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RESUMEN

Se analiza, desde el punto de vista tedrico, la
relacion interdisciplinaria bidireccional, entre-
Matematica y Psicologia, desde el punto de vista
abstracto de la teoria de los sistemas dindamicos
deterministicos, y en particular de la teoria del
caos. Por un lado, esta la relacion clasica directa:
la aplicacion de la Matematica a la Psicologia.
Por otro lado, se propone y analiza la relacion in-
versa que consiste en la formulacion de nuevos
problemas matematicos, resueltos o no resueltos
aun, que aparecen de procesos y estructuras bajo
investigacion de la Psicologia. Tradicional-
mente, la relacion interdisciplinaria bidireccional
desde - hacia la Matematica pura tedrica, tiene
una larga y fructifera trayectoria con otras cien-
cias duras, tipicamente la Fisica y la Astronomia,
pero es relativamente nueva, encarada desde las
ciencias humanas y sociales, hacia la Matema-
tica abstracta.

El procedimiento de analisis es el siguiente:
se presenta una revision parcial, enfocada en al-
gunos aspectos de la investigacion matematica
en relacion con la Psicologia. Luego se enuncian
las definiciones matematicas abstractas de siste-
mas dinamicos, y en parciular del caos determi-
nista. Finalmente, se sugiere una meta-teoria
general, en la organizacion del espacio interdis-
ciplinario entre Matematica y Psicologia, ilus-
trandolo con un ejemplo hipotético.
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ABSTRACT

We analyze, from a theoretical viewpoint, the
bidirectional interdisciplinary relation between
Mathematics and Psychology, focused on the
mathematical theory of deterministic dynamical
systems, and in particular, on the theory of chaos.
On one hand, there is the direct classic relation:
the application of Mathematics to Psychology.
On the other hand, we propose the converse
relation which consists in the formulation of new
abstract mathematical problems appearing from
processes and structures under research of Psy-
chology. The bidirectional multidisciplinary
relation from - to pure Mathematics, largely
holds with the ‘hard’ sciences, typically Physics
and Astronomy. But it is rather new, from the
social and human sciences, towards pure Math-
ematics.

Summarizing, the problem we focusing in
this paper, is not only the application of the ma-
thematical theory of dynamical systems to Psy-
chology, but mainly the following questions:

Which psychological processes are involved
in the development of pure Mathematics? How
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can a multidisciplinary space be organized to
activate the converse relation, from Psychology
towards pure Mathematics?

How may Psychology provide a rich field of
new mathematical questions to be investigated,
not only by applied mathematicians, but also by
researchers on pure Mathematics?

Even if large advances had been achieved, the
application of the mathematical theory to Psy-
chology is still mainly developed by mathe-
matical psychologists and applied mathema-
ticians, in the absence of pure mathematicians.
Conversely, the development of the pure Mathe-
matics is now a days mainly developed in the
absence of applied scientists, particularly of
human and social researchers. This is the op-
posite situation to the antique posture, in which
theoretical Mathematics and Philosophy, for
instance, were almost a single science.

Along this paper we aim to found how the
potential strength of the mathematical tools can
be more fully exploited in the interdisciplinary
space, and how the necessary development of new
abstract and adequate tools in pure Mathematics,
may be detected while immersed into an inter-
disciplinary discussion. This discussion does not
need to be ‘applied’, in its restricted sense. In fact,
Mathematics may still remain abstract and theo-
retical, bust just break its apparent isolation from
other sciences, in particular to those related with
the human thinking, like Philosophy and Psy-
chology.

The methodology of our analysis along this
paper follows three steps: First, we present a
partial review, focused in several aspects of the
mathematical research, in their interdisciplinary
relation with Psychology. Then, we state and
analyze epistemologically, the mathematical abs-
tract definitions of dynamical systems, and in
particular of deterministic chaos. Finally, we
suggest a general meta-theory in the organization
of the interdisciplinary space between Math-
ematics and Psychology, which we illustrate with
an hypothetical example.

This paper is organized in six sections: At the
first one, we briefly introduce the discourse. At
the second section, we present a partial survey of
the knowledge in the interdisciplinary fields
among Mathematics, Psychology and other sci-
ences. That survey is focused on the theory of
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dynamical systems, and is very partial respect to
the whole abundant development in this inter-
disciplinary field. The third section states the
mathematical definitions of dynamical and au-
tonomous system, and of deterministic chaos,
and analyze them epistemologically. Among
other properties, we revisit the argument of self-
organization of deterministic chaos. At the fourth
and fifth sections, we propose a method and a
metatheory, according to which, the interdisci-
plinary space between Mathematics and Psy-
chology may organize its purposes and actions.
We consider the epistemological objection of
Nowak and Vallacher (1998). They observe that
the traditional notions of causality holds in social
psychological research, and oppose to (some of)
the mathematical models of dynamical systems,
which feedback the same variable from one time
to the next. In fifth section too, arguing on a
particular hypothetically example, we propose a
method to model mathematically such systems
with causal transitions, provided that the system
is deterministic. The modeling method that we
propose in this metatheory, solves the epist-
mological objection of Nowak and Vallacher, in
some particular cases. Finally, the last section
states the conclusions.

Key words.: Dynamical systems; Chaos; Mathema-
tical Psychology; Interdisciplinary methodology;
Epistemology.

INTRODUCTION

Ten years ago, a group of mathematicians
researching on the abstract theory of determi-
nistic dynamical systems, received an invi-
tation to participate in the interdisciplinary
discussion board of the XIV Congress of the
Latin American Federation of Psychotherapy.
The aim was to discuss about the theory of
deterministic chaos. Therefore, their duty was
to pose in exact form, but in terms that all
scientists could interact, the mathematical
notions about dynamics, determinism and
chaos, and how these notions are conceived,
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created (or discovered), and evolve with the
increasing knowledge of sciences. That
enterprise was very motivating, an excellent
opportunity to apply the pure mathematics, on
which they researched, and to find new
problems to study. But it really implied a
challenge, a very difficult task: to understand
mutually, among scientists in such different
disciplines. Their procedures and purposes,
were (and still are) too far. An hour of dis-
cussion in that multi-disciplinary board (it was
not indeed an inter-disciplinary discussion),
was not enough to shorten the distances. But
since then, a rich collaborative work started to
construct a necessary interdisciplinary space.

