressiveness of the Implicit Calculus of
Constructions by comparing impredicative encodings of lists and dependent lists
(vectors), and by studying their relationships with respect to subtyping.

In the implicit calculus, lists are encoded as follows:

list : Set → Set := λA .∀X :Set . X → (A → X → X) → X

nil : ∀A :Set . list A := λxf . x

cons : ∀A :Set . A → list A → list A := λalxf . f a (l x f)

Notice that here, the polymorphic constructors nil and cons are exactly the usual
constructors of (untyped) lists in the pure λ-calculus. In fact, this result is not
specific to the implicit calculus: this example could have been encoded the same
way in the Curry-style equivalent of system Fω in the cube of TAS, since the
implicit quantification was precisely used for impredicative products.

In such a framework, it is not necessary to give an extra argument at each
‘cons’ operation to build a list:

cons true (cons false (cons true nil)) : list bool.

Using the traditional encoding of lists in the Calculus of Constructions, the same
list would have been written

cons bool true (cons bool false (cons bool true (nil bool))) : list bool

by explicitly instantiating the type of constructors at each construction step.
In the implicit calculus anyway, the constructor of lists has the good covari-

ance property with respect to the subtyping relation:

Proposition 5 (Covariance of the type of lists). — For all context Γ and
for all terms A and B of type Set in Γ we have:

Γ ` A 6 B ⇒ Γ ` list A 6 list B.

In fact, the situation becomes far more interesting if we consider the type
of dependent lists—that we call vectors. The type of vectors is like the type of
lists, except that it also depends on the size of the list. In the implicit calculus,
the type of vectors can be encoded as follows

vect : Set → nat → Set
:= λAn .∀P : nat → Set . P 0 → (∀p : nat . A → P p → P (S p)) → P n,

where nat, 0 and S are defined according to the usual encoding of Church integers
in Curry-style system F .

Notice that this encoding can not be done in the cube of TAS since the
innermost quantification ∀ p : nat introduces an implicitly dependent type. Now,
the good news come from the fact that we do not need to define a new nil and a



new cons for vectors. Indeed, it is straightforward to check that the nil and cons
that we defined for building lists have also the following types:

nil : ∀A :Set . vect A 0

cons : ∀A :Set .∀n : nat . A → vect A n → vect A (S n)

In other words, lists and (fixed-length) vectors share the very same constructors,
so we can take back the list of booleans above and assign to it the following more
accurate type:

cons true (cons false (cons true nil)) : vect bool (S (S (S 0))).

In the Calculus of Constructions, such a sharing of constructors is not possible
between lists and dependent lists, so we have to define a new pair of constructors
nil′ and cons′ to write the term

cons′ bool (S (S 0)) true
(cons′ bool (S 0) false

(cons′ bool 0 true (nil′ bool))) : vect bool (S (S (S 0))).

whose real computational contents is completely hidden by the type and size
arguments given to the constructors nil′ and cons′.

In the implicit calculus, we can even derive that the type of vectors (of a
given size) is a subtype of the type of lists:

Proposition 6. — For all context Γ and for all terms A and n such that
Γ ` A : Set and Γ ` n : nat, one can derive the subtyping judgment:

Γ ` vect A n 6 list A.

To give another illustration of the expressive power of the Implicit Calculus
of Constructions, let us go back to the world of propositions by studying the case
of Leibniz equality. In the implicit calculus, the natural impredicative encoding
of equality is the following6:

eq : ΠA :Set . A → A → Prop := λA .∀P :A → Prop . P x → P x.

Using that encoding, the reflexivity of equality is simply proven by the identity
function

λp . p : ∀A :Set . eq A x x

whereas the proof of transitivity is given by the composition operator

λfgp . g (f p) : ∀A :Set .∀x, y, z :A . eq A x y → eq A y z → eq A x z.

6 Notice that here, the type variable A is explicitely used by the definition of equality
so that the corresponding dependency must be explicit in the type ΠA :Set . A →
A → Prop. In proof-checking systems, such a type argument can be easily inferred
and is usually treated as implicit. This example shows that the typing information
that we can really drop out of the syntax has little to do with the typing information
that can be automatically inferred in practice.



5 Semantics

Building a model of the Implicit Calculus of Constructions is a fascinating chal-
lenge, especially because of its rich subtyping relation. The main difficulty is
caused by the interpretation of the Curry-style λ-abstraction which imply the
traditional typing ambiguity, but also a stratification ambiguity, since the iden-
tity λx . x has type ∀A :Prop . A → A, but also the types ∀A :Typei . A → A for
all i > 0.

In [13], we have proposed a model of the restricted implicit calculus—that is
the implicit calculus without the rule (Str). This model is based on a untyped
domain theoretical interpretation of terms in a large coherence space containing
types as ’ground values’. The corresponding interpretation has nice properties,
since it allows to interpret all terms—even ill-typed ones—independently of their
possible types. Using that interpretation, we proved the logical consistency of
the restricted implicit calculus.

6 Future work

Strong normalization The next topic we will focus on is to prove that the
implicit calculus is strongly normalizing. It is reasonable to think that the ideas
introduced in [13] will be helpful for building a strong normalization model of the
implicit calculus. Technically, such a construction could be achieved by adding
normalization information into the actual model using Altenkirch’s Λ-sets[1].
But for achieving this goal, we first need to modify the model in such a way that
all types becomes inhabited, since we want to interpret terms in all contexts.

Decidability of type-checking The decidability of type-checking in the im-
plicit calculus is still an open problem. However, we strongly conjecture that
type-checking is undecidable, at least because it contains the Curry-style system
F . In fact, the inclusion of Curry-style system F into the implicit calculus seems
to be only a minor point, since the implicit product allows to hide in the im-
plicit calculus far more typing information than in Type Assignment Systems.
For that reason, the implicit calculus seems to be a poor candidate for being
used in a proof assistant system. Nevertheless, it could be fruitful to study ad
hoc restrictions of the implicit calculus preserving decidability of type-checking,
in order to test them in real proof-checking environments.

Extending this approach to all PTS The approach described in this paper
seems to be well-suited for being extended to all Pure Type Systems. Within
the more general framework of Implicit Pure Type Systems, it is possible to
increase generality by making a distinction between two sets RuleΠ and Rule∀

for typing explicit and implicit products respectively, since the proofs of most of
the results exposed in section 3 (including the βη-subject reduction property)
do not rely on the fact that in the implicit calculus, both explicit and implicit
products share the same formation rules.
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