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Universidad de la República. Uruguay

Heber Enrich

Instituto de Matemática
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Abstract. We study topological and ergodic properties of some almost hyperbolic
diffeomorphisms on two dimensional manifolds. Under generic conditions, diffeo-
morphisms obtained from Anosov by an isotopy pushing together the stable and

unstable manifolds to be tangent at a fixed point, are conjugate to Anosov. For a
finite codimension subset at the boundary of Anosov there exist a SRB measure and

an unique ergodic attractor.

1. Introduction.

We consider some C3 diffeomorphisms at the boundary of Anosov, inspired in
the examples of Lewowicz [18]. We first prove that they are topologically conju-
gate to Anosov (with a conjugation that is not necessarily Hölder nor absolutely
continuous). Second, we prove that such systems exhibit only one ergodic attrac-
tor, as in Palis’conjecture [29], although their stable and unstable foliations are
not C1 transversal and there is not a uniform separation between positive and
negative Lyapounov exponents. Also, they are examples with non-zero Lyapounov
exponents for Lebesgue almost all regular points, that have a SRB measure as in
Viana’s conjecture [38].

Let us consider a continuous map f : M 7→M on a compact manifold M and µ
an f -invariant probability measure on M . We call basin of attraction Y (µ) of µ to
the set of points S ∈M such that the averages of Dirac measures along the forward
orbit of S converge to µ in the weak* topology. An ergodic attractor, if it exists, is
an f -invariant set A ⊂ M that is the support of an ergodic probability µ, that we
call SRB measure, whose basin of attraction has positive Lebesgue measure.

Sinai, Ruelle and Bowen ([37], [5], [3], [35]), prove the existence and finitude of
ergodic attractors for uniformly hyperbolic systems. A crucial ingredient in their
constructions of ergodic attractors consists in proving the existence of a Gibbs
probability measure for f , that is a f -invariant probability for which conditional
measures along (strong) unstable manifolds are absolutely continuous with respect
to the Lebesgue measure.

Uniformly hyperbolic systems have a Gibbs measure. In [33] it is proved that
if a system has a Gibbs measure µ and if the Lyapounov exponents are non-zero
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almost everywhere, then there are (countable many) ergodic attractors. So, for
non-uniformly hyperbolic systems, the construction of Gibbs measures is a key step
to get ergodic attractors.

In [29] Palis proposes a route of research toward a general theory of dynamical
systems, looking for an answer to the following open questions: Do most systems
have ergodic attractors? Does Lebesgue almost all point belong to the basin of
attraction of an ergodic attractor? Palis conjectures that a dense class of systems
has finitely many ergodic attractors and that their basins of attractions have full
Lebesgue measure.

We focus our attention on Palis’ conjecture. One should try to extend the class
of dynamical systems for which an ergodic attractor is known to exist. Also, one
should try to understand how ergodic attractors persist or disappear when the
dynamical system is perturbed. Substantial progress in the study of the stability
of ergodic properties can be found in the work of Mañé ([24], [25]) and also in [12].

For one-dimensional maps the existence of SRB measures is known for some
non-hyperbolic maps ([15], [7], [22]). However, the existence of SRB measures in a
general non-hyperbolic setting in higher dimensions, remain mostly unknown. In
[38] Viana includes the conjecture which states that smooth maps with only non-
zero Lyapounov exponents for Lebesgue almost all points, admit SRB measures.
Progress in the knowledge of classes of systems with some kind of non-uniform
hyperbolicity or singularities is found in [31], [8], [1], [9], [6] and [2].

The diffeomorphisms we study in this paper are non uniformly hyperbolic ex-
amples in dimension two. We work with C3 diffeomorphisms at the boundary of
Anosov, that have stable and unstable manifolds of a fixed point, tangent at that
point. This is achieved pushing by an isotopy the stable and unstable eigenvalues
at the fixed point of an Anosov map in dimension two, to join in a double 1 (or in
a double −1), with non-diagonalizable derivative.

Both positive and negative Lyapounov exponents become zero at the fixed point
(and in a dense set of points). We still have a continuous invariant splitting of the
tangent bundle (in two one-dimensional sub-bundles), except in the non-hyperbolic
fixed point where stable and unstable directions collapse in the single eigendirection.
We assume that the unstable and stable cone fields still exist outside the fixed point,
but in a non-uniform hyperbolic sense: at all points except at the fixed point, the
cone fields close to transversal directions when iterating the map, but the angles
between stable and unstable directions are not uniformly bounded away from 0.
This is because at the fixed point the cone fields have a common direction to which
they close (non exponentially) when iterating the map.

The existence of the unstable and stable cone fields is equivalent to the existence
of an appropriate indefinite quadratic form in the tangent bundle, as was introduced
by Lewowicz in [17]. All along this work we use this characterization with quadratic
forms of almost hyperbolic maps.

We first prove some topological results in the part 1 of Theorem 1, based in
the arguments of [18] and [19]: generically, such diffeomorphisms are conjugate to
Anosov. The conjugation is only C0. As a consequence the stable and unstable
foliations of the Anosov diffeomorphisms still persist, but are only C0 foliations
(and not necessarily Hölder continuous). The existence of stable and unstable cone
fields produces C1-leaves of such foliations.

In the part 2 of Theorem 1, under some additional codimension-one hypothesis
(one coefficient of the Taylor development up to order three is zero) we prove that
there exist a Gibbs measure that is also a SRB measure µ, with non-zero Lyapounov
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exponents µ almost everywhere and Lebesgue almost everywhere, and that its basin
of attraction has full Lebesgue measure. Consequently, there exists a unique ergodic
attractor.

To obtain the Gibbs measure, we apply Sinai’s construction [37] for uniformly
hyperbolic systems: first take the forward iterates of a small rectangle R (using the
local product structure of stable and unstable foliations). Then define the measures
induced by fn from the volume of R. Finally choose a weak* limit of the average of
these measures. If the volume distortion is bounded when applying fn, this limit
invariant measure has chance to have absolutely continuous conditional measures
on unstable manifolds. In section 3 we estimate a bound of the volume distortion
for our examples. In [32] Pesin and Sinai develop a similar construction for partially
hyperbolic systems. Instead of considering the whole volume of a rectangle R, they
iterate a small unstable disk U , take its riemannian measure restricted to unstable
elements, and estimate a bound for unstable elements in backward iterates. We do
not have (a priori) a distortion bound of unstable lenghts for the diffeomorphisms
that we study in this work. Usual tools to obtain this bound are the Lipschitz or
Hölder continuity of the invariant foliations, that fail in our examples.

In some examples at the boundary of Anosov diffeomorphisms, the construction
in [32] still works. In [8] Carvalho weakens a stable subspace of a fixed point
of a n-dimensional Anosov diffeomorphism, but maintaining strong the unstable
space. She bounds distortion of backward iterates of unstable volume elements, to
conclude that there exists a SRB measure. In [9] a heteroclinic intersection of an
Anosov diffeomorphism is perturbed to obtain a cubic heteroclinic tangency. Also
the unstable distortion is bounded and the SRB measure persists. On the other
hand, in [14] the authors weaken the unstable direction of a fixed point of a two-
dimensional Anosov diffeomorphism, maintaining strong the stable direction. They
prove that the sum of unstable lengths of backward iterates is not bounded, that
it does not exist a SRB measure with positive Lyapounov exponents, and that the
non hyperbolic fixed point is the unique ergodic attractor. In [13] both unstable
and stable eigenvalues of an Anosov diffeomorphism in dimension two are weakened
together to a double one, in such a way that the derivative at the fixed point is the
identity. The author proves that under some conditions there exists a SRB measure
with positive Lyapounov exponentes, and under the complementary conditions, the
unique ergodic attractor is the non hyperbolic fixed point.

In this paper we weaken together the stable and unstable directions, to have a
double eigenvalue equal to one, with non-diagonalizable derivative. Some technical
difficulties arise. First, the angle between stable and unstable foliations accumulates
in zero, so there is not uniform transversality. Second, the weak invariant manifolds
are not C2 (although they are C1), so we are faced to study the tangency between
stable and unstable manifolds with other tools than the usual geometrical approach.
Third, the unstable foliation is not necessarily Hölder continuous, so we could not
compare lengths of unstable arcs of nearby points, to get a bound of the unstable
lenght distortion. Fourth, the Lyapounov exponents become zero in a dense set of
points.

To avoid the irregularity of the invariant foliations we approximate the unstable
local arcs with the leaves of other regular (of C3 class) but non-invariant foliation
Φ. We construct an invariant measure µ as in [37]. Then we apply the arguments
of [34] to locally decompose the measure along the partition that is generated by
the non-invariant foliation Φ. We use Ledrappier and Young characterization of
measures ([23]) and Brin-Katok formula for the metric entropy ([4]) to conclude
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that µ is a Gibbs measure. We then apply a theorem of Lewowicz, Lima de Sá
and Markarian ([21] and [27]) to show that Lyapounov exponents are non-zero µ-
almost everywhere. To construct the ergodic attractor we use the Pugh and Schub
arguments ([33]).

In Section 3 we show that the area distortion is bounded, under an additional
codimension-one hypothesis: we assume that certain coefficient of second order
in the Taylor development of the diffeomorphism around the non-hyperbolic fixed
point, is null. This hypothesis is verified in all the examples of almost hyperbolic
diffeomorphisms studied in [18]. It could be removed, (and also the whole Section
3), if instead we had, by other means, that the distortion of area when iterating the
diffeomorphism is bounded (for instance if the diffeomorphism is area preserving).

The diffeomorphisms we study are of two classes: first, the linear part at the fixed

point is of the form
(

1 a
0 1

)
with a 6= 0, or second, it is of the form

(
−1 a

0 −1

)
with a 6= 0.

Let us give some examples, taken from [18]: for t ∈ [0, 1] consider the family
given by

Ft(x, y) =
(

2x+ y − t

2π
[sin(2πx) cos2(πy)], x+ y − t

2π
[sin(2πx) cos2(πy)]

)
in the two dimensional torus [0, 1] × [0, 1]. For t = 1, we have a map in the first
class. An example in the second class is the following:

Ft(x, y) =
(
−2x− y +

t

2π
[sin(2πx) cos2(πy)], −x− y +

t

2π
[sin(2πx) cos2(πy)]

)
1.1. Statements of the results. To state the main theorem we begin by giving
some definitions (see 1.3 of [30]). Let M be a compact riemannian C∞ manifold,
of finite dimension, and f : M 7→M be a Cr diffeomorphism, with r ≥ 1.

Definition 1.1. The point S ∈M is regular for the diffeomorphism f if there exist
real numbers

χ1(S) > χ2(S) > . . . > χm(S)
(called Lyapounov exponents) and a decomposition

TSM = E1(S)⊕ E2(S)⊕ . . .⊕ Em(S)

such that
lim

i→±∞

1
i

log ‖Df i(S)v‖

exists and is equal to χj(S) for 0 6= v ∈ Ej(S) and 1 ≤ j ≤ m.

The theorem of Oseledec asserts that for any f -invariant measure µ, the set of
regular points has µ measure 1.

Definition 1.2. The Pesin region Σ is the set of regular points whose Lyapounov
exponents are not null.

