BOLETIN DE LA FACULTAD DE INGENIERIA

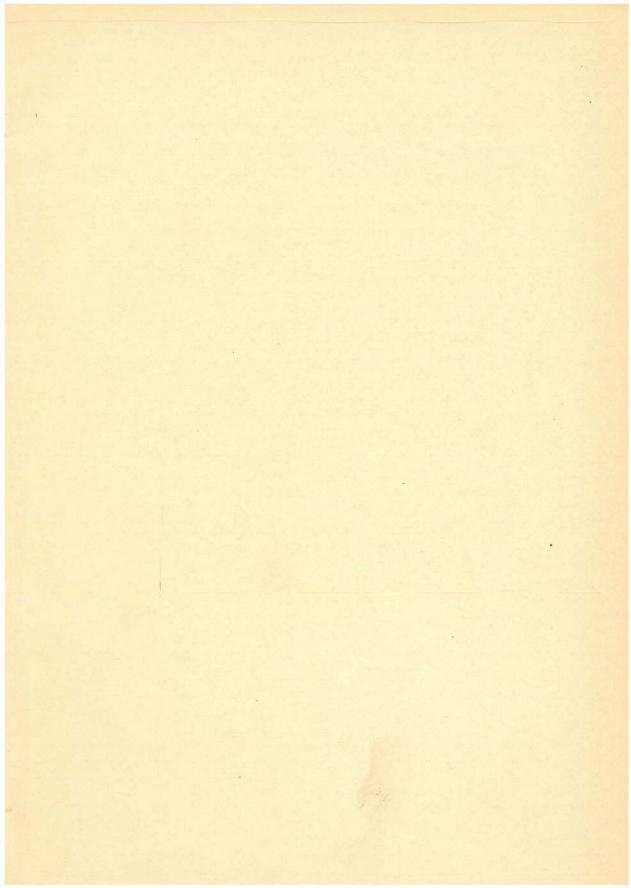
UNIVERSIDAD DE LA REPUBLICA

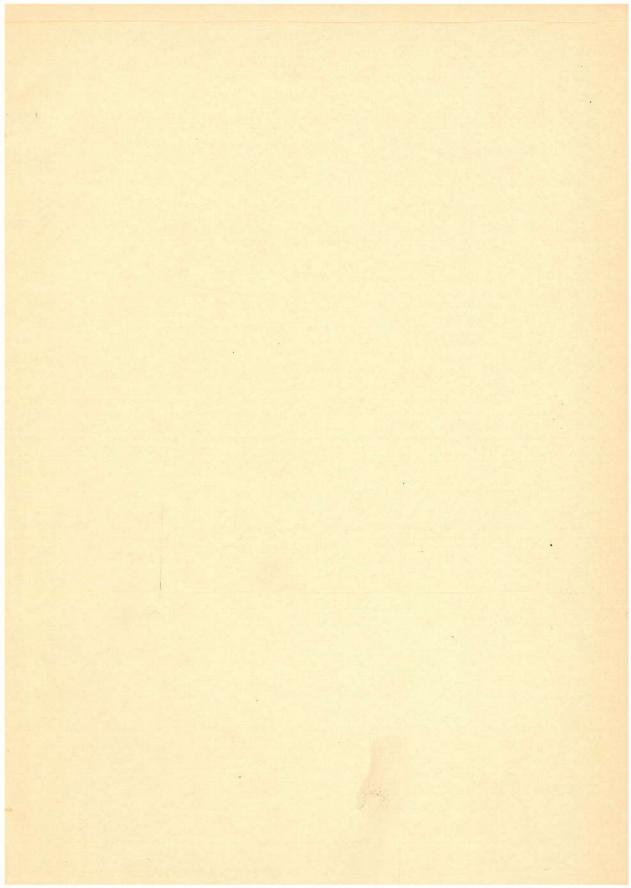
Vol. XIV, Nº 2

30 IV 1980

AUTORIDADES DE LA FACULTAD DE INGENIERIA DE LA UNIVERSIDAD DE LA REPUBLICA ORIENTAL DEL URUGUAY

Decano Ing. Industrial Norberto H. Faroppa


Secretarios Docentes:


Prof. Ing. Industrial Javier García Regueiro
Prof. Ing. Civil Ponciano J. Torrado
Prof. Ing. Civil Jaime Parada (Secretario Docente ad. hoc.)

Secretario Administrativo Sr. Juan José Vidal

Comision del Boletin:

Profs. Ings. Isi Haim, Antonio Petracca, Aurelio Tilve

BOLETIN DE LA FACULTAD DE INGENIERIA

Universidad de la República

HERRERA Y REISSIG 565, MONTEVIDEO, URUGUAY

30 IV 1980

VOL. XIV, Nº 2

Ing. Civil Alberto Rodríguez Fontal

DOCTOR INGENIERO POR LA UNIVERSIDAD DE MADRID

Ecuaciones y abacos para drenaje, desagüe de aeropuertos, autopistas y zonas urbanas, diques de tierra y defensa ante inundaciones.

AND SETTINGS

AND SETINGS

AND SETTINGS

AND SETINGS

KA BURK STRUKTURUM KURUKURUK KAMPURIA

to the last year

Shart modulet product and gath

THE RESERVE THE PARTY OF THE PA

ECUACIONES Y ABACOS PARA DRENAJE, DESAGÜE DE AEROPUERTOS, AUTOPISTAS Y ZONAS URBA-NAS, DIQUES DE TIERRA Y DEFENSA ANTE INUN-DACIONES.

Ing. Civil Alberto Rodríguez Fontal

DOCTOR INGENIERO POR LA UNIVERSIDAD DE MADRID

Summary

A region is defined 'pluviometric region" if the parameters of the reinfall distribution function assume the same value in all of its points, or vary with continuity from one point to another according to their location.

Consequently, if it is necessary to estimate the rainfall distribution in a point, only the information derived from pluviometers of the same pluviometric region is useful.

From the data taken in the Dirección Nacional de Meteorología del Uruguay is deduced the pluviometric probabilistic curves for all Uruguayan Territory.

E CARLO CARLO CARLO SA PARA ALVORDA CARLO CARLO

in the state of th

vinging of the E

particular administration of the support of the sup

ECUACIONES Y ABACOS PARA DRENAJE, DESAGÜE DE AEROPUERTOS, AUTOPISTAS Y ZONAS URBA-NAS, DIQUES DE TIERRA Y DEFENSA ANTE INUN-DACIONES.

Ing. Civil Alberto Rodríguez Fontal

DOCTOR INGENIERO POR LA UNIVERSIDAD DE MADRID

Sumario

Una región se define "región pluviométrica" si los parámetros de la ley de probabilidad de las lluvias asumen el mismo valor en toda la región o varían de una manera continua de un punto a otro.

En consecuencia, si es necesario estimar la repartición estadística de las lluvias en un punto, se pueden utilizar solamente las informaciones proporcionadas por los pluviómetros correspondientes a la misma región pluviométrica.

En base a los datos recogidos en la Dirección Nacional de Meteorología del Uruguay se han deducido las curvas de probabilidad pluviométrica para la totalidad del Territorio Uruguayo.

INTRODUCCION

1: El Ingeniero debe proyectar intervenciones que incidan, de la mejor manera posible, en las posibilidades de desarrollo de una región.

Para ello debe conocer los recursos en los que puede confiar para modificar el ambiente físico y económico-social.

En base a ese conocimiento:

- formula distintas hipótesis de intervención;
- estudia las situaciones que cada una de ellas determinará en un período de tiempo más o menos largo;
- adopta aquel proyecto que lleva a la situación más conveniente.
- 2: Al proyectar una obra hidráulica y, en consecuencia, definir sus características funcionales, debe formular previsiones en relación a los valores que las magnitudes en consideración podrán asumir en el futuro.

Para ello debe especificar qué valores máximos y mínimos los recursos hídricos sobre los que interviene podrán asumir en la vida útil del proyecto. 3: Con referencia a un período de duración T años, indicando con x_T el máximo valor que x puede asumir en dicha duración, con $\psi[x_T]$ su función de repartición, es posible definir el valor $x_{T,r}$ que corresponde a una probabilidad $\psi = 1 - r$ (Capítulo II), "máximo valor que x puede asumir en la duración T a menos de un riesgo r". (1)

Para un determinado período de retorno T, el "riesgo de proyecto r" debe interpretar:

- 1°) con qué probabilidad de ocurrencia una deficiencia puede ser tolerada por los usuarios de una obra hidráulica;
 - 2°) el costo financiero y económico-social.

Las ecuaciones y ábacos (Figuras VIII-1 a VIII-24) que traducen los resultados de las investigaciones seguidas para la totalidad del Territorio Uruguayo se expresan en función de los valores de T y de r más significativos a los fines técnicos.

Se debe optar entre las distintas alternativas en función de los criterios señalados en los precedentes numerales 1°) y 2°).

4: El tema aquí tratado ha sido muchas veces postergado en la literatura técnica, tanto por su dificultad intrínsica como por la indisponibilidad de datos y metodologías confiables.

$$\psi [x_T \le x_{T,r}] = \psi [x_{T,r}] = 1 - r,$$

o, lo que es lo mismo, que la probabilidad de que x asuma un valor superior a $x_{T,r}$ en la duración T, es:

$$\psi \left[x_T > x_{T,r} \right] = r.$$

^{(1):} Como es obvio, esto significa que la probabilidad de que se verifiquen valores de x menores o iguales a $x_{T,r}$ en la duración T, es:

Su importancia surge obviamente, si se piensa que las más grandes catástrofes en el campo de la Ingeniería Hidráulica, se deben a su desconocimiento.

- 5: Corresponde mencionar que hasta el presente muchos de los problemas aquí abordados se resolvían, por las razones expuestas en el numeral precedente, con el traslado de fórmulas empíricas extraídas de la literatura técnica anglosajona tradicional.
- 6: Los resultados aquí obtenidos son absolutamente indispensables para el dimensionado de redes de drenaje, desagües de aeropuertos, autopistas y zonas urbanas, repoblación forestal, canales, vertederos, aliviaderos, diques de tierra, presas y embalses y defensa ante inundaciones.
- 7: La metodología aplicada es la de la Escuela de Ingeniería Hidráulica de Nápoles, encabezada por el Professore Carlo Viparelli.
- 8: En este trabajo el autor ha seguido las orientaciones que, teniendo en cuenta las características particulares del clima y la topografía del Uruguay, en su oportunidad le diera el Prof. C. Viparelli.
- 9: El autor se complace en destacar su atento reconocimiento al Sr. Ing. Guido Simeto, por su apoyo desde la Dirección del Instituto de Ing. Hidráulica y Sanitaria, al Instituto de Computación y a la Dirección Nacional de Meteorología del Uruguay.

Ing. Civ. ALBERTO RODRIGUEZ FONTAL

Prof. Agregado del Instituto de Ing. Hidráulica y Sanitaria de la Facultad de Ingeniería.

The relation whose up to absence the province of a contract of the second of the secon

Chip the Other mine and obtain the more than the species of the mine of the Landon test and the species of the

decimos ociatidas montesis de servarios de sucesa el 12.

Decembro de servario ocupia de segue tambio ociato del per el decimo de segue de

DATES THE STREET OF STREET, STREET,

And the second of the second o

Capítulo I

FASES DE LA INVESTIGACION

oluncas?

MOIDAGITES ME

I-1: Datos disponibles

Con referencia a los datos disponibles, se indica:

en Tabla I-I, las características,
 ubicación, altura sobre el nivel del mar, número n de años de observaciones y Código Oficial de las Estaciones Pluviométricas (*);

— en Tabla 1-2, las características, ubicación, altura sobre el nivel del mar, número n de años de observaciones y Código Oficial de las Estaciones Pluviográficas;

— en Figura I-1, la situación geográfica de las Estaciones Pluviométricas de la Tabla I-1;

— en Figura I-2, la situación geográfica de las Estaciones Pluviográficas de la Tabla I-2.

Los datos citados fueron extraídos de los registros oficiales de la Dirección General de Meteorología del Uruguay, entidad dependiente del Ministerio de Defensa Nacional. (1) (2)

^{(*):} Son las 100 estaciones de la Red Básica Nacional.

^{(1):} Corresponde destacar la orientación y si valioso asesoramiento del Prot. J. A. Battione Chiarino, Director de Climatología y Documentación, autor de conocidos trabajos de Investigación.

^{(2):} Se deja constancia de un especial reconocimiento a la Sra. Juane González de Azzi, y personal a sus órdenes en el Archivo Pluviométrico, por su importante apoyo que posibilitó el acceso a las propias fuentes de información.

TABLA 1-1

Estaciones Pluviométricas:

Características, ubicación, altura sobre el nivel del mar y número n de años de observaciones.

No.	Código	Nombre	Latitud	Longitud	Altitud	n
			S	W	mSNM	años
1	1013	Bella Unión	30°12'	57°35'	64	46
2	1019	Bernabe Rivera	30°18'	56°57'	100	57
3	1040	Tomés Gomensoro	30°24'	57°28'	101	61
4	1050	Artiges (Cluded)	30°27'	56°28'	117	40
5	1073	Palma Sola	30°40'	57°31'	90	57
6	1086	Ricardiño	30°39'	56°10'	70	57
7	1092	Baltaser Brum	30°44'	57°19'	147	55
8	1105	Belén	30°48'	57°47'	50	61
9	1147	.Rivera (Cludad)	30°55'	55°31'	202	65
10	1159	Sequeira	31°02'	56°52'	160	57
11	1176	Palomas (Salto)	31°04'	57°35	67	63
12	1182	Colonia Lavalleja	31906	57°02'	105	57
13	1220	Paso Tranqueras	31012"	55°46'	155	63
14	1224	Paso Ataques	31014'	55°02'	180	57
15	1227	Itapebí	31015'	57041'	53	47
16	1232	Valentín	31018'	57°22'	90	57
17	1273	Laureles (Tacuarembó)	31°23′	55°51'	139	65
18	1283	Salto (Cludad)	31°23′	57°58'	45	58
19	1294	Paso Potreros	31°28′	56°50'	110	57
20	1321	Laureles (Salto)	31°31′	57°32'	95	56
21	1371	Bañado de Rocha	31°36′	55°52'	.177	65
22	1379	Moirones	31°38'	55°00′	195	57
23	1405	Tacuarembó (Ciudad)	31°44′	55°59'	190	66
24	1440	Valle Edén	31°51′	56°09′	190	60
25	1444	Cuchilla Ombú	31°48′	55°41'	150	57
26	1464	Vichadero	31049'	54043'	190	57
27	1501	Quebracho	31056	67063'	82	47
28	1523	Paso de los Novillos	31069'	55039'	120	57
29	1537	Isidoro Nobifa	31059	54009	220.	55
30	1553	Queguay Chico	32004'	56052"	200	57
31	1558	Piedra Sola	32°05′	56°20'	245	65
32	1645	Pampa	32015'	56013'	210	65
33	1872	Paysandú (Cludad)	32019'	58006'	49	65
34	1676	Pledres Coloradas	32023	57037'	95	86

Continuación Tabla I-1

No.	Código	Nombre	Latitud	Longitud	Altitud	n años
			0	44	INDIVIN	arrus
35	1680	Guichón	32022'	57012'	91 .	65
36	1699	Cuchilla de Caraguatá	32021'	55°03'	120	47
37	1709	Melo	32022'	54011'	100	60
38	1734	Achar	32026	56011'	75	65
39	1766	Paso de la Cruz	32034'	57022'	130	57
40	1772	Cuchilla de Navarro	32033'	56049'	120	57
41	1774	Estación Francia	32033	56°36'	119	65
42	1793	Fraile Muerto	32031'	54031'	190	57
43	1798	Arroyo Malo	32033'	53058'	80	58
44	1840	Guazunamb/	32036'	54021'	220	59
45	1849	Río Branco	32036'	53023'	60	62
46	1875	La Paloma (Durazno)	32044'	55°35'	130	56
47	1880	Cuchilla del Carmen	32044'	55002'	195	58
48	1902	Bellaco	32045'	57052'	73	64
49	1909	Las Flores	32047'	57003'	105	57
50	1918	Carpintería	32050'	56011'	60	57
51	2009	Juan Esteban	32059'	56039'	110	57
52	2029	Isla Patrulla	33001'	54034'	160	53
53	2061	Molles	33003'	56028'	128	64
54	2073	Cerro Chato	33007'	55008'	251	62
55	2083	Bañado de Oro	33006	54003'	32	57
56	2095	Liebig's	33010'	58009'	10	63
57	2099	Cololó	33009'	57048	30	57
58	2108	Los Tapes	33010	56047	105	58
59	2145	Mercedes	33016'	58003	20	66
60	2154	Marincho	33015'	57003'	90	57
61	2160	Villasboas	33013'	56028'	89	65
62	2164	Carmen	33014'	56001'	120	58
63	2179	Treinta y Tres (Cludad)	33014'	540231	30	57
64	2185	La Charqueada	33018'	53057'	20	54
65	2204	Porongos	33021'	56049	95	57
66	2240	Bizcocho	33025'	57056'	80	64
67	2272	José P. Varela	33°25′	54030	70	58
68	2289	Palmitas	33031'	57048	90	64
69	2337	Egeña	33036'	57037	110	42
70	2349	Puntas de Maciel	33036'	56021'	142	65
71	2357	Mansavillagra	33038'	55028'	131	64
72	2364	Retamosa	33035'	54043	172	60

Continuación Tabla I-1

Vo.	Código	Nombre	Latitud S	Longitud	Altitud mSNM	años
73	2415	Lascano	33047'	54018'	25	56
74	2422	El Chuy	33042'	53027'	10	65
75	2425	Agraclada	33048'	58014'	10	65
76	2436	Puntas de Sauce	33°50'	57901'	120	56
77	2457	Pirarajá	33045'	54042'	80	58
78	2486	Pintos	33054'	56050	100	67
79	2549	Barriga Negra	33056	55041'	95	58
80	2588	Casupá	34006'	55°39'	124	60
81	2611	Conchillas	34010'	58001'	15	57
82	2846	India Muerta	34008	54012'	95	56
83	2659	Barker	34016"	57027'	5	63
84	2662	Cufré	34013'	57007'	92	65
85	2684	Aiguá	34014'	54045'	100	58
86	2707	Raigón	34021'	55°39'	37	65
87	2714	San Ramón	34013'	55050'	70	64
88	2719	Ortiz	34017	55023'	115	60
89	2725	La Coronilla	34022"	54044	200	54
90	2770	19 de Abril	34023'	54003'	10	56
91	2774	Colonia (Ciudad)	34029	57050'	5	68
92	2792	Míguez	34032'	55036'	40	65
93	2804	Rocha (Ciuded)	34029'	54020'	21	56
94	2816	Joanicó	34035'	56011'	35	58
95	2826	Mataojo	34036'	55006'	200	56
96	2846	Olmos	34044	55054'	40	68
97	2857	José Ignacio	34043'	54043'	20	56
98	2876	Pan de Azúcar	34043'	55013'	30	68
99	2879	San Carlos	34049'	54055	21	62
100	2887	Montevideo (Ciudad)	34052"	56012'	22	69

I-2: Fases de la Investigación

I-2.1: Con referencia a un punto genérico, se indica:

- con h_t (en mm), el máximo anual de la altura de lluvia que puede caer en ese punto en t horas consecutivas;

 $-\cosh_d$ (en mm), el máximo anual de la altura de lluvia que puede caer en ese punto en un día (considerando que en

TABLA 1-2

Estaciones Pluviográficas:

Características, ubicación, altura sobre el nivel del mar y número n de años de observaciones.

No.	Código	Nombre	Latitud S	Longitud W	Altitud mSNM	n años
1	1050	Artiges (Cluded)	30°27'	56°28'	117	7
2	1147	Rivera (Cludad)	30055'	55031'	202	7
3	1283	Salto (Cludad)	310231	57058'	45	8
4	1709	Melo	32022'	54011'	100	6
5	1774	Estación Francia	32033'	56036	119	5
6	1915	Paso de los Toros	32050'	56027'	86	6
7	1960	Baygorria	32053	56047'	90	6
8	2257	Polanco del YI	33027'	56010	130	9
9	2179	Treinta y Tres (Cludad)	33014'	54023'	30	14
10	2774	Colonia (Ciudad)	34029'	57050'	5	10
11	2906	Punta del Este	34058	54057'	16	10
12	2887	Montevideo (Cluded)	34052'	56012'	22	69(*

(*) Para lluvias de duración t = 10, 20 y 30 minutos, 57 años de observaciones.

cada pluviómetro se procede a la medida de la lluvia caída siempre a la misma hora x, se asume como día el intervalo de tiempo comprendido entre dos lecturas consecutivas);

- con T, el período de retorno;
- con r. el riesgo estadístico;
- con $h_{I_{-1},r}$ el máximo valor que h_t puede asumir una vez cada T años a menos de un riesgo r;
- $-\cosh h_{d_{T,r}}$, el máximo valor que h_d puede asumir una vez cada T años a menos de un riesgo r.
- I-2.2: Con referencia a h_t y a h_d , se especificará sus funciones de repartición por medio de las relaciones:

$$h_{t_{T,T}} = \epsilon_t (1 + K'_t \log T') \tag{I-1}$$

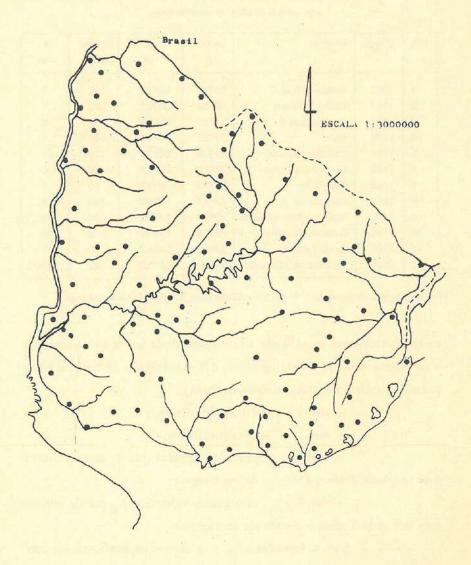


Figura 1-1. Estaciones pluviométricas

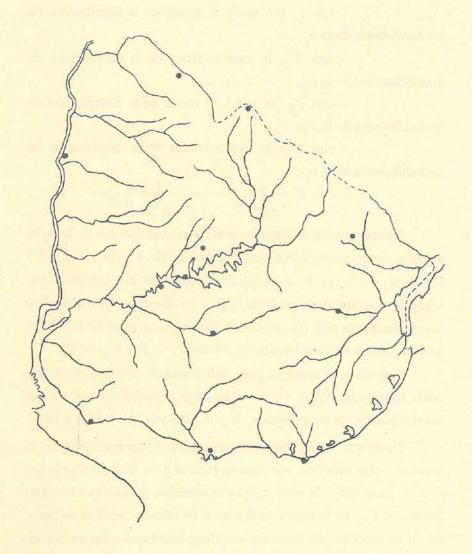


Figura 1-2: Estaciones pluviográfic

$$h_{d_{T,r}} = \epsilon_t (1 + K'_d \log T') \qquad (I-2)$$

indicando:

 $-\cos\epsilon_t$ (en mm), la moda de la distribución de probabilidades de la h_t ;

 $-\operatorname{con} K_t$, la característica de la distribución de probabilidades de la h_t ;

 $-\cos\epsilon_d$ (en mm), la moda de la distribución de probabilidades de la h_d ;

 $-\operatorname{con}\ K'_d$, la característica de la distribución de probabilidades de la h_d ;

 $-\cos T' = T'_{T,r} = \frac{1}{1 - (1-r)^{1/T}}$

Puesto que en la distribución de probabilidades de la h_t la moda ϵ_t corresponde a una probabilidad 0.368, y para $\phi[h_t]=0.90$ resulta $h_t=\epsilon_t$ $(1+K'_t)$, para individualizar la recta que representa la función de repartición $\phi[h_t]$ en diagrama probabilístico correspondiente a la ley asintótica del máximo valor basta señalar los dos puntos de coordenadas $(\epsilon_t; 0.368)$ y $(\epsilon_t(1+K'_t); 0.90)$.

Con criterio análogo, para individualizar la recta que representa la función $\phi[h_d]$ en la misma hoja probabilística se señalan los dos puntos de coordenadas (ϵ_d ; 0.368) y (ϵ_d (1 + K_d); 0.90).

Dado que las alturas de lluvia diarias y, por consiguiente, el máximo valor asumido por ellas en cada año, se miden entre la hora x de cada día y la hora x del día sucesivo, y dado que el máximo anual h_{24} de la altura de lluvia en 24 horas se verifica en general en un intervalo de 24 horas que tiene comienzo y fin no coincidente con la hora x, en cada año resulta por lo general $h_{24} > h_d$.

I-2.2: Con referencia

a un determinado pluviógrafo, se

indica con e_t y con c'_t las estimas de e_t y K'_t que se deducen elaborando la serie estadística constituida por los n valores de h_t registrados durante el período de observaciones;

a un determinado pluviómetro, se indica con e_d y con c'_d las estimas de e_d y K'_d que se deducen elaborando la serie estadística constituida por los n valores de h_d registrados durante el período de observaciones.

Como es sabido, las estimas empíricas e_t de ϵ_t , c'_t de K'_t , e_d de ϵ_d y c'_d de K'_d , pueden separarse más o menos sensiblemente del valor efectivo de la magnitud a que se refieren. El cálculo de probabilidades, sin embargo, permite deducir con buena aproximación los intervalos dentro de los cuales se puede esperar que dichas dispersiones estén contenidas.

En efecto, si se indica con x cualquier variable que, como la h_t , la h_d , la h_t/ϵ_t , la h_d/ϵ_d , esté distribuida según la ley asintótica del máximo valor, y se indica:

- $-\cos \epsilon_x$ y con K'_x la moda y la característica de la distribución de probabilidades de la x;
- $-\cos e_x$ y con e_x las estimas de e_x y de K_x deducidas de una muestra de dimensión n, extraída casualmente de la población de las x;
- $-\cos e_{0.975}$ y con $e_{0.025}$ los límites del intervalo de control dentro del cual se puede esperar que recaiga la estima de ϵ_{x} deducida de una muestra de dimensión n;
- $-\cos c'_{0.975}$ y con $c'_{0.025}$ los límites del intervalo de control dentro del cual se puede esperar que recaiga la estima de K'_{x} deducida de una muestra de dimensión n;
- l) supuesto que se puede asumir con buena aproximación que la e_x está distribuída según la ley normal de la casualidad o según la ley asintótica del máximo valor;

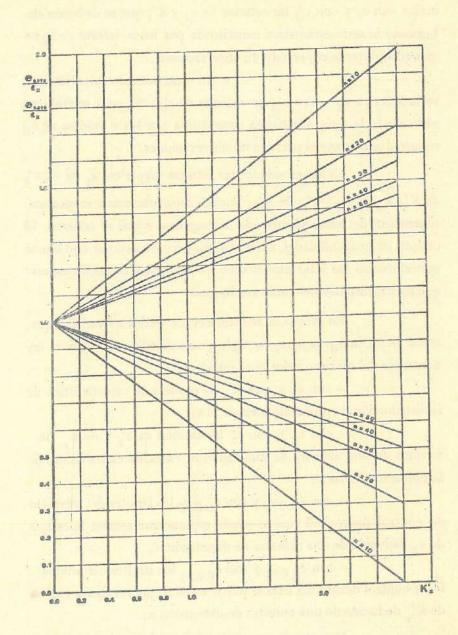


Figure 1-3: Leyes de vertection de les relaciones $e_{0.975}/\epsilon_x$ y $e_{0.025}/\epsilon_x$ en función de K^*_X para II ignal respectivamente a 10, 20, 30, 40 y 50 años. (En la hijrotexale que ϵ_X cost distribuide según la ley normal de la casualidad).



Figure 1-4: Leyes de variación de las relaciones $e_{0.975}/\epsilon_x$ y $e_{0.025}/\epsilon_x$ en función de K_x' para π igual respectivamente à 10, 20, 30, 40 y 50 años. (En la hipótesis que e_x está distribuída según la ley asintótica del máximo valor).

supuesto que $e_{0.975}$ y $e_{0.025}$ resultan funciones de ϵ_x , de K'_x y de la dimensión n de la muestra que se considera;

es posible estimar $e_{0.975}$ y $e_{0.025}$ recurriendo a los diagramas de las Figuras I-3 y I-4, en los cuales se han representado las leyes con que cada una de las relaciones $e_{0.975}/e_x$ y $e_{0.025}/e_x$ varían en función de K_x para los indicados valores de n, en la hipótesis que e_x esté distribuida según la ley normal y en la hipótesis que e_x esté distribuida según la ley asintótica del máximo valor;

z) supuesto que se puede asumir con buena aproximación que c_x' está distribuida según la ley logarítmico—normal de la casualidad;

supuesto que c'0.975 y c0.025 resultan funciones de K'_r y de n;

es posible estimar $c'_{0.975}$ y $c'_{0.025}$ recurriendo al diagrama de la Figura I-5, en la cual se han representado las leyes con que $c'_{0.975}$ y $c'_{0.025}$ varían en función de K'_{χ} para n igual, respectivamente, a 10, 20, 30, 40, 50 y 100.

- I-2.3: Como se concluye de las investigaciones descriptas en los Capítulos siguientes, con tal que se haga referencia a valores de $t < t_o'$ o valores de $t > t_o''$ (con 2 horas $\le t_o' < t_o'' \le 3$ horas), en cada pluviógrafo:
- 1) la característica K'_t asume un valor único K', independiente de t, con valores de K' que resultan distintos según que $t < t'_O$ o $t > t''_O$; (*)

^{(*):} Según las diversas situaciones meteorológicas que los determinan, los eventos de Iluvia que se verifican en un determinado territorio pueden subdividirse en eventos breves o eventos largos, caracterizados respectivemente por su más breve du-

2) la moda e_t varía en función de t con ley que puede ser llevada a la forma algebraica:

$$\epsilon_t = A t^{\beta}$$

en la cual las constantes A y β que aparecen en el segundo miembro asumen cada una valores diferentes según que sea $t < t'_0$ o $t > t''_0$;

ración y mayor intensidad, los primeros, y por su más larga duración y menor intensidad, los segundos. De aquí deriva que, a menos de casos excepcionales, en cada año las máximas alturas de lluvia registradas en intervalos de tiempo menores de t_0' se verifican en ocasión de los primeros, mientras que las máximas alturas de lluvia registradas en intervalos de tiempo mayores de t_0'' se verifican en ocasión de los segundos.

Para valores de \dot{t} comprendidos entre $\dot{t'}_O$ y $\dot{t''}_O$, sin embargo, puede suceder que se verifiquen en ocasión de un evento breve o en ocasión de un evento largo. Como es obvio, si indicamos con A el grupo de factores que determinan las situaciones meteorológicas en las cuales se verifican los eventos de lluvia breve y con B el grupo de factores que determinan las situaciones meteorológicas en las que se verifican los eventos de lluvia larga:

- las distribuciones de probabilidades de las máximas elturas de lluvia h_t para valores de t menores de t^{\prime}_{O} deben estar estrechamente conectades con las diversas modalidades con las que cada uno de los factores del grupo A pueden intervenir; no es de sorprenderse que, en consecuencia, estén estrechamenta conectadas entre ellas;
- por razones enálogas, las distribuciones de probabilidades de las h_t para valores de t mayores de t^o_O , estrechamente conectadas con los valores asumidos por los factores climáticos del grupo B, resultan intimamente conectadas entre ellas.

Para valores de $\,t\,$ comprendidos entre $\,t'_{O}\,$ y $\,t''_{O}\,$ la población de las máximas alturas de lluvia $\,h_t\,$ resulta de la mezcla de dos poblaciones diferentes, correspondiendo a evantos breves y a evantos largos, y es de presumir que la porcentual con que cada una de las dos poblaciones componentes entran en la mezcla varía según se trate de valores de $\,t\,$ próximos a $\,t'_{O}\,$ 0 próximos a $\,t'_{O}\,$ 0.

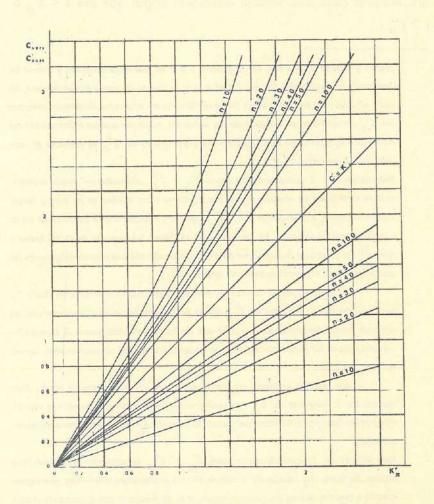


Figura I-5: Leyes de variación de C $\stackrel{.}{0}$.975 y $\stackrel{.}{0}$.023 en función de $\stackrel{.}{K}_{x}$, para n igual respectivamente a 10, 20, 30, 40, 50 y 100 años.

