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Abstract

We study the complexity of the itineraries of injective piecewise contracting maps on the interval. We
prove that for any such map the complexity function of any itinerary is eventually affine. We also prove
that the growth rate of the complexity is bounded from above by the number N — 1 of discontinuities
of the map. To show that this bound is optimal, we construct piecewise affine contracting maps whose
itineraries all have the complexity (N — 1)n + 1. In these examples, the asymptotic dynamics takes
place in a minimal Cantor set containing all the discontinuities.
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1 Introduction

Let (X,d) be a compact metric space and {X;}X | be a finite collection of N > 2 non-empty disjoint open
subsets such that X = vazl X;. Let f: X — X and assume f discontinuous on the set A = {z €
X;NX;,i#j€{l,...,N}}. If there exits a constant A € (0,1) such that for any ¢ € {1,..., N} the map
f satisfies

d(f (@), f(y)) < Ad(z,y)  Va,y e X, (1)

then f is called a piecewise contracting map and each element of the collection {X;}2 , is called a contraction
piece.

In [5], we explored the diversity of asymptotic dynamics of these systems, and proved that a rich
dynamics can appear if the attractor contains discontinuity points. In particular, we exhibited three-
dimensional examples with exponential complexity and positive topological entropy. On the other hand, if
the attractor does not contain discontinuity points, then its dynamics is simple, just composed by a finite
number of periodic orbits.

In the present paper, we remain interested in the diversity of the dynamics but we restrict the study to
a class of one-dimensional piecewise contracting maps. Our objective is to determine the range of all the
possible complexity functions in the whole considered class. In particular, we are interested in the relation
between certain features of the discontinuity points and the complexity of the dynamics.
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If a piecewise contracting map f is defined on a compact interval and each contraction piece is an
open interval, we say that f is a piecewise contracting interval map. For these systems, it has been shown
that generically the asymptotic dynamics is periodic, first for injective maps [2, 13, 14] and later for more
general one-dimensional maps [15]. In this paper, we are instead interested in the non-periodic asymptotic
dynamics. In dimension one, there are few known examples of piecewise contracting maps with non-periodic
attractors [4, 7, 9, 17], and none of them has orbits that accumulate in more than one discontinuity point.
Therefore, little is known about the maximum complexity of the dynamics when the interval map has an
arbitrary (finite) number of discontinuity points.

By complexity of a map, we refer to the complexity function of the itineraries of its orbits. To define
the itineraries of a piecewise contracting map f, consider the set X of those points of X whose orbit never
intersects A, that is

ﬂf (X\A), (2)

and assume that X is non-empty. We say that the sequence 6 = {0;:}ien € {1,2,..., N}V is the itinerary
of z € X if for every t € Nand i € {1,..., N} we have §; = i if and only if f/(z) € X;. The complexity
function of a sequence 0 is the function deﬁned for every n > 1 by

p(0,n) :=#L,(0) where L,0):={0;...0t1p1, t >0} Vn>1,

that is, p(6,n) gives the number of different words of length n contained in 6. Therefore, the complexity
function of a sequence is a non-decreasing function of n. Also, if there exists ng > 1 such that p(8,no+1) =

p(0,m0), then p(d,n) = p(8,ng) for all n > ng. This implies that a symbolic sequence is eventually periodic
if and only if its complexity function is eventually constant.

In this paper we consider piecewise contracting maps satisfying a “separation property”. To define this
property, first note, from inequality (1), that for any i € {1,..., N} the restriction f|x, of f to the piece
X, admits a continuous extension f; : X; — X which also satisfies inequality (1) on X;.

Definition 1.1. (Separation) We say that a piecewise contractlng map f satisfies the separation property
if for every i € {1,..., N} the continuous extension f; : X; — X is injective and f;(X;) N f;(X;) = 0 for
any j € {1,...,N} such that j # 1.

A map f which satisfies the separation property is obviously injective on X \ A, but not necessarily on

the whole set X. A map f which is injective on X does not satisfy the separation property if and only if

there are 4 and j in {1,..., N} such that lim f|x,(x) = lim f|x,(z) for some y € AN X; and z € AN X},
Ty Tz

with y # z if i = j. It follows that not every injective map satisfies the separation property. Nevertheless,
in dimension one, every injective map whose discontinuities are all of the first kind satisfies the separation

property.
Our main result is the following Theorem 1.2. We will later complement its statement with the additional

results given by Theorem 2.10 and Theorem 3.1 about the relations between the complexity function and
the dynamical asymptotic behaviour of the orbits near the discontinuity points.

Theorem 1.2. 1) Let 0 be the itinerary of an orbil of a piecewise contracting interval map which has N
contraction pieces and satisfies the separation property. Then, there exist « € {0,1,...,N =1}, 8> 1 and
mg = 1, such that the complexity function of 0 satisfies

p(@,n) =an+f Yn = m, (3)

with 8 =1ifa=N —1.

2) For every N > 2, there exists a piecewise affine contracting interval map f which has N contraction
pieces and satisfies the separation property, such that

p(@,n)=(N—-1)n+1 Vn =1, (4)

for every itinerary 0 of f.
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As mention above, generically in the space of piecewise contracting interval maps, all the orbits are
attracted by periodic orbits. Therefore, generically, the itinerary of any orbit is eventually periodic and
has an eventually constant complexity function. In other words, a = 0 in equality (3). Nevertheless, non-
periodic attractors do appear when some orbits accumulate on discontinuity points [5]. In dimension two
or three, this can produce itineraries of polynomial or exponential complexity [5, 11, 12]. But in contrast,

Theorem 1.2 proves that in dimension one the complexity of any non-periodic itinerary is affine.

To prove Theorem 1.2, we will deduce equality (3) from precise results stated in Lemma 2.9 and Theo-
rem 2.10, which relate the complexity of an itinerary with the recurrence properties of the corresponding
orbit arbitrarily near the discontinuity points. In fact, the value of o equals the number of discontinuity
points on which the orbit accumulates from both sides, and therefore is bounded above by the number of
discontinuities contained in the attractor (which is at most N —1). On the other hand, unless a = (N —1),
the constant 8 depends on the transient behaviour of the dynamics and can be arbitrarily large; see relation
(13).

Part 1) of Theorem 1.2 states that the complexity of an itinerary is at most equal to (N — 1)n + 1. For
N = 2, there are known examples of piecewise contracting maps whose itineraries have such a Sturmian
complexity [3, 4, 6, 7,9, 17]. In those examples, the attractor is a Cantor set supporting a minimal dynamics.
Part 2) of Theorem 1.2 states that for any value of N > 2 there also exists a piecewise contracting map
with “full” complexity. Thereby, it establishes the optimality of the upper bound N — 1 for the growth
coefficient a of the complexity function, for any number N > 2 of contracting pieces.

To prove the existence of those maps with full complexity, by induction on N we construct for any
N > 3 a piecewise contracting map whose complexity function satisfies equality (4), using as a base case
a known example with N = 2 and a Sturmian complexity. As a consequence, we will prove with Theorem
3.1 that the attractor of each of these maps inherit the Cantor structure and minimality of the attractor
of the base case.

The proof of part 2) of Theorem 1.2 provides for each N > 2 a map whose all itineraries have the same
full complexity. But we note that the method also allows the construction of examples for which different
affine complexities coexist (for different orbits).

We prove part 1) of Theorem 1.2 in Section 2, and part 2) in Section 3.

2 Complexity of the itineraries

2.1 Preliminary general results on itineraries

In this subsection we give some preliminary results that are not specific to piecewise contracting interval
maps. In fact, here X is not necessarily an interval and f : X — X may not satisfy the inequality (1),
provided it admits continuous extensions on each continuity piece X;.

Definition 2.1. (Atoms) For every i € {1,...,N} let F; : P(X) — P(X) be defined by F;(4) =
F(ANX,) for all A € P(X), where P(X) denotes the set of parts of X. Let n > 1 and (i1,...,%,) €
{1,...,N}". Wesay that A;, , =F, oF;, ,o---0F; (X)isan atom of generation n if it is non-empty.
We denote A, the set of all the atoms of generation n.