Definition 1.3. The set

Wuu(S) =
{
S∗ ∈M : lim sup

i→∞

log dist (f−i(S), f−i(S∗))
i

< 0
}
,

is called the strong unstable manifold of f at S. For S a regular point Wuu(S)
is an immersed submanifold of M (possibly reduced to a point) tangent at S to
Euu(S) = ⊕χi>0Ei(S). (see [11], see also [30]).



SBR MEASURES OF ALMOST HYPERBOLIC DIFF. 5

Definition 1.4. We say that an f -invariant probability µ is a Gibbs measure if
its continuous conditional measures along strong unstable manifolds are absolutely
continuous with respect to Lebesgue measure.

Definition 1.5. An ergodic attractor for f (see [33]) is a f -invariant set A ⊂ M
with a f -invariant Borel probability µ (called SRB measure) on A such that for
some set Y ⊂ M with positive Lebesgue measure (called basin of attraction) : (i)
limi→∞ d(f i(S), A) = 0 for S ∈ Y , (ii) µ is f -ergodic, (iii) Lebesgue a.e. point
S ∈ Y is generic respect µ, that is, limi→∞

1
i

∑i−1
j=0 δfj(S) = µ in the weak*

topology, where δQ is the Dirac measure concentrated on Q.

Definition 1.6. We say that a map f : M 7→ M with an invariant probability
measure µ is Bernoulli if it is equivalent to a Bernoulli shift.

To state our result we need some other definitions and results.

Definition 1.7. A function B : TM 7→ R is a quadratic form if BP = B|TP M is a
quadratic form on the vector space TPM for each P ∈M .

Definition 1.8. A quadratic form B is non degenerate if for each P ∈ M , BP is
non-degenerate; B is positive definite (B > 0) if BP (v) > 0 for every v ∈ TPM ,
v 6= 0 and every P ∈M ; B is semipositive definite (B ≥ 0) if BP (v) ≥ 0 for every
v ∈ TPM and every P in M ; B is indefinite if for every P ∈ M there exist v and
w ∈ TPM such that BP (v) > 0 and BP (w) < 0.

If f is a diffeomorphism on M , and B is a quadratic form on TM , we will denote
f#(B) the quadratic form defined by f#(B)P (v) = Bf(P )(Df(P )(v)), P ∈ M ,
v ∈ TPM . Also we denote ∆f,B or simply ∆ to f#B −B.

Theorem 1.9 (Lewowicz). Let F : M 7→ M be a Cr diffeomorphism, r ≥ 1.
Then F is Anosov if and only if there exists a continuous non-degenerate indefinite
quadratic form B : TM 7→ R such that ∆F,B > 0.

Proof. See [18].

Remark 1.10. Due to the density of Ck functions in the set of C0 functions, it is
not restriction, in the former theorem, to write “Ck” instead “continuous”.

The non-degenerate indefinite quadratic form B implies the existence of two
cone fields (namely, U = {(P,v) : BP (v) ≥ 0} and S = {(P,v) : BP (v) ≤ 0}. The
condition ∆F,B ≥ 0 implies that U is forward invariant and S is backward invariant.
The main idea in the proof of the Theorem 1.9 is to show that when ∆F,B > 0
the invariant cone fields close, while the vectors in U grow, and the vectors in S
contract, with exponential rate uniformly bounded away from zero.

Definition 1.11. Let f : M 7→M be a Cr diffeomorphism, r ≥ 1. We say that f
is almost hyperbolic if there exists a continuous non-degenerate indefinite quadratic
form B : TM 7→ R such that ∆F,B > 0 except in a finite invariant subset M0 of M .

Observe that if f is almost hyperbolic, then ∆F,B ≥ 0 on M0.
To prove the existence of ergodic attractors (and SBR measures) of an almost

hyperbolic diffeomorphism, it is enough to construct a Gibbs measure µ such that
µ(M0) = 0, and then apply the following theorems:

Theorem 1.12 (Lewowicz, Lima de Sá, Markarian). Let f : M 7→ M be a Cr

diffeomorphism, r ≥ 1. Let µ any f-invariant probability measure, and B a non-
degenerate indefinite quadratic form such that ∆f,B > 0 µ almost everywhere. Then
the Lyapounov exponents for f are non zero µ almost everywhere.
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Proof. See Lemma 2 of the appendix of [27]. (See also [21]).

Theorem 1.13 (Pugh-Shub). If there exists a Gibbs measure µ such that the Lya-
pounov exponents are non-zero µ almost everywhere, then there exist (at most count-
ably many) ergodic attractors.

Proof. See [33].

We now state our result. Let M be a C∞ connected compact two dimen-
sional manifold. Let F : M 7→ M be an order preserving Anosov diffeomor-
phism. Therefore, M is homeomorphic to a two dimensional torus ([10] and [28]).
Let P0 be a fixed point, let B be a C3 quadratic form as in the theorem 1.9.
Our first goal is to obtain a good local chart in a neighborhood N1 of P0. We
integrate, in a neighborhood of P0, the two directions such that B = 0, ob-
taining two C3 local foliations. We construct a C3 local chart h1 around P0,
so that h1(P0) = (0, 0), that trivializes the two foliations and that B(x,y)(u, v)
has locally the expression (1 + 2dx + 2ey + h.o.t.)uv. Let us transform F to

f ∈ C3 by an isotopy such that Df(0, 0) =
(
λ a
0 λ

)
where λ is equal to 1

or −1. Let us denote the Taylor development of f around (0, 0) as f(x, y) =
(λx+ay+a10x

2 +2a11xy+a12y
2 + b10x

3 +3b11x2y+3b12xy2 + b13y
3 +h.o.t., λy+

a20x
2 + 2a21xy + a22y

2 + b20x
3 + 3b21x2y + 3b22xy2 + b23y

3 + h.o.t.).
We note that ∆f,B can not be positive definite at the fixed point P0. At this

point, and along the direction [(u, v)], the quadratic form ∆f,B is aλv2, so it is null
along the eigendirection [(1, 0)].

Theorem 1. 1. If ∆f,B > 0 except at the fixed point P0, a 6= 0 and b20 6= 0
then f is conjugate to an Anosov diffeomorphism.

2. If moreover λ = −1, or a10 = 0 and λ = 1, then there exists a unique
ergodic attractor whose basin of attraction has Lebesgue-measure 1 and the
corresponding SRB measure µ is a Gibbs measure. Besides, µ is Bernoulli,
and the Pesin region has µ-measure 1 and contains Lebesgue-almost all regular
points.

2. Topological properties.

We will prove Part 1 of Theorem 1. We need the following definition:

Definition 2.1. A C0 homeomorphism f on a compact riemannian manifold M is
expansive if there exists a constant α > 0 (called expansivity constant) such that,
if x and y are in M and if dist(fn(x), fn(y)) ≤ α for all integer n, then x = y.

In [19] are topologically classified the expansive homeomorphisms on compact
connected two-dimensional manifolds. In particular, it is proved the following the-
orem:

Theorem 2.2 (Lewowicz). If a homeomorphism f on the two-dimensional torus
is expansive, then it is conjugated to an Anosov diffeomorphism.

Proof. See Theorem 5.5 of [19]

As the two-dimensional manifold M is homeomorphic to the two-dimensional
torus, to prove Part 1 of Theorem 1 it is enough to prove that f is expansive. We
shall do that using a Lyapounov function.

The following ideas were obtained from [18]. In that article Lewowicz studies
the topological properties of diffeomorphisms in a n-dimensional compact manifold,
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introducing a rather more general concept of almost hyperbolicity than that of our
definition 1.11. That concept includes several assumptions; the most important of
them is the existence of a Lyapounov function. We will construct (Lemma 2.4) such
a function. Instead of showing that the other assumptions of [18] are also fulfilled
in our case, we found easier to reproduce some parts of his proofs, applied to our
simpler particular case.

Now, we need a technical lemma:

Lemma 2.3. The hypothesis in part 1. of Theorem 1 implies λa > 0, a20 = 0,
a21 = 0, and 0 < 3ab20 ≥ (a10 + d− λd)2.

Proof. We will develop the proof for λ = 1; the proof is similar with small changes
if λ = −1. We first write ∆(v) in the local chart; if P = (x, y), and v = (u, v), then
such expression is equal to v2(a+h.o.t.)+2uv[(a21+aa20+a10)x+(da+a22+aa21+
a11)y+ h.o.t.] +u2[2a20x+ 2a21y+ (3b20 + 4a10a20 + 4da20)x2 + 2(3b21 + 2a10a21 +
2da21 +2da20a+2ea20 +2a20a11)xy+(3b22 +4a11a21 +4daa21 +4ea21)y2 +h.o.t.].
Taking u = 0, we deduce that a > 0. If we now take v = 0, from the former
development and the fact that ∆ is positive definite, we obtain that a20 = a21 = 0.
The resulting expression is, then, ∆(v) = v2(a + h.o.t.) + 2uv[a10x + (ad + a22 +
a11)y + h.o.t.] + 3u2(b20x2 + 2b21xy + b22y

2 + h.o.t.); it must be positive definite.
Then

3a(b20x2 + 2b21xy + b22y
2) ≥ [a10x+ (ad+ a22 + a11)y]2(1)

for all (x, y). If we take y = 0 in (1), we obtain 3ab20 ≥ a2
10. As a > 0 and b20 6= 0

we deduce 3ab20 > 0, as wanted.

At most rescaling the horizontal direction with a positive factor, it is no restric-

tion to consider aλ = 1, that is Df(0, 0) =
(

1 1
0 1

)
or
(
−1 −1
0 −1

)
. After

the rescaling, the coefficient d of the quadratic form B, and some coefficients of
the Taylor development of f , will change, but the inequalities of Theorem 1 and
Lemma 2.3 are homogeneous in the rescaling factor and remain true.

In the proof of Lemma 2.7 we will apply Lemma 2.3 in the case a = λ = 1 and
use that 3b20 ≥ a2

10. In Lemmas 2.8 and 3.8 we will apply again Lemma 2.3 in the
case a = λ = 1 and a10 = 0, and use that b20 > 0. The conditions a20 = a21 = 0
are used all along this section and the following.

We write the quadratic form

∆(x,y)(u, v) = (f#B −B)(x,y)(u, v) = v2θ1(x, y) + 2uvθ2(x, y) + u2θ3(x, y)

where θ1, θ2 and θ3 are continuous real functions such that θ1(0, 0) = λa = 1 and
θ2(0, 0) = θ3(0, 0) = 0. As ∆(x,y) is positive definite for all (x, y) 6= (0, 0), we have
that

θ1θ3 − θ22 > 0

if (x, y) 6= (0, 0).