Pure mathematicians usually attribute to
the object and result of their research, a
platonic meaning. It is immaterial, invented by
their thoughts, conceived as interior to their
minds, but simultaneously felt as exterior to
the creator and, most surprisingly, universally
true. How so qualitatively different charac-
teristics of the mathematical creation can be
performed together? The answer is that they
are not developed simultaneously. In pure
Mathematics the abstract definitions and
deductive proofs are rigorously formalized
much later to the time in which they were
really conceived, created or discovered. The
reader is intended to reproduce the concepts
and the proofs exactly, at the ending point of
the process. There is no place to discuss or to
lie about the mathematical final results, after
they are formalized. But, this precise and exact
logic does not hold, or at least is not strict,
during the previous stages of the mathematical
research, while the creative processes are in
advance. The mathematicians' thoughts and
ideas come, before being born, from a mixture
of subjective perceptions, intuitions, feelings
and irrational beliefs. They are produced im-
mersed into philosophical thoughts and in-
fluenced also by the social group in which the
mathematicians act. Nevertheless, from the
external viewpoint, mathematics is sometimes
reduced to its final, formal and exact for-
mulation. Summarizing, the formalism is
undoubtedly necessary in Mathematics to state
finally the new abstract mathematical defi-
nitions and theorems and their deductive
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proofs. But is is clearly insufficient to perform
the creative tasks of the mathematics itself,
either in its pure form or in its application to
other sciences. From this viewpoint, Mathe-
matics needs the knowledge from Philosophy
and Psychology.

PARTIAL REVIEW OF PREVIOUS RESULTS

The mathematical theory of dynamical
systems is a matter of important critical dis-
cussion, about which some mathematicians
reflect, particularly concerning to the phi-
losophy of deterministic dynamics and chaos
(Lewowicz, 2008; Lorenz, 1995; Markarian
& Gambini, 1997; Massera, 1988, 1997;
Stewart, 1989; Ruelle, 1993).

On the other hand, the theory of dynami-
cal systems is being modeling processes, for
instance in Social Psychology:

“Interpersonal thought and action repre-s-
ent highly dynamic and complex phe-
nomena... Because of these defining qual-
ities, social psychology is highly amena-
ble to understanding and investigation
within the framework of dynamical sys-
tems theory” (Vallacher & Nowak, 1997,

p- 73).

In the same article the authors raised the
relevance of a meta-theory: how to apply the
theory of dynamical systems in the research
of psychology, mapping the abstract notions
onto established psychological phenomena
and models. In this paper, we focus on that
viewpoint, and also in the converse one: how
the established psychological dynamical phe-
nomena may inspire new abstract problems
to be investigated by mathematics.

We propose a method to support the in-
terdisciplinary space and to bridge the re-
search actions between the two disciplines.
In the same line Scott (1994), discussed the
relations between the terms defined in the
models of psychological dynamics and the
concepts of chaos and self-organization.
Nevertheless, he recognized the difficulties
in using the abstract notions and methodo-
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logies of mathematics in empirical investiga-
tions of psychology. On the other hand
Eliasmith (1996) presented a critical exam-
ination of the dynamicist theories in some
fields of psychology, in particular to the area
of cognition. Also Ayers (1997) examined the
applications of chaos in the research of
cognitive developmental and Clinical Psy-
chology and their possible implications,
evaluating problems regarding the usefulness
of chaos in Psychology. Robertson (1995)
established a wider spectrum of applica-
tions of the theory of chaos to Psychology
and life sciences.

To understand and explain how the brain
performs processes (for instance learning,
memorizing, and associating sensory mani-
festations with memory) the structure and
dynamics of the neural system and its
mathematical models play a fundamental
role. The precursory paper of Kohonen
(1977) examined the associative memory
from Neurophysiology and Psychology. Lat-
er, the related mathematical models were
intensely studied (see Cooper, 1995, cited in
Mizraji, 2010). More recently, those models
and some of its consequent generalizations
derived in new relevant conclusions on the
associative memory process, its applications
to Psychology and its philosophical implica-
tions (see for instance, Lansner, 2009;
Mizraji, 2007, 2008).

From the advances of the mathematical
models of neural networks, the study of
neuro-dynamics has given a new insight and
development. The first mathematical model
of neurons was given by the differential
equations of Hodgkin and Huxley (1952,
cited in Lamberti & Rodriguez, 2007). After
that, almost four decades pass- ed until the
first rigorous mathematical proofs appeared,
using the abstract methods of the theory of
dynamical systems. They derived into new
theoretical results on the dynamics of neural
networks (Budelli et al., 1991, 1997, Budelli
& Catsigeras, 1992, Coombes & Lord, 1997;
Mirollo & Strogatz, 1990; Rieke et al.,
1977). Later the general models of general
impulsive controlled coupled oscillators
raised, including the mathematical dynamics
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of neural systems as particular cases
(Ishikevich, 2007; Timme et al., 2002). Also
the algebraic and topological self-orga-
nization of neural networks was well de-
scribed in many complex cases (Coombes
2007; Coombes & Laing, 2009; Mizraji,
2007).

In the last decades many mathematical
results about the dynamics of some particular
neural subsystems found only periodic and
stable behaviors, and so the temporal varia-
tion seemed to be simple. Nevertheless, some
computer simulated and deductively proved
results about non periodic, irregular and
chaotic dynamics in neural networks ap-
peared (Catsigeras, 2010; Feudel et al., 2000,
Timme et al., 2002). An apparent contra-
diction raises from the fact that some models
of neural systems are non chaotic, stable and
periodic, according to the classic mathema-
tical proofs, but they appear irregular in
computational experiments. This apparent
contradiction was explained by Cessac (2008)
the theoretical periods may be extremely
large, out of the scale of time of the exper-
imentation or of the life of the system. So,
even if they are not strictly chaotic according
to the mathematical definition of chaos
(which requires infinite time), the exper-
imenter can observe only the irregular transi-
tory behavior. This is called a virtual chaos.

The knowledge of the neuro-dynamics
allowed also the construction of systems of
artificial neural networks. These last, as well
as the biological neural networks, opened for
mathematics a new spectra of problems to be
solved. They deal, for instance, with chaos,
or unstability, of systems that usually exhibit
discontinuities and very large dimension.

