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Integrate and Fire Neural Networks,

Piecewise Contractive Maps and Limit Cycles.

Eleonora Catsigeras1 and Pierre Guiraud2

Abstract

We study the global dynamics of integrate and fire neural networks composed
of an arbitrary number of identical neurons interacting by inhibition and excitation.
We prove that if the interactions are strong enough, then the support of the stable
asymptotic dynamics consists of limit cycles. We also find sufficient conditions for
the synchronization of networks containing excitatory neurons. The proofs are based
on the analysis of the equivalent dynamics of a piecewise continuous Poincaré map
associated to the system. We show that for efficient interactions the Poincaré map
is piecewise contractive. Using this contraction property, we prove that there exist
a countable number of limit cycles attracting all the orbits dropping into the stable
subset of the phase space. This result applies not only to the Poincaré map under
study, but also to a wide class of general n-dimensional piecewise contractive maps.

Keywords: Integrate and fire neural networks; piecewise contractive maps; limit cycles;
synchronization.
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1 Introduction

Numerous physical or biological systems can be seen as composed of a large number of
units in interaction. In many occasions, their time evolution is modeled by a system of
coupled differential equations, or by a high dimensional discrete time dynamical system.
Those models take into account a proper individual dynamics for each unit and a coupling
between units which may depend on the state of the whole system. Typical example of
such models are coupled oscillators (continuous time) and coupled map lattices (discrete
time) [10]. They usually assume well mathematically characterized individual dynamics,
the main question under study being how the coupling of units can generate the collective
behaviors observed in physical and biological systems. Nevertheless, from a mathematical
point of view, these systems are a source of open problems and most mathematical results
have been proved under the assumption of weak coupling and/or focus on particular
solutions [28].

Pulse-coupled oscillators appear frequently in biological sciences, in particular in neu-
roscience to model neural networks [21]. In this context, the state of each oscillator
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describes the difference of electrical potential between the inside and the outside of a neu-
ron’s membrane. An archetype of pulse-coupled neural network appears in literature [19]
in the following form:

V̇i = fi(Vi) +

n
∑

j=1

hji(Vi)δ(t − tj) ∀ i ∈ {1, . . . , n}. (1)

The solutions of the non-coupled equation V̇i = fi(Vi) define the individual dynamics of
the membrane potential of the neuron i. The following additional rule is assumed: if
the potential Vi reaches the so called threshold potential θ > 0 at an instant denoted ti,
then the neuron i is said to fire (or to emit a spike) and its potential is reset to zero.
The term hji(Vi)δ(t − tj) is a short hand notation meaning that at time tj the potential
of the neuron i suffers a discontinuity jump of amplitude hji(Vi(t

−
j )). This discontinuity

hji is produced by the firing of the presynaptic neuron j on the potential Vi(t
−
j ) of the

postsynaptic neuron i. If the jump is negative (hji < 0) the interaction is said inhibitory
and if it is positive (hji > 0) it is said excitatory.

When weak interactions are assumed, and extra conditions on fi are imposed, it is
possible to reduce (1), and also more realistic neural models, to a canonical system of
phase coupled oscillators [17, 18]. This opens the possibility to get some insight in the
dynamics of a huge class of weakly coupled neural networks by studying for example
the existence and the stability of synchronized states [13, 17, 19]. Further insight in
the dynamics of neural networks can be obtained by considering specific models. In this
respect (leaky) Integrate and Fire (IF) neural networks [15] are certainly the most popular.
For these networks fi is a real affine function. Many mathematical works on IF neural
networks deal with the dependence of particular solutions on the parameters describing
the interactions (that are not necessarily impulsive). The effect of the velocity of the
interactions on the stability of synchronized and anti-synchronized states is detailed for
weak excitatory and inhibitory interactions in the case of two [26, 11] or more neurons
[27] and in presence of delay [11], [2]. Synchronized solutions and more generally phase-
locked solutions are also studied in the case of strong coupling for different architectures
of network [2].

Although important results about the phenomenology of IF neural networks have been
obtained, they principally focus on particular solutions, and there is still few mathematical
results about their global dynamics, possibly letting unknown important features of neural
networks. The purpose of this paper is precisely to give a mathematical description,
developing analytical proofs, of the global dynamics of IF neural networks. In spite of IF
neural networks being continuous time dynamical systems, as far as we know, previous
studies of their global dynamics develop methods of discrete time dynamical systems. In
their seminal work [23] study a Poincaré return map to prove that for the system (1)
with homogeneous constant excitatory interactions (hji = cte > 0) and homogeneous
individual dynamics (fi = f), almost all orbits become synchronized. In [9] a discrete
time IF neural network, which may be seen as a discretization of (1) by a formal Euler
scheme, is studied. The corresponding dynamical system is defined by the iterations of a
general piecewise affine map. It is proved that for generic values of the parameters, the
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global asymptotic dynamics is supported on a finite number of stable periodic orbits. It is
also proved that for non generic values of the parameters, asymptotic dynamics is sensitive
to initial conditions.

Motivated by the rigorous results of [9], which are proved for discrete time system, the
question we address in this paper is if they are also true for continuous time IF neural
networks. Although elaborated integration schemes, especially designed for the simulation
of neural networks have been developed [3], there is no way to completely eliminate numer-
ical errors. Thus, the results of simulations can drastically depend on the used integration
strategy [25]. This motivates the interest of developing rigorous mathematical proofs also
in the continuous time case. In this respect, the previous works [5, 7, 20] proved that
periodic orbits attract almost all initial conditions, but under the assumption that the
interactions are all inhibitory, while arbitrary interactions are considered in [9].

The main property allowing the proof of these results is that the (return) map is
piecewise contractive in the whole phase space. In Section 2, we derive the return map of
(1), assuming fi(Vi) = −γVi+K, the independence of hji on Vi, and other hypothesis ((H1)
and (H2), stated in the same section) giving a precise meaning to (1). In Section 3, we
investigate the contraction properties of the return map. We prove that, unexpectedly, it
is not piecewise contractive in the whole phase space for an open region of the interactions
values, if some of them are excitatory (Theorem 2). Nevertheless, we find also an open
subset in the space of parameters such that this return map is piecewise contractive in
the whole phase space, with respect to an adapted metric (Theorem 3). This parameters
subset is defined by hypothesis (H3) and (H4) stated in Section 3.

We give now a short version of our results about the global dynamics of IF neural
networks:

Theorem 1. 1) Under Hypothesis (H1), if the neural network is completely excitatory
and the number of neurons is sufficiently large, then all the orbits are eventually periodic
and synchronized.

