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I. Introduction

Let { be a €7 map from the unil Interval T into itsell and (ag ), g # sequence of integers
greater or equal to 2. We say thal the map f is (ayg Jnso-infinitely renormalizable if there
exisls a sequence of nested intervals £ 3 _T.Utf) I ,rl(f:l- = et 2 .In{f} ... such that, for
each n:

FHL PN TEE L =0 %6 T84 S tdy ool 1
and

footrete{T, () € Tul£):
The intervals fY(Z,), for 0 € i € ag.ay...a, — 1, are called the aloms of generation n of
i
Maps which satisly this property bul only for a finite sequence (@, )y —13asn are called
(0n )i —13nzo-renormalizable or m-times renormalizable when there is no ambiguity.
W say Lhal an infinite renormalisable map is of bounded combinatorial type if the sequence
(#r)nzn is bounded, Notice that, in this case, the sequence {ay, )n>o has an accumulation
point, i.e. there is an integer that appears infinitely many times in the sequence.
This type of mape occurs very naturally in one dimensional dynamics: actually Tor any
sequence (aglyso there exists a value of the parameler o Jor which the gquadratic map
wo ]l —uz? s g [_rr.,.‘]ﬂzwinﬁn]iﬂi}-' renormalizable map. Since any continuous map on the
interval which possesses a periodic orbit whose period is not a power of 2, has positive
topological entropy [BI], it follows casily that the only infinitely renormalizable maps
with topological entropy zero are Lhe ones for which each element of the sequence (o, )=
ig a power of 2. The aim of Lhis paper is to prove a similar result for area contracting
maps of the 2-disk. But, before that, let us emphasize some recent results about infinitely
renormalizable maps on the interval.
To a [(ag)nso-infinitely renormalizable map f, we can associate another map, that we call

the renormalized map of [, denote by R( f), and define by:

R =€ f)o f2ot([)

whaere £{ [} is an alline scaling which maps { onlo Zy( [).
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The renormalized map RK{f)is again a | |';‘.1_,,-£,|-,-||-;ﬁnj1_q_~]}.' renormalizalde map with b, =

ty gy lor all v, and its corresponding sequence of nested jntervals is given by
. i i e . -
I!LER[J‘J] = t L_Il‘.lllj‘—w-}-lllrf)} rc‘l'ra'll 1R ;’: 0'

From the independent discovery and explanation by Coullet and Tresser ([CT], [TC]) and
Feigenhanm [Fe] in 1978, that infinitely renormalizable mape exhibit universal grometrical
hehaviors, to the culminating work of Sullivan [Su] in 1892, a huge amount of works, both
numerical and theoretical, has been done in this field. It is not our intention to give here a
panorama of the actual knowledge. For this purpose, we refer the reader to [M5] and the
references quoted therein, We just want to focus on a key point of Sullivan’s theory, often
refored to as real bounds”, that we present here, for sake of simplicity, in a very weakened
form: :

Consider a smooth map, f, with a quadratic singularity: more precisely we consider the

st i1t of the maps f: [0, 1] — [0, 1] that can be written as
f=eadawy,

where 4 @ [0,1] — [#(0), 1] is an orientation preserving diffeoinorphism such that (0} is
in {—1,0), @ : [¥(0),1] = [0,1] ix the quadratic map Q(z) = 2%, ¢ : [0,1] — [0.1] is an
orientation reversing dilleomorphism, and the twa maps ¢ and 10 are 1+1, that is to say,
¢! and the derivatives satisfy a Lipschitz condition. Sullivan proves the following “bean™
thearem:

Theorem 1.1 [Sul: Let f € {1 be an infinitely renormalizable map with combinatorial
type bounded by N. Then, for all n = 0:

1- The renormalized wmaps RU([) belong to (' their C'-norm and the Lipschitz con-
stante are bounded by o constont which depends only on f.