Lemma 2.4 (Existence of a Lyapounov function). In the hypothesis of Part 1 of
Theorem 1 there exists a continuous real function V defined in a neighborhood of
the diagonal of M × M , that is null in the diagonal, and such that V (P,Q) =
V (f(P ), f(Q))− V (P,Q) > 0 for all P 6= Q in some neighborhood of the diagonal
of M ×M .
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Proof. We will define a real function V and then show that it verifies the required
conditions. First, let us take a metric in M such that in a neighborhood of P0, the
local chart h1 be an isometry. Let us consider a finite family of local charts, h1,
h2, . . . hs with domains E1, . . . , Es. Let {ϕi} be a partition of unity subordinate
to {Ei} such that in a neighborhood of P0, ϕ1 = 1. Then, we define a metric in M
by 〈u, v〉P =

∑s
i=i ϕi(P )〈Dhiu,Dhiv〉hi(P ) for u, v ∈ TPM , where 〈, 〉hi(P ) is the

usual scalar product in R2.
Next, given (P,Q) in a neighborhood of the diagonal of M ×M , we call R the

middle point between P and Q, that is R = expP ((1/2) exp−1
P (Q)), and we define

V (P,Q) = BR(exp−1
R (P )). We shall prove that V (P,Q) = V (f(P ), f(Q))−V (P,Q)

is greater than 0 if P 6= Q are in some small neighborhood of the diagonal:
Let us see that for P 6= Q far from P0 (outside a small open neighborhood, say

N , of P0) the property follows from ∆ = f#B−B > 0. Call H = min{∆P (v), P ∈
M \N, v ∈ TP (M), ‖v‖ = 1} > 0. Call L to some Lipschitz constant for the diffeo-
morphism f . Call K = max{|BP (v)|, P ∈ M, v ∈ TP (M), ‖v‖ = 1} > 0. Given
P 6= Q in a neighborhood of the diagonal, call S = expf(P )((1/2) exp−1

f(P )(f(Q))),
v = exp−1

R (P ) and w = exp−1
S (f(P )). Call v̂ = exp−1

P (R) and ŵ = exp−1
f(P )(S).

The norms of v and v̂ (w and ŵ)are equal to half the distance between P and
Q (f(P ) and f(Q)). Write: V (P,Q) = BS(w) − BR(v) = BS(w) − Bf(P )(ŵ) +
Bf(P )(ŵ)−Bf(P )(dfP (v̂)) + ∆P (v̂) +BP (v̂)−BR(v) Then:

V (P,Q) ≥ ‖v‖2H−‖w‖2
∣∣BS(w/‖w‖)−Bf(P )(ŵ/‖w‖)

∣∣− ∣∣Bf(P )(ŵ − dfP (v̂))
∣∣−

−‖v‖2|BP (v̂/‖v‖)−BR(v/‖v‖)|
Now use that ‖w‖ ≤ L‖v‖. Observe that the difference of the continuous quadratic
form B in two different nearby points (applied to a unitary vector and to its parallel
transport), is as small as wanted if the two points are sufficiently near. Also, taking
the linear part dfP of f at P , observe that∥∥∥exp−1

f(P )(f(Q))− dfP exp−1
P (Q)

∥∥∥ /dist (P,Q) → 0

when dist (P,Q) → 0. So, there exists δ > 0 such that, if 0 < dist (P,Q) < δ and
P,Q 6∈ N , then:

V (P,Q) ≥ ‖v‖2H−‖v‖2L2H/(6L2)−‖v‖2 H

6K
K−‖v‖2H/6 = dist 2(P,Q)H/8 > 0

Now, let as prove that V (P,Q) > 0 for two different points P and Q in a
neighborhood of P0. We use the following notation: P = (x− u, y − v); Q =
(x+ u, y + v). It follows V (P,Q) = ρ(x, y)uv where ρ(x, y) is the C3 real function
ρ(x, y) = 1 + 2dx+ 2ey + h.o.t.

When applying f we obtain V (f(P ), f(Q)) = ρ(x̃, ỹ)ũṽ, where (x̃, ỹ) = [f(x −
u, y − v) + f(x+ u, y + v)]/2 and (ũ, ṽ) = [f(x+ u, y + v)− f(x− u, y − v)]/2.

We observe that x̃ and ỹ are C3 real functions of (x, y, u, v) that stay invariant
when changing the signs of u and v. So their odd derivatives respect to (u, v) on
u = 0, v = 0 are null. Also ũ and ṽ are C3 real functions that change sign when u
and v do, and so, their even derivatives are null.

We have

V (P,Q) = ρ(x̃, ỹ)ũṽ − ρ(f(x, y))ũṽ + ρ(f(x, y))(ũ− u′)ṽ+

+ρ(f(x, y))u′(ṽ − v′) + ∆(x,y)(u, v)

where (u′, v′) = Df(x,y)(u, v).
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Taking the Taylor developments on (u, v) around (0, 0), with fixed (x, y), up to
order two of ρ(x̃, ỹ)− ρ(f(x, y)), up to order one of ũ and ṽ and up to order three
of ũ− u′ and ṽ − v′, we obtain:

V (P,Q) = v2[u2γ1 + 2uvγ2 + v2γ3] + 2uv(u2γ4) + u2(u2γ5) + ∆(x,y)(u, v)

where {γi} is a set of continuous real functions on (x, y, u, v) such that γ5(0, 0, 0, 0) =
λb20 > 0.

Therefore:

V (P,Q) = v2[θ1(x, y)+u2γ1+2uvγ2+v2γ3]+2uv[θ2(x, y)+u2γ4]+u2[θ3(x, y)+u2γ5]

As θ1(0, 0) = 1 , θ2(0, 0) = 0 and θ3(0, 0) = 0, given any positive real number κ,
there exists a neighborhood N of (0, 0, 0, 0) such that V (P,Q) > 0 if (x, y, u, v) ∈ N
and |u| ≤ κ|v| 6= 0.

On the other hand, if |u| > κ|v|, the value of V (P,Q) is positive, for (x, y, u, v)
in a small neighborhood of (0, 0, 0, 0), because:

(θ3 + u2γ5)(θ1 + u2γ1 + 2uvγ2 + v2γ3)− (θ2 + u2γ4)2 ≥ θ3θ1 − θ22 + u2λb20/2 > 0

We now prove part 1. of Theorem 1.

Proof. Due to Theorem 2.2 it is enough to show that f is expansive. Take α > 0
such that V (P,Q) > 0 if 0 < dist(P,Q) ≤ α as in Lemma 2.4. By contradiction as-
sume that there exist two different points P and Q such that dist (fn(P ), fn(Q)) ≤
α for all integer n. Suppose V (P,Q) ≥ 0 (if not, substitute in the following argu-
ment f by f−1 and V by −V ). As V (fn(P ), fn(Q)) > 0 for all n ≥ 0, we have that
V (fn(P ), fn(Q)) is strictly increasing with n, and so, it is larger than some ε > 0
for all n ≥ 1. As V is continuous and null in the (compact) diagonal of M ×M ,
there exists δ > 0 such that dist (fn(P ), fn(Q)) ≥ δ for all n ≥ 1. Take K > 0
the minimum value of V in two different points whose distance is greater or equal
to δ and smaller or equal to α. Thus V (fn(P ), fn(Q)) ≥ (n − 1)K for all n ≥ 1
contradicting that V is bounded for all pairs of points whose distance is smaller or
equal than α.

This finishes the proof that f is expansive (with α an expansivity constant) and
so, f is conjugated to an Anosov diffeomorphism, as wanted.

Our next aim is to show that the stable and unstable topological manifolds for
f , (defined as the images by the conjugacy of the stable and unstable manifolds of
the Anosov diffeomorphism), are indeed C1 curves. We will also characterize their
tangent spaces at all points.

For any point P ∈M let

SP = {v ∈ TPM : B(Dfm(P )v) ≤ 0∀m ≥ 0}
UP = {v ∈ TPM : B(Dfm(P )v) ≥ 0∀m ≤ 0}

Corollary 2.5. There exist two continuous stable and unstable invariant foliations
for f , whose leaves respectively are:

W s(P ) = {Q : dist(fn(P ), fn(Q)) →n→+∞ 0}
Wu(P ) = {Q : dist(fn(P ), fn(Q)) →n→−∞ 0}

defined for all P in M . Each leaf of the foliations is C1. Besides, TPW
s(P ) = SP ,

TPW
u(P ) = UP , depend continuously on P , are transversal if P 6= P0 and coincide

to [(1, 0)] in P0.
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This corollary follows from the conjugation to Anosov and the following lemmas.
We took the idea of the proofs from [27], [18] and [21].

Lemma 2.6. Fixed a small neighborhood E of P0, there exist constants a > 0,
0 < b < 1, C1 > 0 and C2 > 0 such that:

1. If P 6∈ E and v ∈ TP (M), then ∆(v) ≥ aB(v).
2. If P 6∈ E and v ∈ SP , then ∆(v) ≥ −bB(v).

If P 6∈ E and v ∈ UP , then ∆(v) ≥ bB(v)
3. If P 6∈ E and v ∈ SP , then C1‖v‖2 ≤ −B(v) ≤ C2‖v‖2

If P 6∈ E and v ∈ UP , then C1‖v‖2 ≤ B(v) ≤ C2‖v‖2

4. If f ji(P ) 6∈ E for 0 = j0 < j1 < . . . < ji and v ∈ SP , or if f ji(P ) 6∈ E for
0 = j0 > j1 > . . . > ji and v ∈ UP , then

‖Df ji(v)‖ ≤ (C2/C1)1/2(1− b)i/2‖v‖

Proof. To prove [1.], take

a−1 = max{BP (v)/∆P (v), P ∈M \ E, v ∈ TP (M), ‖v‖ = 1}

The maximum exists and is positive because B and ∆ are continuous, ∆ is positive
definite and B is indefinite. As B and ∆ are homogenous on ‖v‖ the inequality [1.]
follows from the definition of a.

To prove the first assertion of [2.], define K = max{−BP (v)/∆P (v), P ∈ M \
E, v ∈ TP (M), ‖v‖ = 1, BP (v) ≤ 0, Bf(P )(dfP (v)) ≤ 0}. The set where
the maximum is taken is not empty, because f#B is indefinite, so there exists a
unitary vector v ∈ TP (M), such that Bf(P )(dfP (v)) ≤ 0, and , as ∆P > 0, we
have that such a vector verifies BP (v) < 0. Besides, in the set where the maximum
is taken (in particular if v is a unitary vector in SP ), 0 < −BP (v)/∆P (v) =
−BP (v)/(Bf(P )(dfP (v)) − BP (v)) ≥ 1. So K ≥ 1, and −BP (v) ≤ K∆P (v) ≤
b−1∆P (v) for any positive b < (1/K) ≤ 1.

To prove the second assertion of [2.], use the first assertion applied to f−1 instead
of f and −B instead of B.

To prove [3.] define C1 = min{|BP (v)|, P ∈ M \ E, v ∈ TP (M), ‖v‖ =
1, Bf(P )(dfP (v)) ≤ 0 or Bf−1(P )(df

−1
P (v)) ≥ 0}. The same arguments as before

show that C1 > 0, and |BP (v)| ≥ C1‖v‖2, if v ∈ SP ∪ UP . Analogously define C2

as the maximum of |BP (v)| in the same compact set of TM as before, concluding
that |BP (v)| ≤ C2‖v‖2, if v ∈ SP ∪ UP .