3) por la (I-I), el máximo valor $h_{tT,r}$ que h_t puede asumir una vez cada T años a menos de un riesgo r, varía en función de t con ley que puede ser llevada a la forma algebraica:

$$h_{t_{T,r}}(t) = \epsilon_t (1 + K' \log T.) = A (1 + K' \log T') t^{\beta} =$$

$$= A_{T,r} t^{\beta}$$
(I-4)

con $A_{T,r} = A(1 + K' \log T')$ (I-5)

y
$$T' = T'_{T,r} = \frac{1}{1 - (1-r)^{1/T}}$$
 (I-6)

Dicho esto, en adelante se definirá CURVAS DE PROBA-BILIDAD PLUVIOMETRICA:

- a las curvas que representan las leyes $\epsilon_t(t)$ y $h_{t_{T,r}}(t)$ en un diagrama en el cual se colocan en escala lineal como abscisas los tiempos t y como ordenadas ϵ_t y $h_{t_{T,r}}$;

 a las rectas a que dichas curvas se reducen cuando se recurre a díagramas en escalas logarítmicas.

Como es obvio, recurriendo a un diagrama en escalas logarítmicas, la recta $\epsilon_t(t)$ y las rectas $h_{t,T,r}$ resultan paralelas entre sí, con distancias que, medidas en dirección paralela al eje de ordenadas, en la escala de reducción lineal con que se han representado los $\log h_t$, resultan:

$$log(1+K' log T')$$

si se consideran las rectas $\epsilon_t(t)$ y $h_{t_{T,r}}$

$$\log (1 + K' \log T'_1) - \log (1 + K' \log T'_2)$$

si se consideran las rectas $h_{t_{T,r}}$ correspondientes a dos valores, T'_1 y T'_2 de T'.

I-2.4: Al referirse a un determinado pluviógrafo, se indican:

- con t_j , los valores de t para los cuales se conocen los valores de h_t ($t_j = 1/2, 1, 2, 3, 6, 12 y 24 horas$);

- con n_j , la dimensión de la muestra para cada valor de t_j ;

- con e_{t_j} las estimas de ϵ_{t_j} que se deducen de los n_j valores de h_{t_i}

Representando en diagrama logarítmico, como abscisas los valores de t, y como ordenadas los valores de e_t correspondientes, se individualizan las rectas que mejor interpolan los puntos para valores de $t < t_o$ y valores de $t > t_o$ y asumen dichas rectas como estimas de la recta $e_t(t)$ que, en el mismo diagrama logarítmico, representaría, si fuese conocido, el efectivo andamiento de la recta $e_t(t)$ expresada por la (I-3).

Como es obvio, por los errores cometidos por defectos de muestreo al estimar ϵ_t , las rectas $e_t(t)$ pueden separarse más o menos sensiblemente de las $\epsilon_t(t)$, y los parámetros \overline{A} y b que aparecen en su expresión algebraica:

$$e_t(t) = \overline{A} t^b (I-7)$$

pueden asumir valores distintos de aquellos que, en acuerdo con la I-3, aparecen en la expresión algebraica de $\epsilon_t(t)$:

$$\epsilon_t(t) = A t^{\beta}.$$

También en este caso el cálculo de probabilidades permite individualizar con buena aproximación los intervalos dentro de los cuales se pueden esperar que recaigan las estimas \overline{A} de A y \overline{b} de β .

Conviene a tal efecto observar que si se escribe la (1-3) en la forma equivalente:

$$\log \epsilon_t = \log A + \beta \log t , \qquad (I-3')$$

si indicamos:

$$x = \log t \; ; \tag{I-8}$$

$$\overline{x} = \log (t) = \frac{\sum^n t \log t}{\sum^n t} ; \qquad (1-9)$$

$$\alpha = \log \epsilon_{(t)} = \frac{\sum^{n} t \log \epsilon_{t}}{\sum^{n} t}$$
 (I-10)

resulta:

$$\alpha = \log A + \beta \, \overline{x} \,. \tag{I-11}$$

En consecuencia, de (I-3') y (I-11) se obtiene:

$$\log \epsilon_t = \alpha + \beta (x - \overline{x}), \qquad (I-12)$$

equivalente a (I-3') y, por lo tanto, a (I-3), con

$$\log A = \alpha - \beta \, \overline{x} \, . \tag{I-13}$$

De acuerdo con esto, la ecuación que define la recta e_t (t), estima empírica de la función e_t (t), puede ser escrita a partir de la (I-I2) en la forma:

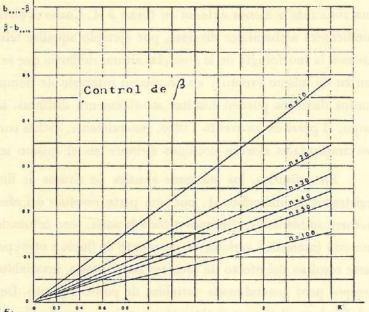
$$\log e_t = a + b (x - \overline{x}), \qquad (I-12')$$

con x y \overline{x} definidos por la (I-8) y la (I-9), y a y b estimas de α y β respectivamente.

Como es obvio, a y b son variables casuales extraídas de la población constituida por todos los valores que puede asumir, al variar las dispersiones de muestreo con que pueden ser afectadas las estimas e_t de ϵ_t .

Teniendo en cuenta lo dicho:

1) se puede asumir con buena aproximación que b está distribuida según la ley normal de la casualidad, con valor medio igual a β y desviación típica σ [b] que resulta función de K' y del número n de valores de h_t ;


y, para cada valor de β , se pueden estimar los límites $v_{0.975}$ y $b_{0.025}$ del intervalo de control de b, a su vez funciones de K' y de n, por medio del diagrama de la Figura I-6;

2) se puede asumir con buena aproximación que a está distribuida según la ley normal de la casualidad, con valor medio igual a α y desviación típica σ [a] que resulta función de K' y del número n de valores de h_t ;

y, para cada valor de α , se pueden estimar los límites $a_{0.975}$ y $a_{0.025}$ del intervalo de control de a, a su vez funciones de K' y de n, por medio del diagrama de la Figura I-7.

Como es obvio, una vez que sean conocidos los límites de control de a y de b, por medio de la (I-13) es posible conocer también los límites de control de la estima \overline{A} de la constante A que aparece en el segundo miembro de (I-3).

I-2.5: Las alturas de lluvia registradas en t horas consecutivas en un punto genérico A en un determinado evento se verifican por la evolución de situaciones meteorológicas que repercuten sobre las alturas de lluvia que se verifican en el mismo evento en

Leves de variación de $b_{0.975}$ = β y de β = $b_{0.025}$ en función de K' para 11 igual respectivamente a 10, 20, 30, 40, 50 y 100.

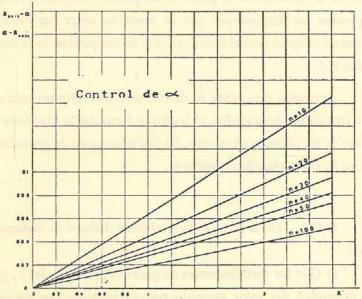


Figure 1-7: Leves de variación de $a_{0.975}$ = α y de α = $a_{0.025}$ en función de K' pars n igual respectivamente a 10, 20, 30, 40, 50 y 100.

una zona más o menos extensa en torno a A. Como es obvio, por condiciones ambientales diversas, por ejemplo aquellas relacionadas con la morfología de la zona, las alturas de lluvia que se verifican en un mismo evento y en un mismo intervalo de tiempo t en puntos distintos pueden resultar sensiblemente distintas; sin embargo, al pasar de un evento a otro, generalmente, dichas condiciones ambientales ejercen acciones siempre en el mismo sentido.

En definitiva, los máximos anuales de alturas de lluvia h_t registrados en un punto A, por una parte resultan del efecto de factores ambientales, comunes a toda la zona, pero actuando cada uno con intensidad variable de un evento de lluvia a otro; por otra parte resultan del efecto de factores ambientales, invariables en el tiempo, pero generalmente variables de punto a punto. De la variabilidad en el tiempo de los primeros dependen las dispersiones que se observan entre los valores que h_t asumen en A año por año; de la variabilidad al pasar de un punto a otro de los segundos dependen las dispersiones que se observan entre los valores que h_t asume, a igual probabilidad, en A y en los puntos de la zona que rodea a A.

Teniendo en cuenta lo dicho, si en una determinada zona se han instalado pluviógrafos, es legítimo formular la hipótesis que, al pasar de un pluviógrafo a otro, las distribuciones de probabilidades de las h_t están vinculadas entre sí.

- I-2.6: De la (I-1) y de la (I-2) se deduce en manera inmediata:
- a) Que las distribuciones de probabilidades de las h_t y de las h_d dependen del valor asumido respectivamente por los parámetros ϵ_t y K_t para la h_t y de los parámetros ϵ_d y K_d , para la h_d ;

b) Que, por el contrario, las distribuciones de probabilidades de las variables h_t/ϵ_t y h_d/ϵ_d dependen solamente de los valores asumidos respectivamente por K_t para la h_t/ϵ_t , y de K_d , para la h_d/ϵ_d .

Dicho esto, y teniendo en cuenta cuanto se ha dicho en los parágrafos I-2.3, I-2.4 y I-2.5:

- 1) se dirá que pluviómetros y pluviógrafos pertenecen a una misma Región Pluviométrica:
- a) si las estimas c'_d de K'_d que se deducen de los valores de h_d registrados en cada pluviómetro varían casualmente en torno a un valor único K', con valores de c'_d que resultan comprendidos en el interior de la franja de confianza correspondiente a dicho valor de K' y al número n de datos en base a los que ha sido deducida c'_d ;
- b) si las estimas c_t^2 de K_t^2 que se deducen de los valores de h_t registrados en cada pluviógrafo, para eventos breves y para eventos largos, varían casualmente alrededor de un valor único K breves para los primeros, y K largos para los segundos, con valores de c_t^2 que resultan comprendidos en el interior de la franja de confianza correspondiente a dicho valor de K y al número n de datos en base a los que K_{breves} y K_{largos} , respectivamente, han sido deducidos;
- 2) se dirá que pluviógrafos que recaen en una misma Región Pluviométrica pertenecen a una misma Subregión Pluviométrica si:

haciendo referencia a la ley con la que ϵ_t varía en función de t en cada uno de ellos, expresable, como se ha dicho, por medio de la relación: $\epsilon_t(t) = A \ t^{\beta}, \qquad (I-3)$

con A y β constantes siempre que $t < t'_o$ o $t > t''_o$,

las estimas b de β deducidas pluviógrafo por pluviógrafo varían casualmente alrededor de un valor medio β , con dispersiones que entran dentro de la franja de confianza de la b, correspondiente a dicho valor de β , a la característica K de la Región Pluviométrica de la que la Subregión forma parte, y al número n de datos registrados en el pluviógrafo.

Se observa, finalmente, que en una determinada Subregión Pluviométrica puede ocurrir:

- 3) o que al pasar de uno a otro pluviómetro o de uno a otro pluviógrafo:
- a) las estimas e_d de la moda ϵ_d de las h_d deducidas pluviómetro por pluviómetro varían alrededor de un valor único ϵ_d , con dispersiones que entran dentro de la franja de confianza de la e_d , correspondiente a dicho valor de ϵ_d , al valor de K que caracteriza la Región Pluviométrica de la que la Subregión forma parte, y al número n de datos en base a los que cada e_d ha sido deducido;
- b) las estimas a de α , que aparecen, junto a β en la expresión algebraica de la función ϵ_t (t) dada por la (I-12), las que se deducen pluviógrafo por pluviógrafo en base a los valores de h_t registrados, y, por consecuencia, las estimas A de la constante A, que aparece en la (I-7), varían casualmente, las primeras alrededor de un valor único α , y las segundas alrededor de un valor único A, con valores de a y de \overline{A} contenidos en el interior de los intervalos de confianza de a y de \overline{A} calculados con los criterios ilustrados en el parágrafo I-2.4.
- 4) o que, al pasar de uno a otro pluviómetro o de uno a otro pluviógrafo, las estimas e_d y a, y, por consecuencia, las \overline{A} , depen-

den del valor z asumido por uno u otro de los parámetros que se introducen para caracterizar la posición del punto (por ejemplo la cota sobre el nivel del mar), con leyes de regresión ϵ_d (z) y $\alpha(z)$ que sirven para diferenciar la Subregión que se considera de las vecinas.

I-2.7: Como es conocido, la conexión que existe entre las distribuciones de probabilidad de las h_d y de las h_t en pluviómetros y en pluviógrafos que recaen en la misma Subregión Pluviométrica, tal como se ha especificado en los puntos 1, 2, 3, y 4 del parágrafo que precede, son directas consecuencias de la similitud hidrológica que existe entre los puntos en que están instaladas las estaciones de medida por el hecho que las alturas de lluvia que se verifican son debidas a situaciones meteorológicas que interesan contemporáneamente toda la superficie.

Por lo tanto, análoga conexión se verifica entre las distribuciones de probabilidad de las h_d y de las h_t en los puntos de la Región y de la Subregión en que no ha sido instalada ninguna estación de medida.

Se observa que la verificación de las condiciones especificadas en el punto 1 del parágrafo I-2.6 para definir las Regiones Pluviométricas no implica necesariamente como consecuencia que, si, por ejemplo, se indican:

con Klargos la media aritmética o ponderada de los valores asumidos por cd, c3, c6, c12 y c24 en los pluviómetros y pluviógrafos de una determinada Región Pluviométrica;

con $K'_A = K'_{dA} = K'_{3A} = K'_{6A} = K'_{12A} = K'_{24A}$ el valor asumido por K'_d , K'_3 , K'_6 , K'_{12} y K'_{24} en un punto A de la Región en el que se ha instalado un pluviómetro provisto de aparato registrador;

con c'_{dA} , c'_{3A} , c'_{6A} , c'_{12A} , y c'_{24A} las estimas de K'_{dA} , K'_{3A} , K'_{6A} , K'_{12A} , y K'_{24A} deducidas en base a los datos registrados en A;

en el punto A resulte $K'_A = K'_{largos} = K'$ y, por consecuencia, las dispersiones entre c'_{dA} , c'_{3A} , c'_{6A} , c'_{12A} y c'_{24A} , por un lado, y K', por otro, sean debidas solamente a errores de muestreo.

Puede ocurrir, en efecto, que K'_A sea ligeramente diferente de K' y que, en consecuencia, cada uno de los apartamientos $c'_{dA}-K'$, $c'_{3A}-K'$, $c'_{6A}-K'$, $c'_{12A}-K'$, $c'_{24A}-K'$, sea por una parte (respectivamente $c'_{dA}-K'_A$, $c'_{3A}-K'_A$, $c'_{3A}-K'_A$, $c'_{4A}-K'_A$, $c'_{12A}-K'_A$, $c'_{24A}-K'_A$) debida a defecto de muestreo y por otra parte $(K'_A-K'_A)$ debida a efectiva diferencia entre K'_A y K'.

Los datos de observaciones no permiten saber si existe o no una diferencia entre K_A y K ni apreciar su entidad. Pero, sin embargo, advierten que dicha diferencia tiene un orden de magnitud tal que, sumada la dispersión por muestreo, entra todavía en los ôrdenes de magnitud que éstas pueden asumir ya de por sí, y, por lo demás, al igual que las dispersiones por muestreo, varían casualmente cuando del punto A se pasa a otro punto cualquiera de la misma Región Pluviométrica.

Precisado esto, seguidamente se dirá que en cada Región Pluviométrica el valor único asumido por K'_d y por K'_t para eventos largos, y el valor único asumido por K'_t para eventos breves, resultan idénticos en todos los puntos.

Consideraciones análogas a aquéllas desarrolladas anteriormente en lo que respecta al punto 1 del parágrafo I-2.6 valen también para los puntos 2, 3 y 4 del mismo parágrafo.

En consecuencia:

- sabiendo que de un punto a otro de una misma Subregión Pluviométrica los valores asumidos por el exponente β pueden dispersarse casualmente alrededor del valor de β que se deduce como media aritmética o ponderada de las estimas b de β deducidas para los pluviógrafos que recaen en la Subregión, se dirá que en todos los puntos de una Subregión β asume el mismo valor;
- sabiendo que, en el caso en que sea satisfecha la condición 3, los valores asumidos por las magnitudes estadísticas α y A pueden dispersarse casualmente alrededor del valor α y A, deducidos como media aritmética o ponderada de los valores a y \overline{A} deducidos pluviógrafo por pluviógrafo, se dirá que en todos los puntos de la Subregión que se considera α y A asumen el mismo valor;
- sabiendo que, a igual valor de z, en el caso en que sea satisfecha la condición 4, α y A pueden asumir valores distintos de aquellos $\alpha(z)$ y A(z) que corresponden a z en las leyes de regresión de α y de A sobre z, se dirá que en la Subregión α y A varían de punto a punto en función de z según las leyes de regresión $\alpha(z)$ y A(z).
- I-2.8: De acuerdo con cuanto se ha dicho en el parágrafo I-2.6, en cada punto la distribución de probabilidad de la h_t resulta distinta al pasar de uno a otro valor de t, mientras que la distribución de probabilidad de la h_t/ϵ_t es independiente de t siempre que se consideren eventos largos o eventos breves. Además la variable h_d/ϵ_d tiene la misma distribución de probabilidad de la h_t/ϵ_t para eventos largos.

De aquí que representando las funciones $\phi[h_t]$ y $\phi[h_t/\epsilon_t]$ en un diagrama en papel probabilístico correspondiente a la ley asintótica del máximo valor, las rectas que representan los anda-

mientos asumidos por las funciones $\phi[h_t]$ para distintos valores de t resultan distintas, mientras que las rectas que representan los andamientos de la $\phi[h_t/\epsilon_t]$ se confunden en dos rectas distintas, una correspondiente a eventos breves, y la otra correspondiente a los eventos largos (rectas 1 y 2, respectivamente, en la Figura I-8).

Además, la recta 2 de la Figura I-8 coincide con la recta que representa la función $\phi[\ h_d/\epsilon_d]$.

Por otra parte, recordando cuanto se ha dicho en el parágrafo I-6 relativo a Regiones Pluviométricas, representando en un diagrama en papel probabilístico correspondiente a la ley asintótica del máximo valor los andamientos asumidos por las funciones $\phi[h_t]$ en puntos distintos de una misma Región Pluviométrica, en general se obtienen tantas rectas distintas como puntos y valores de t se consideren. Si, siempre refiriéndose a puntos de una misma Región Pluviométrica, se representan en diagrama en papel probabilístico las funciones $\phi[h_t/\epsilon_t]$ correspondientes a puntos distintos y a valores de t diversos, las rectas $\phi[h_t/\epsilon_t]$ se confunden, por grupos, en dos rectas, una correspondiente a eventos breves, y la otra a eventos largos (Figura I-9).

A fines aplicativos, finalmente, se observa que, si se recurre a un diagrama en papel probabilístico correspondiente a la ley logarítmico-asintótica del máximo valor, en la que cada función $\phi[h_t]$, $\phi[h_t/\epsilon_t]$, $\phi[h_d]$ y $\phi[h_d/\epsilon_d]$ se representa según una curva:

- 1) para cada punto (Figura I-10):
- a) las curvas $\phi[h_t]$ correspondientes a valores distintos de t resultan distintas unas de las otras, mientras que las curvas

 $\phi[h_t/\epsilon_t]$ se superponen en dos curvas distintas, una correspondiente a eventos breves y la otra a eventos largos (curvas 1 y 2, respectivamente, en la Figura I-10);

- b) las curvas $\phi[h_t]$ para eventos breves pueden superponerse, o llevarse sobre la curva 1, mediante una simple traslación en dirección paralela al eje de las abscisas;
- c) las curvas $\phi[h_t]$ para eventos largos pueden superponerse, o llevarse sobre la curva 2, mediante una simple traslación en dirección paralela al eje de las abscisas;
- d) las curvas $\phi[h_d]$ y $\phi[h_d/\epsilon_d]$ pueden superponerse mediante una simple traslación en dirección paralela al eje de las abscisas y, por consiguiente, la curva $\phi[h_d/\epsilon_d]$ coincide con la curva $\phi[h_t/\epsilon_t]$ para eventos largos;
- 2) para puntos distintos pertenecientes a la misma Región Pluviométrica (Figura I-11):
- a) las curvas $\phi[h_t]$ correspondientes a puntos y tiempos distintos en general resultan distintas, mientras que las curvas $\phi[h_t/\epsilon_t]$ se representan según dos curvas distintas, para eventos breves (curva 1) y para eventos largos (curva 2);
- b) las curvas $\phi[h_t]$ correspondientes a puntos distintos y eventos breves pueden ser superpuestas, o llevadas sobre la curva 1, mediante una simple traslación en dirección paralela al eje de las abscisas;
- c) las curvas $\phi[h_t]$ correspondientes a puntos distintos y eventos largos pueden ser superpuestas, o llevadas sobre la curva 2, mediante una simple traslación en dirección paralela al eje de las abscisas;
- d) las curvas $\phi[h_d]$ correspondientes a puntos distintos resultan en general distintas, mientras las curvas $\phi[h_d/\epsilon_d]$ se representan sobre una única curva;

e) las curvas $\phi[h_d]$ pueden ser superpuestas o llevadas sobre la curva $\phi[h_d/\epsilon_d]$, mediante una simple traslación en dirección paralela al eje de las abscisas;

f) la curva $\phi[h_d/e_d]$ coincide con la curva $\phi[h_t/e_t]$ para eventos largos.

Para representar la curva $\phi[h_t]$ correspondiente a un determinado punto y un determinado valor de t, basta trasladar la curva $\phi[h_t/e_t]$ en dirección paralela al eje de las abscisas una cantidad que, en la escala de reducción lineal adoptada para representar los $\log h_t$, resulta igual a $\log \epsilon_t$, si ϵ_t es la moda de las h_t en el punto y para los valores de t a que se refiere la curva $\phi[h_t]$.

Análogamente, para representar $\phi[h_d]$, basta trasladar la curva $\phi[h_d/\epsilon_d]$ en dirección paralela al eje de las abscisas una cantidad igual a $\log \epsilon_d$, siendo ϵ_d la moda de las h_d en el punto al que la curva $\phi[h_d]$ se refiere.

I-2.9: En el parágrafo I-2.3 se ha visto como ϵ_t y $h_{t_{T,r}}$ moda y máximo valor que h_t puede asumir una vez cada T años a menos de un riesgo r, varían en función de t con leyes que pueden llevarse a expresiones del tipo:

$$\epsilon_t = A t^{\beta}$$
 (I-3)

y

$$h_{t_{T,r}} = A_{T,r} t^{\beta} , \qquad (I-4)$$

con

$$A_{T,r} = A (1 + K' \log T') \tag{I-5}$$

y

$$T' = T'_{T,r} = \frac{1}{1 - (1 - r)^{1/T}},$$
 (I-6)

y se ha definido curvas de probabilidad pluviométrica a las curvas que representan dichas leyes en un diagrama en carta normal, o a las rectas a las que dichas curvas se reducen cuando las mismas leyes se representan en un diagrama en carta logarítmica.

En particular, refiriéndose a este último diagrama, en el parágrafo I-2.3 se ha puesto en evidencia:

- a) que la recta $\epsilon_t(t)$ y las rectas $h_{t_{T,r}}(t)$ resultan paralelas entre sí;
- b) que la distancia entre las rectas $e_t(t)$ y cada una de las rectas $h_{t_{T,r}}(t)$ depende de K' y de los valores de T, y de r a que se hace referencia.

Dicho esto, en base a las detiniciones de Región Pluviométrica y de Subregión Pluviométrica dadas en el parágrafo I-2.6 y en base a todo lo dicho en los parágrafos siguientes, es evidente:

1) que, si se consideran puntos distintos de una misma Región Pluviométrica, la distancia entre la recta $\epsilon_t(t)$ y cada una de las rectas $h_{t_{T,r}}(t)$ permanece invariada;

2) que, si se consideran puntos distintos de una misma Subregión Pluviométrica, dado que β asume un único valor, ya sea referido a eventos breves, ya sea referido a eventos largos, las rectas $\epsilon_t(t)$ y $h_{tT,r}(t)$ tienen inclinación invariada;

3) que, en el caso particular que se verifique la condición 3 del parágrafo I-2.6, con valores de ϵ_t que no varían de punto a punto, ya sea referidos a eventos breves, ya sea referidos a eventos largos, al pasar de un punto a otro cada recta $\epsilon_t(t)$ y $h_{t,r}(t)$ no solamente conserva la misma dirección sino que no cambia .

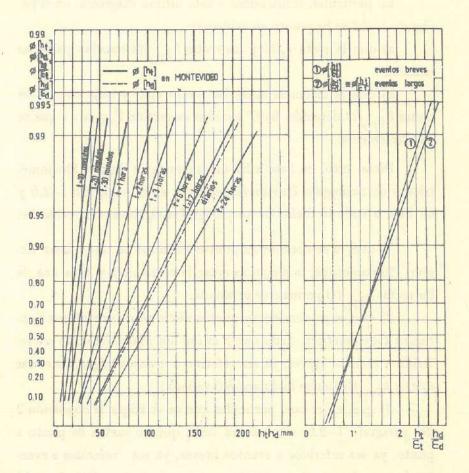


Figure 1—8: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de las funciones $\phi[h_t]$, $\phi[h_d]$, $\phi[h_t/\epsilon_t]$ y $\phi[h_d/\epsilon_d]$ en Montevideo.

(Ejemplo de las investigaciones seguidas con los datos de cada pluviógrafo y cada pluviómetro).

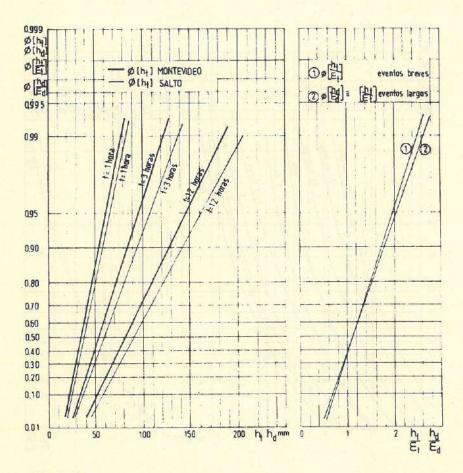


Figura 1–9: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de las funciones $\phi[h_t]$, $\phi[h_t/\epsilon_t]$ para eventos breves y $\phi[h_t]$, $\phi[h_d/\epsilon_d]$ $\equiv \phi[h_t/\epsilon_t]$ para eventos largos, en Montevideo y Salto.

(Ejemplo de las investigaciones seguidas con los datos de cada pluviógrafo y cada pluviómetro).

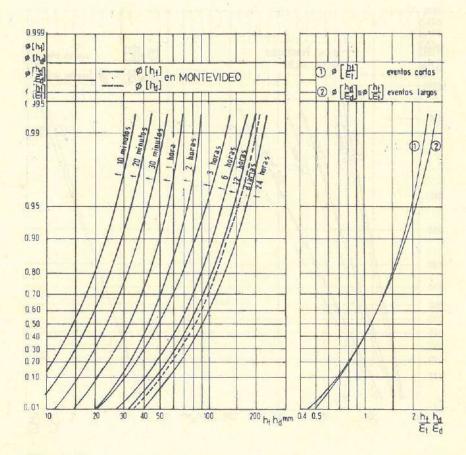


Figura I—10 : Representación en diagrama probabilístico correspondiente a la ley logarítmico-asintótica del máximo valor de las funciones $\phi[h_t]$, $\phi[h_d]$, $\phi[h_t/\epsilon_t]$ y $\phi[h_d/\epsilon_d]$ en Montavidao.

(Ejempio de las Investigaciones seguidas con los datos de cada pluviógrafo y cada pluviómetro).

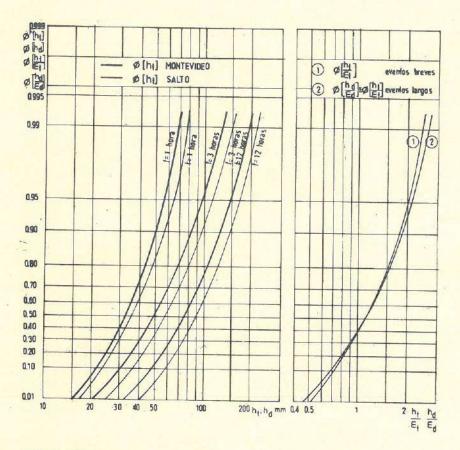
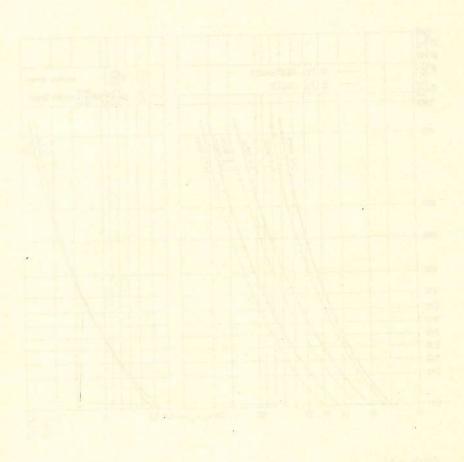



Figure I-11: Representación en diagrama probabilístico correspondiente a la ley logarítmico-asintótica del máximo valor de las funciones $\phi[h_t]$, $\phi[h_t/\epsilon_t]$ para eventos breves y $\phi[h_t]$, $\phi[h_d/\epsilon_d] \equiv \phi[h_t/\epsilon_t]$ para eventos largos en Montevideo y Salto.

(Ejemplo de las investigaciones seguidas con los datos de cada pluviógrafo y cada pluviómetro).

the contraction of the property constitution and the property of the property

Charles make a characteristic division arrange and the additional representations and the observed.

Capitulo II

CRITERIOS ADOPTADOS PARA ESTIMAR LAS POBLACIONES A PARTIR DE LAS MUESTRAS

II olungsD

CRITERIOS ADOPTADOS
PARA ESTIMAR LAS
POBLACIONES A PARTIR
DE LAS MUESTRAS

II-1: Formulación de las hipótesis de trabajo.

$\Pi-1.1$: Indicando con h, (en mm)

- la altura de lluvia registrada en un punto en t horas consecutivas;
- la altura de lluvia registrada en un punto en un día,

se puede considerar:

los valores asumidos por h en cada año como una muestra de dimensión k extraída casualmente de la población constituída [96] por todos los posibles valores de h

y el valor x, asumido en el mismo año por el máximo anual de h [24], como el extremo superior de dicha muestra.

Fisher y Tippett [50] han encontrado que:

- a) si la distribución de h es del "tipo exponencial";
- b) si los valores de h que forman parte de la muestra son independientes entre sí,

la función de repartición de la variable x, para k tendiendo a infinito, tiende a:

en la que se indica con:

 ϵ_k , extremo esperado, la magnitud estadística definida por la relación:

$$\phi[\epsilon_k] = 1 - \frac{1}{k} ; \qquad (II-2)$$

 α_k , intensidad de función, la magnitud estadística definida por la relación:

$$\alpha_k = k \varphi[\epsilon_k] . \tag{II-3}$$

La distribución definida por la (II-1) es conocida con el nombre de "ley asintótica del máximo valor" o "distribución doble exponencial".

La velocidad con la que, al crecer k, la distribución del mámo valor x tiende a la (II-1) depende de la distribución de la variable original h. En otras palabras, al variar la distribución de h, varía el valor de k para el cual la distribución de x puede ser estimada con buena aproximación por la (II-1).