The dynamical theoretical results obtained
from the mathematical theory, are finally
decoded, to explain some deterministic psy-
chological processes. Besides, the man- creat-
ed neural networks are partially inspired in
the physiology of biological neural systems.
Some of them try to reproduce deterministic
psychological processes, such as learning and
memory. They are widely applied to control
engineering, to the design and investigation
of artificial intelligence, and to modern
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communication systems (for instance in Yang
& Chua, 1997).

The algebraic theory of the mathematical
laws of the thoughts by Boole (1854, cited in
Camacho, 2006 and Mizraji, 2010), based the
modern development of digital systems in
informatics and electronic engineering. The
mathematical relations between the computer
and the brain posed by von Neumann (1958-
posthumous), started the interdisciplinary
interaction between Mathematics, Engineer-
ing, and Psychology. This interaction is in-
creasing in relevance, and besides, has amaz-
ing applications to informatics and tech-
nological disciplines:

“Different cognitive networks are built up
by different human individuals, all of them
sharing the same large scale brain circuitry.
It is interesting to mention here that this
fact suggests a metaphorical analogy
between natural neuronal networks and
some technological information networks.
Thus, we can put in correspondence the
neuroanatomy with the Internet on the one
hand, and the brain cognitive network with
the World Wide Web (WWW) by the other
.... we show how, perhaps unexpectedly,
this analogy is accompanied by structura-
lly similar mathematical models concern-
ing information retrieval in neural memo-
ries and in the WWW?” (Mizraji, 2008, p.
717).

The example above is paradigmatic of the
closing interdisciplinary loop among many
disciplines, including Mathematics and Psy-
chology. Nevertheless we note that the human
psychology is far from being fully deter-
ministic. In fact, this question revitalizes the
old philosophical paradox of determinism:

“...we demonstrate that, even in a deter-
ministic universe, there are fundamental,
non-epistemic limitations on the ability of
one subsystem ... to predict the future
behaviour ...in the same universe. ..These
limitations arise because the predictions
themselves are ...part of the law-like causal
chain of events in the deterministic
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universe. ...Even in a deterministic uni-
verse, human agents have a take-it-or-
leave-it control over revealed predictions
of their future behaviour” (Rummens &
Cuypers, 2010, p. 233).

An old mathematical conjecture states
that uniform global hyperbolic diffeomor-
phisms on compact manifolds (which are the
diffeomorphic paradigms of deterministic
chaos), can only evolve under very strong
topological restrictions of the space. Related
with this open problem, 20 years ago
Lewowicz proved in dimension two, that the
expansive systems (which are all the topolo-
gical chaotic systems) can only exist under
some non trivial restrictions of the topology
of the space where they evolve (Lewowicz,
1990). His proofs suggest how can be exten-
ded to larger finite dimensions. Later they
have been generalized to dimension three
(Vieitez, 1996). Nevertheless for larger di-
mensional expansive systems the conjecture
is open. On the other hand, for very large
scale physical systems it is unknown if those
topological restrictions hold. With more re-
asons, it is unknown if the global system of
individual or social human psychology, or its
subsystems, satisfy them. So science, not
only psychology, but also theoretical physics
and pure mathematics, can not still invoke
the deterministic chaos to explain all the ap-
parently irregular or unpredictable dyna-
mics.

The old paradox of determinism and pre-
dictability, versus chaos and unpredictability,
also appears in the following text, written in
1864, almost a century before the mathema-
tical theory of deterministic chaos raised into
the discourse of the hard sciences:

“If you say that all that can be predicted:
the chaos, ... that the mere possibility of a
previous calculus can contain everything,
and that the (rational determinism) will
end to prevail, then the man would be-
come mad on purpose, for not to have the
truth and behave according with his wish”
(Dostoyevsky, 1864, cited in Lewowicz,
2002, p. 53).
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MATHEMATICAL DEFINITIONS OF DETERMINISTIC AND
CHAOTIC DYNAMICAL SYSTEMS

Unfortunately, when mathematicians and
physicists gave a name to the particular
strange phenomenon appearing in some dyna-
mical systems, they called it chaos or deter-
ministic chaos. But, as we will explain below,
the mathematical deterministic chaos does
not fit with the usual meaning of the name
chaos. In fact, the mathematical deterministic
chaos is indeed well ordered, with zero de-
gree of confusion, no fuzzy behavior, and is
rather well understood now a days. It is non
hazardous. It is governed by defined rules. In
brief, a mathematical system exhibiting deter-
ministic chaos is self-organized. The name
chaos is due only to the fact that an observer
of the dynamical phenomena, may not per-
ceive a priori its organization. For instance,
who sees on the monitor of a computer the or-
bits by successive iterations of the one-di-
mensional quadratic law

2
n =4Zn—1(1—Xn—1 )=4Xn—1 —4xn-1 (1)

will perceive them as disordered. They a-
ppear chaotically, in the usual sense of this
word. So, the observer sees them, a priori, as
unpredictable and hazardous, in the same
way that a person, who does not understand
the Chinese language, could perceive the
sounds of someone talking in Chinese, as di-
sordered and unpredictable.

If the precise definitions and hypothesis
of work are not understood, the later blind
application of the results of the theory to
other sciences may lead to mistakes and to
ungrounded inductions (Goldstein, 1995;
Kellert, 2008; Ruelle, 1990; Sokal &
Bricmont, 1999). Mathematics, and in par-
ticular the theory of deterministic chaos, is
not an exception from what the literal mean-
ing of semantics implies:

“Sometimes the meaning of a sentence is
such that its truth conditions will vary
systematically with the contexts of its lite-
ral utterance” (Searle, 1978, p. 208).
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Thus, it is necessary to precise the truth
conditions, in our case the mathematical def-
initions, to fix the context in which the math-
ematical theorems about deterministic chaos
are true.

Definition: Dynamical system

A dynamical system is a mathematical
structure that admits many potential states,
and each state is described by numerical or
non-numerical variables which change (name-
ly evolve) with time, according to the follow-
ing deterministic hypothesis:

Definition: The deterministic hypothesis

The deterministic hypothesis of a dynami-
cal system assumes the existence of a law L
(even if it is unknown) that is not hazardous
and governs the evolution with time of the
variables of the dynamical system such that:

- The previous state of the system is the
unique cause that determines the next
state of the system, while times goes
on.