Remark 2.2. In the sequel we will often use the following basic properties of the atoms: by construction,
Aivig.in C Aiy iy C ... CA,;,, and if f is piecewise contracting then max diam(A4) < /\jréax diam(A)

n+41
for all n > 1, where diam(A) is the diameter of A.

As shown by the following Lemma 2.3, the separation property implies that the atoms of a same
generation are pairwise disjoint.

Lemma 2.3. Suppose that f satisfies the separation property. For every n > 1

1. if A,B € A, are such that AN B # (), then A= B,
2. if Ail‘..in; Ajl.“jn € A, and Ailu.in = Ajlmjny then (ilv .- ~7in) = (jlv cee 7jn)'
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Proof. Tt is easy to show that 1) is true for n = 1. Suppose now that it is true for some n > 1. Let
A, B € Ap41. Then there exists C and D € A, and ¢, j € {1,...N} such that A = f;(C'NX;) and
B = f;(DN X;). Suppose that AN B # 0. Since fi(X;) N f;(X;) =0 for i # j, it follows that i = j. Now,
since f; is injective, if AN B # 0 we have (CN X;)N (DN X;) # 0, and CND # 0. Since CND = CND,
using the induction hypothesis we deduce that C' = D and it follows that A = B.

By the separation property 2) is true for n = 1. Suppose it is true for some n > 1 and suppose
Ai i1l A]l Jnt1t Then’ fin+1(Ai1~~in mXin+1) = fjn+1(Aj1-~-]n mX]n+1) and jn-‘rl = Z.7’L-|-17 since
fina (X zn+1) N f]n+1(X]n+1) # 0 implies that j,41 = in41. On the other hand, if f; . (Ai,..5, N Xi,,,) =
Jinii (A5, 5, N X5, ., ) then by injectiveness A;, .. i, NA;,. j, # 0, which implies by 1) that A“mi =Aj .-

Using the induction hypothesis it follows that i, = jj for all k£ < n. O

The following Lemma 2.4 and Lemma 2.5 give the relation between the itinerary of a point of X and
the atoms visited by the orbit of that point.

Lemma 2.4. Let # € X and 6 € {1,..., NN be its itinerary. Then f(z) € A9,0,:1..001_, for every
t>0andn>1

Proof. Let t = 0. By the definitions of atom and itinerary we have that f(x) € f(Xg,) C Ag, since x € Xy, .
Assume that f*(x) € Ag,g,..0,_, for some n > 1. Then f*H(x) = f(f*(z)) € f(Agyb,..6,_, N Xp,) C
Agyo,..0,- Now suppose t # 0, let y = f(z) and w be the itinerary of y. Then f'™"(z) = f"(y) €
Awo...wn_l = AO, O

t0t4+1---Otpmn—1-°
Lemma 2.5. Suppose that [ satisfies the separation property. Let x € )~(, t>0,n>1and 0 be the
itinerary of x. If f**"(z) € Aiyiy. i, then 00i41 ... Oppp_1 =i1i2... 0y

Proof. Suppose t = 0. By Lemma 2.4 we have f"(z) € Agyo,...0,_,, therefore A;, ;. N Ag, 0, , #0. By
Lemma 2.3 we have A;, ; = Ag,. .0, , and 0y...0,_1 = i1...i,. Now suppose t # 0, let y = f'(z) and
w be the itinerary of y. Then [t (x) = f"(y) € Asy. 4, , which implies that wg...wp—1 =iy ...y, that is
9 0t+n 1= Zl Z . O

Corollary 2.6. Suppose that f satisfies the separation property. Let x € )Z', t>0,n>1,0 be the itinerary
of x, and (i1,42,...9,) € {1...N}™. Then 0;0;41 ...01pn_1 =i1ia...1, if and only if ft+"( Ye Ay i,

Proof. Tt follows directly from Lemmas 2.4 and 2.5. O

Let # € X, I := {1,...,N} and 6 € I" be the itinerary of . Now, for any n > 1 and k € I consider
the set

LE(0) :={i1...ip € L,(0) : #{j € T : 3t > 0 such that f*"(z) € A;, . NX;} =k}

A word of length n of  belongs to L (6) if it is the label of an atom that intersects at least k continuity
pieces and if the orbit of f™(x) visits exactly k of these intersections. The following Lemma 2.7 puts in
relation the growth of the complexity function of an itinerary # and the cardinality of the sets Lk (6).

Lemma 2.7. Let x € X and 6 € IV be the itinerary of . Then

N

pO,n+1) <p(O,n)+ > (k—D#LLO)  Yn>1. (5)

k=2

If moreover f satisfies the separation property, then (5) is an equality.

Proof. Let n > 1, and observe that L, (6) = Uivﬂ LE(6). First, we show the inclusion
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where
BEO):== |J {i.inipp €I IS0 @) € Ay, N XL )
i1...in €LK(6)

Let i1 ...9p41 € Lpt1(0). Then, there exists ¢ > 0 such that i;...49,41 = 6;...0;1,, which implies
i1...i, € L¥(0) for some k € I (since iy ...4, € L (0) and f'™"(x) € X;,.,). On the other hand, by
Lemma 2.4, we have f**"(z) € A;, ;. It follows that iy ...4,,1 € B¥(#), and thus (6) is true.

If we suppose moreover that f satisfies the separation property, we can deduce that (6) is an equality.
Indeed, if 4;...49p41 € UkN . BE(6), then there exist k € I and t > 0 such that 4y ...4, € LF(6) and
[ (x) € Ay, N Xi, .. The latter implies that 6;1,, = in41, and 4; . =6;...0;1n_1 by Lemma 2.5.
It follows that 41 ...4,41 € Lyt1(6).

To finish the proof observe that for any k € I the set B¥(6) is defined by the union of disjoint sets that
satisfy

#{ir . igipg € "3 >0 T (2) € Ay, 0 Y=k  Vii...i, € LE(6),

'Ln+1

by definition of L% (). So we have #BF(0) = k#Lk (). Moreover, since LE(6) N LY (9) = 0 if k # K/, on
the one hand B¥(9) N B (9) = () if k # k', and on the other hand p(#,n) = Zszl #LE(9). We deduce that

N N N
# ) BEo) Zk#Lk Z#L’“ )+ (k= 1) #LE(0) n)+ Y (k—1)#LE(0).
k=1 k=1 k=2
Now, from (6) we conclude that (5) is true, and is an equality if f satisfies the separation property. O

2.2 Discontinuities of piecewise contracting interval maps and complexity

From now on, we assume that the phase space X of f is a compact interval of R and that the contraction
pieces are open intervals in X. This implies, in particular that the atoms are closed intervals. Also, since
the number of pieces is finite, the map f has a finite number of discontinuities. We label the N contraction
pieces { X}V, of f, in such a way that X; < X5 < --- < Xy

Definition 2.8. Let z 6 X and for any n > 1 denote A, (z) := {4 € A, : It € N: ft*n(z) € A}. Let
ce€Aandied{l,.. — 1} be such that ¢ = X; N X;41. Let n > 1, we say that c is n-left-right visited
(in short nlr—visited) by {fk( ) }ren if there exists A4, € A, (x) such that c € Aand

{teN: ff'"(z) e A, NX;}#0 and {teN:ff4"@)ec A, N X}t #0.
We denote A} (z) the set of the discontinuities that are nlr-visited. We say that ¢ is left-right recurrenly

visited (in short Ir-recurrently visited) by {f*(x)}ren if ¢ € AR (x) for all n > 1. We denote Ay,.(x) the set
of the discontinuities that are lr-recurrently visited.

Note that for any € X and n > 1 we have Ay.(z) C AT (z) C AR (x) C A, because any atom of
generation n+1 is contained in an atom of generation n. Also, if ¢ € A.(x), then ¢ is an accumulation point
(by the left and by the right) of the orbit of z, since the diameter of the atoms of a piecewise contracting
map goes to 0 as their generation goes to infinity (see Remark 2.2).