2) Under the hypothesis (H1), (H2), (H3) and (H4), if the neural network contains in-
hibitory neurons, then the stable orbits are attracted by a countable number of limit cycles.

The part 1) of this theorem is reformulated in Theorem 4, which is proved in Section
4. Its proof is done only under hypothesis (H1), but the hypothesis of existence of a large
number of neurons is necessary. In fact, if the neural network is completely excitatory, but
the number of neurons is not sufficiently large (in relation with the minimum amplitude of
the synaptic interactions), then there exist orbits that are never synchronized (Proposition
4.2).

The part 2) follows from Theorem 5 in Section 5. This last theorem states that the
stable asymptotic dynamics of the return map is supported by periodic orbits. However,
it does not prevent the system from exhibiting a weak form of chaos. In particular, stable
chaos

[24] exists because of the coexistence of an uncountable set of sensitive states. The
distance between the limit cycles (attracting all the stable dynamics) and the sensitive
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points influences the period of the cycles and determines the effects of small perturbations
(rounding errors, stochastic perturbations). The expected effects are the existence of long
transient times and of cycles of large period, provided the sensitive points and the stable
points are sufficiently intricate.

The proof of Theorem 5 does not use the particular formulation of the return map. It
applies to a wide class of piecewise contractive maps (see Definition 5.2). Previous results
[1, 4, 6, 9, 14], stating the existence of periodic attractors for piecewise contractive maps,
are proved in a different context. In [1] the maps are one dimensional and injective. In
the works studying higher dimensional dynamics, only affine maps [9, 4] or injective maps
[6] are considered. In our case none of these hypothesis is assumed, since the proof applies
to n-dimensional maps, that are neither necessarily piecewise affine nor globally injective.

2 Integrate and fire neural network

We propose to study the global dynamics of leaky integrate and fire neural networks. Our
working model is a standard IF neural network considering an arbitrary number of neurons
connected by inhibitory and excitatory synapses. This system, which is defined precisely
in Subsection 2.1, is the model (1) with fi(Vi) = −γVi + K and where hji(Vi) = Hji is
independent of Vi. Its global dynamics is studied in the next sections via a Poincaré map
which is derived in Subsection 2.2.

2.1 Definition of the model

At each time t ∈ R, the state of a neuron i ∈ I := {1, . . . , n} is described by its
membrane potential Vi(t) and the state of the network is represented by the vector
V(t) = (V1(t), . . . , Vn(t)). According to model (1), the time evolution of the network
has two regimes: a sub-threshold regime and a firing regime.

Equations of the sub-threshold regime: The sub-threshold regime occurs when
Vi(t) < θ for all i ∈ I, where θ > 0 is called the threshold potential. In such a regime, the
state of the network satisfies the system of differential equations defined by:

V̇i(t) = −γVi(t) +K ∀ i ∈ I. (2)

The constant γ > 0 stands for 1/RC where R and C are respectively the resistance and
the capacity of the neural membrane, and K = Iext/C > 0 is proportional to a constant
external current Iext. According to Equation (2), the potential of each neuron tends to
the equilibrium value:

β :=
K

γ
= RIext > 0. (3)

Equations of the firing regime: If we assume β > θ, and take an initial state V(0)
such that Vi(0) < θ for all i ∈ I, then there exists a smallest time t0 (which depends on
V(0)) when the potential of (at least) one neuron reaches the threshold. At this instant
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the network enters in the firing regime: the neuron emits a spike that induces a change
in the potential of all the neurons it is connected with, and its own potential is reset to
a smaller value than the threshold, chosen equal to 0 (without loss of generality, and as
conventional for integrate and fire models). Therefore, when the network enters in the
firing regime, its state suffers a discontinuity due to the reset of the firing neurons, and to
the change of potential of the neurons receiving the spikes of the firing neurons. Formally,
if J ⊂ I denote the set of all the neurons that reach θ at time t0, i.e. spontaneously (by
the solution flow of equation (2)) or by an excitation produced by other neurons, the state
of the network satisfies:

lim
t↓t0

Vi(t) = 0 if i ∈ J and lim
t↓t0

Vi(t) = lim
t↑t0

Vi(t) +
∑

j∈J

Hji if i /∈ J. (4)

The constant Hji represents the synaptic interaction triggered by a spike of the neuron j
towards the neuron i. It is positive for an excitatory synapse, negative for an inhibitory
synapse, and equal to 0 if the neurons are not connected. Due to the instantaneous
character of the reset and of the synaptic interactions, in presence of excitatory neurons,
the dynamics of IF models of type (1) may be ill-defined or exhibit infinite firing rates
when the network has some loops3, unless some kind of refractory period is considered.
To ensure the model is well defined for any network, we suppose that a neuron which fires
at time t0, can neither receive nor emit a second spike at time t0 (right side of (4)). In this
sense we consider a refractory phenomenon, which as well as the reset and the synaptic
interactions is instantaneous. It results that the set J of the neurons that fire at time t0
has to be defined and computed carefully to take into account the refractory phenomenon.
In Section 2.2, we write the exact mathematical definition of this set (formula (10) and
(11)).

Definition 2.1. We will say that a neuron j is excitatory (inhibitory) if all its synapses
are excitatory (inhibitory), i.e Hji > 0 (Hji 6 0) for all i ∈ I such that j 6= i. We will say
that a neuron is “mixed” if it is neither excitatory nor inhibitory, namely, if it does not
satisfy Dale’s principle (see [17] page 7).

To prove Theorem 1 and other results along this paper, we will make the following
hypothesis:

(H1) The membrane potential of the neurons has a lower bound, i.e. there exists α < 0
such that for all i ∈ I and t ∈ R, we have Vi(t) > α.

(H2) If a neuron i suffers inhibitory and excitatory interactions at the same time, and
if the sum of the excitatory interactions is large enough to make it reach the threshold
potential, then the neuron i fires.

3For example, consider a loop of two neurons where neuron 1 is excitatory, neuron 2 is inhibitory, and

the synaptic interactions are sufficiently large to lead to the following situation: the neuron 1 fires instan-

taneously and induces the instantaneous firing of the neuron 2, but this last firing prevents instantaneously

neuron 1 from firing. Then, the state of neuron 1 is undetermined.
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The hypothesis (H1) fits with the physical bounds of the electric potentials of real
biological or electronic systems: the potential of a neuron can not be arbitrarily small.
We do not specify any particular negative value for α. It is a parameter of the model
which can change quantitative results, but has little impact on the qualitative dynamics
of the network.