Como es sabido [24], la ley asintótica del máximo valor es también conocida con el nombre de "ley de Gumbel", por ser este autor [52] el primero en aplicarla en hidrología [53] para análisis de máximos caudales de crecidas y máximas alturas de lluvia. [54] [55]

Si se introduce la variable

$$y = \alpha_k (x - \epsilon_k) , \qquad (II-4)$$

la ecuación (II-1) puede escribirse:

$$\phi[x] = e^{-e^{-y}} . \tag{II-5}$$

Por lo tanto, la función de probabilidad elemental de la variable x puede escribirse:

$$\varphi[x] = \alpha_k e^{-y - e^{-y}} . \tag{II-6}$$

II-1.2: De acuerdo con lo dicho en el parágrafo precedente:

$$\phi[x] = \phi(x, \alpha_k, \epsilon_k) \tag{II-7}$$

y

$$\varphi[x] = \varphi(x, \alpha_k, \epsilon_k)$$
 (II-8)

Puesto que y es función lineal de x [63] [64], se puede concluir que:

10.)
$$\phi[x] = \phi[y] = e^{-e^{-y}}$$
, para $y = \alpha_k (x - \epsilon_k)$ (II-9)

20.) si se indican con x_{ϕ} y con y_{ϕ} los valores de x y de y correspondientes de un mismo valor de ϕ :

$$y_{\phi} = \alpha_k (x_{\phi} - \epsilon_k)$$
 (II-10)
 $x_{\phi} = \epsilon_k + \frac{y_{\phi}}{\alpha_k}$

30.) si se indican con ξ y con η respectivamente los valores medios M[x] y M[y] de x y de y, resulta:

$$\eta = \alpha_k (\xi - \epsilon_k) \tag{II-11}$$

$$\xi = \epsilon_k + \frac{\eta}{\alpha_k}$$

40.) que, si a los efectos de simplificar los símbolos, se indica con σ_x y con σ_y las desviaciones típicas $\sigma[x]$ y $\sigma[y]$ de las distribuciones de probabilidades de x y de y, se tiene:

$$\sigma_y = \alpha_k \cdot \sigma_x \tag{II-12}$$

$$\sigma_x = \frac{\sigma_y}{\alpha_k}$$

En definitiva, una vez que sean conocidos ϵ_k y α_k , la función de distribución $\phi[x]$, el valor medio ξ , la desviación típica σ_x , y el valor x_ϕ correspondiente a cada posible valor de ϕ de la $\phi[x]$, pueden ser deducidos en manera inmediata de la $\phi[y]$, del valor medio η , de la desviación típica σ_y , y del valor y_ϕ . [100]

Resulta evidente que mientras la función $\phi[x]$ es función de los valores asumidos por x, α_k y ϵ_k , la función de repartición $\phi[y]$ es función solamente del valor asumido por y. O sea:

$$\phi[x] = \phi(x, \alpha_k, \epsilon_k)$$

$$\phi[y] = \phi(y)$$

$$\phi[x] = \phi[y] = e^{-e^{-y}} = \phi(y), \text{ para } y = \alpha_k(x - \epsilon_k). \quad (II-13)$$

En consecuencia, antes que deducir las propiedades de la función de distribución de las x, conviene deducir las propiedades de la función de distribución de la variable y. [58] [21]

II-1.3: Como puede observarse en las Figuras II-1 y II-2, en las cuales se han representado en diagramas cartesianos los andamientos asumidos respectivamente por las funciones $\varphi(y)$ y $\phi(y)$, si la x está distribuida según la ley asintótica del máximo valor la $\varphi(y)$ resulta asimétrica. [62] [57]

Como consecuencia de esta asimetría, la moda \tilde{y} , mediana \tilde{y} y valor medio $\eta = M[y]$ de la distribución de probabilidades de la y resultan distintas entre sí, siendo:

$$\widetilde{y} = 0$$
 $\cos \phi(\widetilde{y}) = \phi(0) = 0.368$
 $\widetilde{y} = 0.36651$ $\cos \phi(\widetilde{y}) = \phi(0.36651) = 0.500$ (II-14)
 $\eta = 0.57722$ $\cos \phi(\eta) = \phi(0.57722) = 0.570$

A su vez, la desviación típica está dada por:

$$\sigma_{y} = \sigma[y] = 1.28255$$
 (II-15)

La Figura II-3 muestra el diagrama probabilístico en el que la función de repartición de la variable y se presenta linealizada.

Si se indican con $y_{0.975}$ e $y_{0.025}$ los valores de la variable y que corresponden a los valores de $\phi = 0.975$ y $\phi = 0.025$ de las ecuaciones precedentes se obtiene: [88]

$$y_{0.975} = 3.675$$
 (II-16)
 $y_{0.025} = -1.305$.

Además, puesto que $\phi[\tilde{y}] = \phi(0) = 0.368$, en el intervalo comprendido entre $y_{0.025}$ y la moda \tilde{y} recae el 34.3% de la población, mientras que en el intervalo comprendido entre la moda \tilde{y} y el valor $y_{0.975}$ recae el 60.7% de la población.

II-1.4: Como se ha dicho, siendo conocidas las funciones $\varphi(y)$ y $\phi(y)$, es posible deducir en manera inmediata las funciones $\varphi[x]$ y $\phi[x]$, que caracterizan la distribución de probabilidades del máximo valor x que una variable h puede asumir en muestras de dimensión k suficientemente grande, extraídas casualmente de la población de las h. [97] [98]

Bastará para eso conocer los valores asumidos por los parámetros ϵ_k y α_k , que caracterizan la distribución de probabilidades de la variable h.

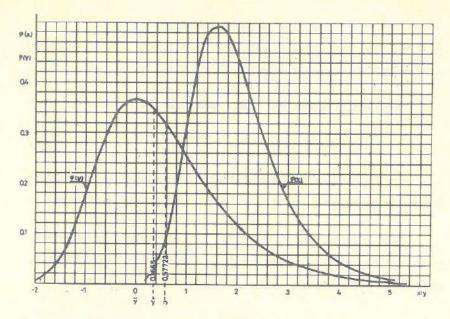


Figura //-1: Distribución asintótica del máximo valor, Función de probabilidad elemental.

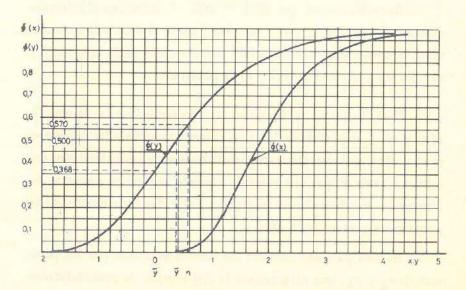


Figura 11-2: Distribución asintótica del máximo valor. Función de repartición.

Fijado un valor de x, para conocer los valores que las funciones $\varphi[x]$ y $\phi[x]$ asumen, basta calcular por la (II-4) el valor correspondiente de y, asumiendo luego:

$$\phi[x] = \phi(y) \tag{II-9}$$

y

$$\varphi[x] = \alpha_k \ \varphi(y) \ , \tag{II-17}$$

$$para y = \alpha_k(x - \epsilon_k)$$

Si, recíprocamente, se quiere conocer el valor de x_{ϕ} , basta calcular el valor y_{ϕ} , y aplicar luego la (II-10).

En base a la (II-14), indicando con \widetilde{x} , con \widetilde{x} y con $\xi = M[x]$ respectivamente la moda, la mediana y el valor medio de la distribución de probabilidades de la x, resultan:

$$\widetilde{x} = \epsilon_k , \qquad \operatorname{con} \phi[\widetilde{x}] = 0.368$$

$$\widetilde{x} = \epsilon_k + \frac{0.36651}{\alpha_k} , \operatorname{con} \phi[\widetilde{x}] = 0.500$$

$$\xi = \epsilon_k + \frac{0.57722}{\alpha_k} , \operatorname{con} \phi[\xi] = 0.570$$
(II-18)

mientras que por la (II-15) es:

$$\sigma_x = \sigma[x] = \frac{1.28255}{\alpha_k} \tag{II-19}$$

De la (II-16) y la (II-10), y de la primera de la (II-18), se deduce:

$$x_{0.025} = \widetilde{x} - \frac{1.305}{\alpha_k}$$

$$x_{0.975} = \widetilde{x} + \frac{3.675}{\alpha_k}$$
(II-20)

Recordando, finalmente, que en la distribución de y resulta:

$$\phi(-1) = 0.0659$$

$$\phi(1) = 0.6922$$
,

en la distribución de x, resulta:

$$\phi \left[\epsilon_k - \frac{1}{\alpha_k} \right] = 0.0659$$

$$\phi \left[\epsilon_k + \frac{1}{\alpha_k} \right] = 0.6922$$
(II-21)

En la Figura II-3-se indica cómo en un diagrama probabilístico correspondiente a la ley asintótica del máximo valor, conocidos ϵ_k y α_k , queda individualizada la recta que representa la $\phi[x]$, y, recíprocamente, cómo, siendo dada la recta $\phi[x]$, es posible conocer ϵ_k y α_k .

II-2: Interpretación de las ecuaciones

II-2.1: Como se ha dicho, si de la población de la variable original h se extraen casualmente muestras de dimensión k, indicando con x el más grande de los valores de h en esas muestras, dicho máximo puede ser a su vez considerado variable casual.

Si k es suficientemente grande, la nueva variable x está distribuida según la ley asintótica del máximo valor, con moda \widetilde{x} que coincide con el valor ϵ_k definido por la relación:

$$\phi[\epsilon_k] = 1 - \frac{1}{k} . \tag{II-2}$$

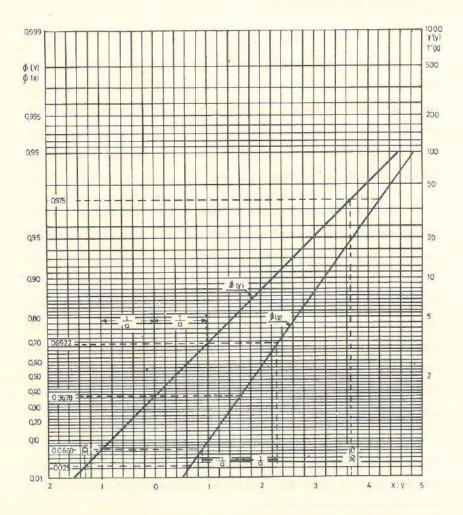


Figura II-3: Distribución asimtótica del máximo valor.

Representación de la función de repartición en diagrama probabilístico.

Como es inmediato, si, considerando x como variable original, de la población constituida por todos los valores de x se extrae una muestra de dimensión n, el más grande x_n de los valores asumidos por x en dicha muestra puede a su vez ser considerado como una variable cásual, también distribuída según la ley asintótica del máximo valor, con moda \widetilde{x}_n que coincide con el valor de x_n definido por la relación:

$$\phi[x_n] = 1 - \frac{1}{n} \,. \tag{II-22}$$

De aquí que, si, sobre el eje de ordenadas, al lado de cada valor de ϕ se señala el valor de n dado por la (II-22), y si, sobre el eje de abscisas, en lugar de x se señala \widetilde{x}_n , la recta $\phi[x]$ que, refiriéndose a las coordenadas x y $\phi[x]$ indica el andamiento de la función de repartición de la x, refiriéndose a las nuevas coordenadas indica también la ley según la que \widetilde{x}_n varía en función de n.

II-2.2: Desde el punto de vista de las aplicaciones, para tener en cuenta que puede hacerse referencia o a un período de duración n igual al del período de observaciones o a un período de duración N distinto de n, se indicará el período al cual se hace referencia con el símbolo T. Al mismo tiempo para indicar el máximo valor que la x puede asumir "normalmente" en un período de duración igual a T, en lugar de $\widetilde{x}T$ (*), para no complicar los símbolos, por simplicidad en la expresión, se escribirá x_T y se hablará de valor de x que "normalmente" corresponde al período de retorno T.

Es evidente que con el nuevo símbolo adoptado, sobre el diagrama probabilístico correspondiente a la ley asintótica del máximo valor la recta $\phi[x]$ puede ser utilizada para representar la

^{(°):} Valor "model" o "normal", asumido por la magnitud con mayor probabilidad elemental.

ley con la cual $x_{T'}$ varía en función de T'. Basta señalar en el eje de ordenadas el valor de T' que corresponde a ϕ por la relación:

$$T' = \frac{1}{1-\phi} . \qquad (II-23)$$

De la (II-13) y la (II-23) se obtiene:

$$1 - \frac{1}{T'} = e^{-e^{-y}T'}$$
, (II-24)

con

$$y_{T'} = \alpha_k (x_{T'} - \epsilon_k)$$
 (II-25)

De donde:

$$x_{T'} = \epsilon_k \left(1 - \frac{1}{\alpha_k \epsilon_k} L L \frac{T'}{T' - 1}\right)$$
 (II-26)

Si se representa la $\phi[x]$ en un diagrama probabilístico correspondiente a la ley asintótica del máximo valor, la misma recta que la representa sirve, con una simple transformación de coordenadas, para representar la (II-26). En efecto, para ello basta, tal como se dijo, señalar en el eje de ordenadas el valor de T' que corresponde a ϕ por la (II-23).

II-2.3: Es inmediato que:

con muy buena aproximación para valores de T' superiores a 100;

con aproximación satisfactoria para valores de T' no inferiores a 6 ó 7 años,

en sustitución de la (II-26), y por lo tanto de la (II-1), se puede escribir en forma más simple: (*)

^{(°):} Como es sabido, si T' tiende a infinito, $L \frac{T'}{T'-1} = \frac{T'}{T'-1} - 1$; lo cual, a su vez, es equivalente a 1/T'.

$$x_{T'} = \epsilon_k (1 + K_x' \log T') \qquad (II-27)$$

con

$$K_x' = \frac{1}{\epsilon_k \alpha_k \log e} = \frac{1}{0.43429 \epsilon_k \alpha_k}$$
 (II-28)

En ádelante la (II-27) será llamada "fórmula aproximada de la ley asintótica del máximo valor", y el parámetro K_x definido "característica" de la distribución de probabilidades de x.

II-2.4: Para dar una idea del grado de aproximación en el que (II-27) puede ser utilizada en lugar de (II-26), en la Figura II-4, en función de valores crecientes de K_x se han representado en diagrama cartesiano, en abscisas los $\log T$ y en ordenadas los valores de la relación x_T / ε_k .

Como puede observarse, para cada valor de K_x considerado, x_T/ϵ_k varía en función de $\log T$:

con ley lineal para valores de T' mayores que 100; con ley que se aparta de la (II-27) para valores de T' inferiores a 100;

con apartamientos aceptables para valores de T'no inferiores a 6 ó 7 años.

II-2.5: Definiendo:

por una parte, la función de reparti-

 $ción \psi[x_T]$;

por la otra, los valores de $x_{T,r}$ que corresponden a una probabilidad acumulada $\psi = 1 - r$ (Máximo valor que la altura de lluvia puede asumir una vez cada T años a menos de un riesgo r.)

De acuerdo con lo expresado, a $x_{T,r}$ corresponde: en la distribución de probabilidades de las x_T una probabilidad acumulada de $\psi[x_T] = 1 - r$; en la distribución de probabilidades de las x una probabilidad acumulada $\phi[x \le x_{T,r}] = \phi[x_{T,r}]$.

Por otra parte, la función $\psi[x_T]$, que caracteriza la distribución de probabilidades de la variable x_T , puede obtenerse de la función de repartición $\phi[x]$, que caracteriza la distribución de la variable x, por medio de la relación:

$$\psi [x_T] = (\phi[x_T])^T \qquad (II-29)$$

Por lo tanto, para $\psi = I - r$ puede escribirse:

$$1 - r = \psi[x_T \leqslant x_{T,r}] = \psi[x_{T,r}] = (\phi[x \leqslant x_{T,r}])^T = (\phi[x_{T,r}])^T,$$

de lo cual se obtiene inmediatamente:

$$\phi[x_{T,r}] = (1-r)^{1/T}$$
 (II-30)

II-2.6: De la (II-13) y la (II-30) se obtiene:

$$x_{T,r} = \epsilon_k (1 + K_x' \log \frac{1}{1 - (1 - r)^{1/T}})$$
 (II-31)

II-2.7: Recordando la simbología introducida, la (II-31) se puede escribir:

$$h_{t_{T,r}} = \epsilon_t (1 + K_t' \log \frac{1}{1 - (1 - r)^{1/T}}),$$
 (II-32)

siendo $h_{t_{T,r}}$ el máximo valor que la altura de lluvia caída en t horas consecutivas puede asumir una vez cada T años a menos de un riesgo r.

Análogamente:

$$h_{d_{T,r}} = \epsilon_d (1 + K'_d \log \frac{1}{1 - (1 - r)^{1/T}})$$
, (II-33)

siendo $h_{d_{T,r}}$ el máximo valor que la altura de lluvia diaria puede asumir una vez cada T años a menos de un riesgo r.

II-2.8: Como se ha visto, ϵ_k y α_k , definido como extremo esperado el primer parámetro, y como intensidad de función el segundo, correspondientes ambos a la distribución de probabilidades de la variable original h, representan respectivamente el valor modal x y una medida de la dispersión en la distribución de probabilidades de la x. [89] [94]

Como tales, sus valores están ligados por medio de las relaciones (II-18) y (II-19) al valor asumido por el valor medio ξ y la desviación típica $\sigma[x]$ de la distribución de probabilidades de la x.

Por lo tanto, una vez conocidos ξ y $\sigma[x]$, combinando las relaciones (II-18) y (II-19) con la (II-28) resulta el valor asumido por K'_x .

Para justificar la definición de característica dada a este parámetro, se puede observar:

siendo
$$\epsilon_k = \widetilde{x}$$
 ;

$$y \alpha_k = \frac{1.28255}{\sigma[x]} ;$$

resulta:

$$K_{x}' = \frac{1}{0.43429 \cdot \epsilon_{k} \cdot \alpha_{k}} = \frac{1}{0.5566} \cdot \frac{\sigma[x]}{\widetilde{x}}$$
 (II-34)

Si se asume como unidad de medida de x el valor modal \widetilde{x} , considerando en lugar de la variable x, la variable x/\widetilde{x} , la característica K_x resulta proporcional a la desviación típica de x/\widetilde{x} .

Por otro lado, si en (II-26) y (II-27) se pone \widetilde{x} en lugar de ϵ_k , se observa que la ley de dependencia de $x_{T'}/\widetilde{x}$ sobre T' y, por lo tanto, la distribución de probabilidades de la nueva variable x/\widetilde{x} , depende solamente del valor de K'_x (Figura II-4).

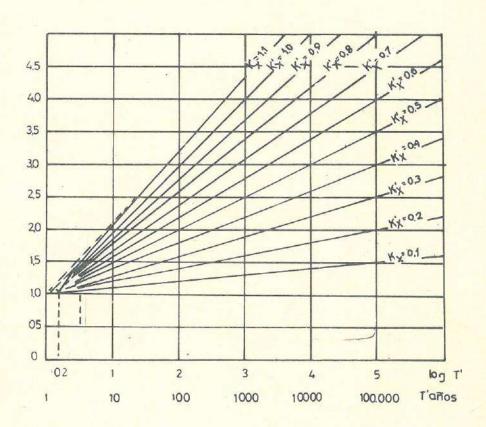


Figura II-4: Ley de variación de $\frac{x_T}{\epsilon_b}$ en función de log T'.

Capitulo III

CONTROL DE LAS HIPOTESIS ASUMIDAS

ti ekinga0

CONTROL DE LAS HIPOTESIS ASUMBAS

III-1: Programa "ITHIDRA 1"

En acuerdo con lo expresado en el Capítulo II, se ha procesado toda la información descripta en las *Tablas I-1* y *I-2*, en la IBM 360 del Instituto de Computación de la Facultad de Ingeniería.(1)

III-2: Simbología

 $^{\circ}$ III-2.1: Refiriéndose a máximos anuales h_d de alturas de lluvia diarias, se indica con:

$$M[h_d]$$
, $\sigma[h_d]$ y $\gamma[h_d] = \frac{\sigma[^hd]}{M[^hd]}$: respectivamente, el valor

medio, la desviación típica y el coeficiente de variación en la distribución de probabilidades de las h_d ;

 ϵ_d , α_d y K_d : respectivamente, moda, intensidad de función y característica en la distribución de probabilidades de las h_d ;

El autor se complace en destacar, además, la participación del Ing. Luis Medina Novoa en la etapa de creación del Programa, y del Ing. Juan C. Cotignola y el Br. Juan L. Pereira en la lectura e interpretación de las bandas pluviográficas originales correspondientes a la totalidad del Territorio Uruguayo.

^{(1):} Programa "ITHIDRA 1", realizado por los Analistas Programadores Gonzalo De Soto y Guillarmo Gelós entre diciembre de 1978 y marzo de 1979. El programa calcula los parámetros de la muestra y grafica la distribución de frecuencias acumuladas en diagrama probabilístico correspondiente a la ley asintótica del máximo valor.

 \overline{h}_d , s_d , g_d , e_d , a_d y c_d : respectivamente, las estimas de $M[h_d]$, $\sigma[h_d]$, $\gamma[h_d]$, ϵ_d , α_d y K_d deducidas de los n datos de cada pluviómetro por medio de las ecuaciones:

$$\overline{h}_{d} = \frac{\sum_{i=1}^{n} h_{di}}{n}$$
 (III-1)

$$s_d = \sqrt{\frac{\sum\limits_{i=1}^n (h_{di} - \overline{h}_d)^2}{n-1}}$$
 (III-2)

$$g_d = \frac{s_d}{\overline{h}_d} \quad ; \tag{III-3}$$

$$e_d = \bar{h}_d - 0.450 \ s_d \ ;$$
 (III-4)

$$a_d = \frac{1.28255}{s_d}$$
 (III-5)

$$c_{d}' = \frac{s_{d}}{0.5566 e_{d}} = \frac{1}{0.43429 a_{d} e_{d}}$$
 (III-6)

III-2.2: Refiriéndose a máximos anuales h_t de alturas de lluvias caídas en t horas consecutivas, se indica con:

$$M[h_t]$$
 , $\sigma[h_t]$, y $\gamma[h_t] = \frac{\sigma[^h t]}{M[h_t]}$: respectivamente, el valor

medio, la desviación típica y el coeficiente de variación en la distribución de probabilidades de las h_t ;

 ϵ_t , α_t y K_t : respectivamente, moda, intensidad de función y característica en la distribución de probabilidades de las h_t ;

 \overline{h}_t , s_t , g_t , e_t , a_t y c_t' : respectivamente, las estimas de $M[h_t]$, $\sigma[h_t]$, $\gamma[h_t]$, ϵ_t , α_t y K_t' deducidas de los n datos de cada pluviógrafo por medio de las ecuaciones:

$$\overline{h}_t = \frac{\sum_{i=1}^n h_{ti}}{n} ; \qquad (III-7)$$

$$s_t = \sqrt{\frac{\sum_{i=1}^{n} (h_{ti} - \overline{h}_t)^2}{n-1}}$$
; (III-8)

$$g_t = \frac{s_t}{\overline{h}_t} \quad ; \tag{III-9}$$

$$e_t = \overline{h}_t - 0.450 \ s_t \ ;$$
 (III-10)

$$a_t = \frac{1.28255}{s_t}$$
; (III-11)

$$c_t' = \frac{s_t}{0.5566 e_t} = \frac{1}{0.43429 a_t e_t}$$
 (III-12)

III-3: Se precisan las hipótesis de trabajo

Se debe tener en cuenta que el fin último de las investigaciones a que se refiere el Capítulo II es el de conocer la composición de la población, incógnita, a partir de la composición de la muestra, sabiendo que, por defecto de muestreo, la composición de la segunda puede separarse de la primera [56]. Se debe esperar que entre la $\phi[x]$ y la F[x], a igual probabilidad, se encuentren apartamientos, en más o en menos, tanto más grandes cuanto más pequeña es la dimensión de la muestra. [59] [60]

Se indica, con:

 x_{ϕ} , el valor de x al que en la población corresponde la probabilidad acumulada ϕ ;

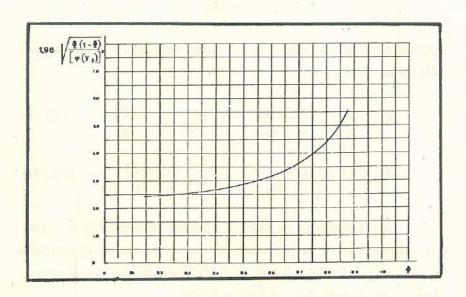
 $x_{F=\phi}$, el valor de x al que en la muestra corresponde la frecuencia acumulada $F=\phi$.

Entre x_{ϕ} y $x_{F=\phi}$ hay apartamientos tanto más grandes, a igual probabilidad, cuanto más pequeño es n. El cálculo de probabilidades permite deducir los intervalos dentro de los cuales, teniendo en cuenta la dimensión n de la muestra, se puede esperar que los valores de dichas estimas recaen.

En referencia a un determinado valor de x, se pueden precisar los límites de control $F_1(x)$ y $F_2(x)$ de la $\phi[x]$.

III-4: Límites de los intervalos de control

Indicando con $x_{F=\phi}$ el valor de x que, en la muestra de dimensión n de que se dispone, corresponde a una frecuencia acumulada F[x] igual a ϕ , siempre que sea $0.15 \le \phi \le 0.85$ y para n no demasiado pequeño, con buena aproximación se pueden calcular los límites de control $(x_F)_1$ y $(x_F)_2$ de la $x_{F=\phi}$ por medio de las relaciones:


$$(x_F)_1 = x_\phi - \frac{1}{\alpha_k \sqrt{n}} \cdot A(\phi) \qquad (III-13)$$

$$(x_F)_2 = x_\phi + \frac{1}{\alpha_k \int_{\Pi}} \cdot A(\phi) \qquad (III-14)$$

con

$$A(\phi) = 1.96 \int \frac{\phi (1 - \phi)}{[\varphi(y_{\phi})]^2}$$
 (*)

Gráficamente:

(°): En efecto, según C. Viparelli, obra citada \$67, pág. 132,
$$(x_F)_1 = x_{\phi} + 1,96 \ \sigma[x_F]$$
 con $\sigma[x_F] = \frac{1}{\alpha_k \sqrt{n}} \sqrt{\frac{\phi \ (1-\phi)}{[\varphi(y_\phi)]^2}}$.

Si se indica con x_n el máximo valor asumido por x en la muestra, y si además x_n resulta distribuido, lo mismo que la x, según la ley asintótica del máximo valor, los parámetros ϵ_n y α_n que caracterizan la distribución de probabilidades de la x mediante la relación:

$$\epsilon_n = x_{1-1/n} \tag{III-16}$$

y la relación:

$$\alpha_n = \alpha_k = \frac{1.28255}{\sigma[x]} \tag{III-17}$$

permiten calcular el intervalo de control del máximo valor por medio de las relaciones:

$$(x_n)_1 = \epsilon_n - \frac{1.305}{\alpha_n} = x_{1-1/n} - \frac{1.305}{\alpha_k}$$
 (III-18)

$$(x_n)_2 = \epsilon_n + \frac{3.675}{\alpha_n} = x_{1-1/n} + \frac{3.675}{\alpha_k}$$
 (III-19)

La probabilidad de que una muestra de dimensión n, extraída casualmente de la población de las x, recaiga en el intervalo $(x_n)_2 - \widetilde{x}_n$ es 0.975 - 0.368 = 0.607, mientras que en el intervalo $\widetilde{x}_n - (x_n)_1$ es 0.368 - 0.025 = 0.343.

III-5: Verificación de las hipótesis formuladas.

Los límites de los intervalos de control así definidos, unidos mediante dos curvas continuas, determinan la zona del plano dentro de la cual deben recaer los puntos (x; F[x]) de la muestra, resultantes de la distribución de frecuencias acumuladas.

Si todos los puntos mencionados recaen dentro de esa Franja de Control, significará que las dispersiones con respecto a la recta P[x], asumida como estima de la $\phi[x]$, pueden considerarse como desviaciones de muestreo, y la hipótesis será aceptada.

En caso contrario se rechazará la hipótesis y hará otra investigación siguiendo los mismos pasos.

Las Figuras III ilustran el procedimiento seguido, para cada pluviómetro y cada pluviógrafo, en fase de control de hipótesis.

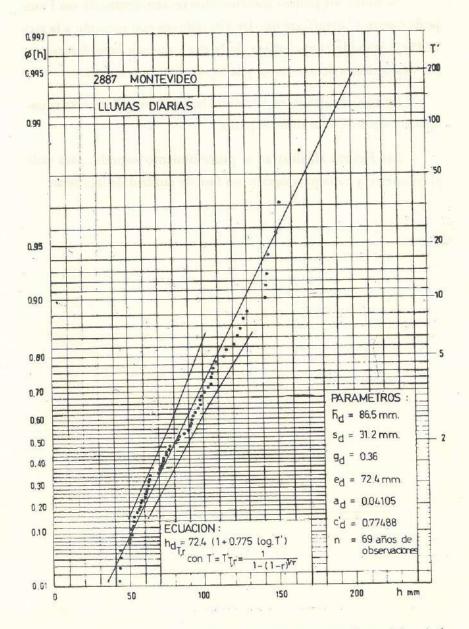


Figura III-1: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada. (Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo).

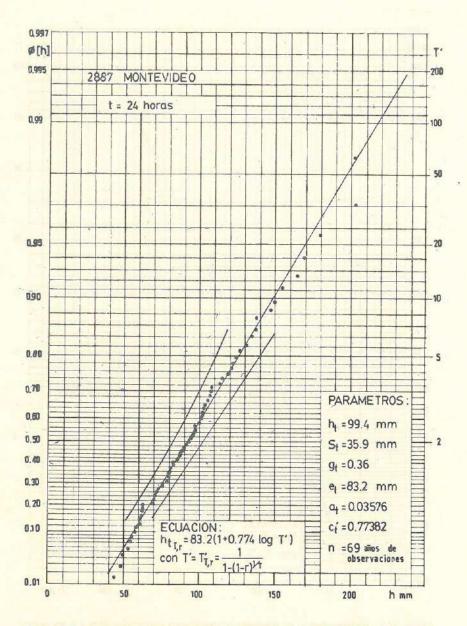


Figura III-2: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada.

Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo.

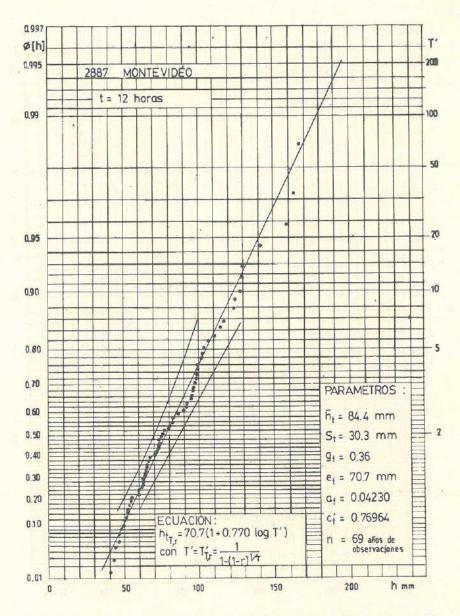


Figure III-3: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada. Ejemplo de las elaboraciones seguidas con los datos de cada pruviómetro y de cada pluviógrafo.

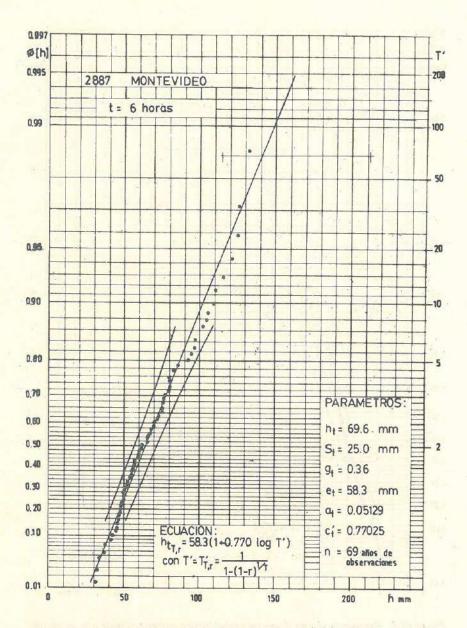


Figura III-4: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada, (Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo).

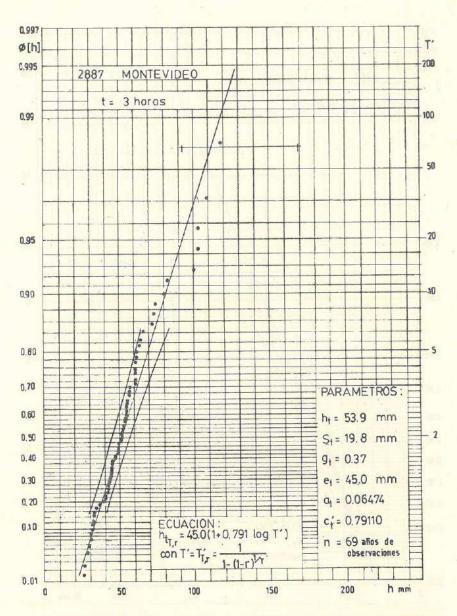


Figura III-5: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada.

Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo.

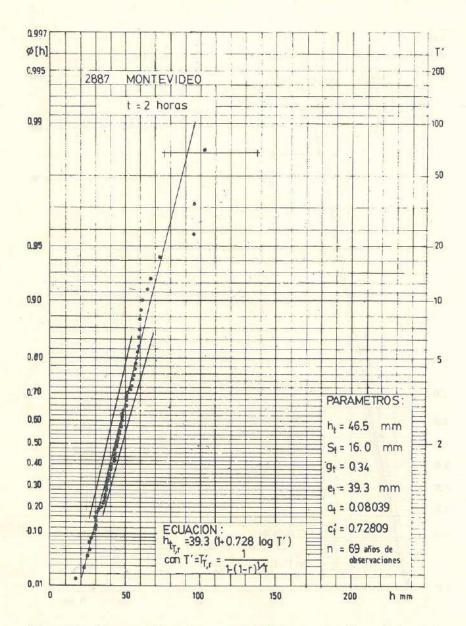


Figura III-6: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada.

Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo

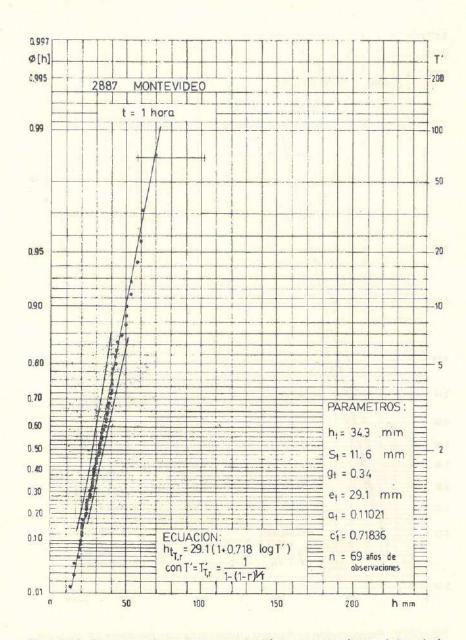


Figura III-7: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada.

Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo.

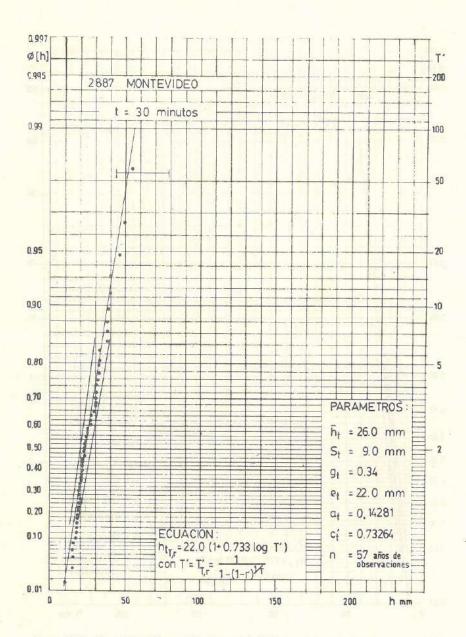


Figura III-8: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada.

Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo.

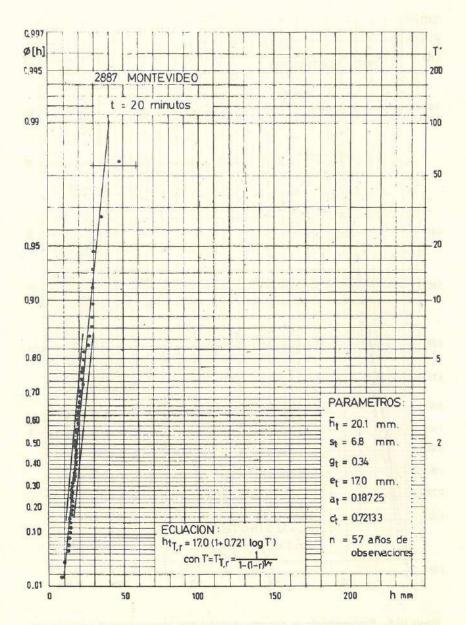


Figura III-9: Representación en diagrama probabilistico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada. Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo.

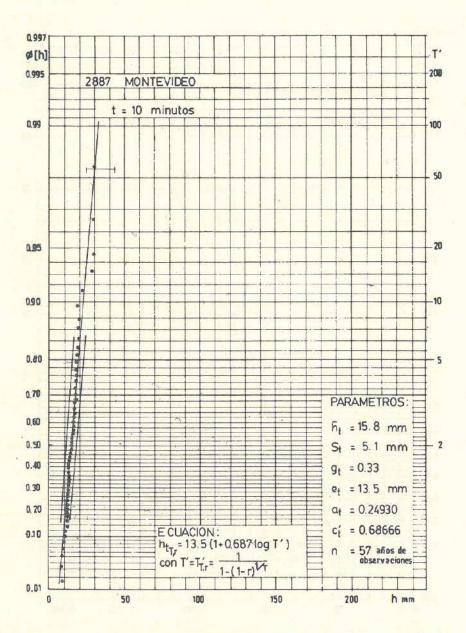
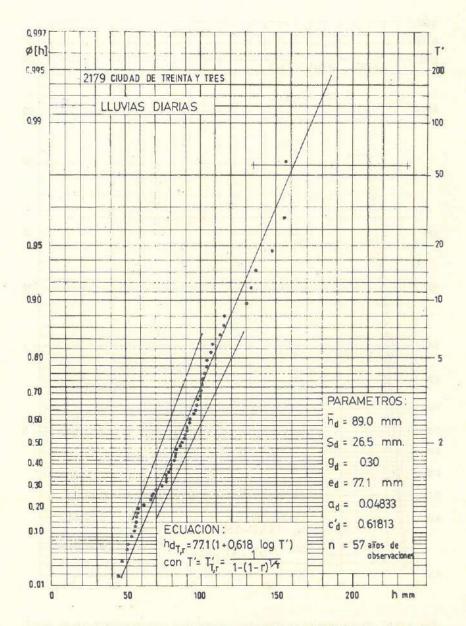



Figura III-10: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada.

Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo.

Egura III-11: Representación en diagrama probabilistico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada.

Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo.

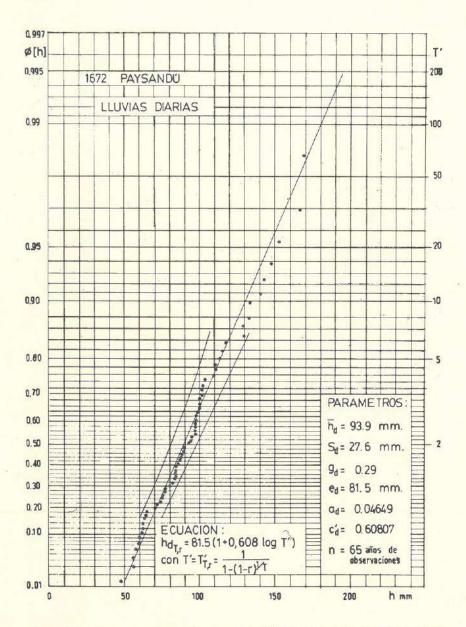


Figura III-12: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de conflanza de la hipótesis formulada. Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo.

Capítulo IV

ESTIMAS DE LOS PARAMETROS

Sapitulo IV-

ESTIMAS DE LOS PARAMETROS

IV-1: Procesamiento

En una primera fase de la investigación se han elaborado, independientemente, las series estadísticas constituidas o por los valores de h_d registrados en cada Estación Pluviométrica o los valores de h_{24} , h_{12} , h_6 , h_3 , h_2 , h_1 y $h_{0.5}$ (*) registrados en cada Estación Pluviográfica.

En particular, representada en un diagrama probabilístico correspondiente a la ley asintótica del máximo valor la distribución de frecuencias acumuladas que caracteriza cada serie estadística y calculados los valores asumidos por la media aritmética y por la desviación típica de los n datos que componen la serie:

- 1) se han deducido las estimas de los parámetros que caracterizan la distribución de probabilidades de la variable a la que los datos se refieren;
- 2) se ha llevado al mismo diagrama en escala probabilística la recta que, en base a la información provista por los n datos que

En Montevideo, además, n 20min. y h 10min.

componen la serie estadística, representa la mejor estima de la función de repartición de la variable.

IV-2: Resultados

En definitiva, como conclusión de esta fase de las investigaciones, se han deducido:

para cada pluviómetro:

- a) la estima e_d de ϵ_d ;
- h) la estima a_d de α_d ;
- c) la estima c'_d de K'_d ;
- d) la estima $P[h_d]$ de la función de repartición $\phi[h_d]$;

para cada pluviógrafo:

- a) las estimas e_{24} de ϵ_{24} , e_{12} de ϵ_{12} , e_6 de ϵ_6 , e_3 de ϵ_3 , e_2 de ϵ_2 , e_1 de ϵ_1 y $e_{0.5}$ de $\epsilon_{0.5}$;
- b) las estimas a_{24} de α_{24} , a_{12} de α_{12} , a_6 de α_6 , a_3 de α_3 , a_2 de α_2 , a_1 de α_1 y $a_{0.5}$ de $\alpha_{0.5}$;
- c) las estimas c'_{24} de K'_{24} , c'_{12} de K'_{12} , c'_{6} de K'_{6} , c'_{3} de K'_{3} , c'_{2} de K'_{2} , c'_{1} de K'_{1} y $c'_{0.5}$ de $K'_{0.5}$;
- d) las estimas $P[h_{24}]$ de $\phi[h_{24}]$, $P[h_{12}]$ de $\phi[h_{12}]$, $P[h_{6}]$ de $\phi[h_{6}]$, $P[h_{3}]$ de $\phi[h_{3}]$, $P[h_{2}]$ de $\phi[h_{2}]$, $P[h_{1}]$ de $\phi[h_{1}]$, y $P[h_{0.5}]$ de $\phi[h_{0.5}]$.

Las estimas de los parámetros que caracterizan la distribución de probabilidades de los máximos anuales de altura de lluvia diaria en cada Estación Pluviométrica, \overline{h}_d , s_d , g_d , e_d , a_d y c_d , se presentan en la Tabla IV-1.

Las estimas de los parámetros que caracterizan la distribución de probabilidades de los máximos anuales de altura de lluvia caída en (t) horas consecutivas deducidas para cada Estación Pluviográfica, \overline{h}_t , s_t , g_t , e_t , a_t y c_t , correspondientes a t=24, 12, 6, 3, 2, 1, y 1/2 hora, se presentan en la Tabla IV-2.

TABLA IV-1

Estimes de los Parámetros que caracterizan la Distribución de Probabilidades de los Máximos Anuales de Lluvia Diaria

νο	0,90555	0.81596	0.79425	0.61024	0.66248	0.67975	0,68252	0.74510	0.81022	0,80384	0.93048	0.73284	0.81420	0.81138	0.87328	0.79541	0.79721	0,92066	0.65340	0.89481
p _q	0,02801	0.03195	0.03608	0,04019	0,04005	0.03799	0.03514	0.03879	0.03106	0.03373	0,02883	0.03773	0.03342	0.03389	0.03096	0,03561	0.03368	0,03147	0,04006	0.03201
Pe	808	88.3	80,4	93,9	86.8	89.2	96.0	7.67	91,5	84.9	85.8	83.3	84.6	83.7	85.2	813	85.8	79.5	0.88	80.4
9d	0,41	0.38	0.37	0.29	0.32	0,32	0,32	0,35	0.38	0.37	0.42	0,34	0,38	0,38	0,40	0.37	0.37	0,42	0.31	0.41
P	45.8	40.1	36.66	31.9	32.0	33.8	36.5	33.1	41.3	38.0	44.5	34.0	38.4	37.9	41.4	36,0	38.1	40.8	32.0	40.1
P. P.	111.4	106,4	864	108.3	1012	104.4	112,4	94.5	110.1	102.0	105.8	988	6,101	100.8	103.8	97.5	102.9	97.8	102,4	98.4
Nombre	Beila Unión	Bernabé Rivara	Tomás Gomensoro	Artiges (Cluded)	Palma Sola	Ricardiño	Baltasar Brum	Belén	Rivera (Cluded)	Sequeira	Palomas (Salto)	Colonia Lavalleja	Pago Tranqueras	Paso Ataques	tapeb/	Valentín	Laureles (Tecuarembó)	Salto (Cludad)	Paso Potraros	Laureles (Salto)
Cédigo	1013	1019	1040	1050	1073	1086	1092	1106	1147	1159	1176	1182	1220	1224	1227	1232	1273	1283	1294	1321
No.	-		. 67	4	ı.	00	1	00	o	10	11	12	13	14	15	16	17	18	18	20

Continuación Tabla IV-1

Cédigo	Nombre	p _q	P _s	gd	Pa	P®	20
1371	Bañado de Rocha	100.4	30.3	0.30	86.7	0.04236	0.62680
1379	Moirones	95.0	30.2	0.32	81.4	0.04241	0.66673
1405	Tacuaremb6 (Cludad)	108.9	42.0	0.39	0.06	0.03055	0.83778
1440	Valle Edén	87.8	34.6	0.35	82.2	0,03709	0.75519
1444	Cuchilla Ombú	110.4	45.6	0.41	6.68	0.02810	0,91183
1454	Vichadero	97.5	29,3	0.30	84.3	0.04382	0.62309
1501	Quebracho	1.701	37.2	0.35	80.3	0.03448	0.73944
1523	Paso de los Novillos	98.7	34.8	0.35	83.0	0.03685	0,75259
1537	Isidoro Nobifa	83.0	29.4	0,35	8.69	0.04362	0.75664
1553	Quegusy Chico	96.6	36.5	0.37	80.6	0.03609	0.79166
1558	Pledra Sola	7.66	34.8	0.35	84.1	0.03690	0.74
1645	Pampa	91,9	31.2	0.34	77.8	0,04117	0.718
1672	Paysandú	93,9	27.6	0.29	81,5	0.04649	0.60807
1676	Piedras Coloradas	0.86	30.8	0.31	84.1	0,04163	0,65750
1680	Gulchón	93,5	27.2	0.29	81.2	0.04707	0,60218
1699	Cuchilla de Caraguatá	88.7	37.2	0.42	72.0	0.03452	0.92625
1709	Melo	89.2	29.7	0.33	75.9	0,04317	0.70293
1734	Achar	86.9	31.6	0.33	82.7	0.04061	0.68541
1766	Paso de la Cruz	96.1	27.9	0.29	83.6	0.04605	0.59798
1772	Cuchilla de Navarro	93,5	33.2	0,36	78.5	0.03863	0.75902
1774	Estación Francia	92.9	30,0	0.32	79.4	0.04279	0.67719
1793	Fraile Muerto	84.3	31.0	0.37	70,3	0.04134	0,79226
1798	Arroyo Malo	82.2	21.5	0.26	72.5	0.05953	0.53362
1840	Guszunambí	93.8	40.1	0.43	75.8	0.03201	0.94890

Continuación Tabla IV-1

-	Código	Nombre	P	Pg	Ps	P	Pe	o ^D
-	1940	Bro Branco	86.6	29.7	0.34	73.2	0,04317	0.72822
	4075	I a Paloma (Durazno)	92.2	32.9	0.36	77.4	0,03898	0.76338
-	1880	Cuchilla del Carmen	85.5	29.5	0,36	72.2	0.04346	0.73348
	1902	Rallaco	91,5	34.2	0,37	76.1	0,03748	0.80760
	1909	I as Flores	100.7	38.8	0.39	83.2	0.03307	0,83655
-	1918	Carpintería	92.0	31.3	0,34	277	0.04104	0.71987
	2009	Juan Esteban	9.68	36.4	0.39	73.7	0.03626	0.86162
-	2029	Isla Patrulla	97.0	31.2	0.32	82.9	0.04114	0.67471
	2061	Molles	93.3	39.0	0.42	75.7	0.03290	0.92432
	2073	Cerro Chato	94.8	36.8	0.39	78.2	0.03486	0.84438
10.95	2083	Bañado de Oro	84.2	26.6	0.32	72.2	0.04818	0,86196
	2085	Liebia's	92.1	32.3	0.36	77.6	0.03968	0.74792
	2089	Cololó	104.0	40.4	0.39	85,9	0.03175	0.8444
	2108	Los Tapes	92.4	36.2	0.39	76.1	0.03542	0.8545
	2145	Mercedes	89.2	36.2	0.41	72.9	0.03545	0.89070
	2154	Marincho	888	35.2	0.36	82,9	0.03648	0.76100
	2160	Villasboas	92.6	32.4	0.35	78.0	0.03956	0.7465
	2164	Carmen	91.9	29.2	0.32	78.8	0.04386	0.66648
	2179	Treints v Tres (Cludad)	89.0	26.5	0,30	17.7	0.04833	0,6181
	2185	La Charqueada	92.4	24.7	0.27	812	0.05190	0.5460
	2204	Poronaos	93.2	31.9	0.34	78.8	0.04015	0.7279
	2240	Bizcocho	84.1	25.4	0.30	72.7	0.05045	0.6279
-	27.77	José P. Varela	83,6	29.3	0.35	70.4	0.04373	0,74748
	2289	Palmites	87.7	36:1	0.40	71.9	0,03650	7777

Continuación Tabla IV-1

	_	-	_	-	-		-	-	-	_	-		_	_		_	-		_	_	_	_	_	_
ou.	0.73590	0.60742	0.66573	0.68183	0.67134	0.59779	0.64958	0.72963	0.71387	0.64930	D 77734	0.87680	0.94060	0.55975	0.89468	0.88632	0.88005	0.88804	0.81491	0 80320	0 91336	0.59863	0 92806	0.75220
, p	0.03744	D DAMPA	0.04561	0.04555	0.04962	0.05298	0.04717	0.03548	0.04639	0.04376	0.04219	0.03651	0.03564	0.05685	0.03879	0.03534	0.03608	0.03944	0.04172	0.03607	0.03933	0.05211	0.03467	0.04204
P	83.6	82.1	75.9	74.1	68.1	72.7	75.2	89.0	9.69	81,0	70.2	71.9	68.7	72.4	66,3	73.5	72.5	65.7	67.7	70.7	1.75	73.8	71.5	71.2
₽g ·	0.35	0.33	0.32	0,32	0,32	0.29	0.31	0.34	0.34	0.31	0.36	0.40	0.42	0.27	0.41	0,40	0.40	0.40	0.38	0.41	0.41	0.29	0,42	0.35
o o	34.3	31.9	28.1	28.2	25,9	242	27.2	36.2	27.7	29,3	30.4	35.1	36.0	22.6	33.1	36,3	35.6	32.5	30.7	35.6	32.6	24.6	37.0	29.9
P	99.0	96.4	88.6	86.8	808	83.6	87.4	105.2	82,0	94,2	83.9	87.8	84.9	82,5	81.2	88.8	88.5	80.4	81,6	86.7	78.8	84.9	88.2	84.7
Nombre	Egaña	Puntas de Maciel	Mansevillagra	Retamosa	Lescano	El Chuy	Agraciada	Puntas de Sauce	Pirarajá	Pintos	Barrigs Negra	Casupé	Conchilles	India Muerta	Barker	Cufré	Aigus	Raigón	San Ramón	Ortiz	La Coronilla	19 de Abril	Colonia (Cludad)	Míguez
Cédigo	2337	2349	2357	2364	2415	2422	2425	2436	2457	2486	2549	2586	2611	2646	2659	2662	7684	2707	2714	2719	2725	2770	2774	2792
No.	69	2	71	72	73	74	72	9/	1	78	79	80	81	82	83	84	82	98	87	88	88	8	91	92
	-																							

98

Continuación Tabla IV-1

No.	Cédigo	Nombre	Pq	D es	PB	P	P	o ^D
	2804	Rocha (Ciudad)	83.2	23.1	0.28	72.8	0,05557	0,5694
-	2816	Joanicó	81.2	32,3	0.40	9.99	0.03971	0.8702
	2826	Mataojo	79.4	24.4	0.31	68.5	0,06267	0.6387
10	2846	Olmos	82.0	24.9	0.30	70.8	0,05153	0.6307
97		José Ignacio	76.2	26.6	0,35	642	0.04816	0.74523
~		Pan de Azúcar	0.98	29.1	0.34	72.9	0.04408	0.7164
-		San Carlos	79.8	27.1	0.34	67.6	0.04729	0.7205
0		Montevideo (Cludad)	86.5	31.2	0.36	72.4	0.04105	0.7748

TABLA IV-2

Estimes de los Parámetros que caracterizan la Distribución de Probabilidades de los Máximos Anuales de Alturas de LLuvia caída en los procesos consecutives deducidas para cada Estación Piuviográfica.

Identificación	24	129.6	°t .	9,036	109,0	0.02808	0.75223
Cádino 1050	12	103.1	35.4	0.34	87.2	0.03624	0,72856
	9	84.2	29.5	0,35	71.0	0.04351	0.74572
	, es	65.2	23,4	0.36	54.6	0.05478	0.76962
	0 0	7.52	17.3	0.31	48.0	0.07430	0.64613
		39.2	11,3	0.29	34.1	0.11347	0.59535
	72	29.5	9'6	0.33	25.2	0,13313	0.68694
Samuel Am Shows	28	125.0	46.6	0.37	104.0	0,02753	0.80402
Causion 140. A	12	98.1	35.9	0.37	82.0	0.03577	0.78489
	4 (4)	78.6	29.8	0,38	65.2	0,04299	0,82192
	o en	64.9	24,5	0.38	53.9	0.05226	0.81788
	2	55.3	19.6	0.35	46,5	0.06556	0.75493
	-	39.1	10.1	0.26	34.5	0.12704	0.52514
	2	27.9	7.3	0.26	24.6	0.17610	0,53075
C ON WAS	24	118.6	41.9	0.35	28.7	0.03063	0.75389
CAdigo 1002	12	96.1	38.9	0.38	79.5	0.03475	0.83397
		74.8	26.6	0.36	62.8	0.04820	0.76053
	0 00	613	21.9	0.36	51.5	0.05867	0.76206
	0 0	62.1	17.4	0,33	44.2	0.07383	0.70508
	4 -	37.7	11.7	0.31	32.5	0.10977	0.64583
	- 3	27.8	8.7	0.31	23.9	0.14742	0,65329

Continuación Tabla IV-2

		1	1	7	+	300	••
Estación No. 4	24	100.7	36.5	0.36	84.2	0.03516	ALTT O
Cédigo 1709	12	86.8	30.6	0.35	73.0	0.04191	0 7521
Melo	9	70.5	25.3	0.36	59.1	0.05061	0.7698
	m	55.7	19.8	0.36	46.7	0.06481	0.7601
	2	49.1	17.2	0.35	41,3	0.07441	0.7485
	- :	35.0	10.8	0.30	31.0	0.11877	0.6246
7	z.	26.1	8.9	0.34	22.1	0.14416	0,72290
Estación No. 5	24	112.8	38.9	0.34	95.3	0.03296	0.7331
Código 1774	12	91.3	31.4	0.34	77.2	O.O.GORB	0 7298
Francia	9	72,3	25.7	0.36	60.7	0.04996	0 75938
	m	58.7	20.0	0.34	49.7	0.06425	0.7205
	2	50.2	17.1	0.34	42.5	0.07499	0.72214
	-:	34.6	11.9	0.34	29.2	0,10749	0.73284
	Z.	26.0	8%	0.32	22.2	0,15183	0.68321
Estación No. 6	24	1164	46.6	0,40	95.4	0.02749	0.87788
Codigo 1915	12	92.4	34.8	0.38	7.97	0.03683	0.81492
Paso de los Toros	9	72.7	26.0	0.36	61.0	0.04925	0.76691
	m	58.7	21.9	0.37	48.8	0.05868	0,8033
	7	2009	17.1	0.34	43.0	0.07505	0.71390
	-	34.3	11.8	0.34	28.9	0.10876	0.73148
	*	26.1	8.7	0.33	22.2	0.14805	0,7005

Continuación Tabla IV-2

110.0 39.4 0.36 92.2 91.7 35.2 0.38 75.8 73.4 28.8 0.39 60.4 58.4 21.0 0.36 48.9 49.4 17.5 0.36 41.5 36.2 9.9 0.27 31.7 28.4 6.8 0.37 91.7 92.8 33.7 0.36 61.6 58.2 21.0 0.36 61.6 58.2 21.0 0.36 48.7 48.8 16.6 0.34 41.4 34.0 10.8 0.32 22.1 96.4 34.1 0.35 81.0 82.7 30.7 0.37 68.9 69.4 25.4 0.37 68.9 55.1 20.4 0.37 45.9 32.7 10.7 0.33 27.9			-	1	1 _e	Ţ	, ,	1
12 91.7 35.2 0.38 75.8 6 73.4 28.8 0.39 60.4 3 68.4 21.0 0.36 48.9 1 36.2 9.9 0.27 31.7 1 36.2 9.9 0.27 31.7 1 36.2 9.9 0.27 31.7 12 92.8 33.7 0.36 77.6 6 73.4 26.2 0.36 61.6 6 73.4 26.2 0.36 61.6 1 34.0 10.8 0.32 29.2 1 34.0 10.8 0.32 29.2 1 34.0 10.8 0.35 81.0 24 96.4 34.1 0.35 81.0 1 82.7 30.7 0.35 81.0 1 82.7 30.7 0.35 89.9 1 32.1 20.4 0.37 45.9 1 32.7 10.7 0.33 27.9 1 32.7 10.7 0.33 27.9	stación No. 7	24	110,0	39,4	0.36	92.2	0,03262	0.76768
6 73.4 28.8 0.39 60.4 3 58.4 21.0 0.36 48.9 1 36.2 9.9 0.27 31.7 24 110.2 41.0 0.37 91.7 12 92.8 33.7 0.36 61.6 6 73.4 26.2 0.36 77.6 1 34.0 10.8 0.32 22.1 24 96.4 34.1 0.35 81.0 24 96.4 34.1 0.35 88.0 5 69.4 25.4 0.37 68.9 1 32.7 20.4 0.37 45.9 1 32.7 10.7 0.33 27.9	Código 1960	12	91.7	35.2	0.38	75.8	0,03639	0.8350
3 68.4 21.0 0.36 48.9 2 49.4 17.5 0.36 41.5 1 36.2 9.9 0.27 31.7 24 110.2 41.0 0.37 91.7 12 92.8 33.7 0.36 77.6 6 73.4 26.2 0.36 61.6 7 48.8 16.6 0.34 41.4 1 34.0 10.8 0.32 29.2 4 25.8 8.3 0.32 22.1 4 25.8 8.3 0.37 68.9 5 69.4 25.4 0.37 45.9 1 32.7 10.7 0.33 27.9	Saygorrie	9	73.4	28.8	0.39	60.4	0.04454	0.85574
2 49.4 17.5 0.36 41.5 1 36.2 9.9 0.27 31.7 24 110.2 41.0 0.37 91.7 12 92.8 33.7 0.36 77.6 6 73.4 26.2 0.36 61.6 3 58.2 21.0 0.36 48.7 1 34.0 10.8 0.32 29.2 4 25.8 16.6 0.34 41.4 4 25.8 16.8 0.32 29.2 4 25.8 8.3 0.32 22.1 5 66.4 34.1 0.35 68.9 6 69.4 25.4 0.37 45.9 1 32.7 10.7 0.33 27.9		က	58.4	21.0	0.36	48,9	0.06117	0.7690
1 36.2 9.9 0.27 31.7 24 110.2 41.0 0.37 91.7 12 92.8 33.7 0.36 77.6 6 73.4 26.2 0.36 61.6 3 58.2 21.0 0.36 48.7 1 34.0 10.8 0.32 29.2 1 34.0 10.8 0.32 29.2 1 25.8 8.3 0.32 22.1 24 96.4 34.1 0.35 81.0 12 82.7 30.7 0.37 68.9 6 69.4 25.4 0.37 46.9 1 32.7 10.7 0.33 27.9 1 32.7 10.7 0.33 27.9		2	49.4	17,5	0.36	41.5	0.07311	0.7594
½ 28.4 6.8 0.24 25.3 24 110.2 41.0 0.37 91.7 12 92.8 33.7 0.36 77.6 6 73.4 26.2 0.36 61.6 3 58.2 21.0 0.36 48.7 1 34.0 10.8 0.32 29.2 1 34.0 10.8 0.32 22.1 24 96.4 34.1 0.32 22.1 12 82.7 30.7 0.37 68.9 6 69.4 25.4 0.37 46.9 1 32.7 10.7 0.33 27.9		-	36.2	6.6	0.27	31.7	0.12949	0.56050
24 110.2 41.0 0.37 91.7 12 92.8 33.7 0.36 77.6 6 73.4 26.2 0.36 48.7 3 58.2 21.0 0.36 48.7 1 48.8 16.6 0.34 41.4 1 34.0 10.8 0.32 29.2 1 25.8 8.3 0.32 22.1 24 96.4 34.1 0.35 81.0 12 82.7 30.7 0.37 68.9 6 69.4 25.4 0.37 58.0 2 46.5 14.9 0.37 45.9 1 32.7 10.7 0.33 27.9		74	28.4	6.8	0.24	25.3	0.18804	0,48439
12 92.8 33.7 0.36 77.6 61.6 65.2 0.36 61.6 61.6 61.6 61.6 61.6 61.6 61.6 6	stación No. 8	24	110.2	41.0	0.37	91.7	0.03129	0,80211
6 73.4 26.2 0.36 61.6 3 58.2 21.0 0.36 48.7 2 48.8 16.6 0.34 41.4 1 34.0 10.8 0.32 29.2 1 25.8 8.3 0.32 22.1 1 82.7 30.7 0.37 68.9 6 69.4 25.4 0.37 68.9 2 46.5 14.9 0.32 39.8 1 32.7 10.7 0.33 27.9	36digo 2257	12	92.8	33.7	0.36	77.6	0.03806	0.7794
3 58.2 21.0 0.36 48.7 2 48.8 16.6 0.34 41.4 1 34.0 10.8 0.32 29.2 12 25.8 8.3 0.32 22.1 12 82.7 30.7 0.37 68.9 6 69.4 25.4 0.37 68.9 6 69.4 25.4 0.37 58.0 7 46.5 14.9 0.37 45.9 1 32.7 10.7 0.33 27.9	olanco del YI	9	73.4	26.2	0,36	61.6	0.04894	0.7640
2 48.8 16.6 0.34 41.4 1 34.0 10.8 0.32 29.2 14 25.8 8.3 0.32 22.1 24 96.4 34.1 0.35 81.0 12 82.7 30.7 0.37 68.9 6 69.4 25.4 0.37 68.9 3 55.1 20.4 0.37 45.9 1 32.7 10.7 0.33 27.9		က	58.2	21.0	0.36	48.7	0,06097	0.7747
1 34.0 10.8 0.32 29.2 1 25.8 8.3 0.32 22.1 24 96.4 34.1 0.35 81.0 12 82.7 30.7 0.37 68.9 6 69.4 25.4 0.37 58.0 3 55.1 20.4 0.37 46.9 1 32.7 10.7 0.33 27.9		2	48.8	16.6	0.34	41.4	0.07734	0.7196
½ 25.8 8.3 0.32 22.1 24 96.4 34.1 0.35 81.0 12 82.7 30.7 0.37 68.9 6 69.4 25.4 0.37 58.0 3 55.1 20.4 0.37 46.9 1 32.7 10.7 0.33 27.9		-	34.0	10.8	0.32	29.2	0.11890	0.6642
24 96.4 34.1 0.35 81.0 12 82.7 30.7 0.37 68.9 6 69.4 25.4 0.37 58.0 3 55.1 20.4 0.37 46.9 2 46.5 14.9 0.32 39.8 1 32.7 10.7 0.33 27.9	*	74	25.8	8.3	0.32	22.1	0.15490	0.67244
12 82.7 30.7 0.37 68.9 6 69.4 25.4 0.37 58.0 3 55.1 20.4 0.37 45.9 2 46.5 14.9 0.32 39.8 1 32.7 10.7 0.33 27.9	stación No. 9	24	96.4	34.1	0.35	81.0	0.03763	0.75516
6 69.4 25.4 0.37 58.0 3 55.1 20.4 0.37 45.9 2 46.5 14.9 0.32 39.8 1 32.7 10.7 0.33 27.9	36digo 2179	12	82.7	30.7	0.37	68.9	0.04177	0.8003
3 55.1 20.4 0.37 45.9 2 46.5 14.9 0.32 39.8 1 32.7 10.7 0.33 27.9	Freints y Tres	9	69.4	25.4	0.37	58.0	0.05043	0.7876
46.5 14.9 0.32 39.8 32.7 10.7 0.33 27.9		ო	55.1	20.4	0.37	45.9	0.06276	0.7989
32.7 10.7 0.33 27.9	323	2	46.5	14.9	0.32	39.8	0.08585	0,6743
		-	32.7	10.7	0.33	27.9	0.12038	0.68655
24.3 8.1 0.33 20.7		3/2	24.3	8.1	0.33	20.7	0,15745	77707.0

Continuación Tabla IV-2

Identificación	9	h h	8	16	a	a a	, t
Estación No. 10	24	97.0	39.5	0.41	79.2	0.03246	0,89570
Cédigo 2774	12	79.7	32.8	0,41	65.0	0.03914	0.90530
Colonia	9	68.5	28.5	0.42	55.6	0.04504	0.91886
	က	53.7	21.8	0.41	43.9	0,05889	0,8912
	2	47.0	18.2	0.39	38.8	0.07044	0.8418
	-	31.1	11.3	0.36	26.0	0.11334	0.7805
•	7%	. 23.4	7.4	0.32	20.0	0.17435	0.65907
Estación No. 11	24	94.0	38.7	0.41	76.6	0.03312	0.9076
Código 2906	12	78.4	31.8	0,41	64.1	0.04634	0.89028
Punta del Este	9	65,8	26.5	0,40	53.9	0.04841	0.88220
	m	52.7	21.0	0.40	43.3	0.06098	0.8728;
	2	45.9	18.8	0.41	37.4	0.06827	0.9019
	-	32.4	10.3	0.32	27.8	0.12470	0.6651
	1/2	23.2	9.8	0.37	19,3	0.14862	0.80208
Estaclón No. 12	24	99.4	35.9	0.36	83.2	0.03576	0.77382
Cédigo 2887	12	84.4	30.3	0.36	7.07	0.04230	0.7696
Montevideo	9	9.69	25.0	0.36	58.3	0.05129	0,7702
	8	53.9	19.8	0.37	45.0	0.06474	0.7911
	2	46.5	16.0	0.34	39.3	0.08039	0.7280
		34.3	11.6	0.34	29.1	0.11021	0.7183
	30min,	26.0	0.6	0.34	22.0	0 14281	0.7326
	20min.	20.1	6.8	0.34	17.0	0,18725	0.7213
	10min.	10,8	5.1	0.33	13.5	0.24930	0.6866

Capitulo V

REGIONES PLUVIOMETRICAS

AFGICRES PLANORETRICAS

V-1: Formulación de la hipótesis de trabajo

V-1.1: Como se ha dicho, las estimas de ϵ_d de K_d de ϵ_t y de K_t presentadas en Tabla IV-1 y Tabla IV-2, y las estimas de las funciones $\phi[h_d]$ y $\phi[h_t]$ que se deducen de ellas, han sido determinadas utilizando la información proporcionada por los datos que se refieren a las variables h_d o h_t .