Lemma 2.9. Let f be a piecewise contracting interval map satisfying the separation property. Let x € X
and 0 be its itinerary. Then,

#AL(x) < p(O,n+1) —p(0,n) < #A Vn>1. (7)
Moreover, if ng > 1 is the smallest integer such that #ANA < 1 for any A € A, (x) with n = ng, then

p(B,n+1) =p(0,n) + #AL(x) Yn = no. (8)
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Note that ng exists and is bounded above by the smallest n > 1 such that

max diam(A) < min diam(X;),
AcA, ie{l,..,N}

which in turn can be bounded above by a function of A and the diameters of the continuity pieces (see
Remark 2.2).

Proof. Let n > 1. Suppose that ¢ € A} (z), then there exists A € A, () such that ¢ € A. Moreover there
exist i € {1,...,N} and ¢t € N such that fi*t(z) € AN X;. Therefore, according to Lemma 2.4, we have
AN AQ,’“,anil # 0, and after Lemma 2.3 we have that A = Ay, g,,, ,. As there exists also t' € N such

that f*'*+"(x) € AN X;11, we have that 0;...60.,_1 € LE(6) for some k > 2. We deduce that

N

x) C U U (Aiy.i, NAL(2))

k=24,...i,€ Lk (6)

and it follows that

N
z) < Z Z # (A, N AL (7))

k=21i;...in€Lk(0)

Now, if A € A, (z) and #ANA].(z) = g, then A intersects at least ¢+ 1 continuity pieces that are visited by
the orbit of f"(x). It follows that for any k > 2 and i ...4, € L¥ () we have that # (A4;, ;, NAR(x)) <

k — 1. We deduce that
N

2: (k—1)#LE@®)  Vn>1. 9)

k=2

Now, let n > 1 and k > 2. If 4;...4, € LE(0), then A;, ; # 0 and A;, ,; intersects at least k
continuity pieces. As A;, . ; is a closed interval and the continuity pieces are open intervals, it follows that
A;, . i contains at least k — 1 elements of A. Now, according to Lemma 2.3, if 41 ...4, and ¢ ...}, are two
different words of L,,(#) then A;, ;. N Ay i = (. It follows that

N
> (k- D#LE®)  Vn> 1 (10)
k=2

Then, inequalities (7) follow from (9), (10) and Lemma 2.7.

Let n > ng. Then, for any i ...4, € L,(f) the atom A;, , intersects at most two continuity pieces,
and therefore L () = () for all k > 3. Moreover, for any i; ...4, € L2(6) the discontinuity contained in
A, . i, belongs to A} (x). We deduce that

N
#ALL (@) > #L5(0) = Y (k= DH#LL(O),  Yn>no, (11)
k=2
which together with (9) and Lemma 2.7 implies (8). O

Theorem 2.10. Let f be a piecewise contracting map satisfying the separation property. Let x € X and 0
be its itinerary, then there exits mg > 1 such that

p(0,n) = n#A(x) + () Vn = mo, (12)

with
p(0,1) — #Au(z) < B(x) < p(0,1) — #A +mo(#A — #As(2)). (13)

Proof. For any ¢ € A, either ¢ € Ay,.(z) or there exists v(c) := min{n > 1:c ¢ Al(z)}. As AT (z) C
A7 (z) for all n > 1, it follows that for any ¢ € A\ Aj.(z) we have that ¢ ¢ AJ.(z) for all n > v(c).
Therefore, if ny = max{v(c),c € A\ Ay-(x)} if A # Ay (), and ny = 1 otherwise, then A} (z) = Ay ()
for all n > ny.
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Let mg := max{ng,n1}. Then we can write (8) as
PO+ 1) p(0,0) = #Dip(x) V> mo,
which implies p(6,n) = p(6,mo) + (n — mo)#As-(z) for all n > me. It follows that (12) is true with
B(x) = p(6,mo) — mo# A (). (14)
Recalling that #A} (z) > #A;,(x) for all n > 1, from (7) we obtain that
p(0,1) = #An(x) < p(0.n) — n#Ap(x) < p(0,1) — #A + n(#A - #Ap(z)) Vn=1,

and setting n = mg, we obtain (13) from (14). O

Proof of part 1) of Theorem 1.2. For any z € X with itinerary 6 we have
p(ea 1) - #A < 1 < p(ea 1) - #Alr(x)a (15)

which implies, in particular, that 1 < SB(x). Together with Theorem 2.10, this proves equality (3) of
Theorem 1.2. In fact, equality (3) follows from equality (12) with o = #A,,.(z) € {0,1,..., N — 1}. Also,
it @ =N —1, then #A;,(z) = #A. So, from (15) and (12), we conclude that §(z) = 1. O

Remark 2.11. Now we give some direct consequences of Theorem 2.10 and we comment their relations
with other results. From Theorem 2.10 it follows that:

1. There exists an itinerary with a complexity function which is not eventually constant if and only if
there exists a discontinuity point ¢ which is Ir-recurrently visited by an orbit of X. In particular, if the
limit set of f does not contain any discontinuity point, then the complexity function of every itinerary is
eventually constant (recall that if ¢ € Ay.(z), then ¢ belongs to the w-limit set of ). In this case, for any
z € X with itinerary 6 we have

and p(f,n) = B(x) is constant for any n > mgy. Moreover, when the limit set of f does not contain
discontinuity points, there exists a smallest integer m > 1 such that no atom of generation m contains
discontinuities. This integer m is an upper bound for mg, which provides a uniform upper bound on 3(z)
through inequalities (13).

2. If #A,.(x) =1 but Ay(x) # A, then the itinerary 6 of the orbit of x satisfies p(f,n) = n + B(x) for
all n large enough, where S(x) may be larger than 1. An example of a piecewise contracting map whose
itineraries have such a complexity can be found in [7]. In [8], it is shown that, up to a prefix of finite length,
a sequence of complexity n + [ is the image by a morphism of a Sturmian sequence. We conclude that, if
#A;.(x) = 1 but Aj.(x) # A, the itinerary of any orbit, is Sturmian up to a morphism. Hence, up to a
morphism, it is the itinerary of an irrational rotation, with respect to a suitable partition of the circle.

3. If #A;.(z) > 1, the itinerary 6 may be that of an irrational rotation: in fact, for some adequate values
of a and S, the itineraries of an irrational rotation with respect to a suitable partition of the circle may
have a complexity function of the form an + g for all n large enough. However, not every sequence with
such a complexity is itself an itinerary of an irrational rotation [1].

4. If all the discontinuities are Ir-recurrently visited by the orbit of a point = € X’, ie. Ap(z) = A, then
mo = ng (see the definition of mg in the proof of Theorem 2.10). Besides, from part 1 of Theorem 1.2, we
know that S(z) =1 in this case. So, equality (12) becomes

p(@,n)=(N—-1)n+1 Yn = ng. (16)

In the particular case where the map has two contraction pieces (N = 2) and the (unique) discontinuity
point is Ir-recurrently visited by the orbit of x, then ny = 1 and #(x) is a Sturmian sequence. Therefore,
it is also an itinerary of an irrational rotation. In general, if the itinerary 6(x) satisfies (16) for some
N > 2, then it has the complexity of an itinerary of a N-interval exchange transformation satisfying the
so-called Keane’s infinite distinct orbit condition [18, 19]. In fact it is proved in [16] the following result: if
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a piecewise contracting map f has no periodic orbit, and is such that the image of any discontinuity and
each lateral limit of f belong to X, then it is semi-conjugate to an interval exchange transformation. It is
however not easy to exhibit examples satisfying these hypotheses, since generically a piecewise contracting
interval map has periodic points. In the next section, we will construct such examples for every N > 2,
where furthermore equality (16) holds for any itinerary 6.

3 Existence of piecewise contracting interval maps of full com-
plexity

In the previous section we proved Theorem 2.10, which implies that the complexity of the itinerary of any
orbit of a piecewise contracting interval map satisfying the separation property is bounded from above by an
affine function whose slope is equal to the number of discontinuities of the map. However, as far as we know,
there is still no example of piecewise contracting interval maps with more than one Ir-recurrently visited
discontinuity. The purpose of this section is to construct such examples. Even more, we will construct
examples for which all the discontinuities are lr-recurrently visited by all the orbits. These maps generate
itineraries with the maximal complexity for the fixed number N of contracting pieces. We say that they
have “full” complexity.