- The law L is the exact mathematical
rule or set of rules that transforms the
previous state onto the next one.

In a deterministic dynamical system,
the same previous cause (or set of causes)
produces the same posterior effect (or set
of effects). The exact law L is the abstract
rule or set of rules that transforms the
cause onto its correspondent consequence.
The cause is the state x,—4 at the previous
instant denoted n-1. The effect is the state
%n at the next instant n.

Thus, after applying the law L to xn-1,
the obtained result is x,. This is denoted as:

L(tn-1)=%n

Inductively, the state xn will be later the
cause that will produce its next effect, namely
the state y(,+4 1n the future instant n+1, preci-

sely: L(tn)=Xn+1-
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Therefore, the following of the following
state is the result of iterating the law two
times. And the following of the following of
the following state will be the result of iterat-
ing the law three times.This process can be
repeated finitely many times, as many times
as wanted.

Consequently, the state at instant n is the
result of iterating the law exactly n times,
after applied to the initial state % , the state
at instant n is:

An=L(L(L...(L(x0))=L"(X0)-

In the notation above the exponent n
means the iteration of the law L repeated con-
secutively n times.

For instance, a simple case is that in which
the space of states is the set of real numbers
between 0 and 1. In this case the law L can
be, for example, that one defined by the
equality (1) at the beginning of this section.
This law, which is called quadratic, admits a
formulation in terms of the numerical varia-
bles. So, it can be represented as a curve
graph. In the example of the quadratic law,
this graph has the form of an inverted U (a
parabola) in the cartesian plane. But this is
just an example and extremely simplified. In
fact, most mathematical laws or transforma-
tions defining dynamical systems, do not
admit a formulation in terms of a curve or
graph in the plane. The variables and the de-
terministic law governing them, need to be
defined and studied in non numerical abstract
structures such as, for example, functional
spaces, measure-spaces, abstract algebras,
general topological spaces or geometric ge-
neral manifolds.

Definition: Autonomous system

Under the deterministic hypothesis, the
dynamical system is called autonomous, if the
law L is invariant with time. Thus, L remains
unchanged while time, and therefore the state
of the system, may change.

The example given by the equation (1) is
an autonomous dynamical system: in fact,
the equality (1) itself remains the same. The
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specification of the operations that affect
the value of the variable x,_4 to lead to its
next value y,, is always the same, regard-
less that the values of x,—4 and of y, may
change with the time n.

The trajectory or orbit for each initial state
is defined as the sequence of consecutive sta-
tes xn of the system starting in the initial state
%0- This definition holds for the so called dis-
crete-time dynamical systems, since the ins-
tants ..., n-1,n, n + 1, ... are computed only
with values in the set of integer numbers.
Therefore, the trajectories are not necessarily
curves, but sequences of values of the varia-
bles, and these values are not necessarily
numbers, but may be other kind of mathema-
tical, non numerically defined objects. Even
in the most abstract cases, the states or values
of the variables are called points. But usually,
they are not literally points, in any geometri-
cal sense nor values in any numerical sense.

The trajectory is a sequence of points. The
set of all potential states or points is called
space. So, the trajectories or orbits are se-
quences of points in the space, although this
space is an abstract object that has not neces-
sarily a geometrical or a numerical descrip-
tion. The trajectory is said to be in the future
when the instants n are chosen larger or equal
than zero. But if the states of the system were
also defined for negative instants, then the
trajectory in the past colud be similarly defin-
ed.

Definition: Deterministic chaos

A deterministic dynamical system is said
to be expansive, or sensitive to initial condi-
tions or chaotic, if two different initial states,
regardless that they may be arbitrarily next,
define trajectories that separate one from the
other, at some future or past time, more than
a positive numerical constant a.

To the observer, the positive number a is
the perceptible threshold of the error caused
when taking one different initial state instead
of other, regardless of how next the two di-
fferent initial states are one from the other.

We notice that, even if the different (po-
tential or effectively reached) states of the
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system, do not need, in the modern mathe-
matics, to be described by numerical values,
the threshold of the error is indeed described
by a positive (large or small) real number a.
For that purpose, the space of all the states,
which is not numerically defined, is provided
with a metric structure. This metrizability
ofthe space allows the observer to compute
the distance between two different states,
even if those states may be non numerical,
quantitative described, and very complex
mathematical objects.

The deterministic chaos implies the uni-
queness and distinguishable evolution of each
individual trajectory in the system. That is
why it is unpredictable, i.e. a single trajectory
can not be completely predictable for all fu-
ture or past times, unless all the initial data of
that individual trajectory is exactly known.
But, if the number of individual trajectories is
too large, or infinite, the probability to know
exactly the initial data of one of them, is
usually equal to zero.

For example, the system given by the qua-
dratic equation (1) is chaotic. Two different
initial states can be taken such that their nu-
merical difference is arbitrarily small. But
nevertheless, for some instant n, the diffe-
rence of the two states, evolving along their
respective trajectories, according to the qua-
dratic equation (1), will take values as near 1
as wanted. This assertion can be proved rigo-
rously by the mathematical theory, using the
deductive method founded in the classic
logic, without making experiments in a com-
puter. The proof is far from being immediate
or easy. This simple example of the quadratic
law 1s numerical. But also in many complex
systems that are non numerical, the existence
of chaos can be proved using the deductive
method of pure and classic Mathematics.
Nevertheless, this task is usually very diffi-
cult. The existence or the absence of chaos, in
most such examples, and even if some of
them have a very simple statement of the law
L, 1s still unknown. In fact, in most complex
examples, this problem is a mathematical
question to which no human being has still
discovered or invented a rigorously proved
answer: yes or no. This mathematical pro-
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blem has nothing to do with the unpredicta-
bility of the system under study. In the classic
logic, which rules mathematics, the system is
either predictable (non chaotic) or unpredic-
table (chaotic). Even when nobody knows
the answer for a particular system, if it is
chaotic or not, for the mathematics, this exact
answer does exist, and is either yes or no. But
the determinisitic unpredictability, of the
system itself, is a different question. If the
system is unpredictable or chaotic, then it is
certainly true the following assertion:

If the initial condition is not exactly y,
then in some time n in the future (or in the
past) the state y , of the system will certainly
differ from the expected one, more than the
perceptible error a.