Las h_t que pueden verificarse en un punto en el que está instalado un pluviógrafo, respectivamente en 24, 12, 6, 3 horas (2, 1, 1/2 horas) tienen distribución de probabilidades íntimamente ligadas entre sí, y también con la distribución de probabilidades de las h_d en el mismo punto.

Resultan (*), en efecto:

$$K_3' = K_6' = K_{12}' = K_{24}' = K'$$
;
 ϵ_3 , ϵ_6 , ϵ_{12} , ϵ_{24} ligadas por la condición, para

cada valor de t,

$$\epsilon_t = \epsilon_t(t) = A \cdot t^{\beta}, \text{ con } A \text{ y } \beta \text{ constantes};$$

$$K'_{d} = K'.$$

^{(*):} Conclusiones análogas para t = 2, 1 y 1/2 horas.

Como se ha dicho en el parágrafo I-2.3, si varios pluviógrafos recaen en una misma Región Pluviométrica, las h_3 , h_6 , h_{12} , h_{24} que pueden verificarse en los puntos en que se han instalado tienen distribución de probabilidades íntimamente ligadas. En efecto, en las Tablas IV-2 se observa que, a menos de dispersiones de muestreo, los valores de K' no varían.

Además, las distribuciones de probabilidades de esos valores de h_t resultan íntimamente ligadas con las de h_d registradas en los mismos puntos en que se han instalado los pluviógrafos, o registradas en puntos distintos. (Ver $Tabla\ IV-1$)

Efectivamente, a menos de dispersiones de muestreo, las características K'_d de la h_d resultan en dichos puntos iguales a K'.

Por lo tanto, para estimar el valor asumido por K' puede extraerse información, no solamente de los datos recogidos directamente en un punto, sino tambiên de todos los puntos que pertenecen a la misma Región Pluviométrica.

V-1.2: Dado que el número de pluviómetros instalados por la Dirección General de Meteorología del Uruguay es mucho mayor que el de pluviógrafos, para efectuar una hipótesis de trabajo atendible en relación a Regiones Pluviométricas se debe tomar en consideración en primer lugar los datos recogidos en los pluviómetros, en particular las estimas c_d de K_d las que se muestran en la Tabla IV-1.

Como se ha dicho, dada la dimensión limitada de las muestras, por defecto de muestreo el valor de c'_d deducido para cada pluviómetro puede separarse más o menos sensiblemente del efectivo valor de K'_d . Es por eso de esperarse que para los distintos pluviómetros que pertenecen a una misma Región Pluviométrica, a

igual valor de K'_d al pasar de un pluviómetro a otro puedan tenerse valores de c'_d distintos. Es obvio que, si A y B son dos Regiones Pluviométricas, y si en A la característica K'_d asume un valor menor que en B, las estimas c'_d de K'_d deducidas para los pluviómetros que recaen en A, entran en un intervalo de valores más bajo que aquel en que entran los valores deducidos para los pluviómetros de B.

Al confrontar las estimas c_d de K_d deducidas para los distintos pluviómetros, en consecuencia de lo dicho, se ha preferido trabajar, no con la estima directa de cada parámetro, sino procediendo a su previa clasificación, y referirse a la clase a la que dichas estimas pertenecen. Señalando en un mapa con distintos símbolos las distintas clases, se ha observado que éstos se disponen casualmente, sin que puedan distinguirse partes del Territorio Uruguayo en que aparezcan con mayor frecuencia los símbolos correspondientes a determinada clase.

Por otra parte, se han considerado los valores de c_3 , de c_6 , de c_{12} y de c_{24} deducidos para cada pluviógrafo (Tabla IV-2) y asumido c' igual a su media ponderada, clasificado los valores de c' así deducidos, y representado las clases a las que cada uno de esos valores pertenece con símbolos diversos. Se ha llegado a conclusiones que concuerdan, o cuando menos no contradicen, con las ya observadas para los valores de c_d' .

Es legítimo, en consecuencia, asumir como hipótesis que todo el Territorio Uruguayo forma parte de una única Región Pluviométrica.

V-1.3: Para precisar el concepto de Región Pluviométrica ha sido particularmente útil la representación en diagrama probabilístico correspondiente a la ley logarítmico-asintótica del máximo valor de las distribuciones de frecuencias acumuladas que caracterizan las series estadísticas constituidas por los valores de \boldsymbol{h}_d y de \boldsymbol{h}_t registrados en cada pluviómetro y en cada pluviógrafo.

En efecto, teniendo presente cuanto se ha dicho en el parágrafo I-2.8, para que varios pluviómetros y varios pluviógrafos pertenezcan a una misma Región Pluviométrica, en esta particular carta probabilística adoptada, es necesario que las series de puntos $(h_d; F[h_d])$ correspondientes a dichos pluviómetros y las series de puntos $(h_t; F[h_t])$ correspondientes a dichos pluviógrafos, para cada uno de los valores de t considerados, se dispongan en torno a alineamientos curvilíneos que puedan ser superpuestos mediante una simple traslación en dirección paralela al eje de las abscisas.

En particular, para que varios pluviómetros y varios pluviógrafos pertenezcan a una misma Región Pluviométrica, es necesario que, trasladando cada serie de puntos $(h_d; F[h_d])$ o $(h_t; F[h_t])$ en dirección paralela al eje de las abscisas una cantidad que, en la escala de reducción lineal con que se han representado los $\log h$, resulta a $\log e_d$, para cada pluviómetro, o a $\log e_t$, para cada pluviógrafo y cada valor de t, las diversas series de puntos $(h_d; F[h_d])$ o $(h_t; F[h_t])$ se dispongan en una franja estrecha del plano, alrededor de una única curva interpoladora. (Ver Figura I-11).

Siempre en base a cuanto se ha dicho en el parágrafo I-2.8, es evidente que dicha curva interpoladora representa la estima $P[h_d/\epsilon_d] \equiv P[h_t/\epsilon_t]$ de la función de repartición $\phi[h_d/\epsilon_d] \equiv \phi[h_t/\epsilon_t]$ para eventos largos. (Curva (2) de la Figura I-11) (Con razonamiento análogo, para eventos breves, Curva (1) de la Figura I-11).

V-2: Se precisa la hipótesis de trabajo

V-2.1: Con el fin de precisar la hipótesis de trabajo se simboliza con:

 c_{3j} , c_{6j} , c_{12j} , c_{24j} , las estimas de $c_{largos\ j}$ deducidas para el pluviógrafo j-ésimo $(1 \le j \le m)$ partiendo de los valores h_3, h_6, h_{12}, h_{24} , registrados en él;

$$c_{largos\ j}^{\,\prime}=\frac{c_{3j}^{\,\prime}+c_{6j}^{\,\prime}+c_{12j}^{\,\prime}+c_{24j}^{\,\prime}}{4}\ , \ \text{deducidas en base a}$$
 los datos del pluviógrafo $j-\acute{e}simo$;

 c_{dj}^{\prime} , deducidas en base a los datos del pluviómetro $j(1 \le j \le n)$ partiendo de los valores de h_d registrados en él.

Con esta notación, la estima c'_{largos} de K'_{largos} puede obtenerse por la fórmula:

$$c_{largos}' = \frac{\sum_{j=1}^{m} c_{largos j}' + \sum_{j=1}^{n} c_{dj}'}{m+n} = 0.758$$
.

V-2.2: Análogamente:

$$c_{breves}' = \frac{\sum\limits_{j=1}^{m} c_{breves j}'}{m} = 0.707.$$

V-3: Verificación de la hipótesis de trabajo

V-3.1: Al formular la hipótesis de que todos los pluviómetros y pluviógrafos pertenecen a una misma Región Pluviométrica implícitamente se admite que la característica K' asume siempre el mismo valor.

Por otra parte, las estimas c_d y c_t (Tablas IV-1 y IV-2) asumen valores diversos

Por lo tanto, antes de aceptar definitivamente la hipótesis, se debe verificar los apartamientos entre los distintos valores de c_d y c_t y K, para saber si pueden ser considerados casualesy, como tales, no significativos.

V-3.2: De acuerdo a lo dicho en los parágrafos I-2.2 y I-2.6: (Figura V-1)

considerando los pluviómetros y pluviógrafos con más de 40 años de observaciones;

recogiendo en una única serie estadística los valores de c_d y c_t (*) para eventos largos;

representando en un diagrama probabilístico logarítmiconormal la distribución de frecuencias acumuladas que caracterizan dicha serie;

se observa que los puntos (Figura V-1) se disponen con dispersiones modestas en torno a una recta.

V-3.3: Finalmente, se debe controlar que las estimas c'_d de K'_d y c'_t de K'_t se separan de K' en cantidades que entran en el orden de magnitud que se admiten asuman en el caso en que los apartamientos entre c'_d y K' o entre c'_t y K' fuesen debidos solamente a defectos de muestreo.

Habiendo estimado con buena atendibilidad el valor de K'_{largos} y K'_{breves} , en las Figuras V-2 y V-3 se han representado en un diagrama cartesiano que tiene como abscisas los números n de años de observaciones y como ordenadas o c'_t o c'_d :

^{(*):} En la Figura V-1, por simplicidad en la notación, se ha señalado c'

por una parte las-curvas $c'_{0.975}(n)$ y $c'_{0.025}(n)$ que delimitan la Franja de Control de las c'_d y c'_t correspondientes al valor de K' respectivo;

por otra parte los puntos de coordenadas $(n;c_d)$ o $(n;c_t)$, que corresponden a los pluviómetros o pluviógrafos de la Región Pluviométrica.

Como puede observarse en las Figuras V-2 y V-3, todos los puntos rècaen en el interior de la Franja de Control.

Desde un punto de vista estrictamente estadistico, para la totalidad del Territorio Uruguayo, los apartamientos que se registran entre $K'_{largos} = 0.758$ y c'_{d} o c'_{t} para eventos largos, y entre $K'_{breves} = 0.707$ y c'_{t} para eventos breves, en cada punto, son debidos solamente a defectos de muestreo.

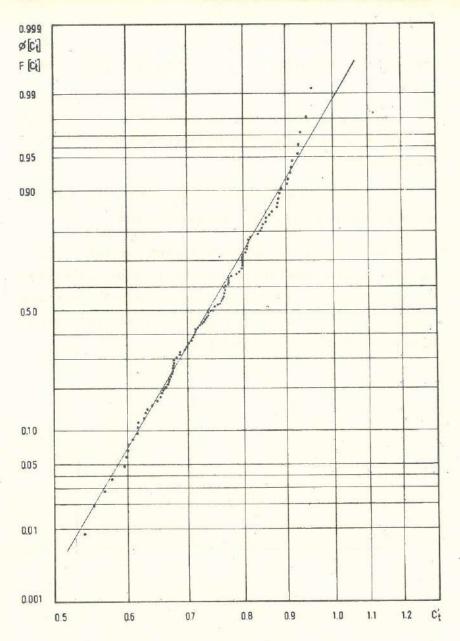


Figura V-1: Representación en diagrama probabilistico logarítmico-normal de la distribución de frecuencias acumuladas F [c'_t] de la serie estadística constituída por los valores de c'_t correspondientes a periódos de observación de duración n ≥40. Verificación del ajuste de las c'_t a esta distribución.

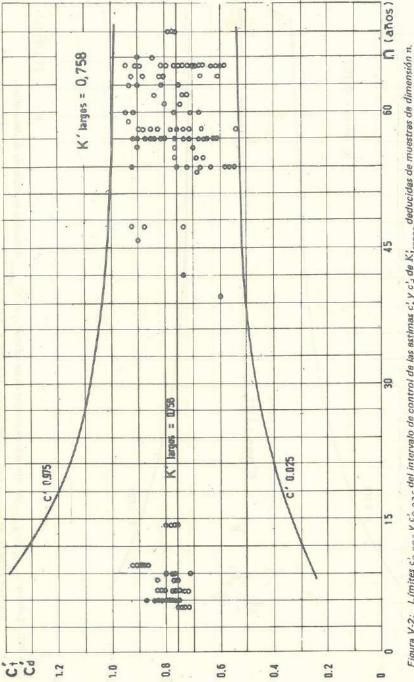


Figura V-2: Límites c_{0.975} V c_{0.025} del intervalo de control de las astimas c_t V c_d de K_{largos} deducidas de muestras de dimensión n. Layes de variación de $c_{0.975}^{\circ}\,\mathrm{V}$ $c_{0.025}^{\circ}$ en función de n para $\mathrm{K'}=0.758.$

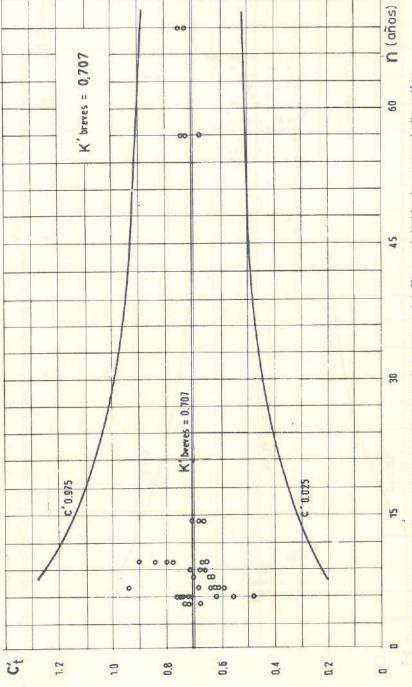


Figura V.3: Límites c'0.975 V c'0.025 del intervalo de control de las estimas c', de Kireves deducidas de muestras de dimensión n. Leyes de variación de $c_{0.975}^{\prime}$ Y $c_{0.025}^{\prime}$ en función de n para K'=0.707 .

Capítulo VI

SUBREGIONES PLUVIOMETRICAS

IV plungs0

SUBREGIONES PLUVIOMETRICAS

VI-1: Formulación de la hipótesis de trabajo

VI-1.1: Se considera:

el parámetro β , que junto con α , y A, define la ley de variación de ϵ_t en función de t;

las rectas que, en cada punto, representan en escalas logarítmicas la variación de $\epsilon_f(t)$;

las estimas e_d de la moda ϵ_d de las h_d en el caso en que varíen alrededor de un valor único;

las estimas $e_d(z)$ de la moda $\epsilon_d(z)$ de las h_d en el caso en que varíen en función de un parámetro z que caracteriza la posición de cada punto.

- VI-1.2: Por una parte, refiriéndose a un determinado pluviógrafo, si se deducen las estimas b de β , a de α y \overline{A} de A, que definen, como es sabido, la función $\epsilon_t(t)$, por defecto de muestreo:
- la estima b de β puede separarse casualmente del efectivo valor de β ;
- la recta $e_t(t)$, estima de la $\epsilon_t(t)$, puede apartarse más o menos sensiblemente de ésta.

Si en lugar de un pluviógrafo se consideran varios pertenecientes a la misma Subregión Pluviométrica, las estimas h y $e_t(t)$

están afectadas de errores de muestreo de vez en vez distintos al pasar de un pluviógrafo a otro.

- VI-1.3: Por otra parte, refiriéndose a un determinado pluviómetro, si se deduce la estima e_d de ϵ_d , por defecto de muestreo:
- la estima e_d de ϵ_d puede separarse del efectivo valor de ϵ_d ;
- la estima $e_d(z)$, a igual valor de z, puede separarse del efectivo valor de $\epsilon_d(z)$.

Si en lugar de un pluviómetro se consideran varios pertenecientes a la misma Subregión Pluviométrica, las estimas e_d están afectadas de errores de muestreo de vez en vez distintos al pasar de un pluviómetro a otro.

- VI-1.4: Se admitirá que varios pluviógrafos y varios pluviómetros pertenecen a la misma Subregión Pluviométrica si:
- los apartamientos entre uno y otro valor de β resultan contenidos entre sus límites de control;
- las rectas $e_t(t)$ tienen direcciones que poco varían al pasar de un punto a otro y, o entran en una franja estrecha del plano o pueden llevarse sobre una franja estrecha del plano mediante una simple traslación de dirección paralela al eje de ordenadas;
- los apartamientos entre uno y otro valor de ϵ_d resultan contenidos entre sus límites de control;
- los apartamientos entre $\epsilon_d(z)$, a igual valor de z, entran dentro de las dispersiones tolerables por defecto de muestreo.
- VI-1.5: Como se ha dicho en los parágrafos I-2.6 y I-2.7, si se comparan los parámetros β , α y A correspondientes a los pluviógrafos de una Subregión Pluviométrica y ϵ_d correspondiente a

los pluviómetros de la misma Subregión Pluviométrica, con aquellos deducidos para pluviógrafos y para pluviómetros de otra Subregión Pluviométrica, se encuentra que sus respectivas estimas recaen en intervalos netamente diversos.

Dado que por la relación (I-11) se puede deducir A, en adelante nos referiremos a los parámetros β , α y ϵ_d y sus estimas b, a y e_d .

VI-1.6: Al confrontar las estimas b de β , a de α y e_d de ϵ_d , deducidas para los distintos pluviógrafos y los distintos pluviómetros, en consecuencia de lo dicho, se ha preferido trabajar, no con la estima directa de cada parámetro, sino procediendo a su previa clasificación. Señalando posteriormente en un mapa con distintos símbolos las distintas clases, se han distinguido ocho zonas en cada una de las cuales aparecen con mayor frecuencia los símbolos de determinadas clases.

Por otra parte, las conclusiones a que se ha llegado para cada parámetro, como puede observarse en las *Tablas VI-1* y *VI-2*, concuerdan, o cuando menos no contradicen, las ya observadas para los restantes parámetros.

Al disponerse los símbolos casualmente en cada parte del Territorio Uruguayo, se ha formulado la hipótesis de división en las ocho Subregiones Pluviométricas de la Figura VI-32.

VI-2: Se precisa la hipótesis de trabajo

Como es obvio, desde el punto de vista físico no existe una delimitación neta entre una Subregión Pluviométrica y otra. Por lo tanto se debe suponer que se pasa gradualmente de las características de una Subregión a aquéllas de otra por medio de franjas de fronteras. Así, las líneas de confín que se marcan en los mapas tienen solamente carácter indicativo.

Para precisar analíticamente la hipótesis, se calcula la media ponderada de las estimas de cada parámetro con los n años de observaciónes.

Las Tablas VI-1 y VI-2 ilustran los resultados obtenidos para cada Subregión Pluviométrica.

VI-3: Verificación de la hipótesis de trabajo

- En las Figuras VI-1 a VI-7 se han representado, para cada Subregión, las distribuciones de frecuencias acumuladas $F[e_d]$ de las series estadísticas constituídas por los valores de e_d en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Se comprueba que los puntos se disponen con dispersiones modestas en torno a rectas, por lo que se puede asumir con buena aproximación que e_d está distribuida según la ley asintótica del máximo valor;
- En las Figuras VI-8 a VI-15 se ilustra, para cada Subregión, la prueba de significación de las dispersiones entre e_d y ϵ_d realizada de acuerdo con los criterios expuestos en el parágrafo 1-2.2:
- En las Figuras VI-16 a VI-23 se ilustra, para cada Subregión, los límites $e_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima e_t de ϵ_t para cada valor de t, de acuerdo con los criterios expuestos en el parágrafo 1–2.2;
- En las Figuras VI-24 a VI-31 se ilustra, para cada Subregión. los límites $a_{0.975}, a_{0.025}, b_{0.975}$ y $b_{0.025}$ de los intervalos

de control de las estimas a de α y b de β , para eventos largos y eventos breves, de acuerdo con los criterios expuestos en el parágrafo I-2.4.

En la Figura VI-32 se ilustran las Subregiones Pluviométricas.

TABLA VI-1

Subregión	$M'[h_d]$	o[hd]	$\gamma[h_d]$	ϵ'_d	or,	K'
July	L.d.	I.d.	1 E. d.	d	d	
1	102.9	36.5	0.35	86.5	0.03510	0.75830
-11	102.1	36,2	0.35	85.8	0.03539	0.75830
111	97:7	34.7	0.35	82.1	0.03699	0.75830
IV	88.7	31.5	0.35	74.5	0.04076	0.75830
V	95.1	33.7	0.35	79.9	0.03800	0.75830
VI	85.7	30.4	0.35	72.0	0.04217	0.75830
VII ·	83.9	29.8	0.35	70.5	0.04307	0.75830
VIII	86.2	30.6	0.35	72.4	0.04194	0.75830

TABLA VI-2

Valores asumidos por β , $\alpha = \frac{\sum_n \log \epsilon_t}{\sum_n}$ y A en cada Subregión Pluviométrica.

Repartición de los Pluviógrafos entre las distintas Subregiones Pluviométricas.

Estimas b de eta, a de lphay $ar{A}$ de A, deducidas Pluviógrafo por Pluviógrafo, para eventos breves $(t < t_o')$ y eventos largos $(t > t_o')$ (con 2 horas $\leqslant t'_o < t''_o \leqslant$ 3 horas), en la hipótesis de que Uruguay forma parte de una única Región Pluviométrica con $K'_{breves} = 0.707$ y K'argos = 0.758.

	74		
ļĀ	38.5	37.5	
,,,	1.892	A''' = 38.1	
"q	0.329	"," = 1.892	
İd	34.6	largos = 0.329 (The state of the s
ò	1.539	reves = 34.6 β	
p,	0.465	eves =1.539 A	
Pluviógrafo	Artigas	β _{preves} =0.465 α' _{br}	
Código	1050	JBREGION I:	/+
No.	-	3 8	7
	Código Pluviógrafo b' a' A' b'' a''	Código Pluviógrafo b' a'' b'' a'' 1050 Artigas 0.465 1.539 34.6 0.329 1.892 3	Código Pluviógrafo b' a' b'' a'' b'' a'' a'' b'' a''

SUBRECION II : $\beta'_{\text{breves}} = 0.459 \ \alpha'_{\text{breves}} = 1.531 \ A_{\text{breves}} = 34.0 \ \beta''_{\text{argos}} = 0.318 \ \alpha''_{\text{largos}} = 1.869 \ A''_{\text{largos}} = 37.5$

Continuación Tabla VI-2

A"A	35.9	'' argos = 35.9	34.8	34.8	34.8	34.2	34.9	35.2
, 0	1,852	s = 1.852 A	1,808	8 A''' =	1836	1.834	1,829	1,833
,,q	0.320	0.320 o'''	0.286	X'' = 1.80	0.316	0.323	0.307	0.307
İζ	32.5	2.5 β" =	30.5	argos = 0.286 (30.2	30.2	32.2	29.9
ď	1.512	$\alpha'_{\rm breves} = 1.512 \text{ A'}_{\rm breves} = 32.5 \beta''_{\rm largos} = 0.320 \alpha''_{\rm largos} = 1.852 \text{ A''}_{\rm largos} = 35.9$	1.484	= 1.484 A' = 30.5 β'' = 0.286 α'' = 1.808 A'' = 34.8	1.480	1.480	1.508	1.476
p,	0.444	reves = 1.512	0.451	s = 1.484 A'	0.468	0.477	0.357	0.453
Pluviógrafo	Salto	SUBREGION III : $\beta_{\text{breves}}^{i}$ = 0.444 α_{b}^{i}	Melo	N IV : $\beta'_{\text{breves}} = 0.451 \text{ of breves}$	Francia	Paso de los Toros	Baygorria	Polanco del Yi
Código	1283	REGION III :	1709	SUBREGION IV :	1774	1915	1960	2257
No.	т	SUB	4	SUB	D.	9	7	80

Continuación Tabla VI-2

<u>A</u> "	34.8	O''' A''	32.5	A" = 32.7	33.4	A" = 33.4
5 80	1.793	= 1.793 A	1.775	077.1 =	1.797	1.797
p,,,	0.271		0.278	.275 α'''ros	0.294	0.294 0" largo
A'	28.4	$\beta'''_{\text{largos}} = 0.$	27.2	.2 β " argos = 0	29.0	.0 β" =
'n	1,453	breves = 28.4	1,435	A'breves = 27	1.352	A' Preves = 29
p,	0.472	reves = 1.453	0.478	breves = 1.435	0.439	r, breves = 1.352
Pluviógrafo	Treinta y Tres	SUBREGION VI: $\beta'_{\text{breves}} = 0.472$ $\alpha'_{\text{breves}} = 1.453$ A, breves = 28.4 $\beta''_{\text{largos}} = 0.271$	Colonia Punta del Este	SUBREGION VII: $\beta'_{\text{breves}} = 0.478$ $\alpha''_{\text{breves}} = 1.435$ A, $\alpha''_{\text{breves}} = 27.2$ B " $\alpha''_{\text{largos}} = 0.275$ $\alpha''_{\text{largos}} = 1.770$ A $\alpha''_{\text{largos}} = 1.770$ A	Montevideo	SUBREGION VIII: $\beta_{\text{breves}}^{\text{treves}} = 0.439 \alpha_{\text{breves}}^{\prime\prime} = 1.352 \text{A'}_{\text{breves}}^{\prime\prime} = 29.0 \beta_{\text{largos}}^{\prime\prime} = 0.294 \alpha_{\text{largos}}^{\prime\prime} = 1.797$
Código	2179	REGION VI: B	2906	BREGION VII:	2887	SREGION VIII:
No.	6	SUB	110	SUB	12	SUE

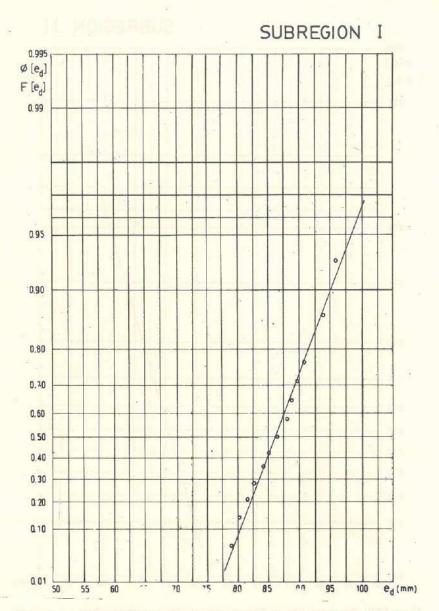


Figura VI-1: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de la distribución de frecuencias acumuladas $F\left[e_{d}\right]$ de la serie estadística constituída por los valores de e_{d} . Comprobación de que se puede asumir con buena aproximación que e_{d} está distribuída según la ley asintótica del máximo valor.

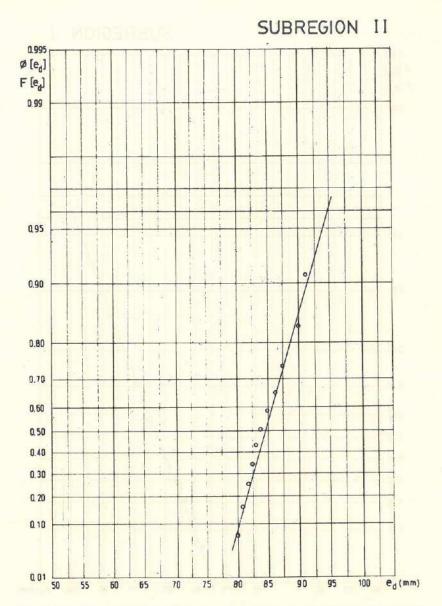
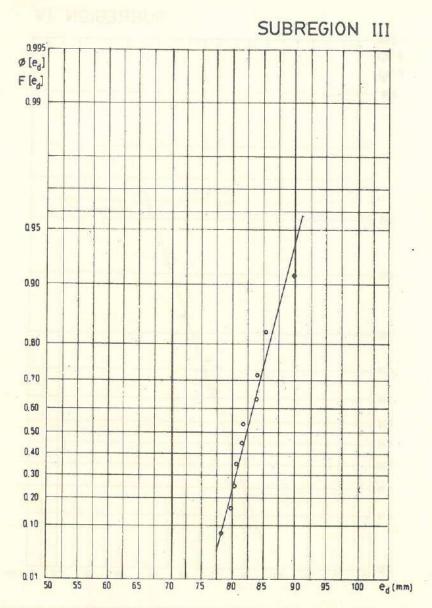



Figura VI-2: Representación en diagrama probabilistico correspondiente a la ley asintótica del máximo valor de la distribución de frecuencias acumuladas $F\left[e_{d}\right]$ de la serie estadística constituída por los valores de e_{d} . Comprobación de que se puede asumir con buena aproximación que e_{d} está distribuída según la ley asintótica del máximo valor.

VI-3: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de la distribución de frecuencias acumuladas F [e_d] de la serie estadística constituída por los valores de e_d. Comprobación de que se puede asumir con buena aproximación que e_d está distribuída según la ley asintótica del máximo valor.

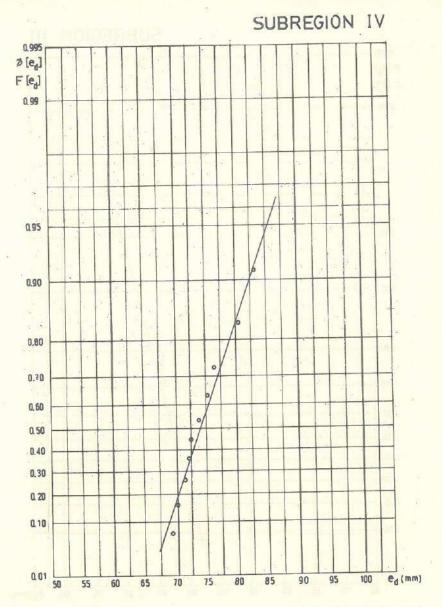


Figura VI-4: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de la distribución de frecuencias acumuladas $F\left[e_{d}\right]$ de la serie estadística constituída por los valores de e_{d} . Comprobación de que se puede asumir con buena aproximación que e_{d} está distribuída según la ley asintótica del máximo valor.