We are also interested in the asymptotic dynamics of such examples. It takes place in what we call
the attractor A of the piecewise contracting map f : X — X. To define the attractor we first recall the
definition of the atoms A € A,, of generation n for any natural number n > 1 (see Definition 2.1). We
define the attractor A C X as follows:

A= n A, where A, := U A Vn2>1 (17)
n=1 AcA,

The sets A,, can equivalently be recursively defined by A; := f(X \ A) and Ap4q1 := f(A, \ A) for all
n>1.

Note that the attractor A is nonempty and compact. Besides, A contains all the non-wandering and
w-limit points; see [5] for more details and examples.

Precisely, in this section we prove the following theorem:

Theorem 3.1. For every N > 2, there exists a piecewise affine contracting map which has N contraction
pieces and satisfies the separation property, whose attractor is a minimal Cantor set, and such that each of
its discontinuities is Ir-recurrently visited by any orbit.

Theorem 3.1, together with (16), proves immediately equation (4) of Theorem 1.2 for any n > ng. Later,
we will prove that it is always possible to construct the maps in such a way that ng = 1 (see Lemma 3.8),
to end the proof of part 2) of Theorem 1.2.

Observe that the attractor of the piecewise contracting map of Theorem 3.1 contains all the disconti-
nuities of the map. In fact any Ir-recurrently visited discontinuity belongs to the w-limit set of some orbit,
and the attractor contains all the w-limit sets.

To prove Theorem 3.1, we will prove the following stronger statement:

Assertion A: For every N > 2, there exists N ordered disjoint open intervals X; = [cg,c1), X2 =
(c1,¢2),..., XN = (en—1,¢cn] of X :=[co,en] and f: X — X with all the following properties:

P1) The map f is piecewise contracting with contraction pieces Xi,..., Xy and f|x, is affine with slope
A€ (0,1).

P2) The map f satisfies the separation property.

P3) The attractor A of f is a Cantor set.

P4) The set Uili_ll{fi(ci), fir1(c;)} is a subset of X.

P5) There exists i € {1,..., N — 1} such that {f™(fi(¢;))}nen or {f"(fix1(¢:))}nen is dense in A.
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P6) For any z € X and i € {1,..., N — 1} we have that ¢; € Ay, ().
To prove Assertion A and Theorem 3.1, we will need the following lemma.

Lemma 3.2. Let N 22 andcy <c¢; <---<cy inR. Let f : [co,cn] = [co, cn] be a piecewise contracting
map with contraction pieces X1 = [co,c1), X2 = (c1,¢2),...,XNn = (cn-1,¢cn] and which satisfies the
separation property. Suppose that there exists i € {1,..., N — 1} such that

1) fi(a) € X and {f™(fi(ci))}nen is dense in A for some j € {i,i+ 1}.
2) ¢; € Ap(x0) for some xg € X.

Then, for any € > 0 and y € A such that AN (y,y+v) # 0 (resp. AN (y—v,y) #0) for allv > 0, there
exists | > 0 such that f'(zo) € (y,y +¢€) (resp. fl(zo) € (y —€,9)).

Proof. We will make the proof for y € A such that AN (y,y +v) # 0 for all v > 0, and without loss of
generality we will suppose that i = j =1. Let € >0, z € Ay N (y,y +¢) and 6 = %min{z —y,y+e—z}
Since {f"(fi(c1))}nen is dense in Ay, there exists n such that |f"(fi(c1)) — 2| < d. By injectivity of f
on X \ A the set P := U}~ f~(A) is finite, and for p := d(fi(c1),P) > 0 the map f™ is continuous
on (fi(e1) — p, fi(c1) + p). Using the continuity of f1 on [cg,c1], we obtain that there exists &' > 0 such
that [f"(fi(c1)) — f"(x)] < 6 for all z € (c1 — &',c1). As ¢1 € Ap(x0), there exists m such that
f™(x0) € (c1 — &, ¢1) and by the triangular inequality we deduce that |f!(zo) — 2| < 28 for | = m +n +1,
that is f!(xo) € (y,y + ¢). O

Before proving Assertion A, we show that together with Lemma 3.2 it implies Theorem 3.1:

Proof of Theorem 3.1 as a Corollary of Assertion A. Suppose that Assertion A is true and let f satisfying
P1-6' for some N > 2. Then, f is a piecewise affine contracting interval map, it has the separation
property, its attractor is a Cantor set and A = Ay,.(x) for any 2 € X. So, to prove Theorem 3.1 it remains
to prove that A is minimal and that A = Aj.(z) for any x € X \ X. To this end, note that P1-6 do
not impose any condition on the definition of f on A, and therefore f can be suitably defined on this set.
So, we can assume that f(c;) € {fi—1(ci), fi(ci)} for any ¢ € {1,..., N — 1}, which implies by P4 that
f(A) C X. Since f satisfies P1-6, it satisfies the hypotheses of the Lemma 3.2. It follows that the orbit of
any point zo € AN X is dense in A. Now, since f(c) € X for all ¢ € A, the orbit of a point in A\ X is also
dense in A. We deduce that A is minimal. Finally, P4, P6 and f(A) C X imply that for any z € X \ X
and ¢ € A there exists p > 1 such that ¢ € Ay, (fP(x)). Since Ay,-(fP(x)) C Ay (z), we conclude that any
discontinuity of f is lr-recurrently visited by any orbit, ending the proof of Theorem 3.1. O

In the following subsections we will prove Assertion A. Let us describe briefly the route of the proof:

The proof goes by induction on the number N > 2 of contraction pieces of f. In Subsection 3.1, relying
on a known example, we prove that there exists a map satisfying P1-6 for N = 2. In Subsection 3.2,
we construct a map g satisfying P1-6 with IV + 1 contraction pieces, assuming the existence of a map f
satisfying P1-6 with N contraction pieces and with contracting constant A € (0,1). To construct g from f,
we first choose an adequate point & € X, and its orbit {& }ren, where & = f7(&). Second, we “cut” the
interval X at each point &, with r > 1 (but not at &), and insert an interval G, substituting the point &,
such that, for all 7 > 1 the length of G, is A". We define an affine map g|g, : G, — G,41 forall r > 1. In
this way, we have added a new discontinuity point of g at the point, say &;. For all y ¢ Ur>1 G, we define
the image ¢(y) from the image f(x) of the corresponding point x € X \ {{,},>1. In particular g preserves
the old N — 1 discontinuity points of f. So g has N discontinuity points, hence N + 1 continuity pieces.
Finally, in Proposition 3.7 we show that there exists a good choice of the cutting orbit {& }ren, to make g
inherit the properties P1-6 from f.

1P1-6 is a shorthand notation for “the properties P1 to P6”.
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3.1 Full complexity with a single discontinuity

In this subsection we prove that Assertion A holds for N = 2. We begin with a lemma about the sets A,
(defined in (17)) for piecewise increasing maps with two contraction pieces.

Lemma 3.3. Let X :=[0,1], c € (0,1) and f : X — X be a piecewise contracting map with contraction
pieces X1 = [0,¢) and Xy = (¢,1]. Suppose that the continuous extensions fi and fa of f are increasing
and such that 0 = fa(c) < f2(1) < f1(0) < fi(c) =

For every k € N, let Hy, := f*((f(1), £(0))). If ¢ ¢ Hy, for all k € N, then Hy, = (f**+1(1), f*+1(0)) for
all k € N and

n—1
An =001\ | J Hx Vn>1 (18)
k=0

Moreover, {0,1} C X, and for anyn > 1 and A € A, there exists p and q in N such that A = [f?(0), f9(1)].