To prove [4.] observe that for any point Q in M (also in the neighborhood N)
and any vector u ∈ TQ(M), the inequality Bf(Q)DfQ(u) ≥ BQ(u) follows from
∆Q(u) ≥ 0. Consider v ∈ SP and apply [2.]: B(Df ji(v)) = B(Df ji−1(v)) +
∆fji−1(P )(Df ji−1(v)) ≥ (1 − b)B(Df ji−1(v)) ≥ (1 − b)B(Df ji−1(v)) ≥ (1 −
b)2B(Df ji−1−1(v)) ≥ . . . ≥ (1 − b)iB(v). Applying [3.] we conclude [4.]. A
similar proof stands for v ∈ UP .

Lemma 2.7. The subspaces SP and UP are one-dimensional, they depend contin-
uously on P and if P 6= P0, TPM = SP ⊕ UP while SP0 = UP0 = [(1, 0)].

Proof. At each point P of M , we consider G1(TPM), the Grassmanian manifold
of the subspaces of dimension 1 in TPM . When P varies we obtain the manifold
G1(TM); it is a compact manifold.

We fix P ∈M . For n ≥ 0, let us choose

Hn ∈ G1(Tfn(P )M)
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such that for
0 6= v ∈ Hn

Bfn(P )(v) < 0. Let us take a convergent subsequence

Df−nj (fnj (P ))Hnj
∈ G1(TPM)

to, say, H∞. Since ∆ > 0, for any m ≥ 0 and

0 6= u ∈ Df−m(fn(P ))Hn ∈ G1(Tfn−m(P )M)

we have B(u) < 0. Then with m ≥ 0 fixed,

lim
j→∞

Dfm−nj (fnj (P ))Hnj
= Dfm(P )H∞

and so, for any 0 6= v ∈ H∞, we deduce that B(Dfm(P )v) ≤ 0 for any m ≥ 0;
this proves that SP contains the one dimensional subspace H∞. We will prove that
SP = H∞.

We first claim that for any P ∈M there exists a direction H∗ ∈ TPM such that
for 0 6= v ∈ H∗, lim supj→∞∆(Df j(v)) > 0. First, we prove that the property
is verified for points that are not in the global stable curve W s(P0) of P0. For
such a point P , fixed a small open neighborhood E of P0, there exists an increas-
ing sequence of natural numbers ji such that f ji(P ) 6∈ E. (This is a topological
characterization of the complement of W s(P0), inherited from the Anosov diffeo-
morphism to which f is conjugated). Take a > 0 as in Lemma 2.6. Therefore
∆(Df ji(v)) ≥ aB(Df ji(v)) ≥ aB(v). Choosing v ∈ TPM such that B(v) > 0,
the claim is proved if P 6∈ W s(P0). We are left to prove the same property for a
point P = (x0, y0) that stay forever in the future in a suitable neighborhood E of
P0 = (0, 0). We show the computations with λ = 1. (When λ = −1 we should take
f2 instead of f and observe that ∆f2,B = f#∆f,B + ∆f,B , so ∆f2,B(Df2jv) → 0
if and only if ∆f,B(Df jv) → 0 ). Let us compute the image of the graphic of
y = αx2. It is another curve with the same value of the first and second deriva-
tives than y = αx2 at (0, 0), but its third derivative is −12α2 − 12αa10 + 6b20.
Therefore, if α is large enough, the graphic of the invariant local manifolds lies,
in a neighborhood E of (0, 0), in the region {(x, y) ∈ R2; −αx2 ≤ y ≤ αx2}.
(The equalities are only verified for the fixed point P0 = (0, 0)). We denote
(xj , yj) = f j(x0, y0) and choose v0 = (u0, v0) ∈ T(x0,y0)M , such that u0 > 0,
v0 > 0. Denoting vj = (uj , vj) = Df j(u0, v0) ∈ T(xj ,yj)M , we observe that
uj > 0, vj > 0 for all j ∈ IN . (In fact, the derivative of f in E is close to the
derivative at (0, 0), so uj+1 > (uj + vj)/2 if uj > 0 and vj > 0. Therefore, if uj+1

were not positive, for the minimum j, we should have vj ≤ 0, uj > 0, contradicting
that B(vj) = (1+dxj +eyj +h.o.t.)ujvj ≥ B(v0) > 0.) Let us finish now the proof
of the claim. By contradiction, let us suppose that limj→∞∆(vj) = 0. Using that
−αx2

j ≤ yj ≤ αx2
j we write ∆(vj) = (vj + ujxja10)2 + u2

jx
2
j (3b20 − a2

10) + h.o.t..
Due to Lemma 2.3 we have 3b20 − a2

10 ≥ 0 and then lim vj = 0. As B(vj) =
(1 + dxj + eyj + h.o.t.)ujvj is increasing and positive, we have that uj j→∞ → +∞
and 3b20uj − 3|b21|vj > 8|a22|vjα for all sufficiently large j ∈ IN . We now compute
vj+1 − vj = (3b20uj + 3b21vj)x2

j + 2a22vjyj + h.o.t. ≥ (3b20uj − 3|b21|vj)x2
j/2 −

4|a22|vj |yj | ≥ 4|a22|vj(αx2
j − |yj |) ≥ 0. We have the contradiction vj+1 ≥ vj > 0

and vj → 0, ending the proof of the claim.
Let us prove now that SP = H∞. (We already know that H∞ ⊂ SP .) By

contradiction, let us suppose that there exists v1 ∈ SP , v1 6∈ H∞. Let us take
v2 ∈ H∞ ⊂ SP such that v1 + v2 ∈ H∗. Now use that

√
∆(Dfn(v1 + v2)) ≤
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∆(Dfn(v1))+

√
∆(Dfn(v2)). The contradiction follows taking lim supn→∞ and

observing that 4(Dfn(v)) → 0 for all v ∈ SP due to the definition of SP .
In order to prove the continuity of SP we take Qn → P in M and prove that

SQn
→ SP in G1(TM). Let us choose any subsequence of SQn

convergent to some
S in G1(TPM). For any m ≥ 0 we have B(Dfm(Qn)vn) ≤ 0 for vn ∈ SQn

. Taking
n → +∞, as B is continuous, B(Dfm(P )v) ≤ 0 if v ∈ S. Therefore v ∈ SP , that
is S = SP . The same considerations with f−1 instead of f show that UP is a one
dimensional continuous field of directions.

Since f increases the values of BP (v) if P 6= P0 and v 6= 0, then SP

⋂
UP = [0].

On the other hand [(1, 0)] ⊂ SP0

⋃
UP0 and both subspaces are one-dimensional, so

they both coincide in P0 with [(1, 0)].

We now end the proof of the corollary 2.5.

Proof. We prove it for the stable foliation; the same ideas work for the unstable
foliation. Let us take P 6∈ W s

P0
. We can locally integrate the directions SP , and

take any solution through P . We first claim that the lower limit of the lengths of
positive iterates of this curve goes to 0. Fix E a small neighborhood of P0, and
take 0 < b < 1 and C = (C2/C1)1/2 as in Lemma 2.6. Defining an increasing
sequence {ji}i such that f ji(P ) 6∈ E, it is verified ‖Df ji(v)‖ ≤ C(1−b)i/2‖Df j0v‖
for v ∈ SP , P 6∈W s

P0
. Therefore, the claim is proved. Recalling the conjugation to

Anosov, the integral curve has to be on the stable manifold through P 6∈W s
P0

.
Finally, let us suppose that P is on the stable manifold of P0. The conjugation

to Anosov and the C0-density of the leaves of the stable foliation which are not in
the stable manifold of P0 imply the local unicity of the curve obtained integrating
SP and that this curve is W s(P ).

We are left to prove the second part of Theorem 1. We will see first the case λ = 1
and a10 = 0.

Lemma 2.8. If λ = 1 and a10 = 0 then there exists a C3 local chart (ξ, η) defined
in a neighborhood of P0 such that f can be written (ξ + η + ε(ξ, η), η + ε(ξ, η))
where the coefficients of ξ2 and ξη in the Taylor development of ε are 0, the co-
efficient of ξ3 is b20 > 0, and the function V ∗((ξ1, η1), (ξ2, η2)) = (η2 − η1)(ξ2 −
ξ1 − η2 + η1), in a neighborhood of ((0, 0), (0, 0)), verifies V

∗
((ξ1, η1), (ξ2, η2)) =

V ∗(f(ξ1, η1), f(ξ2, η2))− V ∗((ξ1, η1), (ξ2, η2)) > 0 if (ξ1, η1) 6= (ξ2, η2).

Proof. In N1 we use the following notation: f(x, y) = (x+y+ε1(x, y), y+ε2(x, y)).
Let us take a change of coordinates: (ξ, η) = (x+ϕ(x, y), y+ψ(x, y)) = h(x, y), with
ϕ and ψ functions, to be chosen, whose first order partial derivatives are equal to
zero. We want the diffeomorphism f to be, in the new coordinates, (ξ+η+ε(ξ, η), η+
ε(ξ, η)). So, ϕ(x, y) + ψ(x, y) + ε(ξ, η) = ε1(x, y) + ϕ ◦ f(x, y); ψ(x, y) + ε(ξ, η) =
ε2(x, y) + ψ ◦ f(x, y), obtaining that ψ(x, y) = (ε1 − ε2 − ϕ) ◦ f−1(x, y) + ϕ(x, y)
and ε(ξ, η) = (ϕ+ε2−ε1)◦f−1 ◦h−1(ξ, η)+(ε1−2ϕ)◦h−1(ξ, η)+ϕ◦f ◦h−1(ξ, η).
Let us take ϕ(x, y) = d10x

3, where d10 is defined by 6d10 = 8a2
11 + 6a11a22 + a2

22 +
(3/b20)(b10 + b21)2 − 3b10 − 6b11 − 3b22 + 1. After some computations, we obtain
ε(ξ, η) = (2a11 + a22)η2 + b20ξ

3 + 3(b10 + b21 − b20)ξ2η + (1 + (3/b20)(b10 + b21 −
b20)2 +(2a11 +a22)2)ξη2 +β13η

3 +h.o.t., where β13 is a real number. We are left to
prove that the function V ∗ verifies the thesis of the lemma. Defining u = ξ2 − ξ1,
v = η2−η1 we can write V

∗
((ξ1, η1), (ξ2, η2)) = v2(1+h.o.t.)+uv[2(2a11 +a22)η1 +

h.o.t.]+u2[3b20ξ21 +(1+(3/b20)(b10 +b21−b20)2 +(2a11 +a22)2)η2
1 +b20u

2 +6(b10 +
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b21 − b20)ξ1η1 + 3b20ξ1u + 3(b10 + b21 − b20)η1u + h.o.t.]. If |u| < α|v|, for certain
small positive number α, then V ∗ is positive. To end the proof of the lemma it is
enough to verify that the discriminant is negative if u 6= 0. Thus we shall prove
that 3b20ξ21 + (1 + (3/b20)(b10 + b21 − b20)2)η2

1 + b20u
2 + 6(b10 + b21 − b20)ξ1η1 +

3b20ξ1u+ 3(b10 + b21 − b20)η1u > 0, if u 6= 0. This is a quadratic form in u, ξ1, η1
which is positive definite because b20 > 0.

In what follows, we will work with the local charts of the thesis of the former
lemma; for convenience we write x instead ξ and y instead η.