2. There exist two constants ay and by which depend only on [ such that, if T ix an alore
of the generation m of R7(f) and 7 ¢ T is an atomn of the generation m 4 1, then
0<ap<|TIZ|<by 1 fwhere |

slarle for Lhe (Iiurntﬁr_—r:_}.
All these bounds are “hean” (bownded ond eventually universally (bounded)), that is to say,

that for n big enough, these bounds ran be chosen so that they depend only on N



In the same way s we did in the one-dinensional case. we can deline infinitely renor
malizable maps in dimension 2, We cay that a 0 map, 7. of the 2-dish 07 dnin itaell
is (o, )y sa-tnfindtely rerovenalizable (6 Lhere oxists a sequence of nested differentialile disks
DDy oD oo D, ... such that, fur each n:

PAPATI = U for ]l ©5% gl 1
and

FaAL B (D D
The scts fi{P,,_}, for 0 <4 < ag.ay...a, = 1, are called the atoms af generation o oaf .
They are not necessarily disks.
In dimension 2, infinitely renormalizable maps are also {requently observed. For instance.
they appear naturally in the infinitely dissipative situation for a map (z,y) — fg(z),0),
where g is an infinitely renormalisable map on the interval, and also in the area preserving
case of a map exhibiting resonant islands,
Tova {2y )p»o-infinitely renormalizable map f of the 2-disk, we can again associate a renor-

malized map ol [, defined hy:
R =& e [™ €]
where £ ) is a O sealing which maps D% outo D,;.r:'_f]_

The renormalized map R{f) is a (b )nza-infinitely renormalizable map with b, = @, for

all m, and its corresponding sequence of nested disks is piven by:

Dn(R{f)) = €M W Prpa(f)) forall n > 0.

Definition: Dy analogy with the one dimensional case, we say that a (' jnfinitely
renormalizable map of the 2-disk, has o bounded geometry if it satisfies the following two
conditions:

I- For all n > 0, the renormalized maps 7™( f), the scaling maps £(R"(f)), and their
inverse £(R"[f)) !, are ' and their Clnorm and their Lipschitz constants are bounded
by a constant &y which only depends on f.

2- T'here exist constants ) < @y < by < 1 which depends only on f such that, for all w > 0,
if T is an atom of the generation m of R™(f) and 7 ¢ I is an atom of the generation

mo+ 1, then , ay < [ F|/|T] € by [ where || stands for the diameter),



Remark 1: These comnditions foree [ (e have a bounded combinatoral tvpe.
Remark 2: To have a bounded geometry is a very strong asumption. The above Lheoremn
states that an infinitely renormalizable map [ € 4" with bounded combinatorial type,
satisfies these asumptions. In fact, this is not known for the other one-dimensional maps
[mee [llm]} and ohvicusly not for two-dimensional maps.
Unlike in dimension 1, for any sequence (a,)nz0. we can find (a, ), infinitely renor
malizable % diffeomorphisms of the 2-disk with topological entropy zero; moreover il
the sequence {@, )ano is bounded, these maps ran be construct with a hounded geometry
[(GT2).
However, [or an area contracting map of the 2-disk the sitnation seems to be much more
rigid. One one hand, the only known examples of arca contracting infinitely renormalizable
embeddings with topological entropy zero are such that the sequence (g, .50 is & sequence
of powers of 2 |GST|. Actually, these maps are the only known area conlracting embeddings
of the 2-disk with topological enlropy were, that can be (ransformed by an arbitrary small
Cloperturbation into maps with positive topological entropy. On the other hand, there
are some numerical evidences that show that for the Tlénon model, maps which belong
to the (" -houndary of positive topological entropy, are geomelrically hounded infinitely
renormalizable map of the 2-disk such that the sequence {0, )20 is eventually a seguence
of powers of 2[GT1].
The central result of this paper may be seen as a step towards an explanation of these
numerical evidences and can be slated as [ollows:
Theorem 1.2: Let [ be o (ag)nzo-infinilely renormalizable maop of the Z-disk with o
bounded geomefry, which contracts uniformly the arca. Then:

- cither, the topological entropy of [ is positive,

- or, eventually the sequence (Gn)nno 18 a sequence of powers of 2.



I11l. Proof of the Theorem

Let us start with some notations. Tor any positive &, we denote by UK ) the set of ¢!
maps from the disk D inlo itsell, whose derivalives are Lipschitz, with Lipschitz consiant
smaller than &, Thanks to the Arzela-Ascoli theorem, any sequence of maps in (]
has a converging subsequence in the O topology. All along the proof, we shall frequently
make use of this property.

Consider now an (@, ).»o infinitely renormalizable map f of the 2 disk with a bounded
geometry, Since the sequence (R ) ezo remains in WA ), il possesses an accumulation
point o AN ).