Proof. Assume that Hj = (f*+1(1), f*+1(0)) for some k € N. Then Hy, C [0,¢) or H} C (c,1], because
c ¢ Hy. Hence, f is continuous and increasing on Hy,, and Hyy1 = (f*+2(1), f¥+2(0)). As Hy = (f(1), £(0)),
we have proved by induction that Hy = (f**1(1), f¥+1(0)) for every k € N,

Now let us show (18) by induction. We have Ay := f1([0,]) U fa([c, 1]) = [£(0) ] [ f( )] =10,1]\ Hy
and hence (18) is true for n = 1. Now let n > 1, and assume that A,, = [0,1] \ U . We shall prove
that A,q1 = [0,1]\ Uj_, H. First, observe that

A1 = fi (A1 (0,0)) U fo (R (e 1)) = F(Aa\ e} U LA (), fa(@)},
since ¢ € [0,1] \ U}y H}, and therefore it belongs to the interior of A,,. It follows that,

Ansr = £ (([0, 10\ {c}) \ UiZg Hx) U{0, 1}

Besides, since f is injective on [0, 1] \ {¢}, we have

F 0,1\ {e) \UpZo Hy) = F([0, 1]\ {e}) \ f(UpZo Hy)-
On the other hand, we have f(z) ¢ {0,1} for any = # ¢ and ¢ ¢ Hy, for all k € N, which implies that

Ansr = (F([0,1]\ {c}) U{0,11) \ U2 f(Hi) = ([0, 1]\ Ho) \ U=y Hy = [0, 1] \ Ui Hx,

as wanted.

Let us prove that {0,1} € X. Since ¢ ¢ f*([f(1), £(0)]) for every k > 0, we have ¢ ¢ {f*(0), f*(1)} for
all k > 1. It follows that {0,1} C X, because ¢ ¢ {0, 1}.

To end the proof, first observe that f1([0,c]) = [f(0),1] and fa([c, 1]) = [0, f(1)]. Therefore, the atoms
of A; are of the form [fP(0), f9(1)]. Now, as an induction hypothesis, assume that for some n > 1 and for
any A € A, there exists p and ¢ in N such that A = [fP(0), f%(1)]. If B € A, 41, then, by definition of
atoms, there exist ¢ € {1,2} and A € A,, such that B = f;(AN X;), where X; := [0,¢) and X5 := (¢, 1].
If c ¢ A, then A C X; and B = f(A) = [fPT1(0), f471(1)]. If ¢ € A, then either AN X; = [fP(0),c) or
AN X; = (¢, f1(1)]. In both cases AN X; # 0, since {0,1} C X. If follows that either B = [fP+1(0),1] or
B =0, fr1(1)], 0

Proposition 3.4. Let A and p € (0,1) be such that A+ u > 1 and denote ¢ := (1 — p)/A. Let f1:]0,c] —
[0,1] and f2: [¢,1] — [0,1] be defined by

filx)=Xzx+pu Vzel0,d and folx)=x+pup—1 VzeE]el]. (19)

Then, any map f :[0,1] — [0, 1] such that f|[07c) = f1|[0,c) and f|(071] = f2|(C,1], and c ¢ fk([f(l),f(())]) for
all k € N, satisfies P1-6 with X1 = [0,¢) and X2 = (¢, 1].
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Proof. Consider a map f : [0,1] — [0, 1] which satisfies the hypotheses of Proposition 3.4. Then, it is easy
to check that f satisfies P1-2, with ¢ = 0, ¢c; = cand ¢o = 1. Also, f satisfies all the hypotheses of Lemma
3.3, and it follows in particular that P4 holds.

Let v € {0,1} and let us show that {f" () }nen belongs to A. Since for any k € N the set Hy, of Lemma
3.3 is an open set of [0,1], it cannot contain . Therefore, by (18) we have v € A,, for all n € N, that is
v € A. Since v € X and AN X is forward invariant, we deduce that {f™(y)}nen C A.

Now, let us prove that A has no isolated point. Let € A and € > 0. Let n > 1 be such that diam(A4) < e
for every A € A,,. Let A € A,, be such that z € A, and let p and ¢ € N be such that A = [fP(0), f2(1)].
If z € (fP(0), f9(1)], then 0 < |fP(0) — x| < € and if x € [fP(0), f4(1)), then 0 < |f9(1) — z| < €. Since
both points fP(0) and f9(1) € A, we found a point in A \ {z} which is at a distance less than € of . This
shows that A is a perfect set (recall that A is compact) and it proves at the same time that {f™(0)}nen
and {f"(1)}nen are dense in A, i.e. f satisfies P5. Now, A is totally disconnected because f satisfies the
separation property [5]. It follows that A is a Cantor set and f satisfies P3.

Now we show that f satisfies P6. To this end, we prove that for every z 6}? and € > 0 there exists
I € N and r € N such that f!(z) € (¢ —¢,¢) and f7(z) € (c,c+¢€). Let z € X and € > 0. Let ng € N
be such that diam(A) < ¢/2 for every A € A,,, and let A € A,,, be such that f™(z) € A. Denote p and
q the integers such that A = [fP(0), f%(1)] and let T = {¢t € N : f"*tt(z) € (¢ — ¢,c + €)}. Arguing by
contradiction, assume that 7' = ) or that f™**(z) € (¢,c+€) for all t € T'. Then, by induction on ¢ € N,
we deduce that

< (fIHH1) — o) (f™t(x) —¢) and 0 < fIHI(1) — froti(z) < €/2 VteN.
Therefore, for each t € T we have f97'(1) € (¢, 1] and for each ¢t ¢ T we have
[FITHA) = el = |fo (@) — o = [f77H(1) = fmo T ()] > €/2.

We deduce that f9+(1) ¢ (c — €/2,c) for all t € N. Now, let v > 0 be such that f¥(1) ¢ (c — v,c) for
all k < q. Then, f*(1) ¢ (c - 60, ¢) for all k € N, where ¢g = min{v,€/2}. On the other hand, there exit
p’ and ¢’ such that [fP (0), f¢ (1)] is an atom of diameter strictly smaller than ey which contains ¢. Since
f2(0) € A and f¥(1) ¢ (¢ — o, ¢) for all k € N, it follows that {f*(1)}ren is not dense in A, which is a
contradiction. Therefore, T' # () and there exists [ € N such that f!(z) € (c — ¢,¢). Now, if we assume that
frott(z) € (c—e,c) for every t € T, we deduce with an analogous proof that {f¥(0)}ren is not dense in A.
Therefore, there exists € N such that f"(z) € (¢,c+¢€). O

/

Proof of Assertion A for N = 2. Consider a map f : [0,1] — [0, 1] defined by
flx)=Xz+p modl Vze]|0,1],

where A and p € (0,1) are such that A + p > 1. Then, f is a piecewise contracting map which satisfies
the hypothesis (19), with the particularity that f(c) = 0. Immediately, the “gap” between the atoms of
generation 1 is the interval (f(1), f(0)). It is standard to prove that if there exists a minimum natural
number k such that ¢ € f*([f(1), £(0)]), then the attractor of f contains only periodic points. On the
other hand, it has been proved using a rotation number approach that there is an uncountable set of
values of (A, 1) such that f has no periodic points [3, 4, 6, 7, 17]. It follows that, for such values of (\, p),
c & f*(f(1), f(0)]) for all k € N. Together with Proposition 3.4 this proves that Assertion A holds for
N =2. O

3.2 Full complexity with any number of discontinuities

In the previous subsection we proved the existence of a map satisfying P1-6 with N = 2 (a piecewise
contracting interval map with a single discontinuity). In this subsection we will complete the proof of
Assertion A, by induction on N.

Let us assume that Assertion A holds for some N > 2. Then, there exists ¢y < ¢; < --- < ¢y in R and
f:X — X, where X = [¢g, ], which satisfies P1-6 with the contraction pieces X7 = [cp,¢1),..., Xy =
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(en—1,cn). In the following, we denote Ay := {¢;}1<icn—1 the set of the discontinuities of f, Ay the
attractor of f, and X the set defined by (2) where A = Ay.

Now, we construct a new map g with N+ 1 contraction pieces and satisfying P1-6, from the given map
f that satisfies P1-6 and has N contraction pieces. The construction involves what we call a well-cutting
orbit of f, defined as follows:

Definition 3.5. We say that an orbit {&, },en of f is well-cutting, if & € Ay N )?f and {& }ren does not
contain any point of the following sets:

1) the boundaries of the gaps of the Cantor set Ay,

2) the orbits of ¢y and ¢y,

3) the orbits of f;(¢;) and f;11(c;) for all i € {1,..., N —1}.