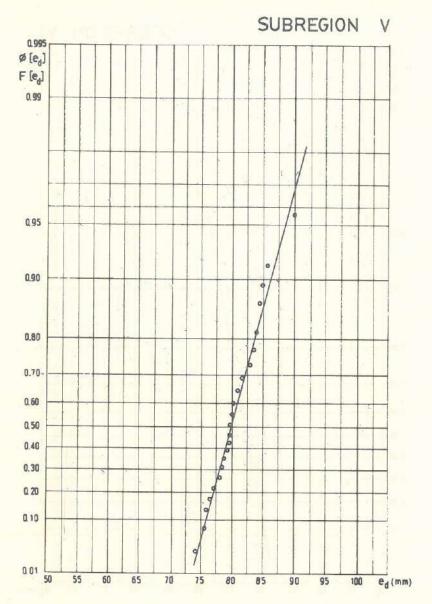


Figura VI-5: Representación en diagrama probabilistico correspondiente a la ley asintótica del máximo valor de la distribución de frecuencias acumuladas $F\left[e_{d}\right]$ de la serie estadística constituída por los valores de e_{d} . Comprobación de que se puede asumir con buena aproximación que e_{d} está distribuída según la ley asintótica del máximo valor.

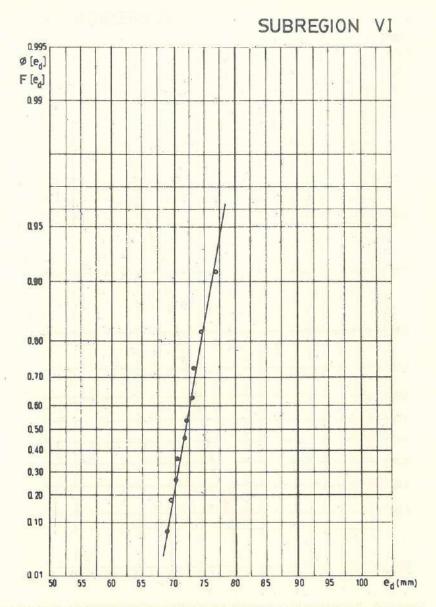


Figura VI-6: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de la distribución de frecuencias acumuladas $F\left[e_{d}\right]$ de la serie estadística constituída por los valores de e_{d} . Comprobación de que se puede asumir con buena aproximación que e_{d} está distribuída según la ley asintótica del máximo valor.

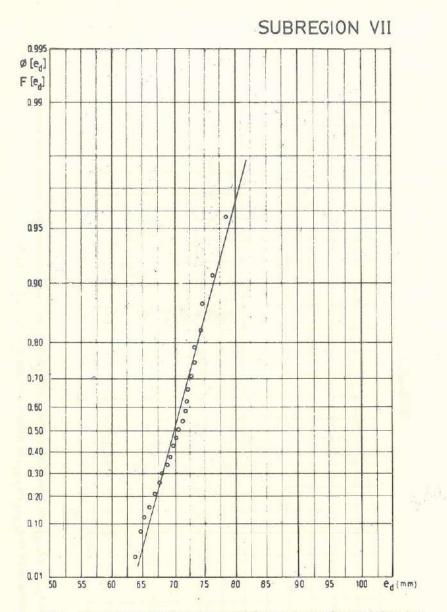


Figura VI-7: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de la distribución de frecuencias acumuladas $F\left[e_{d}\right]$ de la serie estadística constituída por los valores de e_{d} . Comprobación de que se puede asumir con buena aproximación que e_{d} está distribuída según la ley asintótica del máximo valor.

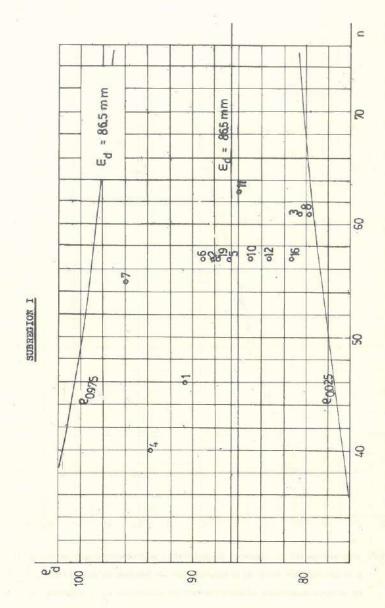


Figura VI-8: Límites e 0.975 Y e 0.025 del intervalo de confianza de la estima e $_d$ de $\in _d$ deducida para cada muestra de dimensión n. Layas de variación de $e_{0.975}$ V $e_{0.025}$ en función de n, para $\epsilon_d=86.5$ y K'=0.758.

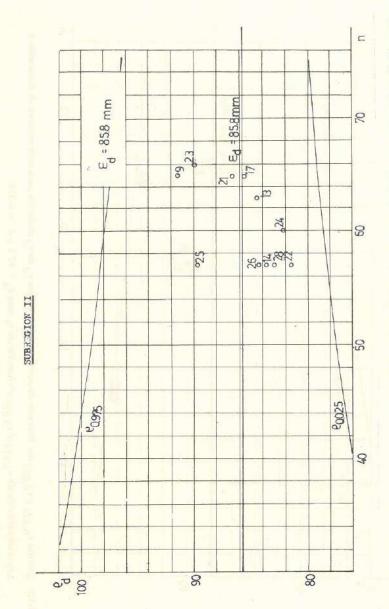


Figura VI-9: Límites e 0.975 Y e 0.025 del intervalo de confianza de la estima e d de Ed deducida para cada muestra de dimensión n. Leyes de variación de $e_{0.975}$ V $e_{0.025}$ en función de $n_{\rm c}$ pare $\epsilon_d=85.8$ y $~{\rm K}^{\prime}=0.758.$



Figura VI-10: Límitas e 0,975 Y e 0,025 del intervalo de confianza de la estima e d de Ed deducida para cada muastra de dimensión n. Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n, para $\epsilon_d=82.1$ y K'=0.758.

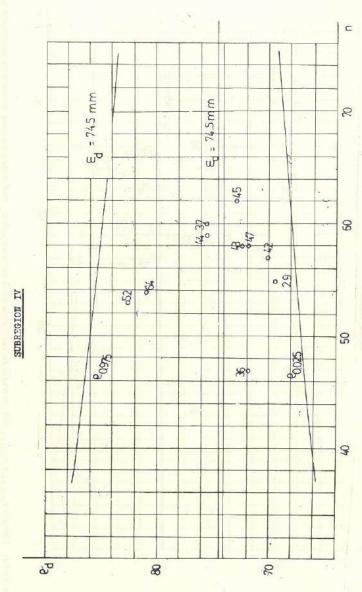


Figura VI-11: Límites e_{0.975} V e_{0.025} del Intervalo de confianza de la estima e_d de E_d deducida para cada muestra de Layes de variación de $e_{0.975}$ V $e_{0.025}$ en función de n, para $\epsilon_d=$ 74.5 y $\,{
m K'}=0.758.$

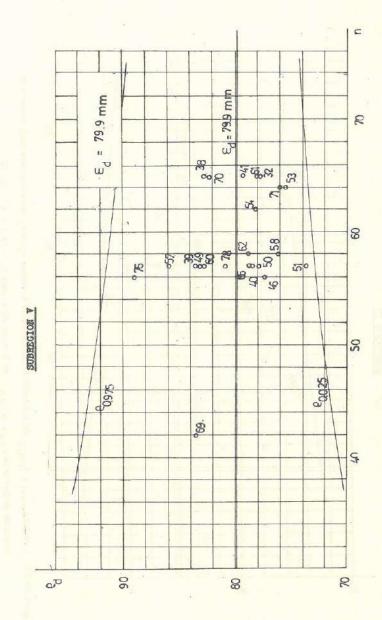


Figura VI-12: Límites e 0.975 Y e 0.025 del intervalo de confianza de la estima e d de Ed deducida para cada muestra de dimensión n. Leyes de variación de $e_{0.975}$ V $e_{0.025}$ en función de n, para $\epsilon_d=79.9$ V ${\rm K'}=0.758.$

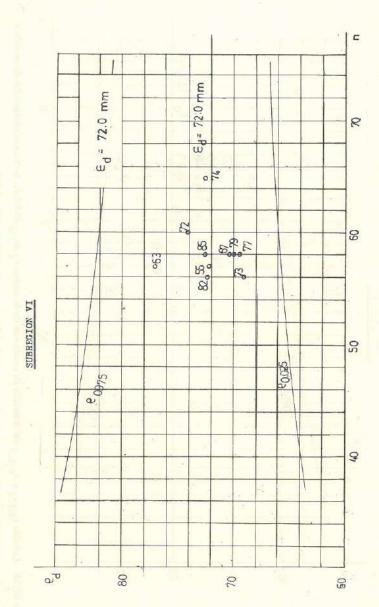


Figura VI-13: Limites e 0.975 V e 0.025 del intervalo de confianza de la estima e d de Ed deducida para cada muestra de dimensión n. Leyes de variación de $e_{0.975}$ y de $e_{0.025}$ en función de n, para $\epsilon_d=72.0$ y K'=0.758.

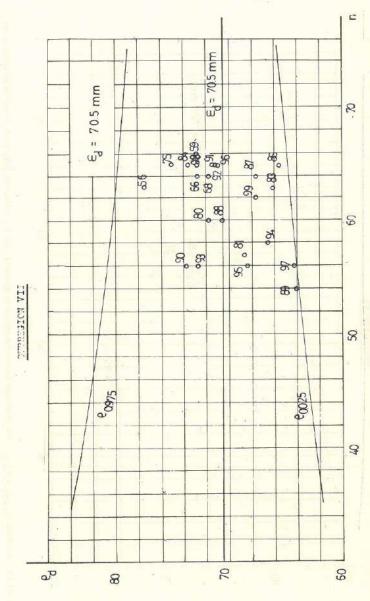


Figura VI-14: Límites e 0.975 y e 0.025 del intervalo de confianza de la estima e de Gaducida para cada muestra de dimensión n. Layes de veriación de $e_{0.975}$ y de $e_{0.025}$ en función n, para $\epsilon_d=70.5$ y ${\rm K'}=0.758$.

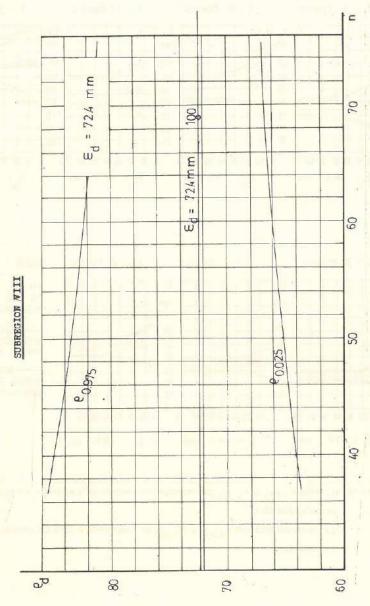
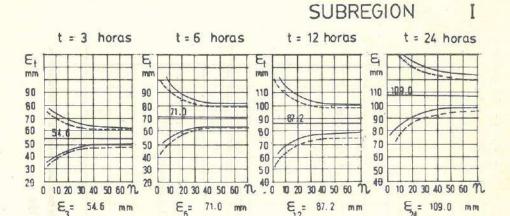



Figura VI-15: Límites e 0,975 V e 0,025 del intervalo de confianza de la estima e d de Cd deducida para cada muestra de dimensión n. Leyes de variación de $e_{0.975}$ Y $e_{0.025}$ en función de n, para $\epsilon_{\rm d} = 72.4$ y $\rm K^{\prime} = 0.758$.

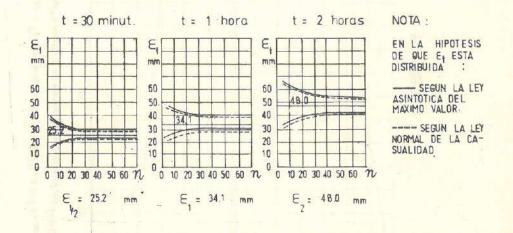
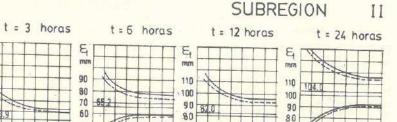


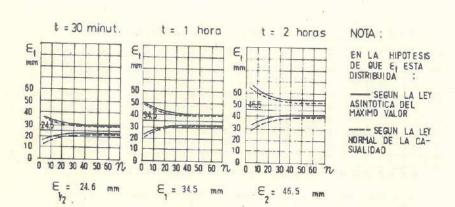
Figura VI-16: Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima e_t de ϵ_t para cada valor de t.

Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n para los valores de


t indicados.

20 0 10 20 30 40 50 50 TL

65.2


Et

E = 53.9

0 10 20 30 40 50 60 TC

E = 104.0 mm

46 0 10 20 30 40 50 60 TL

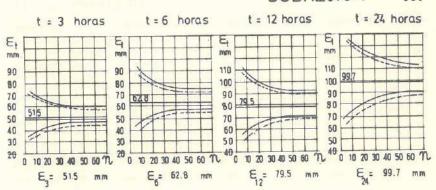
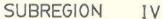
82.0

mm

Figura VI-17: Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima e_t de ϵ_t para cada valor de t. Leyes de variación de e_{0.975} y e_{0.025} en función de n para los valores de t indicados.

SUBREGION

III

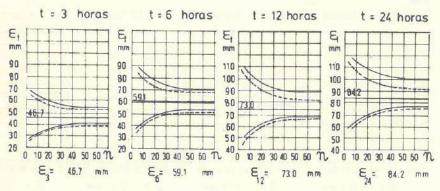


Figure VI-18: Límites $c_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima $e_{\rm t}$ de $\epsilon_{\rm t}$ para cada valor de t.

Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n para los valores de

t indicados.

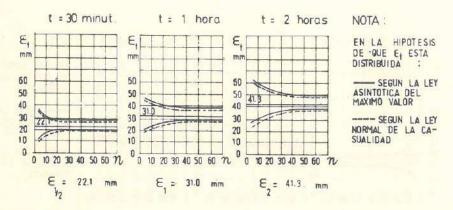
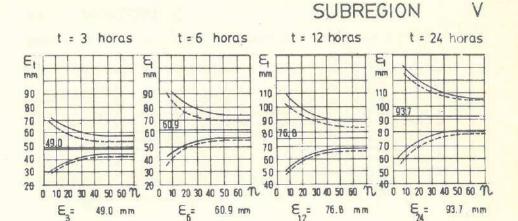



Figura VI-19: Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de contrôl de la estima e_t de ϵ_t para cada valor de t.

Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n para los valores de t indicados.

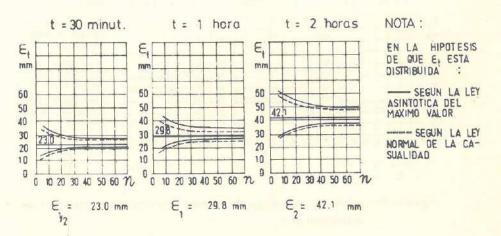
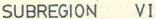
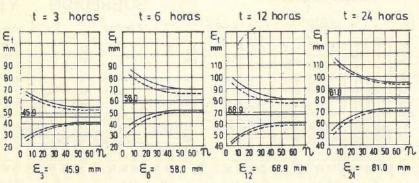




Figura VI-20: Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima e_t de ϵ_t para cada valor de t.

Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n para los valores de

t indicados.

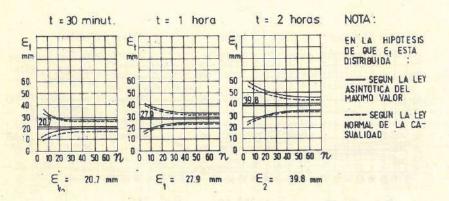
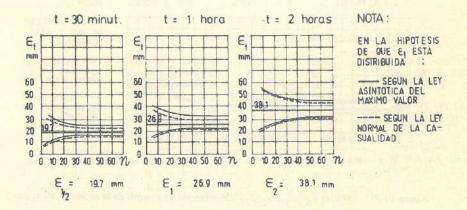
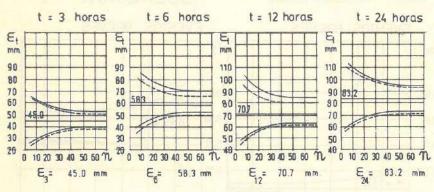
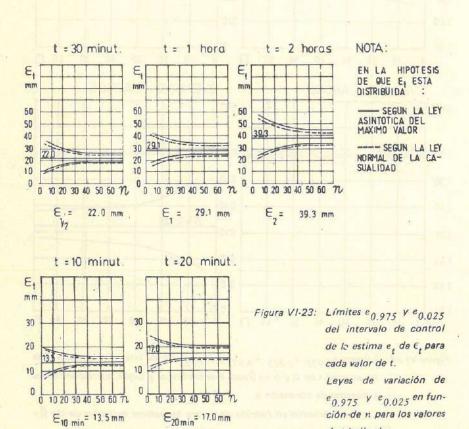


Figura VI-21: Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima e_{t} de ϵ_{t} para cada valor de t.

Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n para los valores de t indicados.


Figura VI-22: Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima e_t de e_t para cada valor de t.

Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n para los valores de t indicados.

SUBREGION VIII

de t indicados.

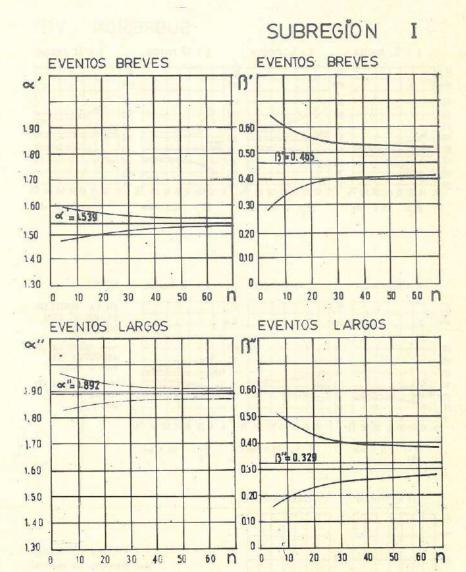


Figura VI-24: Límites $a_{0.975}$, $a_{0.025}$, $b_{0.975}$ y $b_{0.025}$ de los intervalos de control de las estimas a de α y β de β para eventos breves y largos, correspondientes a muestras de dimensión n.

Leyes de variación en función de α para los valores indicados de α y β y

para $K'_{breves} = 0.707 \text{ y } K'_{largos} = 0.758.$

SUBREGION II

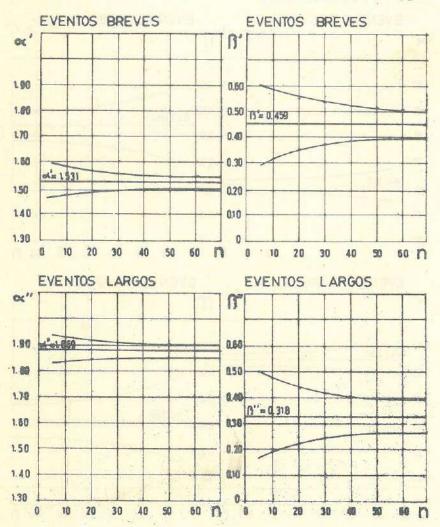


Figura VI-25: Limites $a_{0.975}$, $a_{0.025}$, $b_{0.975}$ y $b_{0.025}$ de los intervalos de control de las estimas a de α y b de β para eventos preves y largos, correspondientes a muestras de dimensión n.

Leyes de variación en función de n para los valores indicados de αy βy para $K_{breves}^*=0.707$ y $K_{largos}^*=0.758$.

SUBREGION III

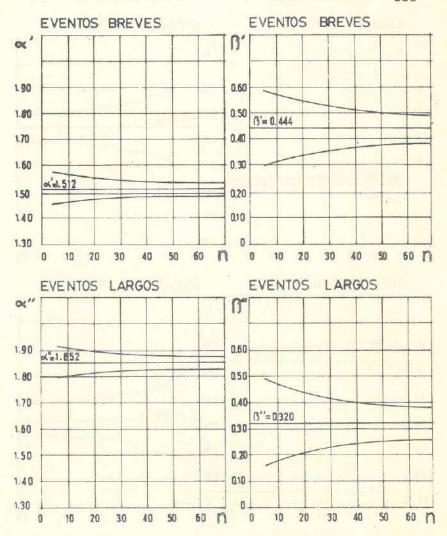


Figura VI-26: Limites $a_{0.975}$, $a_{0.025}$, $b_{0.975}$ y $b_{0.025}$ de los intervalos de control de las estimas a de α y b de β para eventos breves y largos, correspondientes a muestras de dimensión n.

Leves de variación en función de n para los valores indicados de $\propto y \beta y$ para $K_{breves}^* = 0.707 \ y \ K_{ldrgos}^* = 0.758$.

SUBREGION IV

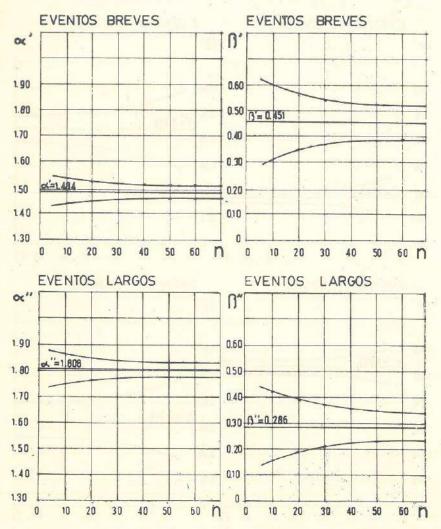


Figura VI-27: Límites $a_{0.975}$, $a_{0.025}$, $b_{0.975}$ y $b_{0.025}$ de los intervalos de control de las estimas a de α y b de β para eventos breves y largos, correspondientes a muestras de dimensión n.

Layes de variación en función de n para los valores indicados de α_y β_y para $K'_{breves} = 0.707$ y $K'_{largos} = 0.758$.

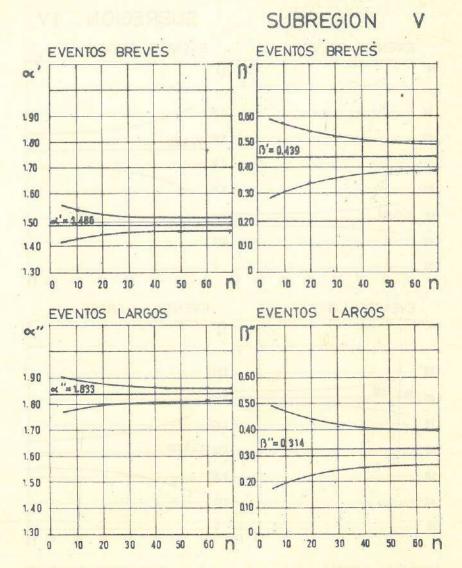


Figura VI-28: Límites $a_{0.975}$, $a_{0.025}$, $b_{0.975}$ y $b_{0.025}$ de los intervalos de control de las estimas a de α y b de β para eventos breves y largos, correspondientes a muestras de dimensión n.

Leyes de variación en función de n para los valores indicados de $\alpha y \beta y$ para $K'_{breves} = 0.707 y K'_{largos} = 0.758$.

SUBREGION VI

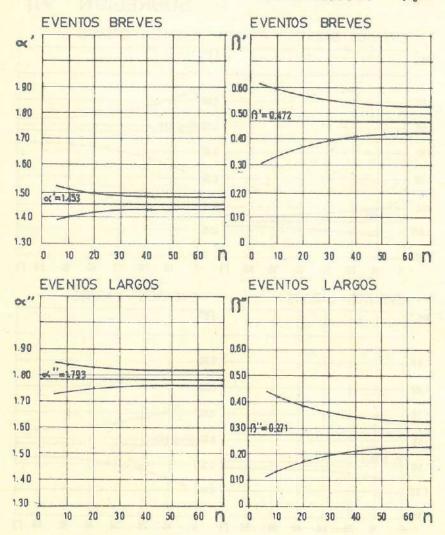


Figura VI-29: Límites $a_{0.975}$, $a_{0.025}$, $b_{0.0975}$ y $b_{0.025}$ de los intervalos de control de las estimas a de α y β de β para eventos breves y largos, correspondientes a muestras de dimensión n.

Leves de variación en función de n para los valores indicados de $\alpha y \beta y$ para $K_{breves}^* = 0.707 \ y \ K_{largos}^* = 0.758$.

SUBREGION VII

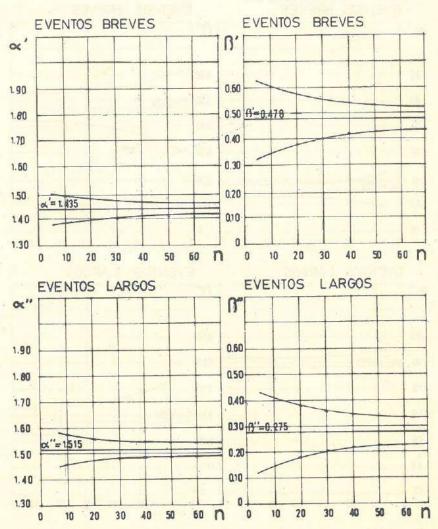


Figura VI-30: Límites $a_{0.975}$, $a_{0.025}$, $b_{0.0975}$ y $b_{0.025}$ de los intervalos de control de las estimas a de α y b de β para eventos breves y largos, correspondientes a muestras de dimansión n.

Leves de variación en función de n para los valores indicados de αy βy para $K_{breves}^* = 0.707$ y $K_{largos}^* = 0.758$.

SUBREGION VIII

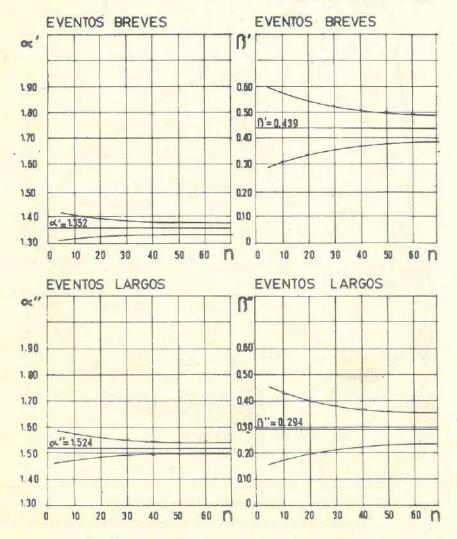


Figura VI-31: Límites $a_{0.975}$, $a_{0.025}$, $b_{0.0975}$ y $b_{0.025}$ de los intervalos de control de las estimas a de α y b de β para eventos breves y largos, correspondientes a muestras de dimensión n.

Leyes de variación en función de n para los valores indicados de $\alpha y \beta y$ para $K_{breves}' = 0.707 \ y \ K_{largos}' = 0.758$.

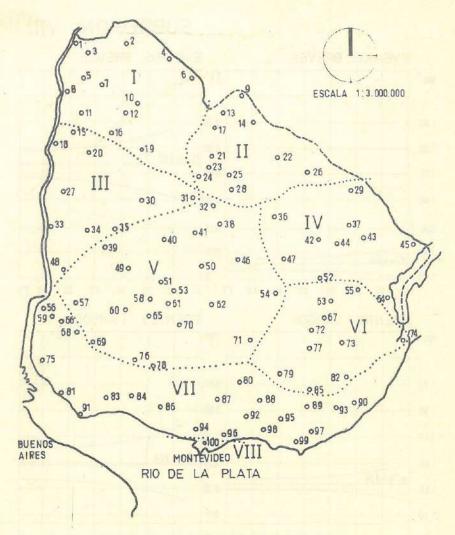


Figura VI-32: SUBREGIONES PLUVIOMETRICAS EN URUGUAY.

Deducidas por control estadístico de la distribución de las lluvias máximas

Capítulo VII

MAXIMOS VALORES QUE LA ALTURA DE LLUVIA DIARIA PUEDE ASUMIR CON UN PERIODO DE RETORNO T Y UN RIESGO R

IIV olungsC

MAXIMOS VALORES QUE LA ALTURA DE LLUVIA DIARIA PUEDE ASUMIR CON UN PERIODO DE RETORNO T Y UN RIESGO R

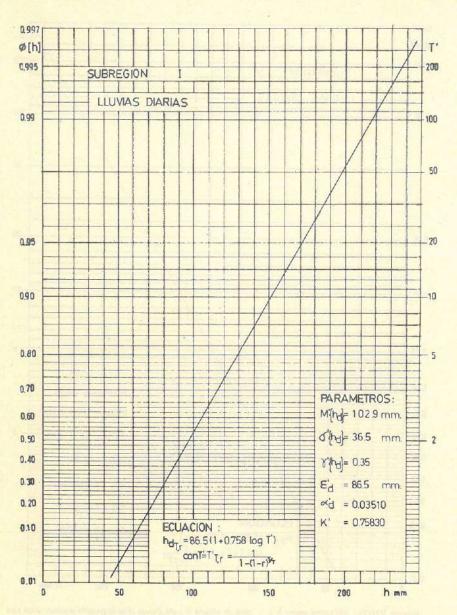


Figura VII-1: Máximo valor $h_{d_{T,r}}$ que la altura h_d de lluvia diaria puede asumir una vez cada T años a menos de un riesgo r.

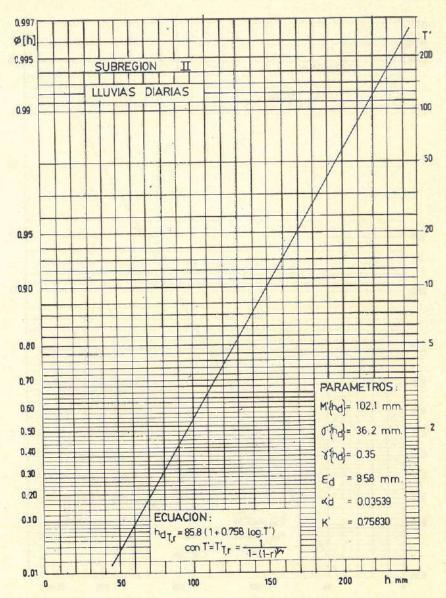


Figura VII-2: Máximo valor $\mathbf{h}_{d_{T,\tau}}$ que la altura \mathbf{h}_{d} de lluvia diaria puede asumir una vez cada \mathbf{T} años a menos de un riesgo \mathbf{r} .

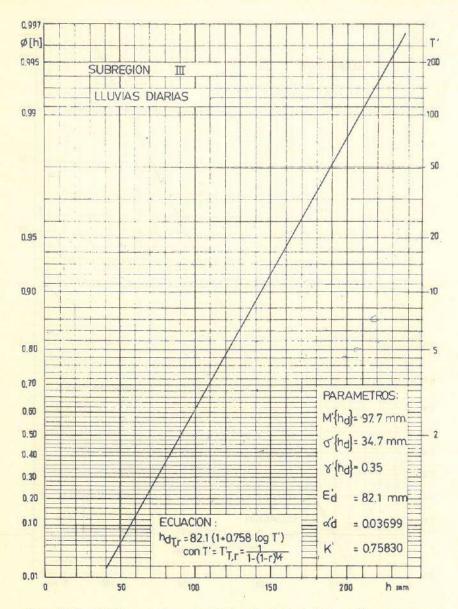


Figura VII-3: Máximo valor h_{d} que la altura h_{d} de lluvia diaria puede asumir una vez cada T años a menos de un riesgo τ .

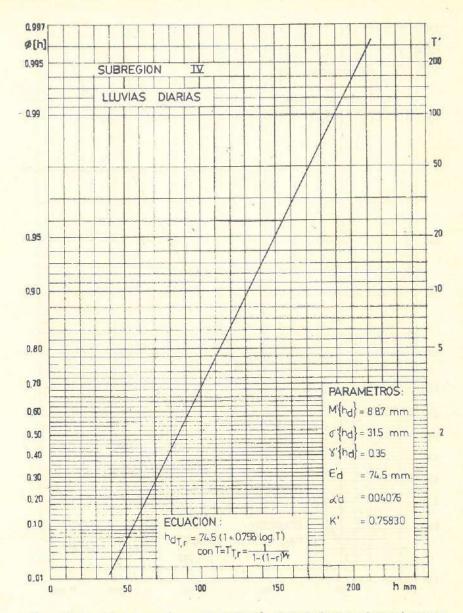


Figura VII-4: Máximo valor h_d que la altura h_d de lluvia diaria puede asumir una vez cada T años a menos de un riesgo r.