3. Distortion estimates.

Let J (P ) be the Jacobian of f at P , i.e. J (P ) is the determinant of Df(P ).
Our first purpose in this section is to prove that meanwhile the iterates from 0 to
n of two points visit a small neighborhood N of the origin, the difference of the
Jacobians of fn at these two points is Hölder dependent on the distance between
them, with Hölder constant that does not depend on n; this is the content of the
proposition 3.3. Then we use that result to prove a global result: there exists H
such that 1/H ≤

∏k
j=1 J (f−j(P ))/J (f−j(Q)) ≤ H for any two points P , Q that

maintain close during k iterates, this is the proposition 3.12

Remark 3.1. As f is conjugate to Anosov, it follows that it has a local product
structure, i.e., there exists 0 < γ such that if 0 < β < γ there exists 0 < α = α(β)
verifying that for all P, Q ∈ M with dist (P,Q) ≤ α, [P,Q] := W s

β(P )
⋂
Wu

β (Q)
contains exactly one point. Here W s

β(P ) = {Q ∈ M : dist (fn(P ), fn(Q)) ≤
β ∀n ≥ 0} ⊂W s(P ); similarly Wu

β (Q) ⊂Wu(Q).

Definition 3.2. A rectangle R is a set in M such that P,Q ∈ R implies ∅ 6=
[P,Q] ∈ R.

Proposition 3.3 (Local Bounded Area Distortion). Let N be a sufficiently small
rectangle which is a neighborhood of the origin where f has the form of lemma 2.8,
we denote D1 = f(N)

⋂
f−1(N) ⊂ N .

There exists a positive constant C (that does not depend on P , Q or n) such that,
if P ∈ M , Q ∈ W s

β(P )
⋃
Wu

β (P ) and f i(P ) and f i(Q) are in D1 for 0 ≤ i ≤ n,
then ∣∣∣∣∣log

n∏
i=0

J (f i(P ))
J (f i(Q))

∣∣∣∣∣ ≤ Cd1/3

where d = max{dist(P,Q), dist(fn(P ), fn(Q))}.

To prove this proposition we need the following definition and lemmas:
We say that a curve in N is strictly increasing if for two points (x1, y1) and

(x2, y2) in the curve, x1 < x2 if and only if y1 < y2. Analogously, we say that the
curve is strictly decreasing when x1 < x2 if and only if y1 > y2.

Lemma 3.4. The local unstable manifold of the fixed point (0, 0) is a strictly in-
creasing curve and the local stable manifold is strictly decreasing. The images by
f of the horizontal lines y = y1 in a neighborhood of (0, 0) are strictly increasing
curves, and the preimages, strictly decreasing curves.

Proof. The diffeomorphism f has the local form f(x, y) = (x+y+ε(x, y), y+ε(x, y)).
Observe that for x1 6= x2,

0 < V
∗
((x1, y), (x2, y)) = (x1 − x2)(ε(x1, y)− ε(x2, y))
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Therefore, the image by f of any line y = y1 is strictly increasing. On the other
hand, the image by f of the vertical line x = x1 is the line x− y = x1, and so it is
also strictly increasing.

As vertical and horizontal lines are transformed by f in strictly increasing curves,
we deduce that their preimages are strictly decreasing.

If two different points (x1, y1) and (x2, y2) belong to the local unstable manifold
of (0, 0) then

V ∗−n = V ∗(f−n(x1, y1), f−n(x2, y2)) →n→∞ 0
By Lemma 2.8 V ∗−n is strictly decreasing with n, so 0 < V ∗0 = (y2−y1)(x2−x1−y2+
y1). This shows that y1 < y2 if and only if x1 < x2 proving that the local unstable
manifold of (0, 0) is strictly increasing. The same arguments applied to f−1 instead
of f show that for (x1, y1) and (x2, y2) in the local stable manifold of (0, 0), 0 > V ∗0 =
(y2−y1)(x2−x1−y2 +y1) and 0 > V ∗1 == (y2−y1 +ε(x2, y2)−ε(x1, y1))(x2−x1),
so y1 > y2 if and only if x1 < x2 proving that the local stable manifold of (0, 0) is
strictly decreasing.

We denote P = (x0, y0) a point in D1, and (xn, yn) = fn(x0, y0) for n such that
f i(P ) ∈ N for all i = −1, 0, 1, . . . , n+ 1.

Let us consider the stable and unstable local curves of (0, 0); they divide N in
four open connected components. We call Nj , with j = 1, 2, 3, 4 to these connected
components. Due to lemma 3.4, the four connected components Nj can be charac-
terized by the following property: In N1 the abscise x is always positive, in N2 the
ordinate y is always positive, in N3 the abscise x is always negative, and in N4 the
ordinate y is always negative.

Lemma 3.5. If (x0, y0) ∈ N1∪N3 then {xi}i=1,2,... ,n has constant sign with i, and
{yi}i=1,2,... ,n is monotone with i.

If (x0, y0) ∈ N2∪N4 then {yi}i=1,2,... ,n has constant sign with i, and {xi}i=1,2,... ,n

is monotone with i.

Proof. By lemma 3.4 {xi}i and {yi}i are both monotone with i for points in
Wu

loc(0, 0) or in W s
loc(0, 0).

Let us prove that in N1 the ordinates yi of iterates of (x0, y0) are increasing with
i. The horizontal curve y = y0 intersects the boundary of N1 at a point (x̃0, y0)
of the stable or unstable curves of (0, 0). We have that f(x̃0, y0) = (x̃1, ỹ1) with
ỹ1 ≥ y0. As the image by f of the horizontal curve y = y0 is strictly increasing,
then y1 > ỹ1 ≥ y0 as asserted.

To prove that in N2 the abscises {xi}i are increasing, observe that xi+1 − xi =
yi+1 > 0.

The monotony of {yi}i in N3 and of {xi}i in N4 are proved analogously.

In the following statements C denotes a sufficiently large real positive constant
that is independent of n or (x0, y0).

Lemma 3.6.
∑n−1

i=0 |yi| ≤ C

Proof. Considering the form of f we have:

xi+1 = xi + yi + ε(xi, yi)
yi+1 = yi + ε(xi, yi)

Then xi+1 − xi = yi+1 and the sum
∑n−1

i=0 yi is telescopic, so it is bounded.
The bound of the thesis is obtained from the former bound, because either yi has
constant sign with i or it is monotone with i.
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Let k ∈ {0, 1, 2, . . . , n− 1} be such that |yk| = min{|yi| : i = 0, 1, 2, . . . , n− 1}.
For each i ∈ {0, 1, 2, . . . , n − 1} denote r(i) the natural number equal to i + 1 if
0 ≤ i ≤ k − 1 and equal to n− i if k ≤ i ≤ n− 1.

Lemma 3.7. 1. |
∑n−1

i=0 r(i)ε(xi, yi)| ≤ C.

2.
∑n−1

i=0 r(i)y
2
i ≤ C if (x0, y0) ∈ N1 ∪N3.

Proof. We first prove∣∣∣∣∣
k−1∑
m=0

k−1∑
i=m

ε(xi, yi) +
n−1∑
m=k

m∑
i=k

ε(xi, yi)

∣∣∣∣∣ ≤ C(2)

The sum of ε(xi, yi) is telescopic:
∑k−1

i=m ε(xi, yi) = yk − ym if 0 ≤ m ≤ k − 1
and

∑m
i=k ε(xi, yi) = ym+1 − yk if k ≤ m ≤ n − 1. On the other hand, the sum

of yi is also telescopic because yi+1 = xi+1 − xi so
∑k−1

m=0(−ym) +
∑n−1

m=k ym+1 =
−xk−1 +x−1 +xn−xk is bounded. To prove (2), it is enough to show that n|yk| is
bounded. Let us prove that n|yk| ≤

∑n−1
i=0 |yi| and apply the lemma 3.6. If not, as

|yk| is a minimum, we would have that |yi| >
∑n−1

i=0 |yi|/n for all i = 0, . . . , n − 1
which is a contradiction.

To prove 1., we observe that r(i) is the number of times that each ε(xi, yi)
appears in the sum (2).

To prove 2., let us take C such that
∑n−1

i=0 |yi| ≤ C. We assert that |yi| ≤ C/r(i)
if (x0, y0) ∈ N1 ∪N3. If not, there would exist n0 such that |yn0 | > C/r(n0). As yi

is monotone, we have that |yi| > C/r(n0) for all i between 0 and n0, (if n0 < k) or
between n0 and n−1 (if n0 ≥ k). In the first case

∑n0
i=0 |yi| > C(n0 +1)/r(n0) = C

contradicting the choice of C. In the second case we obtain the same contradiction:∑n−1
i=n0

|yi| > C(n − n0)/r(n0) = C. Let us prove 2. The sum of |yi| is bounded,
and r(i)|yi| is also bounded. So the sum of r(i)y2

i is bounded.

Due to lemma 2.8 we can use the following notation: ε(x, y) = b20x
3 + o3(x) +

yO2(x)+ y2α(x, y), where b20 is positive, o3 is a function of order greater than 3 in
x, O2(x) is a function of order at least 2 in x, and α(x, y) is some C1 function.

We define x−4/3O2(x) = 0 for x = 0 and x−4/3o3(x) = 0 for x = 0.

Lemma 3.8. If (x0, y0) ∈ N1 ∪N3, then
n−1∑
i=0

∣∣∣x5/3
i

∣∣∣ ≤ C

Proof. As ε(xi, yi) = yi+1 − yi and yi is monotone then ε(xi, yi) has constant
sign. Combining the expression of ε with the results of lemma 3.7, we obtain that∑n−1

i=0 r(i)
∣∣b20x3

i + o3(xi) + yiO2(xi)
∣∣ is bounded. We will consider

n−1∑
i=0

∣∣∣b20x5/3
i + x

−4/3
i o3(xi) + yix

−4/3
i O2(xi)

∣∣∣
Let us define I as the set of indexes i for which

∣∣∣x4/3
i

∣∣∣ ≥ 1/r(i) and J the comple-
mentary set in {0, 1, 2, . . . , n− 1}.

First taking the terms for i ∈ I:∑
i∈I

∣∣∣b20x5/3
i + x

−4/3
i o3(xi) + yix

−4/3
i O2(xi)

∣∣∣ ≤
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≤
∑
i∈I

r(i)|xi|4/3
∣∣∣b20x5/3

i + x
−4/3
i o3(xi) + yix

−4/3
i O2(xi)

∣∣∣ =
=
∑
i∈I

r(i)
∣∣b20x3

i + o3(xi) + yiO2(xi)
∣∣ ≤ C

Second, taking the terms for i ∈ J , and using that b20 > 0:∑
i∈J

∣∣∣b20x5/3
i + x

−4/3
i o3(xi) + yix

−4/3
i O2(xi)

∣∣∣ ≤
≤
∑
i∈J

2b20|xi|5/3 +
∑
i∈J

|yi||x−4/3
i O2(xi)| ≤

∑
i∈J

2b20

(
1
r(i)

)5/4

+ C
∑
i∈J

|yi|

But

2
∑
i∈J

b20

(
1
r(i)

)5/4

≤ 2b20
k−1∑
i=0

(
1

i+ 1

)5/4

+ 2b20
n−1∑
i=k

(
1

n− i

)5/4

≤

≤ 4b20
∞∑

j=1

1/j5/4 ≤ C

Also the sum of |yi| is bounded, proving that
n−1∑
i=0

|b20x5/3
i + x

−4/3
i o3(xi) + yix

−4/3O2(x)| ≤ C

To prove the lemma, see that, due to the fact that b20 > 0,∣∣∣b20x5/3
i

∣∣∣ ≤ 2|b20x5/3
i + x

−4/3
i o3(xi)| ≤

≤ 2
∣∣∣b20x5/3

i + x
−4/3
i o3(xi) + yix

−4/3
i O2(xi)

∣∣∣+ 2
∣∣∣yix

−4/3
i O2(xi)

∣∣∣
The sum of both terms at right are bounded, so the sum of the term at left also is.