Note that f has an uncountable number of well-cutting orbits. Indeed, Ay and the sets of items 1), 2),
3) are countable. Therefore, the set P of all their pre-images is also countable. Since Ay is uncountable,
the complement of P in Ay is uncountable and contains only well-cutting orbit of f. Also, a well-cutting
orbit is not eventually periodic. Indeed, by Theorem 2.10, the property P6 implies that the complexity
function of the itinerary of &; is not eventually constant.

Let A € (0,1) be the slope of f on any of its contraction pieces, and let {&, },cn be a well-cutting orbit
of f. Counsider the function ¢ : [cp,cny] — R defined for any x € [cg, cn] by

o(z) =x+ Z A" where N(z):={n>1:& <=z} (20)
neN (z)

The following lemma gathers basic properties of ¢ that we will use in this section.

Lemma 3.6. The function ¢ is strictly increasing, left-continuous on [co, cn]|, continuous on [co,cn] \
{&}r>1 (in particular at &), and h\Hél o(x) = ¢(&) + A" for all r > 1. Moreover,
N\ &

d(leo,en]) = [9(co), dlen)]\ | Gr where G = (6(60),0(6) +X] V=1,

and G, NG, =0 for all r # 1.

Proof. Noting that N'(z) C N (z') for any = < 2, it is straightforward to show that ¢ is strictly increasing.

Now we show that the left-hand limit of ¢ at any point xg € (co, cn] is equal to ¢(zg). Let zo € (co, cn]
and € > 0. Take mg such that 3777 A" < ¢/2 and let p > 0 be such that &, ¢ (20 — p, o) for all n < mg.
Now, if § := min{e/2, p}, then for any = € (xo — d, z¢), we have

(o) — d(x)| =m0 —z+ D> A= Y >\"<§+ > N < e,

neN (zo) neN (z) neN (zo)\N (z)

since min NV (zo) \ N (z) = my if &, & (o — p,xo) for all n < mg. With an analog proof, we can show that
the right-hand limit of ¢ at xg € [co, cn) is equal to ¢(zp) if xg # &, for any r > 1, and equal to ¢(&,.) + A"
if xp = &, for some r > 1.

Taking into account that ¢ is strictly increasing, left-continuous and has a discontinuity jump of mag-
nitude A" at every point &, with r > 1, it is standard to check that

([co, en]) = [8(co), d(en)]\ | G-
r=1

Finally we show that G, NGy = 0 for all » # [. Let [ and > 1 be such that r #land § > §. As
?(&) € d([co, cn]) we have that ¢(&,.) ¢ Gi, and as ¢ is injective we have that ¢(&,.) ¢ G;. It follows that

Gr NG =0, since ¢(&;) > d(&). 0
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The following proposition shows how a well-cutting orbit of f and its associated function ¢ allow us to
obtain a map which satisfies P1-6 with NV + 1 contraction pieces. Therefore, it ends the proof of Assertion
A by induction on N.

Proposition 3.7. Let {&, }ren be a well-cutting orbit of f and ¢ be defined according to (20). Let A, :=
P(AyU{&o}). Then, any map g : [¢(co), d(cn)] — [¢(co), ¢(en)] defined on [p(co), p(en)]\ Ay by

[ pofoopiy) if yed(coen])\ Ay
o) = { Ay — ¢(§r))y+ ¢(&rg1) if Z € G, anNr >1 (21)

satisfies P1-6 with N + 1 contraction pieces.

Proof. Let dy < dy < --- < dn41 be such that {do,d1,...,dn+1} = &(AfU{co, &0, cn}). We denote jo the
integer of {1,..., N} such that

dj, = ¢(&o)- (22)
Let Y7 :=[do,d1), Y := (d1,d2),...,YNt1:= (dn,dn41] and Y := [dg, dn41]. Since ¢ is strictly increasing,
the sets Y are all non-empty and pairwise disjoint. Let g : ¥ — Y be a map satisfying (21). We are going
to show that g satisfies P1-6 with Y1,Ya, ..., YNo1.

P1) We first show that for any j € {0,1,..., N} the map g is affine with slope A on the interval (d;,d;1),
that is

9@W) —9ly) =y —y)  Vy,y € (dj dji1) (23)
To prove (23), we fix j € {0,1,...,N} and y,vy" € (d;,d;j11), and we consider three cases:

Case 1: Assume that y,y’ € ¢([co,cn]) and denote z:= ¢~ 1(y) > ¢~ 1(d;) and 2’ := ¢~ (v') < ¢ (dj+1)-
If we assume (with no loss of generality) y < ¥/, then & < 2’ and

9(y) —g(y) = f@@) = f(x)+ Y A" where  Npi={n>1:f(x) <& < f(a')}.
neN,
Since f is affine on (¢~1(d;),» *(d;j+1)) and has slope A, we have that f(2’) — f(z) = A(2’ — z). On the
other hand, since f is injective (separation property) and increasing on (¢~*(d;), ¢ *(d;+1)) we have that
n €Ny ifand only if n > 2 and n —1 € M, where N7 :=={n >1:x <&, <z'}. It follows that

9() —gw) =A@’ —2)+ > A" = Ag(a') — ¢(x) = A — v).

’I’LENl

Case 2: Assume y € G, for some r > 1 and 3 € ¢(|co, cn]). Since G, is an interval and G- N ([co, cn]) = 0,
we have G, C (dj,dj4+1). Therefore, ¢(§,) € (dj,d;+1), because r # 0 and {¢, },en is a well-cutting orbit.
So we can use Case 1 to obtain

9(y") = 9(6(&)) = My — 6(&))-
On the other hand, by definition of g on G,

9(6(&)) = 9(y) = ¢(&r41) — My — ¢(&r)) — d(&r11),

and the sum of these two equalities is (23).
Case 3: Assume y € G, and y' € G, for some r and " > 1 and let z € ¢([co,cn]) N (d;,dj11). Then
applying Case 2 twice, we obtain

/

9(y") —9(y) = 9(v') — 9(2) +g(2) — 9(y) = Ay —y),

which ends the proof of (23).

According to (23), we know that ¢ is continuous on U;—vzo(dj,dj_i_l). To study the continuity of g
on the border of these intervals, we compute the left-hand and right-hand limits of g at the points of
d(Ay U{co,en}). Let i € {1,2,...,N} and consider an increasing sequence {z,}nen in (¢;—1,¢;) which
converges to ¢;. Then, the sequence {¢(x,,) }nen is increasing and converges to ¢(¢;), because ¢ is continuous
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at any point that is not in the positive orbit of &y, and {&, },cn is a well-cutting orbit. Using the definition
of g on ¢([co,cn]) \ Ay and the continuous extension f; of f|(,_, ) to [ci—1,¢;] we obtain that

lim g(¢(2,)) = lm 6(f(ra)) = lm o(fi(wa)) = Tim o(x).

Once again, since {&, },¢cn is a well-cutting orbit, f;(c;) does not belong to {& }ren and ¢ is continuous at
fi(c;). Tt follows that

lim = i(¢)). 24
i g(y) = o(filci)) (24)
Similarly, for any ¢ € {0,1,..., N — 1} we have
lim = ¢(fir1(c)). 25
y\¢(6i)g(y) (fir1(c)) (25)

Since fi11(c;) # fi(c;) for any i € {1,..., N — 1} (separation property) and ¢ is injective, we deduce that
g is discontinuous on ¢(Ay). On the other hand, from (24) and (25) respectively, we obtain that ¢ is
continuous at ¢(cy) and ¢(co) respectively.

It remains to study g at ¢(&y). As {&}ren is a well-cutting orbit, there exists ¢ € {1,2,..., N} such
that & € (¢;—1,¢;). Using the left continuity of ¢, the monotonicity of f on (¢;—1,¢;), and the continuity
of f at &, we obtain that

Mli;&o) 9(y) = ¢(f(&)) = ¢(&1)- (26)
On the other hand
Jimg(y) = lim 6(x) = 0(&1) + A (27)

Equalities (26) and (27) prove that g is discontinuous at ¢(&p). We conclude that the set of the discontinuity
points of g is Ay, which together with (23) proves that g is a piecewise affine contracting map with

contractions pieces Y7,Ys,...,Yn41. In particular, the set of (2) writes for g as )?g =25 97X\ Ay).