So, even if it seems a contradiction, the
concept of unpredictability in the mathema-
tical theory of the deterministic chaos, is in-
deed a certain prediction: it asserts that the
observer will (not probably, but surely) make
a perceptible error, if he tries to predict the
evolution of the chaotic system, for which
each individual trajectory is different from all
the others, without knowing exactly all the
initial data of such trajectory.

But not all the hopes are lost when a ma-
thematician investigates a chaotic system. In
spite of the unpredictability of chaotic sys-
tems, the so called ergodic theory proves that,
under rather general additional hypothesis,
there exists a decomposition of the space into
abstract invariant-measure structures, called
ergodic measures (Mafi¢, 1987). They are
spatial and theoretical measure-structures
such that, under the optic of each of them, the
states of the system evolving with time are
statistically predictable at infinite time. Thus,
after one of the ergodic measure-structures is
chosen, the newly defined unpredictability of
deterministic chaos, disappears. Statistically
ergodic predictability of deterministic chaos
raises due to the following two new view-
points:

- On the one hand, the observer is aimed to
predict the evolution of a significant set of
trajectories, instead to predict only one,
among non countable infinitely many.
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Those significant sets may be, anyway,
arbitrarily small.

- On the other hand, the way of measuring
the sets is adapted to the dynamical beha-
vior of the system. This spacial measure-
adaptation is given by one of the ergodic
measure-structures.

Nevertheless, the ergodic measure-struc-
tures of the space disregard the transitory sta-
tes, which do not lay on the supports of the
ergodic measures, i.e. on the attractors. The
ergodic measures consider only the so called
regime states, which are the asymptotic states
in the future, supported on the attractors.

We conclude that the mathematical deter-
ministic chaos is not literally chaos, and its
name is just wrongly chosen. Some more
adequate names, that are not so popular, but
that are certainly used by pure mathemati-
cians now a days, are expansitivity if refe-
rring to topological chaos, mixing if referring
to a strong form of topological or measurable
chaos, and hyperbolicity or existence of po-
sitive Lyapunov exponents, if referring to di-
fferentiable chaos, in which there is an expo-
nential rate of expansion along some sub-
space.

One of the most notable examples of de-
terministic systems related with psychologi-
cal processes is the dynamics of some models
of neural networks. Other deterministically
modeled psychological process, is for ins-
tance the deductive rational thinking, which
is formalized by the boolean algebraic rules.
That 1s why it is possible to reproduce it
through computers and artificial intelligence.
Pattern recognition is also a clear example of
application to psychology of the mathemati-
cal theory of dynamical systems. This appli-
cation has developed tools to explain how
patterns can be identified in what otherwise
could be interpreted as an hazardous tempo-
ral variation. Other example of how the ma-
thematical theory can model a psychological
manifestation, is the quadratic law (1). Per-
formance effectiveness may depend on the
values of the variables in the form of an in-
verted U function:
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“it increases up to a point beyond which
further increases in arousal promote perfor-
mance decrements” (Nowak & Vallacher,
1998, p. 36).

Such a relationship is posed by Atkinson's
law, in a model of some type of simple mo-
tivation following the quadratic function.
The motivation increases with the difficulty
of achievement the goal, up to a certain level
of difficulty. After that level, it decreases be-
cause it becomes inversely dependent of the
probability of success. Therefore, the moti-
vation function takes the form of an inverted
U, which produces a maximal value when
the difficulty of achievement takes half of its
maximum value.

Nevertheless, many psychological sys-
tems do not satisfy the deterministic hypo-
thesis. According to this hypothesis, the same
variable (the state of the system) ‘acts as a
cause one moment and as an effect the next’.
In fact, the sequential iteration of the determi-
nistic law can be interpreted as the feedback
of the same variable from one instant to the
next.

“This feedback process is at odds with tra-
ditional notions of causality that assume
asymmetrical one-directional relation-
ships between cause and effects. For the
same reason, it does not fit well with
(some models of) social psychological re-
search” (Nowak & Vallacher, 1998, p. 32).

To solve this problem, we propose to use
a model of dynamical system evolving on a
more abstract mathematical structure, such
as a functional space. In that space the varia-
ble (the state) does not represent directly the
psychological manifestations. These mani-
festations depend of intrinsic temporal condi-
tions and of external causal agents. It is a
response of a complex combination of those
conditions or agents, among which the pre-
vious manifestations are not the unique in-
gredient. In a mathematical functional space,
the variable to be analyzed is no longer the
response, the manifestation, nor theagents
that cause them, but the way in which the
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agents cause the response. Therefore, the
feedback of this functional variable one time,
into the same functional variable the next
time, takes into account, embedded in the
functional structure, all the factors varying
with time. The feedback iterative process
does not restrict its incomes to the response
manifested at the previous time. In MODELING
THE STRUCTURE AND DYNAMICS OF A PSYCHOLOGICAL
SYSTEM we expose an illustrative example of
this abstract modeling, in the case of a social
psychological process.

GROUNDING THE INTERDISCIPLINARY SPACE

From the viewpoint of the classic logic of
pure mathematics, the following schema
holds:

IN PURE MATHEMATICS
A mathematical theorem (7) states
T:A=B

The symbol = denotes the word implies.
The assertion (T) means that there is a ma-
thematical proof, which is published and ex-
hibits by rigorous deduction, that the hypo-
thesis A implies the thesis B. But, when oc-
curs B, nothing can be said, if only theorem
(7T) 1s invoked, about the occurrence of A.
Theorem (T) does not explain why B may
occur in all the cases. In other words, even if
B could be exactly the same phenomenon,
appearing for instance in all the observed
psychological process of some type, and re-
ported as a thesis of a mathematical theorem
(7), this theorem does not explain the appe-
arance of the phenomenon B in all the known
or unknown cases, unless the hypothesis A
holded surely for that type of processes.