We denote P = (x0, y0), Q = (x̃0, ỹ0) two points in D1, (xn, yn) = fn(x0, y0)
and (x̃n, ỹn) = fn(x̃0, ỹ0) for n such that f i(P ) ∈ N and f i(Q) ∈ N for all i =
−1, 0, 1, . . . , n+ 1. Denote δ = 2max{|x0 − x̃0|, |xn − x̃n|}.

Lemma 3.9. If |ỹi − yi| < |x̃i − xi| for 0 ≤ i ≤ n, then |x̃i − xi| ≤ 2δ, x̃i − xi has
constant sign with i for 0 ≤ i ≤ n, and

∑n
i=0 |ỹi − yi| ≤ 2δ.

Proof. The local expression of f implies that x̃i+1 − xi+1 − yi+1 + ỹi+1 = x̃i − xi.
The sign at left is the sign of x̃i+1 − xi+1, because |ỹi+1 − yi+1| < |x̃i+1 − xi+1|.
Thus, the sign of x̃i − xi is constant with i. Let us suppose that x̃0 > x0. We have
that x̃i > xi for 0 ≤ i ≤ n.

Consider V ∗i = V ∗((xi, yi), (x̃i, ỹi)) = (ỹi − yi)(x̃i − xi − ỹi + yi). By Lemma 2.8
V ∗i is strictly increasing with i. Therefore, there exists j0 ∈ {0, 1, . . . , n} such that
V ∗i > 0 (so ỹi > yi) if j0 < i ≤ n; and V ∗i ≤ 0 (so ỹi ≤ yi) if 1 ≤ i ≤ j0.

Then
∑n

i=1 |ỹi − yi| =
∑j0

i=1(−ỹi + yi) +
∑n

i=j0+1(ỹi − yi) = xj0 − x̃j0 + x̃0 −
x0 + x̃n − xn + xj0 − x̃j0 < x̃0− x0 + x̃n − xn ≤ δ (We used that x̃j0 > xj0 , and the
convention

∑0
1 = 0 ). Now,

∑n
i=0 |ỹi − yi| ≤ |ỹ0 − y0|+ δ ≤ 2δ.

To end the proof observe that 0 < x̃i − xi = x̃0 − x0 +
∑i

j=1(ỹj − yj) < |x̃0 −
x0|+ δ ≤ 2δ
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Lemma 3.10. If (x0, y0) ∈ N then
n−1∑
i=0

∣∣∣x5/3
i

∣∣∣ ≤ C

Proof. The lemma 3.8 states the thesis if (x0, y0) ∈ N1 ∪N3. So it is left to prove
this lemma when (x0, y0) ∈ N2 ∪N4.

Take the point (x0, y0) in the local stable manifold of (0, 0), and (x̂0, y0) in
the local unstable manifold of (0, 0). Suppose x0 < x0 < x̂0. Call (xi, yi) =
f i(x0, y0), (x̂i, ŷi) = f i(x̂0, y0). As V̂ ∗i = V ∗((xi, yi), (x̂i, ŷi)) = (ŷi − yi)(x̂i −
xi + yi − ŷi) is strictly increasing with i (because of Lemma 2.8), and V̂ ∗0 = 0, we
have that V̂ ∗i > 0 for 1 ≤ i ≤ n + 1, so |ŷi − yi| < |x̂i − xi| for 0 ≤ i ≤ n + 1. By
Lemma 3.9 x̂i−xi has constant sign with i, and analogously for xi−xi. Therefore
xi < xi < x̂i for 0 ≤ i ≤ n− 1. By Lemma 3.8 the sums of |xi|5/3 and of |x̂i|5/3 are
bounded, so the same holds for the sum of |xi|5/3 as wanted.

Proof. (Proposition 3.3):
Let us prove the thesis when the given two different points are in the same stable

arc; a similar proof holds when they are in the same unstable arc. The map f is a
diffeomorphism, so J (P ) is bounded away from zero.∣∣∣∣∣log

n−1∏
i=0

J (f i(P ))
J (f i(Q))

∣∣∣∣∣ =
∣∣∣∣∣
n−1∑
i=0

logJ (f i(P ))− logJ (f i(Q))

∣∣∣∣∣ ≤
≤ C

n−1∑
i=0

|J (f i(P ))− J (f i(Q))|

In the local chart of lemma 2.8, we denote P = (x0, y0) 6= Q = (x̃0, ỹ0) and
f i(P ) = (xi, yi), f i(Q) = (x̃i, ỹi). As f(x, y) = (x + y + ε(x, y), y + ε(x, y)) it
follows J (P ) = 1 + εy(x, y), where εy denotes the partial derivative of ε respect to
y. It is enough to show that

n−1∑
i=0

|εy(xi, yi)− εy(x̃i, ỹi)| ≤ Cd1/3

We denote ∆i = |εy(xi, yi)− εy(x̃i, ỹi)|. We have:

∆i ≤ |xi− x̃i|
∫ 1

0

|εyx(xi +λ(x̃i−xi), ỹi)| dλ+ |ỹi−yi|
∫ 1

0

|εyy(xi, yi +λ(ỹi−yi))| dλ

As εyx(0, 0) = 0 and ε are of C3 class, there exists some constant C > 0 such
that:

∆i ≤ C |x̃i − xi| (|x̃i|+ |xi|+ |ỹi|) + C|yi − ỹi|
After Lemma 3.6 the sum of |ỹi| is bounded. The points, (xi.yi) and (x̃i, ỹi) are

in the same local stable arc, and in a sufficiently small neighborhood of the origin.
As the stable arcs are C1 curves, whose tangent subspaces vary continuously, and
at the origin the tangent stable subspace is [(1, 0)], we have that |ỹi−yi| < |x̃i−xi|
and we can apply Lemma 3.9.

We obtain
∑n−1

i=0 ∆i ≤ C
∑n−1

i=0 |x̃i − xi|(|x̃i|+ |xi|) +Cδ (for a sufficiently large
constant C > 0). To end the proof it is enough to show that

∑n−1
i=0 |x̃i − xi|(|x̃i|+

|xi|) ≤ Cδ1/3
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We write
n−1∑
i=0

|x̃i − xi|(|x̃i|+ |xi|) ≤
n−1∑
i=0

|x̃i − xi|1/3(|x̃i|+ |xi|)5/3 ≤ (2δ)1/3
n−1∑
i=0

(|x̃i|+ |xi|)5/3

The triangular property and Lemma 3.10 imply that(
n−1∑
i=0

(|xi|+ |x̃i|)5/3

)3/5

≤

(
n−1∑
i=0

|xi|5/3

)3/5

+

(
n−1∑
i=0

|x̃i|5/3

)3/5

≤ C

ending the proof.

We will look for global distortion estimates in the hypothesis of Theorem 1,
either when λ is 1 or −1. Let us denote Dr = fr(N)

⋂
f−r(N) ⊂ N , Dc

r = M \Dr.
We first prove the following lemma:

Lemma 3.11. There exist κ > 0 and 0 < χ < 1 such that for any β > 0 smaller
than γ of the remark 3.1

1. if S1 and S2 are in a connected arc W s
β of stable manifold and if

f ij (W s
β) ⊂ Dc

3

for 0 ≤ i0 < i1 < . . . < ir then dist(f ir (S1), f ir (S2)) ≤ κχr.
2. if S3 and S4 are in a connected arc Wu

β of unstable manifold and if

f−ij (Wu
β ) ⊂ Dc

3

for 0 ≤ i0 < i1 < . . . < ir then dist(f−ir (S3), f−ir (S4)) ≤ κχr.

Proof. We only prove the first assertion, the second one is proved using the same
ideas. The result follows from Lemma 2.6. There we have shown that there ex-
ists 0 < χ = (1 − b)1/2 < 1 and C = (C2/C1)1/2 > 0 such that ‖Df ir (v)‖ ≤
Cχr‖Df i0(v)‖ for 0 6= v ∈ SP . Then lengthf ir (W s

β) ≤ Cχrlengthf i0(W s
β(P )) ≤

CχrlengthW s
β(f i0(P )). The lemma follows defining

κ = C max
P∈M

{lengthW s
β(P )}

Let β > 0 be smaller than γ of the remark 3.1 and also smaller than one half the
distance between D2 and Dc

1. Let α as in remark 3.1 and such that f−1[P,Q] =
[f−1(P ), f−1(Q)] if dist (P,Q) ≤ α.

Proposition 3.12. In the hypothesis of Theorem 1, there exists a constant H such
that for any P,Q ∈M and any natural number k > 0 with dist(f−j(P ), f−j(Q)) ≤
α for j = 0, 1, . . . , k then

1
H

≤
k∏

j=1

J (f−j(P ))
J (f−j(Q))

≤ H

Proof. It is enough to prove this proposition when λ = 1 and a10 = 0. In the other
case, λ = −1 with any a10, we shall consider f2 instead of f , reducing the problem
to the first case.

We denote S = [P,Q]. Let J = {1 ≤ j ≤ k : f−j(P ) ∈ D1, f
−j(Q) ∈

D1, f
−j(S) ∈ D1}; K = {1 ≤ j ≤ k : j 6∈ J}. Observe that

dist (f−j(P ), f−j(S)) < β
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and
dist (f−j(S), f−j(Q)) < β

for j = 0, 1, . . . , k. The choice of β implies that for j ∈ K the stable arc between
f−j(P ) and f−j(S) and the unstable arc between f−j(S) and f−j(Q) are contained
in Dc

2. ∣∣∣∣∣∣log
k∏

j=1

J (f−j(P ))
J (f−j(Q))

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
j∈J

log
J (f−j(P ))
J (f−j(Q))

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j∈K

log
J (f−j(P ))
J (f−j(Q))

∣∣∣∣∣∣ ≤

≤

∣∣∣∣∣∣
∑
j∈J

log
J (f−j(P ))
J (f−j(S))

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j∈J

log
J (f−j(S))
J (f−j(Q))

∣∣∣∣∣∣+(3)

+

∣∣∣∣∣∣
∑
j∈K

log
J (f−j(P ))
J (f−j(S))

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j∈K

log
J (f−j(S))
J (f−j(Q))

∣∣∣∣∣∣(4)

Let us write J as the disjoint union of l (with l minimum) subsets of consecutive
naturals, each one corresponding to each passage through D1, that is 0 = k0 <
j1 ≤ k1 < j2 ≤ k2 . . . < jm ≤ km < . . . < jl ≤ kl < jl+1 = k + 1 such that
J = ∪l

m=1{j ∈ IN : jm ≤ j ≤ km} and K = ∪l
m=0{j ∈ IN : km < j < jm+1}.