Lemma 3.1: Let pg be an accumulation point of the sequence [:a,l}n-gn. Then, there 15 a
map go n WK ) which is an accumulation point of the sequence (R7(f Dnso and which
satisfies:

1} g s I-time renormalizable, more precisely there erists a differentiable disk Dulg) C D?
such that Dalga). go{Palgn)). . gl " (Dolga)) are disjoint and gi®(Dalge)) © Dalgo).

{ii) Lvery atom J of the first gencration of g satisfies | J| < 2by (where by s the bound
given in the above definition].

Proof: Let py be an acenmulation peinl of the sequence {aqlnzo. Then, there exists a
subsequence (g4 )aen which is constant and equal to pg. From the sequences Rl gy
and E{R¥M[ f1). we can extract subsegquences R¥™( £y and £(RYI™( £)) which respectively
converge to maps go and £y in M0 K 7).

For each n > 0, we have:
Do(RI(f)) = ERAW())(D?).
Since the maps R¥I®)( f) are 1-time renormalizable, we get:
(R¥MO (Do RIM(HN N D(RYM()) = Bfor 1 <4 <pg - 1,

anid

{:,re_'\-"'ln‘.'{f]j:'u ('I)UI:?J."'"':“:'{_J'“}]} c Dﬂ"lRw“J{f}.‘]-
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By setting

Dolge) = &ID?),

wa we | by continuity:
(g3(Palga)) N Dalgn) = Bfor 1 < i< pp—1,

anid

gP* (DL (Palgo0)) € Palgo).

The fact that Dalga) is a dilferentiable disk comes from the uniform estimates on the norm
of the derivative of the inverse scaling functions.

Since f has bounded geometry, we know that, for each n > 0 and for each atom J of the
firsl generation of R f). we have:

[J]| = ').n"rf.

Hy continuity we get the same estimate for gy
(eq.e.d.)

Lemma 3.1 is actoally the first step of an inductive process:
Lemma 3.2: Let ps be an accumulalion point of the sequence (@, )nsa.  Then, there
rrists a sequence of maps (g iso m UK ¢) which are acenmulation points of the sequence
(R Vnvo and which satisfy, for each 1 2> U:
(L g is E4+ 1 times renormaolizeble. More precisely, there exists a sequence (af qnliznzo with
ay = pn, such thel g s (00 )iz sn-renormalizable,
(35} ) = gr1.
(iti) Every atom [J of the n't generation of g, 0 < n < 14 1, satisfies | J| < 207,
Proof: Let py be an accumulation point of the sequence (ap)nmo. There exisls a sub.
sequence {tginyluzn Wwhich is constant and equal to pp. The subsequence (earny—1 Jremn
has also an accumulation point, say p;. By iterating this process [ times, we can find a
subsequence (ag (n)bnxo Which is such that:

- gy w18 conslant and equal 1o pp,

- g )41 15 constant and equal to ppog

-]



- @i 15 constant and equal to pa.
DBy a diagonal process, we can extract {rom the seguences '.J':.',""'f-"‘j[,'-j and £ -J—\‘-‘-""':"-'[J"-]}-
subsequences RYEI ) and SR £)) which respectively converge to maps g and & in
L0 ;) and gy is such that R{gy) = ¢/-1. From this point, we ran vnse the same techniques
as in the proof of Lemina 3.1, to terminate the proof of TLemma 3.2,

{qg.e.d.}

" generation of g and o

Lemma 3.3: For each I > 0, there exist an atom Jy, of the
point x; in Jp such that ||da(z)|| = 1.
Froof 3.3: We know that

gi M (g} € Dulgn)s
where

Diig) = Lo .. Li-1(D?),

and Lhat g7 " "' possesses in Th(gy) a periodic orbit with period po.

I follows that there exists a point p; in Di{g;) such that
g7 7l > 1.

Consequently, in one of the py ... p; — 1 firsl jmapes of Di{g), that is to say, in an atom J;,
af the % generalion of gy there is a point oy, image of ¥ by some iterate of f, such that
gl )]] = 0.