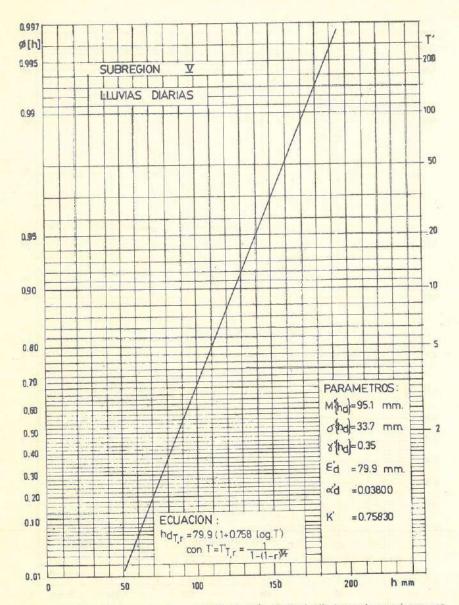


Figura VII-5: Máximo valor h_{d} que la altura h_{d} de lluvia diaria puede asumir una vez cada T años a menos de un riesgo r.

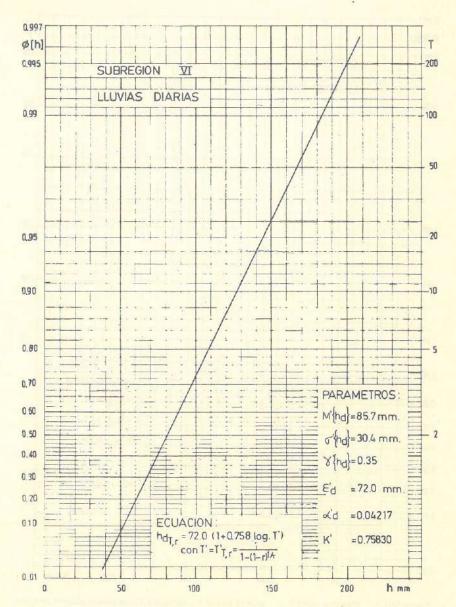


Figura VII-6: Máximo valor h_d que la altura h_d de lluvia diaria puede asumir una vez cada T años a manos de un riesgo r.

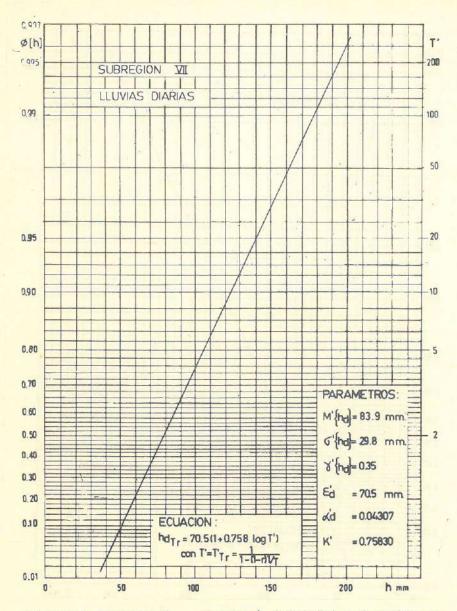


Figura VII-7: Máximo valor h_{d} que la altura h_{d} de lluvia diaria puede asumir una vez cada T años a inenos de un riesgo r.

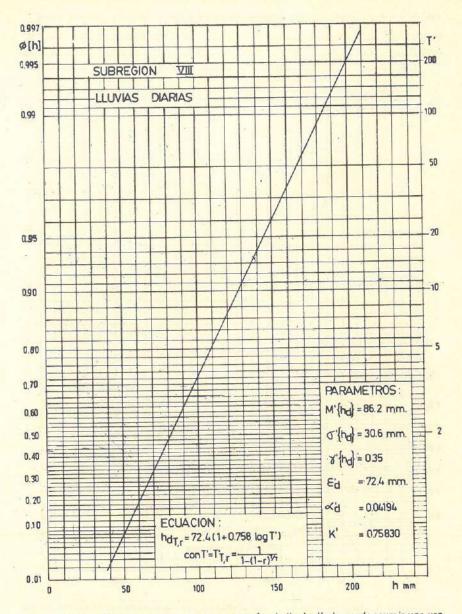


Figura VII-8: Máximo valor h_{d} que la altura h_{d} de lluvia diaria puede asumir una vez cada T años a menos de un riesgo r.

Capitulo VIII

MAXIMOS VALORES QUE LA ALTURA DE LLUVIA CAIDA EN (t) HORAS CONSECUTIVAS PUEDE ASUMIR CON UN PERIODO DE RETORNO T Y UN RIESGO R Capitale VIII-

ANDLESS ANDTENAMANTALISMENT OF STREET AND MEDICAL S

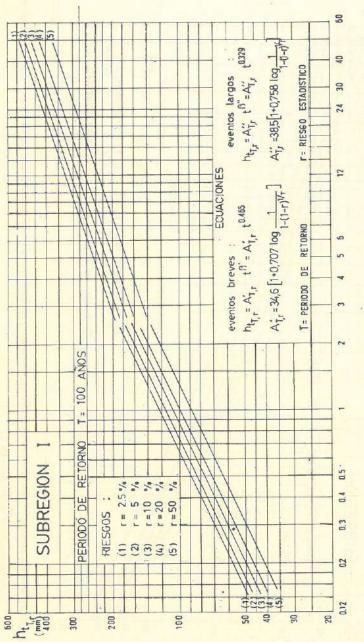


Figura VIII-1: Máximo valor h. T. que la altura h. de lluvia de duración t puede asumir una vez cada T años a menos de un :iesgo r. Ecuaciones y representación bi-logarítmica de h_{t.T.}r.

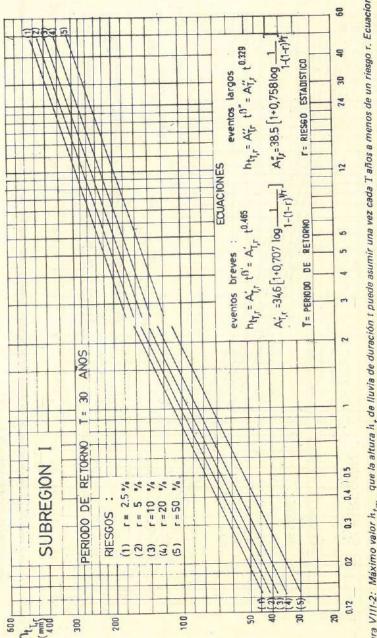


Figura VIII-2: Máximo valor ht_{T,T} que la altura h_t de lluvia de duración t puede asumir una vez cada Taños a menos de un riasgo r. Ec<mark>uacionas y</mark> representación bi-logarítmica de h_{1,T,T} (t).

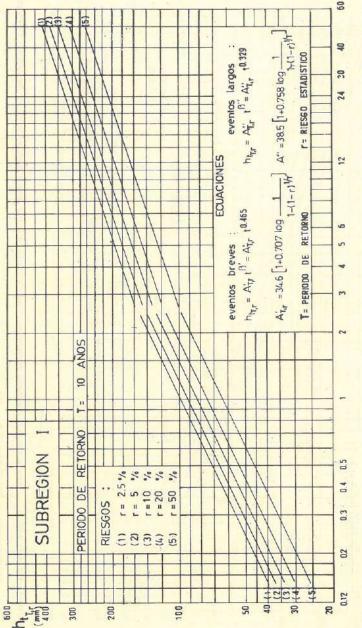


Figura VIII-3: Máximo valor $h_{1,j}$ que la altura h_1 de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Ecuaciones yrepresentaciones bi-logaritmica de $h_{\mathrm{tT,t}}(t)$.

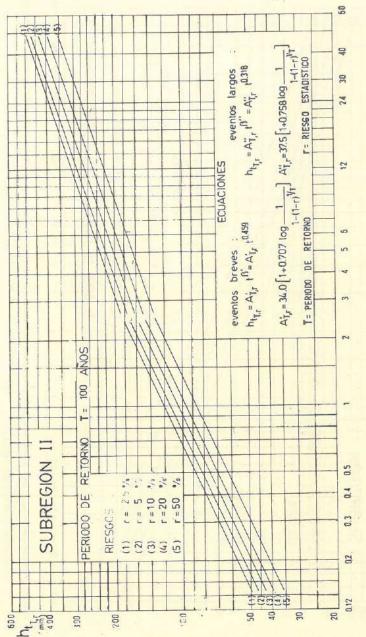


Figura VIII4: Máximo valor h_{t T, T}que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos da un rlesgo r. Ecuaciones v representación bi-logarítmica de $h_{t,T}(t)$.

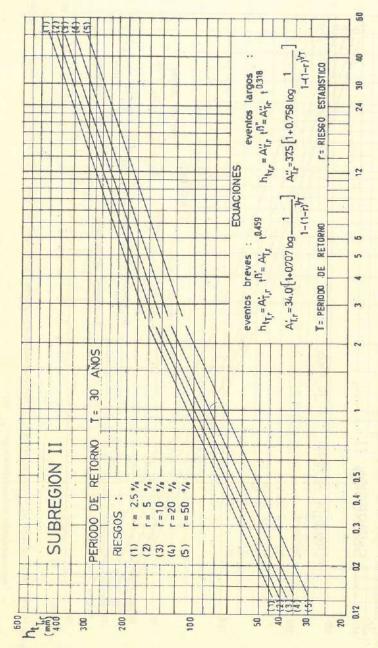


Figura VIII-5: Máximo valor h_{t T, t} que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Ecuacionas y representación bi-logarítmica de h_t (t).

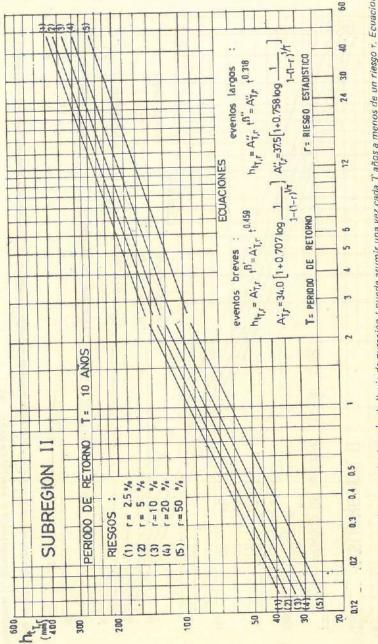


Figura VIII-6: Máximo valor l_{it To} que la altura l_{it} de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Ecuaciones y representación bi-logaritmica de $li_{\mathrm{T,r}}^{(t)}$

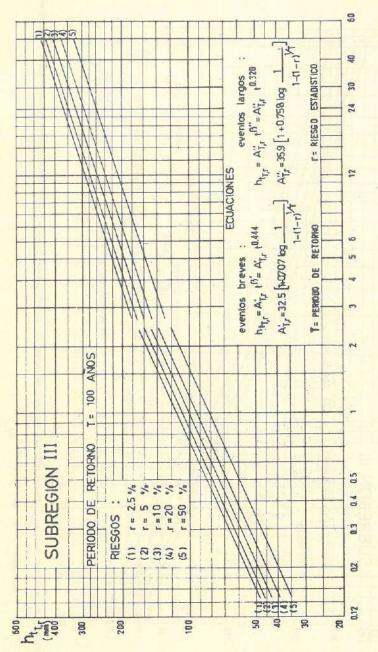


Figura VIII-7. Máximo valor h_{t Tr} que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Ecuaciones y representación bi-logarítmica de $h_{t,\tau}(t)$.

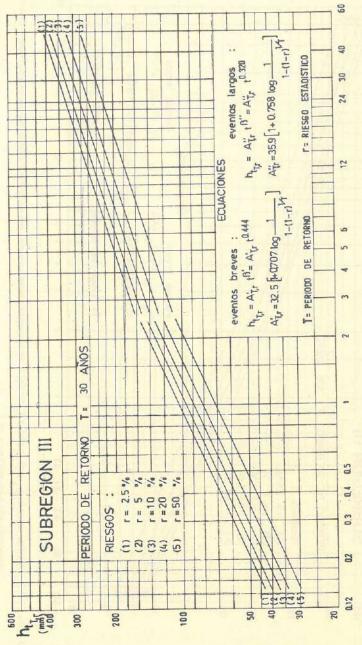
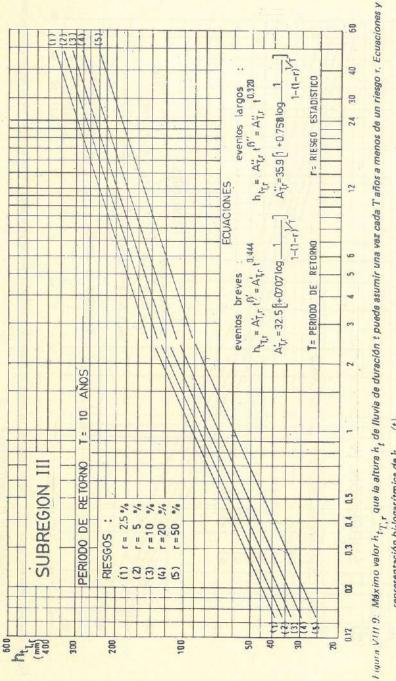



Figura VIII-8: Máximo valor http://gue la altura ht de lluvia de dureción t puede asumir una vez cada Taños a menos de un riesgo r. Ecuaciones y representación bi-logarítmica de $h_{t,r}(t)$.

representación bi-logarítmica de $h_{t_{T,t}}$

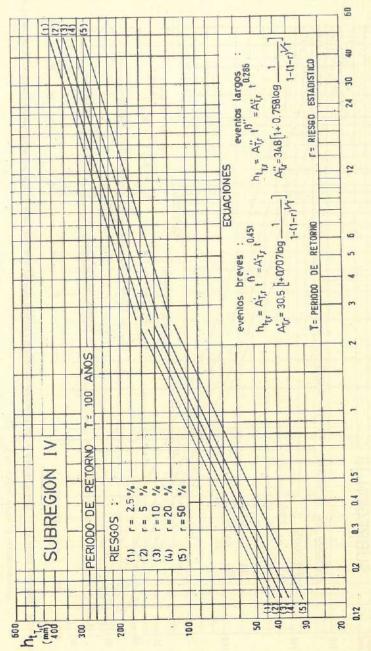
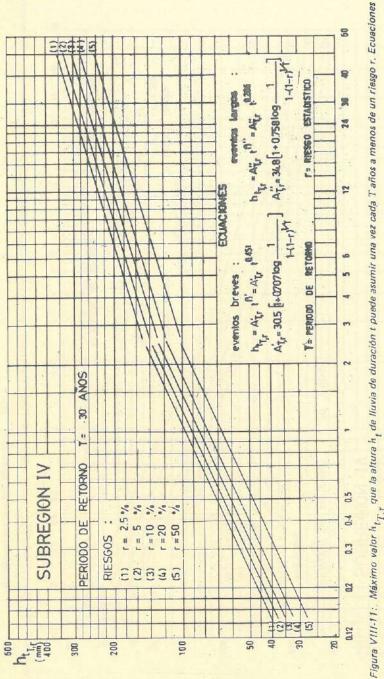



Figura VIII-10: Máximo valor ht_{r.}, que la altura n_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Ecuaciones y representación bi-logarítmica de $\mathbf{h}_{t_{T,t}}(t)$.

y representación bi-logarítmica de h_{t T} (t).

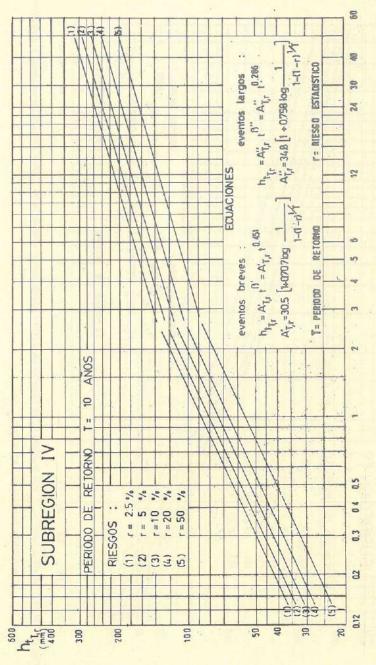
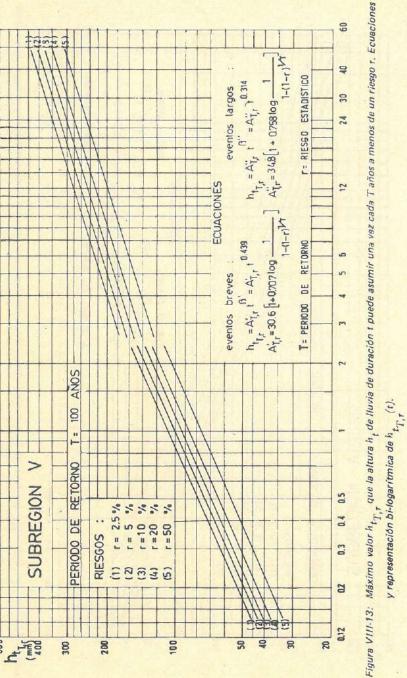



Figura VIII-12: Máximo valor h.t., que la altura h.t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Ecuaciones y representación bi-logarítmica de h_t (t).

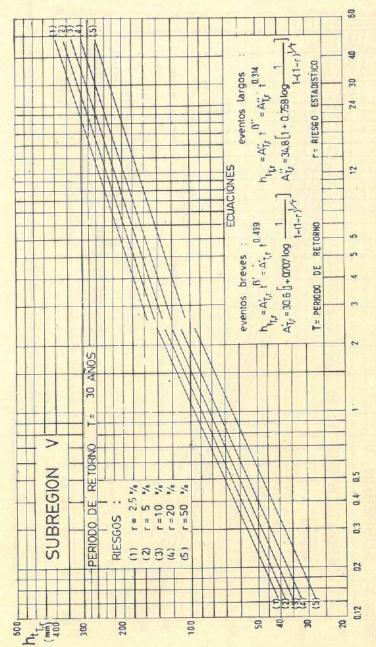


Figura VIII-14: Máximo valor h_{t T.r}, que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Ecuaciones y representación bi-logarítmica de h_{t} (t).

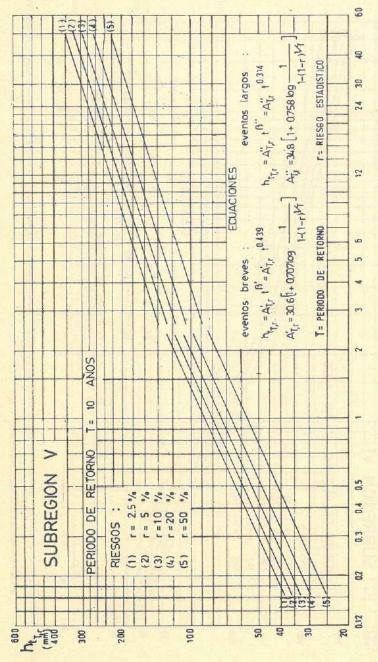


Figura VIII-15: Máximo valor ht_{T, T} que la altura h_t de lluvia de duración t puede asumir una vez cada Taños a menos de un riesgo r. Ecuaciones y representación bi-logarítmica de h_{t T, t}

Figura VIII-16: Máximo valor h_{t T} que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Ecuaciones y representación bi-logarítmica de h_{t,T} (t).

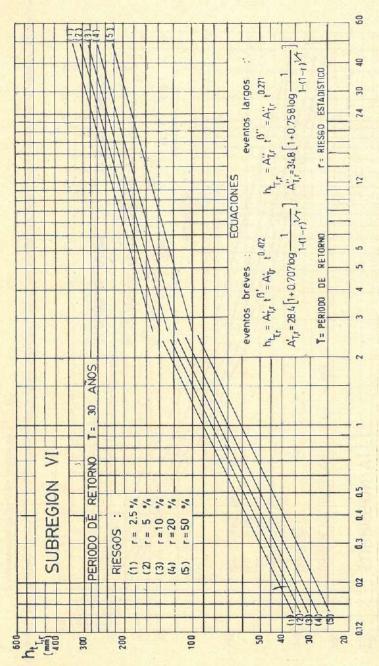


Figura VIII-17: Máximo valor h_{t Tr} que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Ecuaciones y representación bi-logarítmica de $k_{t_T}(t)$.

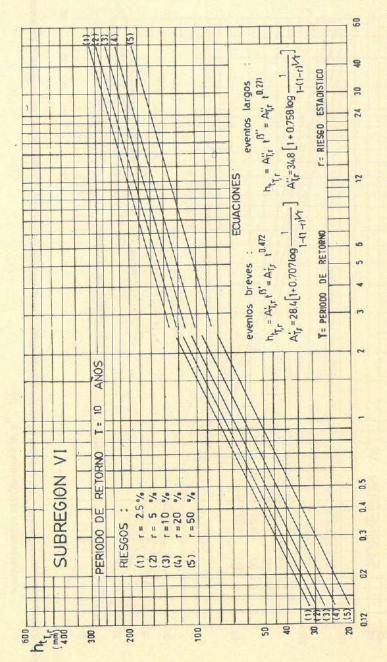


Figura VIII-18: Máximo valor h_{t T. r} que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Ecuaciones y representación bi-logarítmica de $h_{t_{T,t}}(t)$.

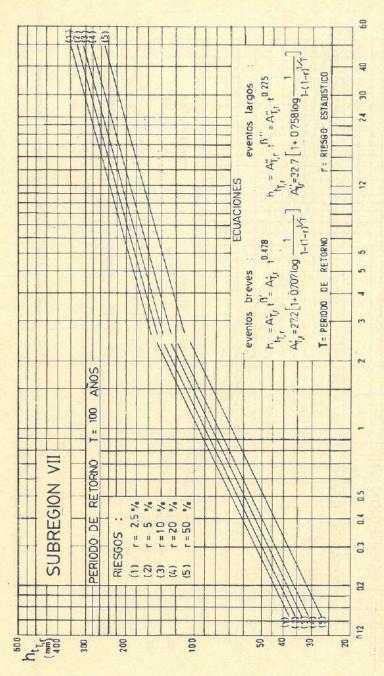


Figura VIII-19: Máximo valor h_{t Tr} que la altura h_t de lluvia de duración t puede asumir una vez cada Taños a menos de un riesgo r. Ecuaciones y representación bi-logaritmica de h_{t.T.}t).

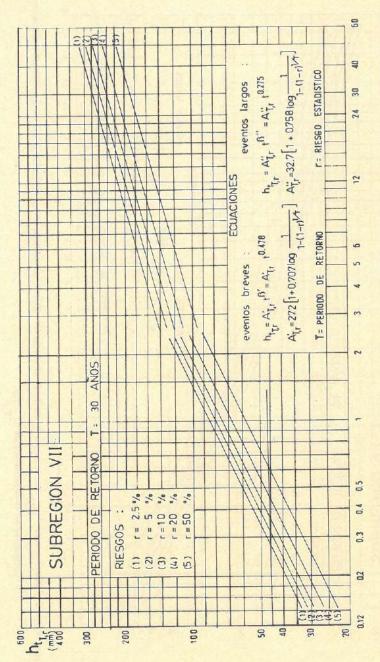


Figura VIII-20: Máximo valor h $_{t_{T,\tau}}$ que la altura h $_t$ de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Ecuaciones y representación bi-logarítmica de $h_{t_{T,\tau}}(t)$.

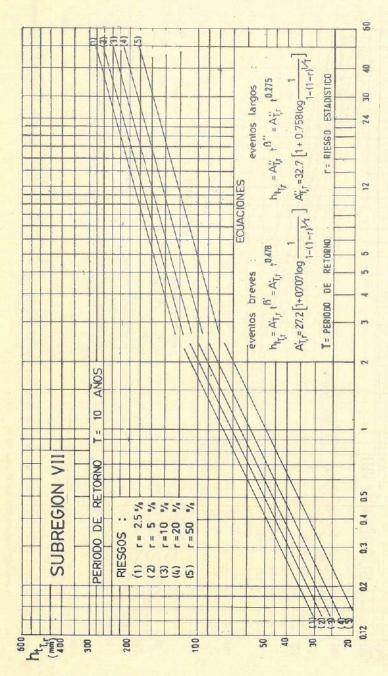


Figura VIII-21: Máximo válor hit, que la altura hit de lluvia de duración t puede asumir una vaz cada T años a menos de un riesgo r. Ecuaciones y representación bi-logarítmica de h_{t.T.}r

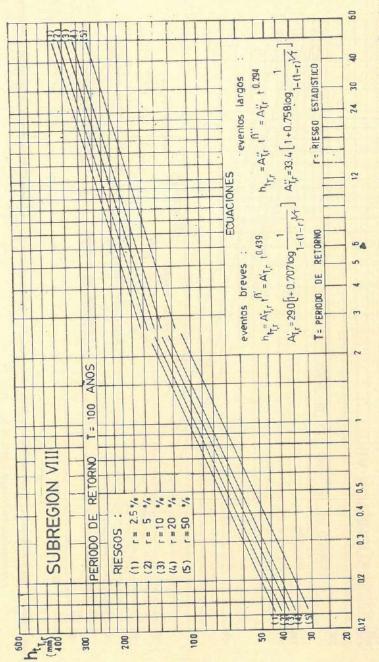


Figura VIII-22: Máximo valor h_{t Tr} que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Eruaniones y representación bi-logarítmica de $h_{t_{T,T}}(t)$.

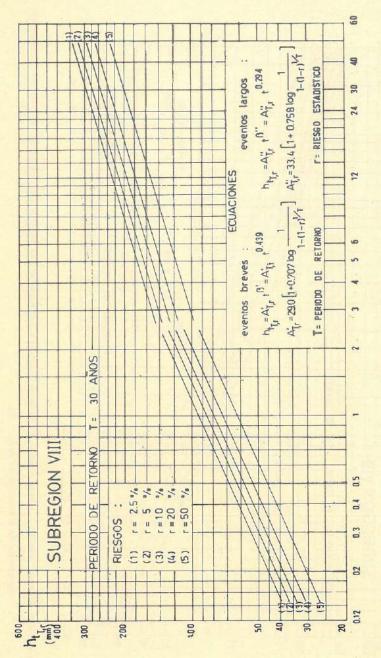


Figura VIII-23: Máximo valor h_{í is} que la altura h_í de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Ecuaciones y representación bi-logarítmica de $h_{t_{T,t}}^{(t)}$.

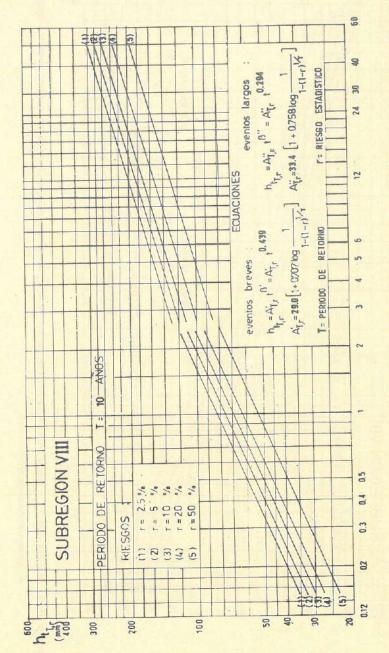


Figura VIII-24: Máximo valor ht_{T,r} que la altura h_t de lluvia de duración t puede asumir una vez cada Taños a menos de un riesgo r. Ecuaciones y representación bi-logarítmica de h_{t_T} (t).

Lista de Tablas

- Tabla I-1: Estaciones Pluviométricas: Características, ubicación, altura sobre el nivel del mar y número n de años de observaciones.
- Tabla I-2: Estaciones Pluviográficas: Características, ubicación, altura sobre el nivel del mar y número n de años de observaciones.
- Tabla IV-1: Estimas de los Parámetros que caracterizan la Distribución de Probabilidades de los Máximos Anuales de Alturas de Lluvia Diaria en cada Estación Pluviométrica.
- Tabla IV-2: Estimas de los Parámetros que caracterizan la Distribución de Probabilidades de los Máximos Anuales de Alturas de Lluvia caída en (t) horas consecutivas deducidas para cada Estación Pluviográfica.
- Tabla VI-1: Parámetros que identifican cada Subregión.
- Tabla VI-2: Valores asumidos por β , $\alpha = \frac{\sum^n t \log \epsilon_t}{\sum^n t}$ y A en cada Subregión Pluviométrica. Repartición de los Pluviógrafos entre las distintas Subregiones Pluviométri-

cas. Estimas b de β , a de α y A de A, deducidas Pluviógrafo por Pluviógrafo, para eventos breves $(t < t_o')$ y eventos largos $(t > t_o'')$ (con 2 horas $\leq t_o' < t_o'' \leq 3$ horas), en la hipótesis de que Uruguay forma parte de una única Región Pluviométrica con $K_{breves}^* = 0.707$ y $K_{largos}^* = 0.758$.

Lista de Figuras

Figura I-1: Estaciones Pluviométricas.

Figura I-2: Estaciones Pluviográficas.

Figura I-3: Leyes de variación de las relaciones $e_{0.975}/\epsilon_x$ y $e_{0.025}/\epsilon_x$ en función de K_x para n igual respectivamente a 10, 20, 30, 40 y 50 años. (En la hipótesis de que e_x está distribuida según la ley normal de la casualidad).

Figura I-4: Leyes de variación de las relaciones $e_{0.975}/\epsilon_x$ y $e_{0.025}/\epsilon_x$ en función de K_x para n respectivamente igual a 10, 20, 30, 40 y 50 años. (En la hipótesis de que e_x está distribuida según la ley asintótica del máximo valor).

Figura I-5: Leyes de variación de $c'_{0.975}$ y $c'_{0.025}$, en función de K'_{x} , para n igual respectivamente a 10, 20, 30, 40, 50 y 100 años.

Figura I-6: Leyes de variación de $b_{0.975} - \beta$ y de β - $b_{0.025}$ en función de K' para n igual respectivamente a 10, 20, 30, 40, 50 y 100.

Figura I-7: Leyes de variación de $a_{0.975}^ \alpha$ y de $\alpha^- a_{0.02}^-$ en función de K' para n igual respectivamente a 10, 20, 30, 40, 50 y 100.

Figura I-8: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo velor de las funciones $\phi[h_t]$, $\phi[h_d]$, $\phi[h_t/\epsilon_t]$ y $\phi[h_d/\epsilon_d]$ en Montevideo. (Ejemplo de las investigaciones seguidas con los datos de cada pluviógrafo y cada pluviómetro).

Figura 1-9: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de las funciones $\phi[h_t]$, $\phi[h_t/\epsilon_t]$ para eventos breves y $\phi[h_t]$, $\phi[h_d/\epsilon_d] \equiv \phi[h_t/\epsilon_t]$ para eventos largos, en Montevideo y Salto. (Ejemplos de las investigaciones seguidas con los datos de cada pluviógrafo y cada pluviómetro).

Figura I-10: Representación en diagrama probabilístico correspondiente a la ley logarítmico-asintótica del máximo valor de las funciones $\phi[h_t]$, $\phi[h_d]$, $\phi[h_t/\epsilon_t]$ y $\phi[h_d/\epsilon_d]$ en Montevideo. (Ejemplo de las investigaciones seguidas con los datos de cada pluviógrafo y cada pluviómetro).

Figura I-11: Representación en diagrama probabilístico correspondiente a la ley logarítmico-asintótica del máximo valor de las funciones $\phi[h_t]$, $\phi[h_t/\epsilon_t]$ para eventos breves y $\phi[h_t]$, $\phi[h_d/\epsilon_d] \equiv \phi[h_t/\epsilon_t]$ para eventos largos en Montevideo y Salto. (Ejemplo de las investigaciones seguidas con los datos de cada pluviógrafo y cada pluviómetro).

Figura II-1: Distribución asintótica del máximo valor. Función de probabilidad elemental.

Figura II-2: Distribución asintótica del máximo valor. Función de repartición.

Figura II-3: Distribución asintótica del máximo valor. Representación de la función de repartición en diagrama probabilístico.

Figura II-4: Ley de variación de $\frac{x T'}{\epsilon_k}$ en función de $\log T'$.

Figura III-1: Pluviómetro 2887 (Montevideo). Lluvias Diarias.

Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada. Parámetros. Ecuación. (Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo).

Figura III-2: Pluviógrafo 2887 (Montevideo). t = 24 horas. Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada. Parámetros. Ecuación. (Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo).