First, consider the iterates corresponding to J . They are within D1; applying
proposition 3.3:∣∣∣∣∣∣

∑
j∈J

log
J (f−j(P ))
J (f−j(S))

∣∣∣∣∣∣ =
∣∣∣∣∣∣

l∑
m=1

km∑
j=jm

log
J (f−j(P ))
J (f−j(S))

∣∣∣∣∣∣ ≤ C
l∑

m=1

d1/3
m

where
dm max{dist (f−jm(P ), f−jm(S)), dist (f−km(P ), f−km(S))}

After the lemma 3.11
l∑

m=1

d1/3
m ≤ β1/3 +

l−1∑
m=1

(
κχl−m

)1/3 ≤ β1/3 +
κ1/3χ1/3

1− χ1/3

Then ∣∣∣∣∣∣
∑
j∈J

log
J (f−j(P ))
J (f−j(S))

∣∣∣∣∣∣ ≤ C(5)

and, analogously ∣∣∣∣∣∣
∑
j∈J

log
J (f−j(S))
J (f−j(Q))

∣∣∣∣∣∣ ≤ C(6)

Let us now consider the iterates i ∈ K, these iterates are in Dc
2. Being J of class

C1, after the lemma 3.11:∣∣∣∣∣∣
∑
j∈K

log
J (f−j(P ))
J (f−j(S))

∣∣∣∣∣∣ ≤ C
∑
j∈K

dist (f−j(P ), f−j(S)) ≤ C
κ

1− χ
(7)
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Analogously, ∣∣∣∣∣∣
∑
j∈K

log
J (f−j(S))
J (f−j(Q))

∣∣∣∣∣∣ ≤ C(8)

The formulas (3), (4), (5), (6), (7) y (8) prove the proposition.

4. Construction of the measure.

Let N be a rectangle as in 3.3. Let U (0) be a rectangle as in definition 3.2 such
that U (0)

⋂
N = ∅, we also suppose that for any S, S′ ∈ U (0), if S′ ∈ W s

β(S),
then S′ ∈ W s

α(S) with α and β as in the considerations before proposition 3.12.
Let U (k) = fk(U (0)). We consider the usual Lebesgue measure ν in M , it is not
restriction to suppose ν(U (0)) = 1. We define the sequence νk of measures in the
borelians of M such that νk(A) = ν(f−k(U (k)

⋂
A)) = ν(U (0)

⋂
f−k(A)). Then,

we define µn(A) = (1/n)
∑n

k=1 νk(A). Let µnj
be a convergent subsequence in the

weak* topology, let µ be its limit. We will prove that an ergodic component of this
invariant probability measure verifies the thesis of Theorem 1.

For nearby points S, S0 ∈M we denote SW = [S0, S]. Let us denote dist u(S, SW )
the distance between S and SW measured on unstable manifolds, and dist s(S0, SW )
the distance between S0 and SW measured on stable manifolds. For any S0 ∈ M
and small t, let us denote Rt(S0) or simply R(S0) (if there is not confusion) the set
{S ∈ M ; dist u(S, SW ) ≤ t, dist s(S0, SW ) ≤ t}. For fixed S0 and t, let us denote
W = {SW ∈W s

β(S0) : dist (S0, SW ) ≤ t}.
The unstable foliation in R(S0) determines a measurable partition on R(S0) (see

[34]) and therefore, the conditional measures on the elements of the partition are
well defined.

Let us denote ∂uR(S0) the two arcs of boundary of R(S0) on unstable manifolds;
let us denote ∂sU (k) the arcs of the boundary of U (k) on stable manifolds. We
define A(k) = U (k)

⋂
R(S0), let B(k) be the (possibly empty) union of the connected

components of A(k) which intersect ∂sU (k) or ∂uR(S0), finally, let C(k) = A(k)\B(k).
We denote C(k)

h with 1 ≤ h ≤ ik each connected component of C(k)
h . We consider

the arc W
⋂
C

(k)
h and denote its extremes as S(k)

h and S(k)
h1 .

Lemma 4.1. There exists a sequence of measures σj en W , σj(W ) ≤ 1 such that
for any continuous function g : R(S0) 7→ R+ supported in the interior of R(S0), it
is verified

∫
R(S0)

g(S) dµ(S) = lim
j→∞

∫
W

dσj(S(k)
h )

∫
C

(k)
h

g(S)

N(S(k)
h )

k∏
m=1

J (f−m(S(k)
h ))

J (f−m(S))
dν(S)

where σj is concentrated at S(k)
h , 1 ≤ k ≤ nj, 1 ≤ h ≤ ik, J is the Jacobian of f ,

and

N(S(k)
h ) =

∫
C

(k)
h

k∏
m=1

J (f−m(S(k)
h ))

J (f−m(S))
dν(S)

Proof. We can write∫
U(k)

⋂
R(S0)

g(S) dνk(S) =
ik∑

h=1

∫
C

(k)
h

g(S) dνk(S) +
∫

B(k)
g(S) dνk(S) = I

(k)
1 + I

(k)
2
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Now, |I(k)
2 | ≤ max(g)νk(B(k)) = Cν(f−k(B(k))). This term converges to 0 when k

goes to ∞ because the length of unstable manifolds in f−k(B(k)) ⊂ U (0)
⋂
N c goes

uniformly to 0 when k →∞ (cf. lemma 3.11). On the other hand,

I
(k)
1 =

ik∑
h=1

∫
C

(k)
h

g(S) dνk(S) =
ik∑

h=1

∫
f−k(C

(k)
h )

g(fk(S′)) dν(S′) =

=
ik∑

h=1

∫
C

(k)
h

g(S)∏k
m=1 J (f−m(S))

dν(S)

where the second equality is due to the definition of νk, and the third one to the
change of variable S = fk(S′). Therefore,∫

R(S0)

g(S) dµ(S) =

= lim
j→∞

1
nj

nj∑
k=1

ik∑
h=1

N(S(k)
h )∏k

m=1 J (f−m(S(k)
h ))

∫
C

(k)
h

g(S)

N(S(k)
h )

k∏
m=1

J (f−m(S(k)
h ))

J (f−m(S))
dν(S)

We define a sequence of measures σj on W , (not necessarily probabilities mea-
sures) concentrated at S(k)

h , with 1 ≤ k ≤ nj , 1 ≤ h ≤ ik, so that if B is a borelian
in W , then

σj(B) =
1
nj

nj∑
k=1

ik∑
h=1

N(S(k)
h )∏k

m=1 J (f−m(S(k)
h ))

δ
(k)
h (B)

where δ(k)
h (B) is equal 1 if B contains S(k)

h and 0 in other case. We can write

∫
R(S0)

g(S) dµ(S) = lim
j→∞

∫
W

dσj(S(k)
h )

∫
C

(k)
h

g(S)

N(S(k)
h )

k∏
m=1

J (f−m(S(k)
h ))

J (f−m(S))
dν(S)

(9)

To prove that σj(W ) ≤ 1, we observe that

1 ≥ µnj
(R(S0)) =

1
nj

nj∑
k=1

[(
ik∑

h=1

νk(C(k)
h )

)
+ νk(B(k))

]
≥

≥ 1
nj

nj∑
k=1

ik∑
h=1

∫
C

(k)
h

dν(S)∏k
m=1 J (f−m(S))

≥ 1
nj

nj∑
k=1

ik∑
h=1

N(S(k)
h )∏k

m=1 J (f−m(S(k)
h ))

= σj(W )

Let us denote J u(P ) = ‖Dfv‖/‖v‖ for 0 6= v ∈ TPW
u. Observe that J u(P )

depends continuously on P1 due to corollary 2.5. Moreover, J u(P ) → 1 when
P → P0.

Definition 4.2. We define dynamical ball of p iterates and radius ε centered at S
as

Bp(S, ε) = {Q ∈M : dist(f i(S), f i(Q)) ≤ ε : 0 ≤ i ≤ p}
Lemma 4.3. For all 0 < A < 1 there exist real numbers C = C(A) > 0 and
ε0 = ε0(A) > 0 such that for all S0 ∈ M there exists an increasing sequence of
natural numbers {pi}i∈Z+ , pi = pi(S0, A) such that

µ(Bpi
(S0, ε)) ≤

C

A2(pi−p1)
∏pi−1

m=p1
J u(fm(S0))

for all i > 1 and all 0 < ε ≤ ε0.
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Proof. Given A we determine the value of t defined at the beginning of this section.
Let us take t > 0 such that for any S0 ∈M , if S ∈ Rt(S0), then dist (S0, S) < α/2
(where α is as in the proposition 3.12) and if SW = [S0, S], then SW ∈ Wu

α (S) .
Also, given A, we will take t > 0 such that A < J u(P )/J u(Q) < 1/A for all S0

and for any two points P and Q in Rt(S0). Let ε0 > 0 be such that B0(S0, ε0)
is in the interior of R(S0) for any S0 ∈ M . Let us observe that for S0 ∈ W s(P0)
the lemma follows immediately because J u(fm(S0)) goes to 1 when m goes to ∞.
Then, we fix S0 6∈W s(P0). Let us take pi(S0, A), i = 1, 2, . . . so that R(fpi(S0)) ⊂
N c. For i fixed, let β : M 7→ [0, 1] be a continuous bump function supported in⋂i

l=1 f
−pl+p1R(fpl(S0)) such that β(S) = 1 if S ∈ Bpi−p1(f

p1(S0), ε). Then

µ(Bpi
(S0, ε)) ≤ µ(f−p1(Bpi−p1(f

p1(S0), ε))) =

= µ(Bpi−p1(f
p1(S0), ε)) ≤

∫
R(fp1 (S0))

β(S) dµ(S)

We now apply the equality (9); only for simplicity in the notation, we will work
as if p1 = 0, that is, we will denote W the local stable manifold through fp1(S0),
σj the measure in such manifold, etc, but the reasoning does not depend on this.
Then µ(Bpi

(S0, ε)) ≤

≤ lim sup
j→∞

∫
W

dσj(S(k)
h )

∫
C

(k)
h

∏i
l=1 χf−pl+p1 (R(fpl (S0)))(S)

N(S(k)
h )

k∏
m=1

J (f−m(S(k)
h ))

J (f−m(S))
dν(S)

(10)

The unstable foliation of f is not C1, but it is continuous; its leaves are C1

and the tangent space at P of the unstable leaf through P is UP = {v ∈ TPM :
B(Dfmv) ≥ 0∀m ≥ 0} (we recall corollary 2.5). For n ∈ IN , let us consider
the quadratic form fn#

B, and let us integrate the continuous direction such that
fn#

B = 0 and that at P0 does not coincide with UP0 . Thus, we obtain a C3 foliation
Φ, whose generic local leaf will be denoted ϕ. We choose n (and therefore Φ) so that
for all P ∈M , TP Φ and UP are sufficiently near to obtain A < J (0)