The hypothesis (H2) is used only to determine the neurons that fire (those of the set
J of the equation (4)), but both excitatory and inhibitory interactions are considered to
update the states of the neurons that do not fire (r.h.s. of equation (4)). Hypothesis (H2)
is a technical hypothesis that we need to prove our results, but it solves an indetermination
that appears anyway in any network with instantaneous interactions and has a biological
interpretation, as we explain now. In a model for which the interactions are not instanta-
neous, during a short time interval τ where the neuron are interacting, synaptic weights of
different signs are added to the potential of the post–synaptic neuron in a certain order. If
the sum of the excitatory weights is larger than the threshold but the total sum of synaptic
weight is smaller than the threshold, in the time interval τ , the following two situations
can arise:

1) Excitatory signals arrive first to a neuron i, and their sum is large enough to make
it fire. Then, neuron i fires, and besides, due to the refractory period, the sum of the
inhibitory signals that arrive delayed to neuron i does not change its potential Vi ≃ 0.

2) The same excitatory and inhibitory signals that in case 1) arrive to neuron i, but in the
reverse order. Then Vi initially decreases and when the positive excitatory signals arrive
delayed to the neuron i they are not enough to make it fire.

When the interactions are instantaneous, it is possible that excitatory and inhibitory
signals arrive to neuron i at the same time, since the time interval τ while the neurons
are interacting is collapsed to zero. The previous example shows that the algebraic sum of
the excitations and the inhibitions received during the time interval τ is not necessarily a
realistic criterion to decide if the neuron i fires or not. Hypothesis (H2) is an alternative
criterion, which coincides with the one of the algebraic sum in most situations, but assumes
that the positive interactions act faster than the negative ones when an indetermination
exists. It can also be seen as a way to take into account that excitatory synapsis are more
frequent than inhibitory synapsis in some part of the nervous system [22].

2.2 The Poincaré return map

In order to analyze the global dynamics of the IF neural network, we reduce it to an
equivalent discrete time dynamical system, namely a Poincaré return map. In this section,
we introduce all the important notions we use in the sequel of the paper. Among then
we define a Poincaré section in the phase space, we compute the waiting time before the
spontaneous firing of the network, we explain in details the rules of the firing regime,
we introduce a partition of the Poincaré section which atoms are the sets of the initial
conditions leading the same neurons to fire in the firing regime, and we derive a Poincaré
return map of the network.
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Poincaré section Σ: Since the potential of a neuron is always larger than α and always
smaller than θ, the states of the network always belong to the n-dimensional space Q =
[α, θ]n. By definition of the model, the network never stops to emit spikes (since β > θ).
It exists then arbitrarily large times such that the potential of a neuron is reset to zero.
In other words, any solution of the model returns infinitely many times to the set:

Σ =

n
⋃

j=1

Σ̂j where Σ̂j = {V ∈ Q : Vj = 0}. (5)

The set Σ is the Poincaré section that we will consider. The topology we use is the one
induced by the embedding Σ ⊂ R

n. Specifically, we consider in Σ the metric derived from
the supremun norm of Rn, denoted ‖ · ‖ in this paper and defined by ‖V‖ = max

i∈I
|Vi|.

To sum up the principal steps of the construction of the return map, let us follow an
orbit of the network. Suppose the initial state of the network is V ∈ Σ. If V is such that
Vi < θ for all i ∈ {1, . . . , n}, then the network is in the sub-threshold regime and there is
a waiting time t̄(V) > 0 before a neuron reaches the threshold potential. At the instant
t̄(V) the network enters in the firing regime, and a set J(V) of neurons emit some spikes.
The potential of these neurons is then reset to 0 and the states of the other neurons that
did not spike during the firing regime, because excitations were not enough, is updated
according to the interactions received. The network is back in the sub-threshold regime in
a point ρ(V) of Σ, which is the value at point V of the return map ρ we want to construct.
The formula of the return map is the same for all V sharing a same J(V), this why we
will introduce a partition P of Σ which atoms are precisely the points with a same J(V).
Now we detailed the computation of t̄(V) > 0, J(V), P and ρ.

Waiting time t̄(V): Solving the system (2) leads to the time t map φt = (φt
1, . . . , φ

t
n)

where for each i ∈ I and t ∈ R

φt
i(V) = (Vi − β)e−γt + β ∀V ∈ R

n. (6)

Thus, if at time t = 0 the network is in the state V ∈ Σ, it enters in the firing regime at
time:

t̄(V) := min
i∈{1,...,n}

ti(V) where ti(V) := inf{t > 0 : φt
i(V) > θ}. (7)

Note that t̄(V) is the value of t0 of formula (4) when the initial state of the network is
V. In the particular case where V ∈ Σ is such that Vi = θ for some i, the waiting time is
equal to 0, if not it is positive. Note also that if t̄(V) = ti(V) the expression of the time
t map a time t̄(V) is given by

φ
t̄(V)
i (V) = θ and φ

t̄(V)
k (V) = β − (β − Vk)(β − θ)

(β − Vi)
∀ k 6= i. (8)

We will often use this expression latter on.

Firing regime t = t̄(V): By definition (7), at time t̄(V) some component of the vector
φt̄(V)(V) are equal to θ; those corresponding to the neurons which potential reaches the
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threshold in a smaller time than the potential of all the other neurons. We need to
characterize this set of neurons that fire spontaneously because they are part of the set
J of formula (4). It depends of course of the value of V (as well as J). This is why we
introduce the following cover of Σ:

Σ =
n
⋃

i=1

Σi where Σi = {V ∈ Σ : t(V) = ti(V)}. (9)

A set Σi of this cover, is the set of the initial states in Σ such that the neuron i fires

spontaneously after the waiting time t(V), that is, if V ∈ Σi then φ
t̄(V)
i (V) = θ. Since

several neurons may reach θ at the same time, these sets are not pairwise disjoint (and
thus forms a cover instead of a partition of Σ), but they have pairwise disjoint interiors.
We can states any way that the neurons that fires spontaneously at time t(V) are those
of the set of indexes:

J0(V) = {i ∈ I : V ∈ Σi}.

Now, the firing of the neurons of J0(V) may instantaneously excite other neurons,
which may also fire in turn at the same instant, and excite other neurons or not. One more
time, we need to characterize all the neurons participating in this instantaneous avalanche
process, i.e. the set J of formula (4), that we denote until now J(V). We can determine
J(V) introducing a recursive sequence of sets of indexes {Jm(V)}m>0, where each Jm(V)
is the set of neurons that have fired once until the step m of the avalanche process. Taking
into account the temporary inertia (the refractory period) of real neurons after firing, and
considering Hypothesis (H2), this sequence must obey the following induction rule for all
m > 1:

Jm(V) = Jm−1(V) ∪ {k ∈ I \ Jm−1(V) : φ
t(V)
k (V) +

∑

i∈Jm−1(V) :Hik>0

Hik > θ}. (10)

As an example, J1(V) contains the neurons of J0(V) and possibly additional neurons that
fire because of some excitatory interactions with the neurons of J0(V). Note that this
additional neurons, which are those of the second set of the union that defines J1(V),
cannot be neurons of J0(V). In our definition (10), they are not considered as a possible
receptors of spikes, in order to take into account of a refractory phenomenon in the model.
Indeed, a set Jm(V) is the disjoint union of the neurons of Jm−1(V) with new neurons
firing by interactions with those of Jm−1(V).