P2) Let us prove that g satisfies the separation property. For any j € {1,..., N + 1} denote g : Y; —
[¢(co), ¢(cn)] the continuous extension of gy, to Y;. Then,

T (e — _ _ v _ [ [olej—1),d(ci)] i 1<) <o

YvJ - [d)(cjofl)vd)(fﬂ)}’ YPJOJrl - [¢(§0)a¢(cﬂo)] and ij - { [¢(cj—2);¢(cj—l)] if jO +1 <.7 < N+1°
where jo is defined by (22). For every j € {1,..., N + 1} the map g; is affine with slope A > 0. Therefore,
g;(Y;) is an interval whose boundaries are obtained using (24), (25), (26) and (27). Indeed,

9jo (K) = [¢(fj0 (CJ'O*l))’ ¢(fjo (50))]7 gjoJrl(m) = [¢(fjo (50)) + A, ¢(fjo (Cjo))]v

and
) [e(fi(ei=1), o(fi(cy)] if 1<j<jo
9:(¥5) = { D(fi—1(cj=2)), o(fi-1(cj—1))] i Jjo+1<j<N+1

On the one hand we have obtained that g;, (Y j,) N gjo+1(Y jo+1) = 0. On the other hand, the monotonicity
of ¢ and the separation property of f imply that the sets

91(71)7 s 79]’071(3/3’071)793'0 (Y'Jo) U gj0+1(}/}0+1>7gj0+2(}/}0+2)7 ce- 7gN+1(YN+1)

are pairwise disjoint. It follows that ¢ satisfies the separation property.

P3) Now we study the attractor of g, which can be written using the continuous extensions of g as

A, = ﬂ Mg,
n=1

where the sets A, ,, are recursively defined as

N+1 N+1

Agr= U g;(Y;) and Ag,i1 = U gi(AgnNY;) Vn2>1.
j=1 j=1
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We denote G := J,2 | G, and we recall that ¢(X) =Y \ G by Lemma 3.6.
Let us show by induction that
Ay NA(X) = P(Agn) Vn>1. (28)

First note that
N+1 B N+l
A1 No(X) = | (g;(Y;neé(X) Ug;(V;NG) no(X) = | g;(;no(X)) Ne(X),
j=1 j=1

since for any j € {1,...,N + 1} we have Y; NG =Y; NG and therefore g;(Y; NG) = g(Y; NG) C G.
Besides, if y € Y; N ¢(X) and y # d;, then

[ pofjooMy) if 1<j<jo+1
gﬂ'(y){ G000 l(y) i jorl<j<N+1 - (29)

and if y # d;, then

9io(y) = b0 fi 007 (y) and  gjo11(y) = &(fjo(&)) + A= 6(&1) + A € G. (30)
Denote Z1, Zs, ..., Zn the sets defined by

Y; i 1<j<Jjo

Zj, = Yj UYjo 41 and Zj:{y}+1 if Jo<j<N 7

then N
Aga N (X U Y(Z; N o(X)).

As Z; N ¢(X) = ¢(X;) for any j € {1,..., N}, we deduce that

N
g,lm(l5 U fj f (Af’ )-

Now assume that Ay, N (X) = ¢(Ay,,) for some n > 1. As before, we have

N+1

Ag,n+1m¢(X): Ugj(AgnnY 0(25( U¢ fj Agan ﬂ¢( ))

j=1
To obtain that Ag 41 N G(X) = ¢(Af nt1) and complete the induction, it is enough to show that
AgnNZ;NP(X) = o(AsnNXj). (31)

On the one hand, using the induction hypothesis, we obtain Ay, N¢(X) = ¢(Af,). On the other hand we
have Z; N ¢(X) = ¢(X;). As ¢ is injective, it follows that

AgnNZiNG(X) = d(ApnNX;) Vje{l,...,N}.

Let y € ¢(A; N X; \ (Ap, N X;)) and =z € Ay, N X, \ (Af, N X;) be such that y = ¢(z). Then,
z € {c¢j_1,¢;} and ¢ is continuous at z, since x ¢ {& }ren. Let {z,}nen be a sequence of Ay, N X;
which converges to . Then, the sequence {¢(x,)}nen belongs to Ay, N Z; and converges to y = ¢(x). It
follows that y € Ay, N Z; N¢(X) and we have proved that ¢(Ay, N X;) C Agn N Z;N¢(X). To show the
converse inclusion, take y € Ay, N Z; N¢(X) \ (Ag,n N Z;). Then, y € Z; \ Z; C {d(cj_1),p(c;), #(&o)}-
If y = ¢(&o), then j = jo and y € ¢(As,, N X, ), since & € Ay N X,,. As ¢j_1 and ¢; are Ir-recurrently
visited, there exist two atoms A;_; and A; in the set of the atoms of generation n of f such that ¢;_; and
cj belong to the interior of A;_; and Aj, respectively. As {c;_1,¢;} C Xj, it follows that ¢;_1 € A;_1 N X;
and ¢; € A; N X;. Recalling that Ay, is the union of all the atoms of generation n of f, we deduce that
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{¢j_1,¢j} C AppnnNX; and y € ¢(Af,, NX;). This ends the proof of (31) and completes the proof by
induction of (28).

Using the injectivity of ¢ and (28) we obtain that
AgNp(X) = ¢(Ay). (32)

Now we show that Ay NG = {¢(&) + A" }r>1. To this end, we prove by induction that

Agn NG ={6(&)+ A 1<r<n}u | G Vn>1 (33)
r=n+1

Using equations (29) and (30) it follows that

N+1 N+1
A NG = |J(g;(¥;n (X)) Ug;(V;NG) NG ={g541(dj)} U | ¢, NG NG
Jj=1 j=1
Recalling the inclusion of G in the union of the sets Y7, Ya, ..., Yn11, and the definition of ¢ in G, we obtain
N+1
AN G ={(&) + A u | G,
r=2

which proves (33) for n = 1.

Now, assume that (33) holds for some n > 1. As d;, = ¢(§) € ¢(Ay) = Ay N ¢(X) we have that
dj, € Ay C Agp. On the other hand, there exits a decreasing sequence in Ay which converges to &,
because Ay is a Cantor set and & is not a border of a gap of Ay. By (32), the image of this sequence by
¢ belongs to A, and it is decreasing by monotonicity of ¢. From the continuity of ¢ at o, it follows that
dj, € AgNYj 11 C Ay, NYj41. Now, using once again equations (29) and (30), we deduce

N+1 N+1
AgniiNG = | (9;Egu NY;00(X) Ug;(Byra NV NENNG = {g1(djp)}U | 9;(E5n NY;NG)NG.
j=1 j=1

As Ay, NY;\(Ag,NY;) C{dj_1,d;}, and do,ds,...,dn+1 do not belong to G, we have that g;(Ag, NY;N
G)=9(AgnNY; NG) forall j € {1,2,...,N +1}. Therefore,

Ag,n-{-l NG = {¢(§1) + >‘} U g(Ag,n N G)
Using the induction hypothesis, we obtain
Agn1 NG ={o(&)+ N, 1<r<n+1}u |J G,
r=n+2

which complete the proof of (33).
Note that (33) can also be written as

Agn NG ={6(&) + X}z U | It(Gy) Vn>1,
r=n+1

and recall that the sets G, are pairwise disjoint. This implies that A;NG = {¢(§,) + A" }>1, which together
with (32) gives

Ag = ¢(Af) U {¢(€r) + Ar}r}l- (34)

Now we show that A4 is a Cantor set. By definition of attractor A4 is compact. Besides, it is totally

disconnected because g satisfies the separation property (see Theorem 5.2 of [5]). It remains to show that
A, has no isolated point. Let y € ¢(Af) and @ € Ay be such that y = ¢(z). As Ay is a Cantor set,
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there exists a sequence {zy }nen in Ay \ {z} which converges to « and {¢(xy)}nen belongs to Ay \ {y}. If
y ¢ {6(&)}r>1, then ¢ is continuous at = and {¢(zy,) bnen converges to y. If y = ¢(&,) for some r > 1,
then we can assume that {z, }nen is increasing, since &, does not belong to the boundaries of the gaps of
the Cantor set Ay. Using the left-continuity of ¢, we obtain that {¢(z,)}nen converges to y. Now, let
y = ¢(& )+ A" for some r > 1 and let {z,, }ren be a decreasing sequence in Ay which converges to §,. Then,

{¢(2y) }nen converges to y and belongs to Ay \ {y}, since y ¢ ¢(X).