ϕ (P )/J u(P ) <
1/A, where J (i)

ϕ (P ) = ‖Dfv‖/‖v‖ for 0 6= v ∈ Df iTf−i(P )Φ. Let us observe that
the angle between Df iTf−i(P )Φ and UP is decreasing with i, so that we can choose
n such that A < J (i)

ϕ (P )/J u(P ) < 1/A for all i ≥ 0 and all P ∈M .
Fixed k and h, we will partitionate C(k)

h so that S and S′ in C(k)
h are in the same

atom of the partition if either S′ ∈ ϕ(S) or if there exists a finite sequence P1,
P2, . . . P2r in Wu

β (S(k)
h )

⋃
Wu

β (S(k)
h1 ) so that P1 ∈ ϕ(S), P2 ∈ W s

β(P1), . . . , P2i+1 ∈
ϕ(P2i), P2i+2 ∈ W s

β(P2i+1), . . . , S′ ∈ ϕ(P2r). (The points Pj are not necessarily

in C
(k)
h .) We observe that the leaves of Φ intersect transversally the stable and

unstable leaves of f . Let us denote P this partition, let us denote π a generic
atom. As Φ is C3 it can be C1 trivialized by a system of a finite number of local
charts defined in open sets E1, . . . , Eq, . . . , Es covering the manifold M . It follows
that we can decompose the Lebesgue area ν(B) of any borelian set B ⊂ C

(k)
h

as ν(B) =
∫

C
(k)
h / P dρ(π)

∫
B∩π

gq(S)dνπ(S) where ρ is a measure in the quotient

space C(k)
h /P (it depends on R(S0)), νπ is the riemannian length on π and gq is a

continuous positive density function defined in Eq for some 1 ≤ q ≤ s.
The last term of (10) is equal to
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lim sup
j→∞

∫
W

dσj(S(k)
h )

∫
C

(k)
h /P

Idρ(π)

N(S(k)
h )

(11)

where

I =
∫

π

(
i∏

l=1

χf−pl+p1 (R(fpl (S0)))(S)

)(
k∏

m=1

J (f−m(S(k)
h ))

J (f−m(S))

)
gq(S) dνπ(S)

Now denoting π(i) = π
⋂⋂i

l=1 f
−pl+p1(R(fpl(S0))) and changing variables S′ =

fpi−p1(S) it follows

I =
∫

fpi−p1 (π(i))

(
k∏

m=1

J (f−m(S(k)
h ))

J (f−m−pi+p1(S′))

)
gq(f−pi+p1(S′))dνfpi−p1 (π)(S′)∏pi−p1

m=1 J (pi−p1−m)
ϕ (f−m(S′))

≤

≤
∫

fpi−p1 (π(i))

(
k∏

m=1

J (f−m(S(k)
h ))

J (f−m−pi+p1(S′))

)
gq(f−pi+p1(S′)) dνfpi−p1 (π)(S′)

A2(pi−p1)
∏pi−1

m=p1
J u(fm(S0))

(12)

We now claim that there exists a real C independent of S0 ∈ M (but that may
depend on A) such that

∫
fpi−p1 (π(i))

(
k∏

m=1

J (f−m(S(k)
h ))

J (f−m−pi+p1(S′))

)
gq(f−pi+p1(S′)) dνfpi−p1 (π)(S

′) ≤

≤ C

∫
π

(
k∏

m=1

J (f−m(S(k)
h ))

J (f−m(S))

)
gq(S) dνπ(S)(13)

The set of functions gq is bounded by a certain number K, and bounded away from
0 by, say 1/K. We observe that dist (f−m(S), f−m(SW )) ≤ α for all m ≥ 0 (by
the election of t); similarly, dist (f−m(SW ), f−m(S(k)

h )) ≤ α for all m ≤ k (by the
construction of U0). Then, writing(

k∏
m=1

J (f−m(S(k)
h ))

J (f−m(S))

)
=

(
k∏

m=1

J (f−m(S(k)
h ))

J (f−m(SW ))

)(
k∏

m=1

J (f−m(SW ))
J (f−m(S))

)
and applying the proposition 3.12

∫
fpi−p1 (π(i))

(
k∏

m=1

J (f−m(S(k)
h ))

J (f−m−pi+p1(S′))

)
gq(f−pi+p1(S′)) dνfpi−p1 (π)(S

′)

∫
π

(
k∏

m=1

J (f−m(S(k)
h ))

J (f−m(S))

)
gq(S) dνπ(S)

≤

≤ H4K2

∫
fpi−p1 (π(i))

dνfpi−p1 (π)(S
′)∫

π

dνπ(S)
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To prove the claim 13 it is enough to show that there exist positive constants L1

and L2 (independent of fp1(S0) ∈ N c but that depend on t and thus on A) such
that ∫

π

d νπ(S) > L1;
∫

fpi−p1 (π(i))

dνfpi−p1 (π)(S
′) < L2

To prove this we will integrate the continuous field of directions such that B = 0
and such that at P0 coincides with UP0 , obtaining the foliation Φ∗. Analogously,
we will denote Φ̃ the foliation obtained after integrating the other field of null
directions of B. The unstable foliation and the foliations Φ∗, Φ̃ and Φ are pairwise
transversal in N0 forming angles bounded away from 0. We project the arcs that
form π following the leaves of the foliation Φ∗ on a local leaf of Φ̃. The projections
overlap, then L1 exists.

Similarly, to prove that there exists L2 > 0 we project the arcs that form
fpi−p1(π(i)) on a local leaf of Φ∗ following the leaves of the foliation Φ̃, and observe
that the projections do not overlap.

Denoting C = H4K2L2/L1 the claim (13) is proved.
Collecting (10), (11), (12) and (13) we have

A2(pi−p1)

pi−1∏
m=p1

J u(fm(S0))µ(Bpi(S0, ε)) ≤

≤ C lim sup
j→∞

∫
W

dσj(S(k)
h )

∫
C

(k)
h /P

dρ(π)
∫

π

k∏
m=1

J (f−m(S(k)
h ))

J (f−m(S))
gq(S) dνπ(S)

N(S(k)
h )

=

= C lim sup
j→∞

∫
W

dσj(S(k)
h )

∫
C

(k)
h

k∏
m=1

J (f−m(S(k)
h ))

J (f−m(S))
dν(S)

N(S(k)
h )

=

= C lim sup
j→∞

µnj
(R(fp1(S0))) ≤ C

To continue the proof of the theorem 1, we adapt the proof of the proposition
5.1 in [16]. Recalling the Brin-Katok definition of the entropy (see [4]) we have:

hµ(f) =
∫

M

lim
ε→0

(
lim sup

p→∞

1
p

log[µ(Bs
p(S0, ε))]−1

)
dµ(S0) ≥

≥
∫

M

lim
ε→0

logA2 + lim sup
i→∞

1
pi(S0, A)

log
pi(S0,A)−1∏
m=p1(S0,A)

J u(fm(S0))

 dµ(S0)

For S0 a regular point; 0 6= v ∈ TS0(W
u(S0)) and p1 fixed we have:

lim
p→∞

1
p

log
p−1∏

m=p1

J u(fm(S0)) =

= lim
p→∞

1
p

(log ‖Dfp(S0)v‖ − log ‖Dfp1(S0)v‖) = χ+(S0)

where χ+(S0) is positive or 0. As A can be taken arbitrarily close to 1 and the set
of regular points has µ measure equal to 1:

hµ(f) ≥
∫

M

χ+(S0) dµ(S0)

After the inequality of Ruelle (see [36]) it follows
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hµ(f) =
∫

M

χ+(S0) dµ(S0)

We now recall the following theorem:

Theorem 4.4 ([23]). µ has absolutely continuous conditional measures along strong
unstable manifolds if and only if

hµ(f) =
∫

M

∑
i:χi(S0)>0

χi(S0) dimEi(S0) dµ(S0)

where hµ(f) is the metric entropy of f .

Proof. See [23].

In fact, it is shown there that the conditional measures on strong unstables
manifolds are equivalent to the riemannian measure on Wuu(S0) for µ almost every
point S0.

The former theorem implies that µ has absolutely continuous conditional mea-
sures on unstable manifolds. We have not proved that it is necessarily ergodic, so
we begin by the following lemma.

Lemma 4.5. µ({P0}) < 1

Proof. By contradiction, let us suppose µ({P0}) = 1. Then for nj large enough and
t > 0 small, µnj (Rt/2(P0)) is as near of 1 as wanted. This implies that µnj (Rt(P0)\
Rt/2(P0)) would be as near of 0 as wanted. We denote B = Rt(P0) \ Rt/2(P0).
Applying lemma 4.1 and proposition 3.12 we obtain

µnj
(Rt(P0)) ≤ 2

∫
W

dσj , µnj
(B) ≥ 1

K2

∫
W

ν(C(k)
h ∩B)

ν(C(k)
h )

dσj

To obtain the contradiction it is enough to prove that ν(C(k)
h ∩B)/ν(C(k)

h ) is
bounded away from zero. In fact, we decompose the Lebesgue measure ν as in
the proof of lemma 4.3, along a measurable partition P of C(k)

h , whose atoms π are
local leaves of a C3 foliation φ (that is transversal to stable and unstable leaves).
We then have:

ν(C(k)
h ∩B) =

∫
C

(k)
h /P

dρ(π)
∫

B∩π

g(S) dνπ(S)

ν(C(k)
h ) =

∫
C

(k)
h /P

dρ(π)
∫

π

g(S) dνπ(S)

where g is a continuous positive function. To end the proof it is enough to show that
νπ(π∩B)/νπ(π) is bounded away from zero. As in the proof of lemma 4.3 we have a
positive constant L1 such that νπ(B∩π) > L1, because B excludes a neighborhood
of P0, and so the angle between stable and unstable leaves in B is bounded away
from zero. We have also a positive constant L2 such that νπ(π) < L2. (Note that
we do not need uniform transversality between stable and unstable leaves to obtain
the bound L2)

If µ({P0}) 6= 0, we define a new measure of any borelian A as

µ(A \ {P0})/µ({P0}c)

For simplicity we will continue denoting µ to this new measure. It has absolutely
continuous conditional measures on unstable manifolds.
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The Pesin region Σ has µ-measure 1 after Theorem 1.12. Then, recalling Theo-
rem 1.13 we conclude the existence of a countable union of ergodic attractors, each
one corresponding to one ergodic component of µ. After the construction of basin of
attraction of the ergodic attractors in [33] (saturation of positive Lebesgue measure
sets) and taking into account the density of stable manifolds, it follows that the
basin of attraction of each ergodic attractor has total Lebesgue measure (see also
subsection 4.3 in [9]). Then, there is a unique ergodic attractor. The same argu-
ment proves that the Lyapounov exponents of Lebesgue-almost all regular points
are different of zero, because these points are in the strong stable manifolds of points
in the attractor. Finally, the theorem 5.10 of [20], asserts that f is Bernoulli, thus
ending the proof of the theorem 1.
Acknowledgement. We thank J. Lewowicz, M. Viana and the referee for their
many valuable suggestions and comments.
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