Figura III-3: Pluviógrafo 2887 (Montevideo). $t = 12 \ horas$. Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada. Parámetros. Ecuación. (Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo).

Figura III-4: Pluviógrafo 2887 (Montevideo). t = 6 horas. Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada.

Parámetros. Ecuación. (Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo).

Figura III-5:

Pluviógrafo 2887 (Montevideo). t=3 horas. Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada. Parámetros. Ecuación. (Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo).

Figura III-6:

Pluviógrafo 2887 (Montevideo). t=2 horas. Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada. Parámetros. Ecuación. (Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo).

Figura III-7:

Pluviógrafo 2887 (Montevideo). $t=1\ hore$. Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada. Parámetros. Ecuación. (Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo).

Figura III-8:

Pluviógrafo 2887 (Montevideo). t=30 minutos. Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada. Parámetros. Ecuación. (Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo).

- Figura III-9: Pluviógrafo 2887 (Montevideo). t = 20 minutos.

 Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor.

 Límites de confianza de la hipótesis formulada.

 Parámetros. Ecuación. (Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo).
- Figura III-10: Pluviógrafo 2887 (Montevideo). t = 10 minutos.

 Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor.

 Límites de confianza de la hipótesis formulada.

 Parámetros. Ecuación. (Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo).
- Figura III-11: Pluviómetro 2179 (Ciudad de Treinta y Tres).

 Lluvias Diarias. Representación en diagrama probabilístico correspondeinte a la ley asintótica del máximo valor. Límites de confianza de la hipótesis formulada. Parámetros. Ecuación. (Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo).
- Figura III-12: Pluviómetro 1672 (Paysandú). Lluvias Diarias.

 Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor.

 Límites de confianza de la hipótesis formulada.

 Parámetros. Ecuación. (Ejemplo de las elaboraciones seguidas con los datos de cada pluviómetro y de cada pluviógrafo).
- Figura V-1: Representación en diagrama probabilístico logarítmico normal de la distribución de frecuencias

acumuladas $F[c_t^*]$ de la serie estadística constituida por los valores de c_t^* correspondientes a períodos de observación de duración $n \ge 40$. Verificación del ajuste de las c_t^* a esta distribución.

- Figura V-2: Límites $c_{0.975}$ y $c_{0.025}$ del intervalo de control de las estimas c_t^2 y c_d^2 de K_{largos} deducidas de muestras de dimensión n.

 Leyes de variación de $c_{0.975}^2$ y $c_{0.025}^2$ en función de n para K' = 0.758.
- Figura V-3:

 Límites $c'_{0.975}$ y $c'_{0.025}$ del intervalo de control de las estimas c'_t y c'_d de K'_{breves} deducidas de muestras de dimensión n.

 Leyes de variación de $c'_{0.975}$ y $c'_{0.025}$ en función de n para K' = 0.707.
- Figura VI-1: Subregión I. Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de la distribución de frecuencias acumuladas $F[e_d]$ de la serie estadística constituida por los valores de e_d . Comprobación de que se puede asumir con buena aproximación que e_d está distribuida según la ley asintótica del máximo valor.
- Figura VI-2: Subregión II. Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de la distribución de frecuencias acumuladas $F[e_d]$ de la serie estadística constituida por los valores de e_d . Comprobación de que se

puede asumir con buena aproximación que e_d está distribuída según la ley asintótica del máximo valor.

Figura VI-3: Subregión III. Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de la distribución de frecuencias acumuladas $F[e_d]$ de la serie estadística constituida por los valores de e_d . Comprobación de que se puede asumir con buena aproximación que e_d está distribuida según la ley asintótica del máximo valor.

Figura VI-4: Subregión IV. Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de la distribución de frecuencias acumuladas $F[e_d]$ de la serie estadística constituida por los valores de e_d . Comprobación de que se puede asumir con buena aproximación que e_d está distribuida según la ley asintótica del máximo valor.

Figura VI-5: Subregión V: Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de la distribución de frecuencias acumuladas $F[e_d]$ de la serie estadística constituida por los valores de e_d . Comprobación de que se puede asumir con buena aproximación que e_d está distribuida según la ley asintótica del máximo valor.

Figura VI-6: Subregión VI. Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de la distribución de frecuencias acumuladas $F[e_d]$ de la serie estadística constituída por los valores de e_d . Comprobación de que se puede asumir con buena aproximación que e_d está distribuida según la ley asintótica del máximo valor.

- Figura VI-7: Subregión VII. Representación en diagrama probabilístico correspondiente a la ley asintótica del máximo valor de la distribución de frecuencias acumuladas $F[e_d]$ de la serie estadística constituida por los valores de e_d . Comprobación de que se puede asumir con buena aproximación que e_d está distribuida según la ley asintótica del máximo valor.
 - Figura VI-8: Subregión I. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de confianza de la estima e_d de ϵ_d deducida para cada muestra de dimensión n.

 Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n, para $\epsilon_d = 86.5$ y K' = 0.758
 - Figura VI-9: Subregión II. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de confianza de la estima e_d de ϵ_d deducida para cada muestra de dimensión n.

 Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n, para $\epsilon_d=85.8$ y K'=0.758
 - Figura VI-10: Subregión III. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de confianza de la estima e_d de ϵ_d deducida para cada muestra de dimensión n.

 Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n, para $\epsilon_d = 82.1\,$ y K' = 0.758

- Figura VI-11: Subregión IV. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de confianza de la estima e_d de ϵ_d deducida para cada muestra de dimensión n.

 Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n, para $\epsilon_d = 74.5$ y K' = 0.758.
- Figura VI-12: Subregión V. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de confianza de la estima e_d de ϵ_d deducida para cada muestra de dimensión n.

 Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n, para $\epsilon_d=79.9\,$ y K'=0.758.
- Figura VI-13: Subregión VI. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de confianza de la estima e_d de ϵ_d deducida para cada muestra de dimensión n.

 Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n, para ϵ_d = 72.0 y K' = 0.758.
- Figura VI-14: Subregión VII. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de confianza de la estima e_d de ϵ_d deducida para cada muestra de dimensión n.

 Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n, para $\epsilon_d = 70.5$ y K' = 0.758.
- Figura VI-15: Subregión VIII. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de confianza de la estima e_d de ϵ_d deducida para cada muestra de dimensión n.

 Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n, para $\epsilon_d = 72.4$ y K' = 0.758.
- Figura VI-16: Subregión I. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima e_t de ϵ_t para cada valor de t.

 Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n para los valores de t indicados.

Figura VI-17: Subregión II. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima e_t de ϵ_t para cada valor de t.

Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n para los valores de t indicados.

Figura VI-18: Subregión III. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima e_t de e_t para cada valor de t.

Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n para los valores de t indicados.

Figura VI-19: Subregión IV. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima e_t de ϵ_t para cada valor de t.

Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n para los valores de t indicados.

Figura VI-20: Subregión V. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima e_t de ϵ_t para cada valor de t.

Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n para los valores de t indicados.

Figura VI-21: Subregión VI. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima e_t de ϵ_t para cada valor de t.

Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n para los valores de t indicados.

Figura VI-22: Subregión VII. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima e_t de ϵ_t para cada valor de t.

Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n para los valores de t indicados.

Figura VI-23: Subregión VIII. Límites $e_{0.975}$ y $e_{0.025}$ del intervalo de control de la estima e_t de e_t para cada valor de t.

Leyes de variación de $e_{0.975}$ y $e_{0.025}$ en función de n para los valores de t indicados.

Figura VI-24: Subregión I. Límites $a_{0.975}$, $a_{0.025}$, $b_{0.975}$ y $b_{0.025}$ de los intervalos de control de las estimas a de α y b de β para eventos breves y largos, correspondientes a muestras de dimensión n.

Leyes de variación en función de n para los valores indicados de α y β y para $K_{breves}^{\prime}=0.707$ y $K_{largos}^{\prime}=0.758$.

Figura VI-25: Subregión II. Límites $a_{0.975}$, $a_{0.025}$, $b_{0.975}$ y $b_{0.025}$ de los intervalos de control de las estimas a de α y b de β para eventos breves y largos, correspondientes a muestras de dimensión n.

Leyes de variación en función de n para los valores indicados de α y β y para $K_{breves}^{i} = 0.707$ y $K_{largos}^{i} = 0.758$.

Figura VI-26: Subregión III. Límites a_{0.975}, a_{0.025}, b_{0.975} y b_{0.025} de los intervalos de control de las estimas a de α y b de β para eventos breves y largos, correspondientes a muestras de dimensión n.
Leyes de variación en función de n para los valores indicados de α y β y para K_{breves} = 0.707 y K_{largos} = 0.758.

Figura VI-27: Subregión IV. Límites $a_{0.975}$, $a_{0.025}$, $b_{0.975}$ y $b_{0.025}$ de los intervalos de control de las estimas a de α y b de β para eventos breves y largos, correspondientes a muestras de dimensión n.

Leyes de variación en función de n para los valores indicados de α y β y para $K_{breves}^{i} = 0.707$ y $K_{largos}^{i} = 0.758$.

- Figura VI-28: Subregión V. Límites $a_{0.975}$, $a_{0.025}$, $b_{0.975}$ y $b_{0.025}$ de los intervalos de control de las estimas a de α y b de β para eventos breves y largos, correspondientes a muestras de dimensión n.

 Leyes de variación en función de n para los valores indicados de α y β y para $K_{breves}^* = 0.707$ y $K_{largos}^* = 0.758$.
- Figura VI-29: Subregión VI. Límites $a_{0.975}$, $a_{0.025}$, $b_{0.975}$ y $b_{0.025}$ de los intervalos de control de las estimas a de α y b de β para eventos breves y largos, correspondientes a muestras de dimensión n.

 Leyes de variación en función de n para los valores indicados de α y β y para $K_{breves}^{i} = 0.707$ y $K_{largos}^{i} = 0.758$.
- Figura VI-30: Subregión VII. Límites $a_{0.975}$, $a_{0.025}$, $b_{0.975}$ y $b_{0.025}$ de los intervalos de control de las estimas a de α y b de β para eventos breves y largos, correspondientes a muestras de dimensión n.

 Leves de variación en función de n para los valores indicados de α y β y para $K_{breves} = 0.707$ y $K_{largos} = 0.758$.
 - Subregión VIII. Límites a_{0.975}, a_{0.025}, b_{0.975} y b_{0.025} de los intervalos de control de las estimas a de α y b de β para eventos breves y largos, correspondientes a muestras de dimensión n.

 Leyes de variación en función de n para los valo-

res indicados de α y β y para $K_{breves}^{\prime} = 0.707$ y $K_{largos}^{\prime} = 0.758$.

- Figura VI-32 Subregiones Pluviométricas en Uruguay. Deducidas por control estadístico de la distribución de las lluvias máximas.
- Figura VII-1: Máximo valor $h_{dT,r}$ que la altura h_d de lluvia diaria puede asumir una vez cada T años a menos de un riesgo r. Subregión I. Ecuación y Parámetros.
- Figura VII-2: Máximo valor $h_{dT,r}$ que la altura h_d de lluvia diaria puede asumir una vez cada T años a menos de un riesgo r. Subregión II. Ecuación y Parámetros.
- Figura VII-3: Máximo valor $h_{dT,r}$ que la altura h_d de lluvia diaria puede asumir una vez cada T años a menos de un riesgo r. Subregión III. Ecuación y Parámetros.
- Figura VII-4: Máximo valor $h_{dT,r}$ que la altura h_d de lluvia dia ria puede asumir una vez cada T años a menos de un riesgo r. Subregión IV. Ecuación y Parámetros.
- Figura VII-5: Máximo valor $h_{dT,r}$ que la altura h_d de lluvia diaria puede asumir una vez cada T años a menos de un riesgo r. Subregión V. Ecuación y Parámetros.
- Figura VII-6: Máximo valor $h_{dT,r}$ que la altura h_d de lluvia diaria puede asumir una vez cada T años a menos de un riesgo r. Subregión VI. Ecuación y Parámetros.
- Figura VII-7: Máximo valor $h_{dT,r}$ que la altura h_d de lluvia diaria puede asumir una vez cada T años a menos de un riesgo r. Subregión VII. Ecuación y Parámetros.

- Figura VII-8: Máximo valor $h_{dT,r}$ que la altura h_d de lluvia diaria puede asumir una vez cada T años a menos de un riesgo r. Subregión VIII. Ecuación y Parámetros.
- Figura VIII-1: Máximo valor $h_{tT,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión I. T=100 años. r=2.5%, 5%, 10%, 20% y 50%. Ecuaciones y representaciones bi-logarítmica de $h_{tT,r}(t)$.
- Figura VIII-2: Máximo valor $h_{tT,r}$ que la altura h_t^T de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión I. T=30 años. r=2.5%, 5%, 10%, 20% y 50%. Ecuaciones y representaciones bi-logarítmica de $h_{tT,r}$ (t).
- Figura VIII-3: Máximo valor $h_{tT,r}$ que la altura $h_t^{r,r}$ de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión I. T=10 años. r=2.5%, 5%, 10%, 20% y 50%. Ecuaciones y representaciones bi-logarítmica de $h_{tT,r}(t)$.
- Figura VIII-4: Máximo valor $h_{tT,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión II. $T=100\,$ años. r=2.5%, 5%, 10%, 20% y 50%. Ecuaciones y representación bi-logarítmica de $h_{tT,r}(t)$.
- Figura I III-5: Máximo valor $h_{tT,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión II. T=30 años. r=2.5%, 5%, 10%, 20% y 50%. Ecuaciones y representación bi-logarítmica de $h_{tT,r}(t)$.

- Figura VIII-6: Máximo valor $h_{t\,T,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión II. T=10 años. r=2.5%, 5%, 10%, 20% y 50%. Ecuaciones y representación bi-logarítmica de $h_{t\,T,r}(t)$.
- Figura VIII-7: Máximo valor $h_{tT,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión III. T=100 años. r=2.5%, 5%, 10%, 20% y 50%. Ecuaciones y representación bi-logarítmica de $h_{tT,r}(t)$.
- Figura VIII-8: Máximo valor $h_{tT,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión III. T=30 años. r=2.5%, 5%. 10%, 20% y 50%. Ecuaciones y representación bi-logarítmica de $h_{tT,r}(t)$.
- Figura VIII-9: Máximo valor $h_{tT,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión III. $T=10\,$ años. $r=2.5\%,\,5\%,\,10\%,\,20\%\,$ y 50%. Ecuaciones y representación bi-logarítmica de $h_{tT,r}(t)$.
- Figura VIII-10: Máximo valor $h_{tT,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión IV. T=100 años. r=2.5%, 5%, 10%, 20% y 50%. Ecuaciones y representación bi-logarítmica de $h_{tT,r}(t)$.
- Figura VIII-11: Máximo valor $h_{t,T,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión IV. T=30 años.

- r=2.5%, 5%, 10%, 20% y 50%. Ecuaciones y representación bi-logarítmica de $h_{tTr}(t)$.
- Figura VIII-12: Máximo valor $h_{t\,T,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión IV. $T=10\,$ años. $r=2.5\%,\,5\%,\,10\%,\,20\%\,$ y 50%. Ecuaciones y representación bi-logarítmica de $h_{t\,T,r}(t)$.
- Figura VIII-13: Máximo valor $h_{t\,T,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión V. T=100 años. $r=2.5\%,\,5\%,\,10\%,\,20\%$ y 50%. Ecuaciones y representación bi-logarítmica de $h_{t\,T,r}(t)$.
- Figura VIII-14: Máximo valor $h_{tT,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión V. T=30 años. r=2.5%, 5%, 10%, 20% y 50%. Ecuaciones y representación bi-logarítmica de $h_{tT,r}(t)$.
- Figura VIII-15: Máximo valor $h_{tT,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión V. T=10 años. r=2.5%, 5%, 10%, 20% y 50%. Ecuaciones y representación bi-logarítmica de $h_{tT,r}(t)$.
- Figura VIII-16: Máximo valor $h_{t,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión VI. T=100 años. r=2.5%, 5%, 10%, 20% y 50%. Ecuaciones y representación bi-logarítmica de $h_{t,r}$ (t).
- Figura VIII-17: Máximo valor $h_{tT,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a

menos de un riesgo r. Subregión VI. $T=30~a\~nos$. r=2.5%,~5%,~10%,~20% y 50%. Ecuaciones y representación bi-logarítmica de $h_{tT,r}(t)$.

Figura VIII-18: Máximo valor $h_{tT,r}$ que la altura h_t de lluvia de duración t puede asumir una vez cada T años a menos de un riesgo r. Subregión VI. T=10 años. r=2.5%, 5%, 10%, 20% y 50%. Ecuaciones y representación bi-logarítmica de $h_{tT,r}(t)$.

Bibliografia

- ARCHIVOS DE LA DIRECCION GENERAL DE METEO-ROLOGIA DEL URUGUAY. Ministerio de Defensa Nacional. Montevideo, 1979.
- BATTIONE CHIARINO J.A. "Lluvias Departamentales iguales o inferiores a un tercio de la media mensual". Montevideo, 1970.
- /3/. BATTIONE CHIARINO J. A. "Lluvias Departamentales iguales o superiores al doble de la media mensual". Montevideo, 1970.
- [4]. BARTLETT M. S. "Some aspects of the time-correlation problem in regard to tests of significance". London, 1935.
- 151. BARTLETT M. S. "Properties of sufficiency and statistical tests". London, 1937.
- [6]. BENSON M. A. "Plotting positions and economics of engineering planning". New York, 1962.
- [77]. BROOKS C. E. P. "Handbook of Statistical Methods in Meteorology". London, 1953.
- /87. BORRI A. I., SIMURRO C. "Análisis Hidrológico de la Alta Cuenca del Río Bermejo (Argentina, Bolivia)". Nápoles, 1977.
- 191. BORRI A. I., ALCAZAR F. "Posibilidades de Regulación de las Escorrentías Superficiales de la Alta Cuenca del Río Bermejo". Nápoles, 1977.
- [10]. COMISION TECNICA MIXTA URUGUAYO BRASILE-ÑA DE LA CUENCA DE LA LAGUNA MERIN – Proyecto Regional. Treinta y Tres, 1967.

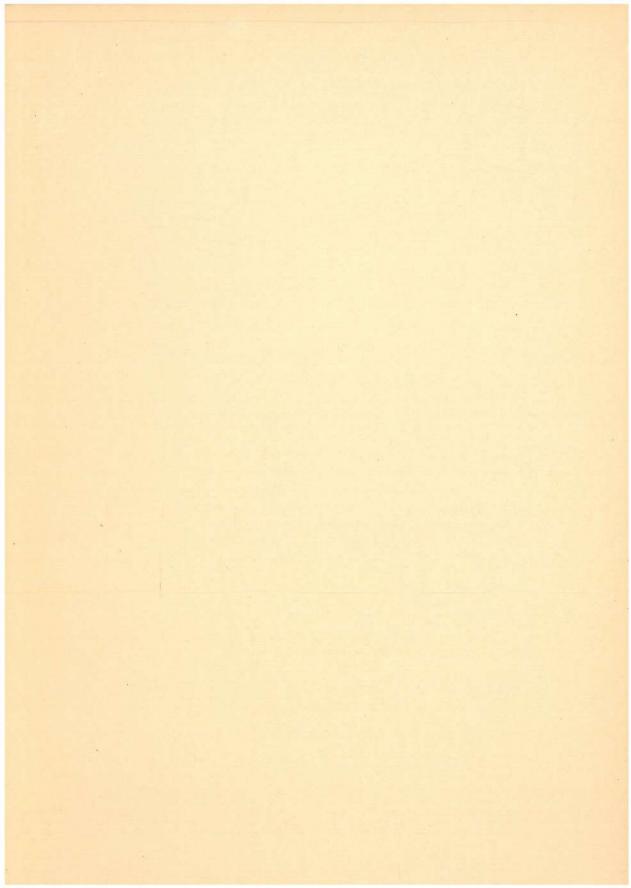
- /117. COMISION TECNICA MIXTA URUGUAYO ARGENTI-NA DE SALTO GRANDE – Proyecto hidroeléctrico. Montevideo, 1962.
- [12]. COMISION TECNICA MIXTA DEL PALMAR Proyecto Hidroeléctrico. Montevideo, 1978.
- [13] CENTRO TECNOLOGICO DE HIDRAULICA DE SAO PAULO (BRASIL) Secretaría de Obras e do Meio Ambiente. "Boletines Pluviométricos". São Paulo, 1978.
- [14]. CUENCA DEL RIO DE LA PLATA "Estudio para su Planificación y Desarrollo". "Inventario de Datos Hidrológicos y Climatológicos". Unidad de Recursos Naturales. O.E.A. Washington, 1969.
- [15]. CUENCA DEL RIO SANTA LUCIA "Proyecto Represa Paso Severino". Ministerio de Transportes y Obras Públicas. Montevideo, 1974.
- [16] CUENCA DEL RIO YAGUARON "Dique y Central Hidroeléctrica de Paso Centurión". Montevideo, 1974.
- [17]. CUENCA DEL RIO NEGRO "Central Hidroelétrica Dr. Gabriel Terra". Administración Nacional de Usinas y Transmisiones Eléctricas. Montevideo, 1938. Berlín, 1933.
- /18/. CUENCA DEL RIO NEGRO "Central Hidroeléctrica Rincón de Baygorria". Administración Nacional de Usinas y Transmisiones Eléctricas. Montevideo, 1960.
- [19]. CUENCA DEL RIO NEGRO "Aprovechamiento Hidroeléctrico Aguas Abajo de Baygorria". Sofrelec. París, 1962.
- [20]. CUENCA DEL RIO NEGRO "Anteproyecto de Palmar" Administración Nacional de Usinas y Transmisiones Eléctricas. Montevideo, 1963.
- [21]. CUSTODIO E., LLAMAS M. R. "Hidrología Subterránea". Barcelona, 1976.
- [22]. CHEVARRIA G., PEREIRA M. "Hidrología de la Cuenca del Río Grande (Bolivia)". Nápoles, 1974.
- [237. CHEVARRIA G., PEREIRA M. "Anteproyecto de Ingeniería de Conexión Ferroviaria Cochabamba Santa Cruz de la Sierra". La Paz (Bolivia), 1978.
- /247. CHOW, VEN TE "Handbook of Applied Hydrology". New York, 1964.

- [25]. CHOW, VEN TE "Open Channel Hydraulics". New York, 1959.
- [26]. CHOW, VEN TE "Frequency analysis of hidrologye data with special application to rainfall intensities". Illinois, 1953.
- [27]. CHOW, VEN TE "Design charts for finding rainfall intensity frequency". Water and Sewage Works, 1952.
- [28]. CHOW, VEN TE "The log-probability law and its engineering applications". New York, 1954.
- [29] CHOW, VEN TE "On the determination of frequency factor in log-probability plotting". New York, 1955.
- [30]. DIRECCION GENERAL DE METEOROLOGIA DEL URUGUAY. Dirección de Climatología y Documentación. "Revista Meteorológica". Suplemento No. 3. "Las lluvias en el Uruguay". Montevideo, 1963.
- /31/. DIRECCION GENERAL DE METEOROLOGIA DEL URUGUAY. Dirección de Climatología y Documentación. "Revista Meteorológica". No. 54. "Estadísticas Climatológicas". Montevideo, 1965.
- [32]. DIRECCION DE HIDROGRAFIA. Ministerio de Transportes y Obras Públicas. Archivos e Informes Técnicos. Montevideo, 1979.
- [33]. DIRECCION DE SUELOS Y FERTILIZANTES. Ministerio de Agricultura y Pesca. "Carta Geológica del Uruguay". Montevideo, 1975.
- [34]. DISEÑO DE PRESAS PEQUEÑAS. U.S. Bureau of Reclamation.
- 1351. DURBIN J., WATSON G.S. "Testing for serial correlation in least squares regression". New York, 1950.
- [36]. DU CHAXEL "La lluvia en Dakar". París, 1950.
- [37]. ELIAS, FRANCISCO "Precipitaciones Máximas en España". Ministerio de Agricultura. Madrid, 1963.
- [38]. ELDERTON W. P. "Frequency Curves and Correlation". Cambridge University Press. Washington, 1953.
- [39]. EZEKIEL M., FOX K. A. "Methods of Correlation and Regression Analysis: Linear and Curvilinear". New York, 1959.

- [40]. EAGLESON P. S. "Dynamic Hydrology". New York, 1970.
- [41]. FAO "Drenaje de los sueldos pesados". Roma, 1971.
- [42]. FAO "Drenaje de suelos salinos". Roma, 1976.
- [43]. FAO "Los métodos de simulación en el aprovechamiento de los recursos hídricos". Roma, 1974.
- [44]. FAO "Pequeñas Obras Hidráulicas". Tomos 1 y 2. Roma, 1976.
- [45]. FAO "Mathematical models in hydrology". Roma, 1973.
- [46]. FAO "Drainage testing". Roma, 1975.
- [47]. FERGUSON D. S. "Irrigation and Drainage". U. S. Government Printing Office. Washington, 1968.
- [48]. FRETES V., COVONE R. "Pluviometría del Paraguay". Nápoles, 1978.
- [49]. FRETES V., COVONE R. "Posibilidades de regulación de las escorrentías superficiales en la cuenca del Río Monday". Nápoles, 1978.
- [50]. FISHER R. A., TIPPETT L. M. C. "Limiting forms of the frequency distribution of the largest and smallest member of a sample". "Contribution to mathematical statistics". Wiley N. Y., 1950.
- [51] GARCIA AGREDA R., VIPARELLI R. "Perfil esquemático del clima y de la hidrología de Bolivia". Roma, 1975.
- [52]. GUMBEL E. J. "Statistical theory of extreme values and some practical applications". New York, 1954.
- [53]. GUMBEL E. J. "Statistics of extremes". Columbia University Press. New York, 1958.
- /54/. GUMBEL E. J. "The return period of flood flows". New York, 1941.
- [55]. GUMBEL E. J. "Probability interpretation of the observed return periods of floods". New York, 1941.
- [56]. GUMBEL E. J. "Statistical control-curves for flood-discharges". New York, 1942.
- [57]. GUMBEL E. J. "On the plotting of flood discharges". New York, 1943.

- [58]. GUMBEL E. J. "Floods estimated by probability methods". New York, 1945.
- [59]. GUMBEL E. J. "Statistical theory of floods and droughts". New York, 1958.
- [60]. GUMBEL E. J. "The statistical forecast of floods". Columbus, Ohio, 1949.
- [61]. GIANONI A. "Precipitación Pluvial y Desagüe". Revista de Ingeniería. No. 7 (2a. Epoca). Montevideo, 1973.
- [62]. HERAS R. "Hidrología y Recursos Hidráulicos". Madrid, 1976.
- [63]. HALD A. "Statistical Theory with Enginnering Applications". New York, 1952.
- [64]. HALD A. "Statistical Tables and Formulas". New York, 1952.
- [65]. HERSHFIELD D. M. "Rainfall frequency atlas of the United States". New York, 1961.
- [66]. HATHAWAY G. A. "Military Airfields: design of drainage facilities". Washington, 1945.
- [67]. HARZA ENGINEERING COMPANY INTERNATIONAL Proyecto de Riego en la Cuenca del Río Tacuarembó. Montevideo, 1974.
- [68]. HOUK I. E. "Irrigation Engineering". New York, 1951.
- [69]. IPOLITO G. "Costruzioni Idrauliche". Nápoles, 1977.
- [70]. INSTITUTO GEOLOGICO DEL URUGUAY ING. E. TE-RRA AROCENA — Ministerio de Energía. Informes Técnicos. Montevideo, 1978.
- [71]. INGLIS C. C. "Modules and Semi-modules for Irrigation". Bombay Engineering Congress, 1921.
- [72]. ICOLD. International Comission of Large Dams. "Bulletins".
- [73]. LORBERG ARTEAGA J., RODRIGUEZ FONTAL A. "Distribución de las Lluvias Anuales sobre el Territorio Boliviano". Nápoles, 1978.
- [74]. LORBERG ARTEAGA J., RODRIGUEZ FONTAL A. "Curvas de Probabilidad Pluviométrica". Nápoles, 1978.
- [75]. LORBERG ARTEAGA J., RODRIGUEZ FONTAL A.—
 "Sobre la utilidad de incluir la instalación de una nueva

- red pluviométrica en el programa de pesquisas para el estudio de los recursos hídricos de un territorio". Nápoles, 1978.
- [76]. LINSLEY R. K., KOHLER M. A., PAULHUS J. L. H. "Applied Hydrology". New York, 1949.
- [77]. LUDIN A. "Aprovechamiento hidroeléctrico de la Cuenca del Río Negro (Uruguay)". Berlín, Montevideo, 1932.
- [78]. LOWERY M.D., NASH J. E. "A Comparison of Methods of Fitting the Double Exponential Distribution". Journal of Hydrology, 10.
- [79]. MATALAS N.C., BENSON M.A.— "Effect of Interstation Correlation on Regression Analysis". Journal of Geophysical Research, 1961.
- /807. MISES VON R. "The distribution of the largest of n values". Revue Math. l'Union Interbalcanique. Atenas, 1936.
- /81/. NOGUEIRA GARCEZ L. "Hidrología". São Paulo, 1974.
- [82]. PINTO, HOLTZ, MARTINS, GOMIDE "Hidrología Básica". São Paulo, 1976.
- [83]. OFICINA SANITARIA PANAMERICANA (O.P.S.) "Desarrollo de Recursos Hídricos". Facultad de Ingeniería. Montevideo, 1972.
- [84]. OFICINA SANITARIA PANAMERICANA (O.P.S.) "Aguas Superficiales y del Subsuelo". Facultad de Ingeniería. Montevideo, 1967.
- [85]. MORALES N. "Aprovechamiento Múltiple del Río Misicuni (Bolivia)". Nápoles, 1978.
- [86]. REMENIERAS G. "Tratado de Hidrología Aplicada". Barcelona, 1974.
- [87]. RODRIGUEZ FONTAL A. "Variación de la Permeabilidad en relación con la Profundidad en la Zona de El Pardo (Madrid)". Facultad de Ciencias. Universidad Complutense de Madrid. 1976.
- [88]. ROSSI F., PENTA A., RASULO G. "Adattabilità della prima legge asintotica del massimo valore all'analisi delle portate di piena". Firenze, 1972.


- [89]. ROSSI F., PENTA A. "Utilità del metodo della massima verosimiglianza per la stima dei valori estremi di una grandezza idrologica". Napoli, 1973.
- [90]. TREWARTHA ROBINSON "An Introduction to Climate". N. York, 1968.
- /917. SERVICIO GEOGRAFICO MILITAR. Carta Geográfica de Uruguay. Cartas Topográficas 1:50000. Montevideo, 1974.
- [92]. SERVICIO DE OCEANOGRAFIA, HIDROGRAFIA Y METEOROLOGIA DE LA ARMADA (SOHMA). Informes Técnicos. Montevideo, 1979.
- [93]. TERRA E. "Lluvias intensas en Montevideo". Revista de Ingeniería. 2a. Epoca. No. 23. Montevideo, 1977.
- [94]. VIPARELLI R. "Curve di probabilità pluviometriche nella città di Addis Adeba". Napoli, 1972.
- 1957. VIPARELLI R. "Correlazione tra afflussi e deflussi in un bacino impermeabile". Napoli, 1974.
- [96]. VIPARELLI C. —"Idrologia applicata all'ingegneria". Fondazione Politecnica per il Mezzogiorno d'Italia. Napoli, 1964.
- [97]. VIPARELLI C. "Corsi d'acqua naturali e leggi che ne regolano il modellamento". Napoli, 1972.
- 1987. VIPARELLI C. "Possibilità di regolazione dei deflussi di un corso d'acqua". Napoli, 1976.
- 1997. VIPARELLI C. "La interpretazione degli effetti di cento anni di bonifica del Candelaro". Padova, 1959.
- [7] VIPARELLI C., VIPARELLI M., VOLPE G. —"Opere di adduzione e rete di distribuzione per i terreni a valle della Diga di Farneto del Principe e connessa bonifica idraulica". Cosenza, 1977.

IMPRESO POR LA DIVISION PUBLICACIONES Y EDICIONES UNIVERSIDAD DE LA REPUBLICA

COMISION DEL PAPEL Esta publicación está amparada por el Art. 79 de la Ley 13.349

Depósito Legal 156,286

Abril 1981

DIRECCION GENERAL DE EXTENSION UNIVERSITARIA DIVISION PUBLICACIONES Y EDICIONES

MONTEVIDEO

URUGUAY