{q.e.d.)}
Let us now assume that the map f contracts uniformly the area, f.e. there axists b such
that |def{df{z))} < b < 1 lorall @ in D? Then we have the following result:
Lemmaza 3.4: Any aecwmulafion point g oof the sequence (%[ f1lnno is a singular map,
fe. det(dye(e)) = 0 for all z € D?
Proof: We have

RAF) =€ HR N osswo £ M f) o fo =g fyoom EERPLL).
Since for any linear map A in finite dimension, we have |detA] < [|A]]2, it follows that:

|[detdR™(f)z)| £ K pootnmt,
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and this gquantity poes Lo 0 when n goes to oo, Thus, by continuity, any accumulation
point of the sequence (R F1),, 50 15 @ singalar map.
(q.e.d.}

Consider now the sequence (g, x;) defined in Lemmas 3.1 and 3.2, We can extract from
it, a subsequence (g, o) which converpes to some (y,o} where g is a map in A ;)
which is an accumulation point of the sequence (R )} 20, and z is an accumulation ol
the sequence (w;)iz=o. Dy continuity, we get [ldg(z)|| = L. It follows that there exist a
connected neighbourhood V' of z and an integer {p such that, for all ¥ € V, and for all
[ =1y

(1) lidaan(a}l 2 1/2,
and

{(ii) ¥V cantains Jg; (the atom of the gy peneration of garyy containing yan ).

Thanks to Lemma 3.4, we know that the maps g; and g are siugula,r:
det(dgiin}) = detidgly)) — 0%y € D,

Therefore, lfor all I = {p, and for all ¥ € ¥, the dimension of the kernel ol figg,, is 1.
Thus, ker {2gsy defines a Lipschitz field of directions on V, and consequently a Lipschitz
foliation. The image of cach leal is a poinl because Lhe derivative of geq) along the leaves is
zero. Clonsider now a trivialisation of this foliation in V. That is to say a map 7 : ¥ — R”
which is a Lipschitz homeormorphism outa its image and that maps each leaf of the foliation
in Voinbe a horizonial line, Recall now that Ge(ly maps its atom of the f:i'lilf}"'l’ peneration,

Sy into self after gey = P Pain iterations:
ELINM
g0ry (Jen) © s,

and that g:ﬁ;} possesses in Jgy, and thus in ¥, a periodic orbit with period pp.
Using the conjugacy by the trivialisation », the map fg;, — 70 g:f};J a1 (V) — R?
reads:

fanlz,z2) = (frem(xz), fzanlz2)),

where (x,72) are the canonical coordinates in R* and f; and fy are two continuous maps

from some interval to the reals.
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Since Lhe map r,r:;’:I Las a periodic orbit with perioed po in V. we get that the map f5 500 000]0)
posseases alsn 4 periadic orbit with pariod pg.
We are now o a good position to prove our theorem.  Assume Lhal we started with a
I_'rI_..,‘b.l-,_»n-inﬁnil.s-.ly renorinalizable map f of the 2-disk with a bounded geometry, Assume
also that f contracts uniformly the area. [f the sequence (a,)nso is not eventually a
sequence of powers of 2, it has an accumulation point ps which is not a power of 2. The
construclion we made above yields an interval map f3 gy which has a periodic orbil whose
peviod py s not a power of 2, and thus has positive lopological entropy. This means [Mi]
that there exist an interval T where f; g is defined, two disjoint subindervals o C 7 and
I I, and an integer n such that:

= J(?,g,;r]Efn] =
ani -

E -"\éltag.'][.flj i,
Li follows that the map f;';.‘” maps Lhe two horizontal strips Dy = (R % fy) (1 7V and
£ = (Rox L )0 s(V) on twa lines whose projections on the vertical asis (parallely Lo Lhe
horizontal one) cover the interval [,
Consider now a continuous map g : 7{V) — v(V). If g is € close enough to the map fa .
it will map the two strips £y and I on two strips whose projections on the vertical axis
[parallely to the horizontal one) cover the interval J and such that ¢" (I x 80 N (V) and
g R @) N (V) doonot intersect Rox 7, where 87 stands for the boundary ol 1,
It follows that g™ has an invariant sct in (V) such that g", restricted to this nvariant
sl is sernd-vonjugale o the shilt on two symbole. Thus g™, and consequently ¢, have
positive topological entropy. Since the map ggipy is an accumulation point of the sequence
(R™ f))n=o, we get that some iterates of maps in this sequence accumulate (in the -
topology) on the map g;fﬂ". Thus, their images by the conjugacy by ¢ accumulate, in the
9 topalogy, on Sorny- Comnsequently the renormalized maps {R™( f))nn»o and then [ hawve
positive topological entropy. This achieves the proof of our theorem.
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