Since the set I is finite, there exists am0 > 0, such that no new neurons are incremented
to Jm0+1(V) with respect to Jm0

(V), either because Jm0−1(V) is the whole all set I, or
because the sum of the excitatory interactions of the neurons of Jm0−1(V) is not enough
to make fire some new neurons. For such a m0 we have Jm0

(V) = Jm0−1(V) and we can
conclude that the set of the neurons that emit a spike at time t̄(V) can be written as:

J(V) =
⋃

m∈N

Jm(V) = Jm0
(V). (11)
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If there is no excitatory neurons in J0(V), then Jm(V) = J0(V) for all m ∈ N and
J(V) = J0(V). If J0(V) contains excitatory neurons, then J(V) may contain more
neurons than J0(V).

Partition P of Σ: As shown in the previous construction, to each initial state of the
network V ∈ Σ it is associated the set J(V) of the neurons that fire at time t̄(V). So we
can consider the function J(·) of Σ into the set P (I) of all the nonempty subsets of I and
use its pre-images to get a partition P of Σ:

P = {ΣJ}J∈P (I) where ΣJ = {V ∈ Σ : J(V) = J}. (12)

Given a set of neurons J ∈ P (I), the set ΣJ is the set of all the initial states in Σ such that
the neurons that fire after the waiting time t(V) are exactly those of J . For example, if
V ∈ Σ{i}, then at time t(V), only the neuron i fires (which makes a difference with the set
Σi of the cover (9)). Note that t̄(V) is not necessarily the same for each V in a same ΣJ . It
is straightforward to check that P forms a partition of Σ: on one hand, to each V ∈ Σ it is
associated some J(V) and thus some ΣJ , and on the other hand, if V ∈ ΣJ ∩ΣJ ′ 6= ∅ then
by definition J = J(V) = J ′ and ΣJ = ΣJ ′ . According to the values of the parameters of
the model Hji, γ, β and α, some ΣJ may be empty. Nevertheless, there is always at least
one nonempty set ΣJ in the partition P.

Now we can give the formula of a return map in Σ:

Proposition 2.2. Under Hypothesis (H1) and Hypothesis (H2), the map ρ : Σ → Σ which
components ρ1 . . . , ρn are defined in each atom ΣJ of the partition P of Σ by:

ρi(V) = 0 if i ∈ J and ρi(V) = max{α, φt̄(V)
i (V) +

∑

j∈J

Hji} if i /∈ J (13)

is a return map in Σ of the model.

Proof. Take V ∈ Σ, and let J ∈ P (I) such that V ∈ ΣJ . From (6) and (7) we deduce
that the orbit of V under the dynamics of the model satisfies:

V(t) = φt(V) ∀ t ∈ [0, t̄(V)) and lim
t↑t̄(V)

V(t) = φt̄(V)(V). (14)

At time t̄(V) the network enter in the firing regime and the neurons that fires are those
of J , since V ∈ ΣJ . According to (4), the potential of the neurons of J is reset and the
potential of the other neurons suffers excitatory and inhibitory interactions from those of
J . Together with Hypothesis (H1) it implies:

lim
t↓t̄(V)

Vi(t) = 0 if i ∈ J and lim
t↓t̄(V)

Vi(t) = max{α, φt̄(V)
i (V) +

∑

j∈J

Hji} if i /∈ J.

Thus, ρ(V) := limt↓t̄(V)V(t) is a point of Σ, which is the new state of the network when
it comes back in the sub-threshold regime.
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An orbits {ρn(V)}{n∈N} of the return map gives the states of the network immediately
after each spike (or simultaneous group of spikes). However, the entire orbit of the network
can be reconstructed from the orbit by the return map using (14), and all the properties
of the network can be deduced from those of the return map. In particular, the network
has a periodic orbit if and only if the return map also has.

The return map does not satisfy standard hypothesis of the dynamical systems theory,
such as differentiability, or continuity in its entire domain. Actually, ρ is continuous in
the interior of each set ΣJ of the partition P, but not necessarily in their union Σ. At a
point in the boundary ∂ΣJ of a set ΣJ , generically the return map is not continuous, since
a small perturbation may belong to the interior of ΣJ or to another set ΣJ ′ and thus it
can change the set of the firing neurons. A detailed study of these properties is given in
Section 5.1.

In general, it is not trivial to characterize the atoms of P because they depend strongly
on the interactions. However, if a network is completely inhibitory, when a neuron fires, it
does it spontaneously. This makes easier the computation of P, since it allows to replace
J(V) by J0(V) in the definition (12), and this last set does not depend on the interactions
but only on the characteristics of the sub-threshold regime. For such networks, it is then
possible to show that the boundary of P are the sets ΣJ such that J contains more than
one neuron. It follows that the discontinuity points of the return map are the initial states
leading two neurons or more to fire together spontaneously.

3 Contraction properties of the return map

In several mathematical studies of the global dynamics of IF neural networks, the con-
sidered model has the property to be piecewise contractive in the whole phase space (see
Definition 3.6). This property reflects the presence of dissipation in the networks. It is
introduced in the model to that aim [9], or it is a consequence of the absence of excitatory
interactions [5, 7] or of the predomimance of the inhibitory interactions [20]. In our case,
where none of these hypothesis is assumed, it is not a property of the return map that
holds generically in the space of the parameters of the system. Indeed, in Theorem 2, we
prove that there exist open sets in the space of the parameters such that the return map
is not piecewise contractive in a subregion of the phase space. This result holds for any
metric derived from a norm and in this sense is an inherent property of the system.

Nevertheless, we also show in Proposition 3.6 that it always (co)exists a subregion of
the phase space where the return map is piecewise contractive. Moreover, the size of this
region increases when the external current Iext decreases. By Theorem 2, a contractive
region cannot coincide with the whole phase space for any values of the interactions.
However, we show in Theorem 3 that if the interactions are not too small, or equivalently
the external current is not too strong, then it is possible to find a metric for which the
return map is piecewise contracting in the whole phase space, provided the network has
not only excitatory neurons.