THE FIRST DIRECT TASK
The first task when applying a mathema-
tical theorem (T7), is to check (or to assume)

that the epistemological characteristics of the
particular system under study (for instance
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the dynamical system governing a psycholo-
gical process), satisfies all the assertions in-
cluded in the hypothesis A. In other words,
for instance if A is a deterministic system mo-
deling the psychological process, it must
model this process without loosing its cha-
racteristics, being a representative of the
same system under investigation of Psycho-
logy. The achievement, when applying Theo-
rem (T), is not only to fit the thesis B a
posteriori, but fit the hypothesis A a priori.
And besides, a mathematical theorem can be
applied to the system under investigation by
Psychology, if its hypothesis A represents the
system under study, without over simplifying
it.

IN PSYCHOLOGY AND OTHER SCIENCES

Let 2\ denote a social or individual psy-
chological dynamical system under study,
which exhibits, after observation or psycholo-
gical theoretical research, ‘/‘\ > features identi-
fied as the phenomenon B. We denote this
experimental or theoretical result of Psycho-
logy research:

(R):z—)—)g

The symbol ‘——"’ denotes that the r~en- |
tifically grounded action to pass from A to B
after an observation or theoretical research in
Psychology. All the known psychological
systems of tl , classA exhibit the property
or behavior B.In other words, after all theA
observati AS of Psychology, was never found
and not B.Thus, it is scientifically induced,
in/:‘sychology and also in other sciences, that
A B occurs if A occurs./\'n other words,
Acauses the phenomenon B in all the cases,

because the universe of all the cases is, in
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the human and social sciences, the collection
of all the known cases.

The inductive method as described here,
is undoubtedly legitime and scientifically
valid, not only because it is widely used in
most sciences (but not in Mathematics), but
because it gives strictly objective evidence,
to increase the human knowledge about the
general nature of the system under study. But
it is not classically accepted to constitute a ri-
gorous mathematical proof, which must be
strictly deductive according to the rules of
the classic logic, and do not have recourse on
the induction method.

THE SECOND CONVERSE TASK

At one side, the known mathematical
results in the theory of deterministic dy-
namical systems, are still few and narrowed, to
explain many relevant problems of other
sciences, in particular of Psychology. At a
second side, but not less important, many
scientific objects of research of other sciences
seem that can be mathematically modeled as
deterministic and chaotic phenomena. Thus,
joining the two sided aspects, it raises the
following challenge to applied and pure Math-
ematics:

- (1) To state the new problems that arise
from other sciences, which are mathe-
matically translated or modeled, with a
precise formulation.

- (1) To investigate them, under the math-
ematical classical methods, that is, with-
out giving up to the deductive math-
ematical proofs founded in the classic
logic, but also without making the other
sciences to give up of their own methods.
Schematically, the mathematical investi-
gation searches for:

(i1)-1.- Definitions of the mathematical
and abstract concepts that fit with the
structure of the applied problem.

(i1)-2.- Hypothesis that do not oversim-
plify or restrict the applied objects under
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study to a set of empty relevance in the
other science.

(11)-3.- Mathematically posed conjectures,
including those relations obtained by in-
duction from the results of the other
science.

(11)-4.- Theorems: conjectures, after proved
to be true, by means of a rigorous deductive
method based in the classical logic.
(11)-5.- Mathematical counter examples,
which prove that a conjecture is false. The
mathematical counterexample must not
necessarily represent a real observed
example of the other science.

(11)-6.- Reformulations of the mathematical
results to be applied to the problem under
study in the other science, and explain or
predict them.

Mathematicians do not expect to perform
the six activities of the list above, ordered in
time, in the same numerated sequence of the
items (i1)-1 to (i1)-6. During the research
work, the attempts to prove a conjecture, may
derive in the revision of the definitions of the
concepts and hypothesis, which are only pro-
visional until the work is ended. Sometimes,
new attempts of proofs, derive in changing
again the purposes, the conjecture itself,
which may derive in a new reformulation of
the abstract object under investigation, and
of the strategy of research.

The third-exclusion principle in Mathe-
matics establishes that each mathematical as-
sertion is either true or false. Thus, a math-
ematical conjecture (C), is an open question:
no mathematician has already prove it nor re-
fute it. The refutation consists in finding and
exhibiting a counterexample. If no countere-
xample and no proof have been discovered
and published then the conjecture (C) itself
is not a new a mathematical result. It is not
new, even if hypothetically a mathematician
discovered a billion of examples for which
(C) 1s true and that his billion of examples
were all the known examples. On the other
hand, in Psychology and most other sciences,
the third-exclusion principle and its derived
practical rules do not hold. Hypothetically a
psychologist who could show that all the
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human beings in this moment living on the
Earth behave according to the assertion (C)
would have a new result of extremely large
relevance.

If the object of research in Mathematics is
not coming from a problem posed by other
sciences, a change of strategy is almost al-
ways used, which is undoubtedly legitimate:
to make stronger or more restrictive the
hypothesis of research, to simplify the math-
ematical problem under investigation as
much as needed (and as less as possible). In
this way the hypothesis are weakened to fit
to the new deductive proofs that the mathe-
matician could find. So, he can obtain a new
mathematical result. Therefore, the mathe-
matician proves a weaker theorem, instead of
other more difficult and general, whose proof
or counterexample is assumed to exist, but
remains open.

We are not referring here to that legitimate
strategy (fit the hypothesis to a new known
proof), when we are trying to pose the diffi-
cult reciprocal task in Applied Mathematics.
When mathematicians research some of the
problems derived from other sciences, in par-
ticular from Psychology the challenge is the
following:

Applied mathematics research develops in
such a way that the hypothesis fits with the
problem to which the mathematical results
are going to be applied. Thus, the strategy of
taking stronger hypothesis, even if always le-
gitimate and very useful for the advances in
pure Mathematics, is not always useful for
the further applications of the mathematical
result so obtained.

CONSTRUCTING THE INTERDISCIPLINARY METHODOLOGY

As argued in the last section, the purposes
and scientific methods of Psychology and
Mathematics, differ ones from the others, since
their own epistemological basis, but do not
need to give up to those own differences, to be
able to interact. The philosophical diversity in
sciences (Zollman, 2010) analyzes the episte-
mology of inter or intra-discipline, when there
are different scientists working in the same

290

/7 LtrabaJO - LAlolbhkAos - o UL UILL, tMadgquetacl I1 1 UJ/U#?%UJ.A Lzt / P radllld 2JUV

Catsigeras

problem, but with different approaches and
methods. Without taking a position about what
are called wunified or diversified scientific
methods, we will pose a third metatheory:
Instead of the extremes of homogenizing
the science, and of atomizing it into many al-
most disconnected disciplines, a collaborative
interdisciplinary interaction can be develop-
ed. Its methods and purposes have to be colla-
boratively defined, and may differ case by
case. The interdisciplinary space is neither the
simple sum of the purposes and methods of
different sciences, nor the over sized preva-
lence of one science over the others, nor the
joint homogenization of many science with-
out differential purposes and methods. The
multidirectional connectivity among them is
established in such a way that none of the dif-
ferent sciences had to give up to its particular
epistemological identity (see Figure 1).