P4) Let us prove that g;(d;) and g;41(d;) belong to Xg for every j € {1,2,...,N}. First note that for
any x such that f"(z) ¢ Ay U{&} for all n € N, we have

gtogp(x)=¢o fM(x) YneN and ¢(z)€ Xg. (35)

Let j € {1,2,...,N}and y € {9;(d;), gj+1(d;)}. If y # gjo+1(dj,), then using (29) and (30) we obtain that
y = ¢(x) for some point = € {f; (cj) f]+1(c]) fi—1(ej=1), fi(ej- 1) f(&)}. Since {&n}nen is a well-cutting
orbit and f;(¢;) and f;y1(c;) belong to Xf for any i € {1,2,. — 1}, it follows from (35) that y € X
Now, if y = g;,+1(d;,) then by (30) we have that ¢"(y) € G for all n € N, and therefore y € X_

P5) Let i € {1,...,N —1} and | € {4, + 1} be such that {f"(fi(¢;))}nen is dense in Ay. Let us denote
xo := fi(c;) and yo := ¢(z0). Using (29) we obtain that there exists j # jo such that yo € {g;(d;), gj+1(d;)}.
Therefore, to prove P5 for g it is enough to show that {¢"(yo)}nen is dense in A,. Applying (35) to zg,
we obtain that yy € Xg and that ¢"(yo) = ¢(f"(x0)) for all n € N. Besides, according to (32) we have
{o(f"(20)) }nen C Ay, since {f"(z0) }nen C Ay

First let y € Ay \ {0(&),#(&) + A }o>1. Then, y € ¢(Ay) and there exists {ny}tren such that
{f™ (x0)}ken converges to z := ¢~ (y) € Ay. Since x ¢ {& },>1, it follows that ¢ is continuous at
and {g™* (yo) }ren converges to y.

Now, let y = ¢(&,) for some r > 1. Since ¢; is Ir-recurrently visited by { f*(z0) }ren, and ApN(&.—v, &) #
() for all v > 0 (recall that &, is not border of gap) by Lemma 3.2 we have that the orbit of ¢ accumulates
from the left on &,. Using the left-continuity of ¢ we obtain that the orbit of yg accumulates on y = ¢(&,.).
Using now Ay N (&,& +v) # 0 for all v > 0, we obtain that there exists a subsequence of {f"(zo)}nen
which converges to &, from the right-hand side. The image by ¢ of this subsequence converges to ¢(&,)+\".
It follows that ¢(&,.) + A" is also a limit point of {¢"(yo) }nen-

P6) Now we prove that all the discontinuities of g are Ir-recurrently visited by the orbits of the points of
X Let j € {1,...,N} and y € X We are going to show that there exist two sequences {n}ren and
{mk}keN going to mﬁmty such that g”k( ) <dj < g™ (y) for all k € N and {g™ (y) }ren and {g™* (¥) }ren
converge to d;.

First, let us show the above assertion for j # jo. We denote ¢ the point of Ay such that ¢(c) = d;. If
y € Xy N¢(X), then
g*(y) =¢ofrod  y) VYneN, (36)

since X 4 N¢(X) is forward invariant by g. It follows that = := ¢~!(y) belongs to X ¢ and c is Ir-recurrently
visited by {f*(z)}ren by property P6 of f. Therefore, there exist two sequences {ng}reny and {mg }ren
going to infinity such that f™(z) < ¢ < f™*(z) for all k € N and {f"™*(2)}ren and {f™* (z)}ren converge
to ¢. Using (36), the monotonicity of ¢ and its continuity at ¢, we deduce that {g™* () }ren and {g™* (y) }ren
satisfy the required properties.

Now assume y € G C X and let » > 1 be such that y € G,.. Then, g"(y) € G4, for all n € N, that is

O(f" (&) < g"(y) < (f"(&)) + A" VneN. (37)

As ¢, € X #, we have that c is Ir-recurrently visited by { F%(&)}ren. Therefore, there exists two sequences
{ni}ren and {my }ren going to infinity such that f™ (&) < ¢ < f™ (&) for all k € N and {f™* (&) }bren
and {f™* (&) }ren converge to c. Using (37) and the continuity of ¢ at ¢ we have that both {g"™*(y)}ren
and {g™* (y) }ren converge to ¢(c) = d;. On the other hand, by monotonicity of ¢ and the left-hand side of
(37) we have that d; < ¢™*(y) for all k € N. Again by monotonicity of ¢, we have ¢(f"*(&,)) < d;, which
implies that ¢(f™*(&,)) + A" " < d; because d; ¢ G. We deduce from (37) that ¢"*(y) < d;.
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Finally, we show that dj, = ¢(&) is Ir-recurrently visited by the orbit of any point of )~(g. Let d; €
Ay \ {d;,} be a discontinuity of g such that {¢"(gi(d;))}ncn is dense in A, for some [ € {j,j + 1} (we
proved in P6 that it exists). Since d; # d;, we already know that d; is lr-recurrently visited by {g"*(y)}ren
for any y € X’g. Now, since ¢(§p) is not a border of gap of A, (because &, is not a border of gap of Ay
and ¢ is continuous at this point) we can apply Lemma 3.2 to deduce that dj, is lr-recurrently visited by

{g"(y) }ren for any y € X,. O

Lemma 3.8. If any atom of generation 1 of f contains at most one point of Ayf, then there exists a
well-cutting orbit of f such that any atom of generation 1 of g contains at most one point of A,.

Proof. As f satisfies P6, any discontinuity of f is contained in an atom of generation 1 of f and this atom
is unique because of P2. It follows that one of the N atoms of generation 1 of f does not contain any
discontinuity. Let us denote A;, this atom, where i; € {1,..., N} is such that 4;, = f((¢i;-1,¢;,)). Then,
A;, N Ay, # 0 for all n > 1, since by P6 for any n > 2 there exists an atom of generation n — 1 which
contains ¢;, in its interior. It follows that A;, NAy # (). Moreover, A;; NAy is compact, totally disconnected
and any point of Int(A4;,) N Ay is not isolated, because Ay is a Cantor set. Now, as the atoms are compact
and disjoint, if # € (A4;, \ Int(A;,)) N Ay then z is a border of gap of A; and there exists a sequence in
Int(A;,) N Ay which converges to . We deduce that A;) N Ay is a Cantor set. Therefore, there exists
& € Ay, such that {f*(&)}ren is a well-cutting orbit of f.

For every i € {1,...,N} let B; = g((é(ci—1), ¢(c;))), where ¢ is the function defined in (20) with a well-
cutting orbit of f such that & € A;,. Then, for any atom B of generation 1 of g there exists i € {1,...,N}
such that B C B;. Moreover, we can show that

Bino(X)=¢(4;) Vie{l,...,N},

where A; := f((¢;—1,¢;)) is an atom of generation 1 of f. Now, let d # d’ € A, and assume by contradiction
that there exists an atom of generation 1 of g which contains d and d’. Then, there exits an atom of
generation 1 of f which contains two elements of A U {&}, which is a contradiction. O

Proof of part 2) of Theorem 1.2. From Theorem 3.1 we deduce that equality (4) of Theorem 1.2 holds for
any n > ng, where ng is defined in Lemma 2.9 and is not necessarily equal to 1. For any piecewise
contracting map f, the integer ng is bounded above by ng y :=min{n > 1: #ANA; <1VA € A;,},
where Ay, is the set of the atoms of generation n of f. Obviously, if f has only two contraction pieces
then ng s = 1. Lemma 3.8 proves that if f satisfies P1-6 and ng ¢ # 1, then for a suitable choice of the
well-cutting orbit of f, we have ng 4 = 1 for the map g of Proposition 3.7. O
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