Definition 3.1. We say that a subset C of the Poincaré section Σ is a contractive zone
for the return map ρ, if there exist a finite partition Pc of C, a constant 0 < λc < 1, and
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a norm ‖ · ‖c such that

‖ρ(V) − ρ(W)‖c 6 λc‖V −W‖c (15)

for all V and W in a same piece of Pc. If there exists a forward invariant contractive
zone, that is ρ(C) ⊂ C, then ρ is said to be piecewise contractive in C.

3.1 Expansion and contraction in the Poincaré section

The question we address now, is the existence of a norm ‖·‖c such that the whole Poincaré
section Σ would be a contractive zone with respect to the natural partition P defined by
the equality (12). The following theorem shows that for some networks such a norm does
not exist.

Theorem 2. Under the hypothesis (H1) and (H2), there exists an open region of the
values of the interactions such that, for any norm ‖ · ‖c, the Poincaré section Σ is not a
contractive zone with respect to the natural partition P.

In order to construct a subregion of the Poincaré section where the return map fails
to be piecewise contractive, let us define for all i 6= j ∈ I the following sets:

Γi := {V ∈ Σ : c∗ < Vi < θ, Vk = 0 ∀ k 6= i} where c∗ := β −
√

β(β − θ).

Note that for any 0 < θ < β we have β − θ <
√

β(β − θ) < β − θ/2 which implies that
θ/2 < c∗ < θ. So, a set Γi consists of the initial states of the network such that all the
neurons have their potential equal to zero, except the neuron i, whose potential is bigger
than the quantity c∗ > θ/2 and smaller than θ. Therefore, for all V ∈ Γi the neuron i
reaches the threshold before the other ones, that is t̄(V) = ti(V), and is the neuron that
triggers the firing regime.

Now we state and prove the following lemma establishing a key property to prove
Theorem 2.

Lemma 3.2. Let i ∈ I and suppose Γi ⊂ ΣJ for some J ∈ P (I), then for all V 6= W ∈ Γi

such that ρ(V) and ρ(W) are bigger that α, we have

|ρk(V) − ρk(W)| > |Vi −Wi| if k /∈ J,

and moreover ‖ρ(V) − ρ(W)‖ > ‖V −W‖.

Proof. Let us compute ρ(V). On one hand, since V ∈ ΣJ , we have ρk(V) = 0 for all
k ∈ J . On the other hand, since V ∈ Γi, we have Vi > Vk = 0 for all k 6= i which implies
that t̄(V) = ti(V). From the formula of the return map, it follows that for all k /∈ J

ρk(V) = φ
ti(V)
k (V) +

∑

j∈J

Hjk = β − β(β − θ)

β − Vi
+

∑

j∈J

Hjk,
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where the second equality is obtained applying (8) with Vk = 0. The same computation
being true for ρ(W) we deduce that for all k /∈ J

|ρk(V)− ρk(W)| =
∣

∣

∣
φ
ti(V)
k (V) − φ

ti(W)
k (W)

∣

∣

∣

=

∣

∣

∣

∣

β(β − θ)

(β −Wi)(β − Vi)
(Wi − Vi)

∣

∣

∣

∣

>
β(β − θ)

(β − c∗)2
|Vi −Wi| = |Vi −Wi|. (16)

Now, ‖ρ(V) − ρ(W)‖ = max{|ρk(V) − ρk(W)|, k ∈ I} > |Vi −Wi| = ‖V −W‖, which
completes the proof.

Actually, the hypothesis Γi ⊂ ΣJ for some J ∈ P (I) can be replaced by the weaker
hypothesis: Γi ∩ ΣJ is not empty and is not a singleton, for some J ∈ P (I). Then, the
results of the lemma remain true for all V 6= W ∈ Γi∩ΣJ . This weaker hypothesis always
holds as Γi is infinite and the partition P of Σ is finite. This observation implies that the
return map always exhibits expansion in some part of its phase space, independently of
the values of the interactions (which determine the sets ΣJ), provided they are enough to
ensure that ρ(V) and ρ(W) are bigger than α.

Lemma 3.2 is stated for the distance induced by the supremum norm, and a priori,
it may exist another norm for which the contraction property holds in the whole phase
space, even in the Γi. Now, we are going to show that at least for some networks such
a norm cannot exit. Examples of such networks have two excitatory neurons i 6= j ∈ I
verifying simultaneously the three following open conditions (O1), (O2), and (O3) :

• (O1) The neurons i and j cannot be strongly excited by the sequel of the network:

∑

l 6=s :Hls>0

Hls < θ − c∗ ∀ s ∈ {i, j},

• (O2) A spike from i or j to any other neuron of the network produces a strong
excitation:

Hsk > θ ∀ s ∈ {i, j} and k /∈ {i, j},

• (O3) The sum of the negative and positive interactions that i and j can receive is
positive:

∑

l 6=s

Hls > 0 ∀ s ∈ {i, j}.

For sake of simplicity we make the proof of Theorem 2 with this set of parameters, but
other sets can be chosen. In particular, the condition (O2) can be replaced by a more
biologically realistic condition, which does not impose some interactions to be bigger than
the threshold potential, see Remark 3.4. The important point for our proof to work, is to
ensure that ρp(Γi) intersects Γi for some p and that the dilatation is conserved a least for
some couple of points during the first pth iterations. The advantage of the proposed set of
parameters is that it permits to show intuitively that this property is fulfilled for p = 2,
as shown in the following.

12



Let us consider a network verifying (O1) to (O3) and whose state V ∈ Γi. Then, by
definition of Γi, the neuron i fires spontaneously at time t̄(V) = ti(V). At this instant,
by condition (O2), the firing of i induces the simultaneous firing of all the other neurons,
expect j which is not sufficiently excited (condition (O1)). Thus, the set of the neurons
that fire at time t̄(V) is J(V) = I \{j} and it follows that: V ∈ ΣI\{j} and ρk(V) = 0 for
all k 6= j. Now, if t̄(V) is sufficiently large, that is if the initial potential Vi of the neuron
i is sufficiently near c∗, then, just before the firing regime, the potential of the neuron j is
near c∗ (actually it is equal to c∗ is Vi = c∗). Thanks to condition (O3), the interactions
of the neuron j with the network during the firing regime, help its potential to become
larger than c∗. In other words, ρj(V) ∈ (c∗, θ) and ρ(V) ∈ Γj . We can conclude that for
the considered network ρ(Γi) ∩ Γj 6= ∅. These results are stated in Lemma 3.3 and their
rigorous proof is detailed in appendix 7.1.