MODELING THE STRUCTURE AND DYNAMICS OF A
PSYCHOLOGICAL SYSTEM

Revisiting the notations used IN PsycHoLOGY
AND OTHER SCIENCES, let us denote by A  the
complete set of structural characteristics of
a certain class of hypothetical (individual or
social) dynamical system under investiga-
tion of Psychology.

One of the actions in an interdisciplinary
space between Psychology and Mathematics,
is to trans'~te the structural characteristics of
the class A of systems (to fix ideas assume
that those systems are all observed psycho-
logical and social types of groups of workers,
for instance), into a mathematical model A.
This action considers abstractions of the qua-
litative manifestations of the system. When
we refer to a mathematical model we are not
restricting Mathematics to calculus, to nume-
rical methods, to numerical computation, to
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Statistics, nor to the theory of dynamical
systems evolving in a finite dimensional nu-
merical space or geometric manifold.

The mathematical modeling of the psy-
chological system will be denoted by

VAN
A->A

The modeling action is denoted by the
single arrow —, which is one-directional.
In fact, it is enough that all the chara(A:teris-
tics of the psychological system A are
translated into its mathematical model, the
system A, but the converse relationship is

not r , unired. Indeed, if our purpose is to

study A, then its mathematical model A acts
jusy, ~ tool. As any tool, all the specifications
of A,may be considered, but the tool may
have also some other characteristics that are
independent of those of the object to which it
serves. Namely, some extra conditions of A

A, neither represent the characteristics of A,

nor contradict them.

To fix ideas, let's put an example by ana-
logy:

A hammer is a tool to fix nails. The
hammer has a a head whose characteristics
must fit well with all the nails to be fixed.
But it also has a handle, which may have a
form to fit with the worker's hand. The
handle's form fits with the fingers of the
worker, but are meaningless with respect to
the nails. Nevertheless, the handle must be
compatible and not restrictive with the
action of fixing all the nails. For instance it
can not be made with a too soft material,
which would fit nicely to the worker's hand,
but would bend with the use and make the
hammer useless for its purpose.

To end the analogous idea, we mean that
sometimes, the mathematical model would
be nice to obtain interesting theorems for
pure Mathematics, but inadequate or over-
simplified, if the variables, parameters and
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constants do not fit well with the complex
characteristics of the system under study, to
which the thesis of the theorems are suppos-
ed to apply. In particular, the most common
oversimplification that may make useless
the theoretical results, is that of modeling
mathematically the complex systems under
research of other sciences, using only real
numbers or geometric approaches in finite
dimensional spaces. This oversimplification
is particularly abundant in the bibliography
about the mathematical models of systems
coming from Psychology.

AN HYPOTHETICAL EXAMPLE

Consider the hypothetical translation into a
mathematical structure of the psychological
manifestations of a social group, describing
their attitudes and behaviors respect to work
or job activities. One needs to consider many
complex and qualitative descriptions: com-
petitions and pressures, individual and col-
lective wishes and expectations, social levels,
motivations, scholar education, qualification
for the work, abilities, external opportunities
and the psychological perceptions of them,
achievements, goals, etc. Also the relations
among all those variables had to be consider-
ed as variables. Besides the tendencies of
change of each variable may be considered
also as part of the variables, and the agents
that may influence in those tendencies, too.
Some of the variables are intra-individual,
other are extra-individual but intra-social-
group, and other are extrasocial-group. Let us
consider a mathematical model with a com-
plexity comparable with that of the system
itself. Our proposition is hypothetical, and
just intended to be illustrative. Besides, it is
not the unique possible model.

First, recall that, in general, the math-
ematical variables are neither numerical, nor
a finite set of real numbers. Most variables
considered in the modern Mathematics, are so
abstract that do not live in numerical fields or
geometrical spaces. Unfortunately, the math-
ematical theory of chaos and of dynamical
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systems, is still almost completely undevelop-
ed in such general abstract spaces.

Both disciplines, Mathematics and Psy-
chology, require and use a high level of
abstraction. So, let us take advantage of a
sequence of increasing levels of abstraction:
Consider an abstract transformation X such
that, to each codified entrance gives some
defined codified output. Each entrance, and
also each output, is not necessarily codified
with numbers, and there may be infinitely
many possible entrances and / or outputs. The
set of all the codified potential entrances is
called the domain of the transformation X,
and the set of all the codified potential out-
puts is called its co-domain. The trans-
formation X itself is also called in Math-
ematics a function, even if its domain and
co-domain are not sets of real numbers, and
so, its graphic curve or line, as a set in a
cartesian plane, is not defined. Most math-
ematical functions are not identifiable with
such a graphic in the plane nor in a finite
dimensional space. Abstract functions, as
defined above, are mathematical objects as
well as those that have numerical formula-
tions.

Uploading one more abstract step, such
transformation X does not need to be unique
and remain static, but may be a variable state,
varying in a set of many potential states of a
dynamical system. So, each function is a va-
lue of the variable X . Therefore, this variable
X takes values in the set of all the transforma-
tions described as above. We denote this set
as X (aleph), and is said to be a functional
space.

Returning to the hypothetical example of
Psychology, the set of all possible attitudes
of the social group is the co-domain of the
function X modeling the attitudes' reactivity
function at one time.