Lemma 3.3. Let i 6= j ∈ I. For the open region of values of the interactions that satisfy
the conditions (O1) to (O3), the set Γi is a subset of ΣI\{j}, the set Γj is a subset of
ΣI\{i}, and there exists (a, b) ⊂ (c∗, θ) such that for all V ∈ Γi satisfying Vi ∈ (a, b), we
have ρ(V) ∈ Γj. Moreover, if W 6= V ∈ Γi then ρ(V) 6= ρ(W).

Proof. See the appendix 7.1.

According to Lemma 3.3, there exist V 6= W ∈ Γi such that ρ(V) 6= ρ(W) ∈ Γj.
Applying Lemma 3.2 to ρ(V) and ρ(W) we obtain:

|ρi(ρ(V)) − ρi(ρ(W))| > |ρj(V)− ρj(W)|

since Γj ⊂ ΣI\{i}. Now, applying once again Lemma 3.2, but this time to V and W we
obtain:

|ρj(V)− ρj(W)| > |Vi −Wi|
since Γi ⊂ ΣI\{j}. So we have,

|ρ2i (V)− ρ2i (W)| > |Vi −Wi|. (17)

Proof. of Theorem 2 Let us show that (17) is incompatible with the existence of a norm
‖ · ‖c such that Σ is a contractive zone. If we suppose such a norm exists, according to
Definition 3.1, for the V and W of (17) we have

‖ρ2(V)− ρ2(W)‖c 6 λc‖ρ(V) − ρ(W)‖c 6 λ2
c‖V −W‖c < ‖V −W‖c. (18)

Now consider the restriction of the norm ‖ · ‖c to the set Gi := {0}i−1 × R × {0}n−i,
that is the norm ‖ · ‖c,i defined by ‖U‖c,i := ‖U‖c for all U ∈ Gi. As ‖ · ‖c,i is a norm
in a vector space isomorphic to R, there exists µi > 0 independent of U ∈ Gi such that
‖U‖c,i = µi|Ui|. Therefore, for all U ∈ Gi, we have ‖U‖c = ‖U‖c,i = µi|Ui|. As ρ2(V)
and ρ2(W) belong to Gi (recall that ρ(V), ρ(W) ∈ Γj ⊂ ΣI\{i}) and as V and W belong
to Γi ⊂ Gi, the inequality (18) can be written:

‖ρ2(V)− ρ2(W)‖c = µi|ρ2i (V)− ρ2i (W)| < µi|Vi −Wi| = ‖V −W‖c (19)

which contradicts (17).
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Remark 3.4. 1) If we consider the sets Γi,d := {V ∈ Σ : c∗ < Vi < d, Vk = 0 ∀ k 6= i}
where d < θ, the condition (O2) can be relaxed, without changing the important lines of
the proof of Theorem 2. Indeed, the condition (O2) ensures that when the initial state
of the network belongs to Γi the firing of the neuron i induces the firing of any neuron
k /∈ {i, j}. But if V is in Γi,d and d is near from c∗, the waiting time before the firing of
the neuron i will be large enough for the potential of any neuron k 6= i to be near from
c∗. In the limit d = c∗, if V ∈ Γi,d, an excitation Hik > θ − c∗ from i to k is enough to
make k fire (use (8) with Vi = c∗ and Vk = 0). Thus, the condition (O2) can be replaced
by the more realistic condition Hsk > δ(d) for all k /∈ {i, j} and s ∈ {i, j}, where δ(·) is
a decreasing function of d such that limd→c∗ δ(d) = θ − c∗. This former limit is always
smaller that θ/2 and tends to 0 when c∗ goes to θ (that is when β goes to θ, which implies
that the waiting time tends to infinity).

2) On the other hand, completely different sets of parameters can be used to prove Theorem
2 using the same sets Γi and a similar proof. Nevertheless, in order to be able to compare
different norms, and to obtain the final contradiction (19), the set Γi must be subsets of
Gi and the parameters must ensure the strong restriction ρ2(Γi) ∩ Gi 6= ∅. This can be
done with various sets of parameters, but excitatory interactions plays an important role
to reset the potential of all the neuron excepted one.

Remark 3.5. 1) The result of Theorem 2 may seem unexpected, since the non zero
components of the return map are just translations applied to the time t map φt, which
has a uniform negative exponent Lyapunov −γ. The return map fails to be piecewise
contractive because the waiting time t̄(·) to enter in the firing regime depends on initial
state. Therefore, when the values of the return map at two different points are compared,
we evaluate φt with different values of t, by mean of the map φt̄(·)(·), which is not necessarily
contractive. In particular, φt̄(·)(·) is expansive in any set Γi, as shown by (16). This
property is transmitted to the return map in any intersection of the sets Γi with an atom
of the partition P, independently from the values of the interactions.

2) The existence of expansion in a non trivial and invariant compact part of the phase
space is considered as a source of chaos. In general the sets Γi are not invariant. The
role of the conditions (O1) to (O3), is precisely to guaranty the existence of an invariant
subset in Γi∪Γj. Indeed, for the networks verifying these conditions, it is possible to show
that the invariant subset

⋂

m>0 ρ
−m(Γi∪Γj) is non-empty4. Unfortunately, it fails to be a

chaotic attractor because it is trivial: it is just a periodic repeller (period 2). Nevertheless,
it is a sufficient result to prove that the return map cannot be piecewise contractive in
the whole phase space for any value of the parameters, even equipping Σ with a different
norm. On the other hand, we cannot exclude the possibility of the existence of more
complicated regions of the phase space and of the parameters for which there exists a non
trivial chaotic set and we hope the proof of Theorem 2 gives a strategy to search it.

Lemma 3.2 establishes the existence of some regions of the Poincaré section where the
return map expands the distances, the sets Γi. However, there is always a subregion of Σ
which is a contractive zone, as stated by the following Proposition.

4The second part of the proof of Lemma 3.3 is the first step of the proof of this statement.
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Proposition 3.6. For any c ∈ [0, θ], let us define the subset Cc of the Poincaré section by

Cc := {V ∈ Σ : α 6 Vi 6 c ∀ i ∈ I}. (20)

The set C0 is a contractive zone with respect to the partition P. Moreover, if

β < β+(α) with β+(α) :=
1

2
(α+ 2θ +

√

α2 + 4θ2)

then for any c ∈ (0, c̄) where

c̄ := β − 1

2

(

β − θ +
√

(β − θ)2 + 4(β − θ)(β − α)
)

, (21)

the set Cc is non empty, and is a contractive zone with respect to the partition P.

For any value of the parameters, there is a contractive zone in the Poincaré section:
the set C0. Moreover, if some restrictions are imposed to β, namely θ < β < β+(α), then
c̄ > 0, and there exist larger contractive zones: all the sets Cc with 0 < c < c̄. The nearer
β is to θ, the larger is c̄. In particular, when β tends to θ, the whole Poincaré section
tends to be a contractive zone. On the other hand when β tends to β+(α) the quantity c̄
tends to 0.

The quantity β+(α) is an increasing function of α and therefore

lim
α→−∞

β+(α) < β+(α) < β+(0), that is β+(α) ∈ (θ, 2θ) ∀α < 0.

It follows that there always exists some values of β satisfying the condition θ < β < β+(α),
even for α arbitrary small. In particular if α is near to 0 then β can be chosen near to 2θ.
However, if β is larger than 2θ, then the only set Cc which is a contractive zone is C0.

Recall that β is proportional to the external current Iext applied to each neuron.
Therefore, the previous analysis reflects the fact that weak currents are more favorable to
the presence of contraction (or dissipation) in the model.

Proof. of Proposition 3.6 First, note that Cc 6= ∅ if and only if c > 0, since any point of Σ
has at least a component equal to 0. The set C0 is always non empty, but for a set Cc with
0 < c < c̄ to be non empty we have to ensure that c̄ > 0. This last condition is satisfied if
and only if

2β − (β − θ) >
√

(β − θ)2 + 4(β − θ)(β − α).

Since both sides of the inequality are positive, elevating to the square each sides we obtain
an equivalent expression, which after simplifications is:

β2 − (α+ 2θ)β + αθ < 0.

This equation is satisfied if and only if β verifies:

β−(α) :=
α+ 2θ −

√
α2 + 4θ2

2
< β <

α+ 2θ +
√
α2 + 4θ2

2
= β+(α).
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As β−(·) is an increasing function of α, it follows that β−(α) < β−(0) = 0, which is always
smaller than β (recall that β > θ > 0 > α). We conclude that for all c ∈ (0, c̄) the set
Cc 6= ∅ if β < β+(α).

Now we show that for all c ∈ [0, c̄) there exists λc < 1 such that for any J ∈ P (I) we
have:

‖ρ(V) − ρ(W)‖ 6 λc‖V −W‖ ∀ V,W ∈ ΣJ ∩ Cc. (22)

Suppose V,W ∈ ΣJ ∩ Cc and let i, l ∈ J be such that V ∈ Σi and W ∈ Σl (recall (9)).
Let k ∈ I. If k ∈ J then by definition of ρ

|ρk(V)− ρk(W)| = 0. (23)

If k /∈ J we have to consider 4 cases:

Case 1: If ρk(V) = ρk(W) = α then (23) is true.

Case 2: If ρk(V) > α and ρk(W) > α then, as V and W belong to the same set ΣJ we
have

|ρk(V)− ρk(W)| = |φt̄(V)
k (V)− φ

t̄(W)
k (W)|

Now, V ∈ Σi and W ∈ Σl imply t(V) = ti(V) and t(W) = tl(W). Using (8) with we
obtain:

|ρk(V)− ρk(W)| =

∣

∣

∣

∣

(β −Wk)(β − θ)

β −Wl
− (β − Vk)(β − θ)

β − Vi

∣

∣

∣

∣

=

∣

∣

∣

∣

β − θ

β −Wl
(Vk −Wk) +

(β − Vk)(β − θ)

(β −Wl)(β − Vi)
(Wl − Vi)

∣

∣

∣

∣

If V andW belongs to C0 then necessarily Wl = Vi = 0. If not, as Wl and Vi are the largest
components of W and V respectively, all the components of these points are negative,
which is impossible since they belong to Σ. Therefore,

|ρk(V) − ρk(W)| = β − θ

β
|Vk −Wk| 6

β − θ

β
‖V −W‖ if V,W ∈ C0. (24)

If V and W belongs to Cc for a c ∈ (0, c̄) then

|ρk(V) − ρk(W)| 6 β − θ

β − c
|Vk −Wk|+

(β − α)(β − θ)

(β − c)2
|Vi −Wl|.

Suppose Vi 6 Wl. As ti(V) = t(V), we have Vl 6 Vi, which implies |Vi −Wl| 6 |Vl −Wl|,
and

|ρk(V)− ρk(W)| 6
β − θ

β − c
|Vk −Wk|+

(β − α)(β − θ)

(β − c)2
|Vl −Wl|

6
β − θ

β − c

(

1 +
β − α

β − c

)

‖V −W‖ if V,W ∈ Cc. (25)

SupposeWl < Vi. As tl(W) = t(W), we have Wl > Wi, which implies |Vi−Wl| 6 |Vi−Wi|,
and the inequality (25) follows as well.
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Case 3: If ρk(V) > α and ρk(W) = α then

|ρk(V) − ρk(W)| = φ
t̄(V)
k (V) +

∑

j∈J

Hjk − α

6 φ
t̄(V)
k (V) +

∑

j∈J

Hjk − φ
t̄(W)
k (W)−

∑

j∈J

Hjk

6 φ
t̄(V)
k (V)− φ

t̄(W)
k (W)

and we obtain (24) and (25) by the same calculation as in Case 2.

Case 4: If ρk(V) = α and ρk(W) > α then, substituting V for W and W for V in Case
3, we obtain (24) and (25).

To sum up, if V,W ∈ C0, for all k ∈ I either (23) or (24) is true and

‖ρ(V) − ρ(W)‖ 6 λ0‖V −W‖ where λ0 =
β − θ

β
< 1.

If V,W ∈ Cc, for all k ∈ I either (23) or (25) is true and

‖ρ(V) − ρ(W)‖ 6 λc‖V −W‖ where λc =
β − θ

β − c

(

1 +
β − α

β − c

)

.

Using the definition of c̄ we obtain λc̄ = 1. The quantity λc being an increasing function
of with c, we have λc < λc̄ for all c < c̄, which ends the proof.

In this section we have shown that there exists some regions of the phase space where
the return map expands the distances (the sets Γi) and other regions where it contracts
them (the sets Cc). Moreover, for some values of the interactions, it is not possible to make
the return map piecewise contractive in the sets Γi by changing the working norm. This
proves that the piecewise contractive character of the return map is not a trivial property,
and to ensure it in the whole phase space, it is necessary to impose adequate conditions
to the parameters of the model. In the forthcoming section we propose such conditions.