Therefore, X does not model the attitudes
separately, nor the agents that cause them,
but the relations among the agents and the
attitudes. The space X is the set of all the
potential attitude's reactivity functions of the
group, as can be conceived by the Psycholo-
gy researcher, regardless if they will or will
not effectively appear.
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Let us upload one more step of abstraction.
Consider the deterministic dynamical pro-
perties of the system, according to IN PURE
MATHEMATICS. The instantaneous state is X and
is also called point, being in our example an
abstract function, that is the attitudes' reacti-
vity function of the social group on one fixed
time. Embedded in the variable X, which is
called one point in the functional space X, are
all the agents, intra or extra-individual, and
intra or extra-social group, all the qualitative
(not only the quantitative) responses of the
social group to all those agents, and only one
functional way in which all the agents cause
all the responses. Thus, X is the reaction (or
the way to respond) of the social group, at
one instant n, and changes, or moves with
time, inside the functional space X.

It is imagined as a point-wise fly in the
air, disregarding that its mathematical defi-
nition is much more complex than that. The
point X is changing, as time goes on, mov-
ing or evolving in the space X of all the pos-
sible states. As defined in The deterministic
hypothesis, if the system is deterministic,
there is adynamical law L, which is also a
transformation, whose domain is now X
and its co-domain is also X. The dynamical
law L transforms the point X at one instant
n onto the following point at the future ins-
tant n+1. Therefore, this model considers
that the attitudes' reaction function of the
social group changes while time goes on,
according to some law L. This law determi-
nes the evolution in the way that the group
will react in the future. One can control that
evolution in two modes:

- Controlling the state X, that is, either
modifying some or all the agents that
cause a reaction of the group (intra or
extra individuals, intra or extra social
group), or modifying the way in which
the social group reacts to those agents, or
add more agents, or suppress others, or
modify all factors at the same time. This
is called in Mathematics a spacial
change, but it is just a jump of the point
X in the space X, without a change of this
space itself.
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- Controlling the dynamical law L, that is
modifying the deterministic rules in
which the attitudes' reacting function will
evolve in the future, without changing at
the present time, the agents nor the way
in which the social group reacts to those
agents. This is called in Mathematics a
structural change. It 1s a change of the
rules, according to which the point X will
evolve in the space X, until other structu-
ral change is done, and without changing
the space X itself, nor the distribution of
its points at the present time.

The systems for which small spacial
changes do not modify the evolution, are
called Lyapunov stable. The systems for
which arbitrarily small spacial changes in
some direction modify the evolution, are ca-
lled expansive, or Lyapunov unstable, or
chaotic. The systems such that small struc-
tural changes do not modify the evolution
are called structurally stable. Finally, the
systems such that arbitrarily small structural
changes modify the evolution are called
bifurcating.

There exist simple mathematical exam-
ples that are not chaotic nor bifurcating,
other that are not chaotic but bifurcating,
and other, not so simple, that are chaotic but
not bifurcating. During many years, there
was a conjecture asserting that generic
chaotic systems were structurally stable (na-
mely, not bifurcating), until some complica-
ted abstract dynamical systems were invent-
ed (Newhouse, 1979), which exhibited
chaos and a mostly abundant bifurcating be-
havior, simultaneously. These are called
wild systems.

On the contrary of wildeness, chaos is
usually structurable stable. In fact, it is a
known theorem in Mathematics, the follow-
ing assertion:

Under the hypothesis of uniform hyperbo-
licity (namely, the existence of uniform expo-
nential rates of expansion of distances among
different states of the system), and under the
assumption of finite dimension of the space,
the chaotic systems, such called Anosov
systems (Anosov, 1962) are structurally sta-
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ble. This theorem means that there is an abun-
dant family of mathematical systems such
that, even being chaotic, have such a persis-
tent future evolution that would need a relati-
vely very large structural change, to behave
differently.

Nevertheless, most known theorems about
chaotic systems, structural stability and bi-
furcations, have not still been generalized to
infinite-dimensional spaces. At the same
time, most functional spaces, such as the one
in our hypothetical example, have infinite di-
mensions. Summarizing, to consider abstract
structures in Mathematics, as for instance
abstract functional spaces, instead of only fi-
nite words or matrixes of real numbers, is a
very powerful tool which may model very
complex systems. It fits to descriptive, quali-
tative and non quantitative complex systems.
Nevertheless, at one hand, the deterministic
mathematical hypothesis must be justified to
hold in the concrete applied system, and on
the other hand, most theorems about deter-
ministic chaos and structural stability, that
were proved up to now a days, should be ge-
neralized to fit with those applied systems.

DECODING THE MATHEMATICAL RESULTS

In pure matHEMATICS We denoted the deductive
relationship of a mathematical proved the-
orem as (T)A = B. If A is the mathematical
model of a psychological system A, then
the mathematical thesis B can be decoded
into attributes of that system. We denote the
decoded result of attributes as B (see Figure
1). The decoding or interpretation action from
B toB is writen as:

B«—B
The decoding is the final action in the
meta-theory, which leads to the conclusions

of the interdisciplinary reasearch that is sche-
matized in Figure 1.
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Concrete examples of such decoding
process, from thesis of theorems to attributes
of psychological systems, can be found in
the book of Nowak and Vallacher (1998),
and in the articles Ayers (1997) and
Robertson (1995). More generally, in the
book of Strogatz (1994), veryinteresting
applications to biology, physics, chemistry
and engineering are explained with detail. In
the two books referred above there is also a
review of many mathematical dynamical
features of general chaotic and non linear
systems, in a context which is directed to a
wide audience of scientists of different disci-
plines.

Conclusions

Mathematics has still rather few know-
ledge of chaotic dynamical systems, reduced
to dynamics evolving in spaces of relatively
low dimensions and that have good regularity
properties such as differentiability for in-
stance. Thus, with more reasons, mathemat-
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ics has not still many proved theorems about
most dynamical systems, for instance those
that are non linear and evolve in spaces with
very large finite or infinite dimension, and
those that have discontinuities, like some
neuron networks models. Those complex
systems appear when modeling some dynam-
ical systems coming from other sciences, in
particular from neuroscience and Psychol-
ogy. So, the translation of complex dynami-
cal models from Psychology will surely pose
new open questions to Mathematics. New
concepts and mathematical strategies for the
proofs of new theorems, should be devel-
oped. It is a historical role and motivation for
mathematicians, to create and innovate in
mathematics, adapting their research agenda
to the problems posed from other disciplines.
So, we conclude that it is not only mathemat-
ical psychology and applied mathematics,
which are creating new strategies of research
to apply the theory of deterministic chaos,
but also pure mathematics, which revises and
widens its scope to adapt to the interdiscipli-
nary investigation.
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