3.2 Parameters of global contraction

Proposition 3.6 gives concrete examples of a regions of the Poincaré section, denoted Cc
with c < c̄, where the return map is contractive. The set Cc̄ is not a contractive zone in
the sense of Definition 3.1 because for this set λc̄ = 1. Nevertheless, it contains all the
contractive zones Cc with c < c̄ and will help the proof of the results of this section. In
the sequel we give conditions on the parameter values (Hypothesis (H3) and (H4)) for
which we prove that Cc̄ has two important features. First, once an orbit enters into Cc̄, it
does not leave it, furthermore, it stays in a contractive zone contained in Cc̄ (Proposition
3.8). Second, if at least one neuron is inhibitory, then any orbit will finally enter into Cc̄
(Proposition 3.9). These two important properties of Cc̄ allow to show that after changing
adequately the metric in Σ and considering a refined partition of P, the return map
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becomes piecewise contractive in the whole Poincaré section (Theorem 3). This result
holds under hypothesis (H1) to (H4) and if at least one of the neurons is inhibitory. The
case for which all the neurons are excitatory, which mainly provokes the synchronization
of the whole network, will be studied in Section 4, without assuming Hypothesis (H1) to
(H4).

Along this section, we suppose that the parameters verify the following two hypothesis:

(H3) The external current Iext is not too strong, in such a way that β < β+(α) and the
interactions Hji satisfy:

min
j 6=i

|Hji| > ǫ where ǫ :=
1

2

(

√

(β − θ)2 + 4(β − θ)(β − α)− (β − θ)
)

.

(H4) We assume the Dale’s principle: a neuron is either excitatory or inhibitory. In other
words, the network does not contain mixed neurons.

Hypothesis (H3) and (H4) define the region of the parameters for which we study the global
dynamics of IF neural networks later on, unless otherwise specified. Hypothesis (H3) is
an open condition relating the strength of the external current and of the resistance of the
membrane (recall that β = RIext) with the intensity of the interactions. It first guaranties
the existence of a contractive zone larger than C0 by imposing β < β+(α) (see Proposition
3.6). On the other hand, it imposes to the interactions to have a lower bound ǫ > 0 (but
no upper bound is imposed). This lower bound is an increasing function of β − θ. In the
extreme case, where β − θ tends to β+(α) − θ, the lower bound tends to θ. But, if β − θ
tends to 0 then, to satisfy (H3), the interactions have to be different from 0, but can be
arbitrarily near to 0. In other words, given fixed values of the interactions, our description
of the dynamics of the network holds for a range of external currents such that β = RIext
is sufficiently near to θ. Or equivalently, given a fixed value of RIext, this description apply
to all the networks with sufficiently strong interactions.

In Section 2.2 we noted that, for every V ∈ Σ such that J0(V) contains only inhibitory
neurons, J(V) = J0(V). If moreover V ∈ Cc̄, the set J0(V) has the following additional
property:

Lemma 3.7. If V ∈ Cc̄ and an excitatory neuron fires spontaneously, that is J0(V)
contains an excitatory neuron, then all the neurons fire together, that is J(V) = I.

Proof. Suppose V ∈ Cc̄ and let i ∈ J0(V) 6= I. Let us compute the neurons of J1(V).
Suppose k ∈ I \ J0(V). As t̄(V) = ti(V), by (8) we have:

φ
t(V)
k (V) = β − (β − Vk)(β − θ)

β − Vi
.
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As V ∈ Cc̄, we have α 6 Vk and Vi 6 c̄ which implies

φ
t(V)
k (V) > β − (β − α)(β − θ)

β − c̄

> β − 4(β − α)(β − θ)

2(β − θ +
√

(β − θ)2 + 4(β − θ)(β − α))

> β − 1

2

√

(β − θ)2 + 4(β − θ)(β − α) =
1

2
(β + θ)− ǫ > θ − ǫ.

Since J0(V) contains an excitatory neuron, it follows that

φ
t(V)
k (V) +

∑

j∈J0(V) : Hjk>0

Hjk > θ − ǫ+min
j 6=i

|Hji| > θ,

and by definition of J1(V), we have that k ∈ J1(V). We deduce that for all k ∈ I \ J0(V)
we have k ∈ J1(V). Thus, for all k ∈ I either k ∈ J0(V) or k ∈ J1(V). In both case
k ∈ J(V).

The Lemma states that for the initial states V ∈ Cc̄, it is enough that a single exci-
tatory neuron fires to make the whole network firing simultaneously and to provoke its
synchronization (for more details about synchronization, see Section 4). The reason is
that, if V ∈ Cc̄ ∩ Σi, the potential of the neuron i is small enough for the other neurons
getting sufficiently near to the threshold just before i reaches it. In other words, all the
neurons get spontaneously near to the threshold in a similar time, i.e. tj(V) ≃ t̄(V) for
all j ∈ I if V ∈ Cc̄. Therefore, even a small excitation (but bigger than ǫ) is enough to
help all the other neurons to reach the threshold in the avalanche process. Nevertheless,
for initial states V 6∈ Cc̄, even if a single neuron may produce the avalanche, it does not
necessarily makes all the neurons fire simultaneously.

Now we apply Lemma 3.7 to prove the existence of a forward invariant contractive
zone in the the Poincaré section. We recall, that in such a case ρ is said to be piecewise
contractive.

Proposition 3.8. The set Σ∗ := ρ(Cc̄) is contained in Cc̄, is a contractive zone, and is
such that ρ(Σ∗) ⊂ Σ∗.

Proof. We show that ρ(Cc̄) is contained in one of the contractive zones Cc of Proposition 3.6.
Since the sets Cc are compact, the same will be true for the closure Σ∗ := ρ(Cc̄). Moreover,
as Cc̄ contains all the sets Cc, it will follow that Σ∗ ⊂ Cc̄ and ρ(Σ∗) ⊂ ρ(Cc̄) ⊂ ρ(Cc̄) = Σ∗.

Let V ∈ Cc̄ and k ∈ I. Since by (13) we know that α 6 ρk(V), we have only have
to prove that ρk(V) 6 c for some c ∈ [0, c̄). Suppose k /∈ J(V), then J(V) 6= I, and as
V ∈ Cc̄, from Lemma 3.7 we deduce that J0(V) contains only inhibitory neurons. It implies
that V ∈ ΣJ where J := J(V) = J0(V). Since k receives only inhibitory interactions from
the neurons of J , we have:

ρk(V) = φ
t(V)
k (V) +

∑

j∈J

Hjk < θ −min
j 6=i

|Hji| < θ − ǫ.
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A straightforward computation shows that θ − ǫ = c̄ and we have that ρk(V) 6 θ −
min
j 6=i

|Hji| < c̄. Now, if k ∈ J(V) then ρk(V) = 0 < c̄. It follows that ρk(V) 6 max{0, θ −
min
j 6=i

|Hji|} < c̄ for all k ∈ I. We conclude that ρ(V) belongs to the contractive zone Cc
with c = max{0, θ −min

j 6=i
|Hji|}.

Proposition 3.8 ensures that if an orbit of the return map falls in the contractive zone
Σ∗, then it stays forever in this region. The following proposition states that if the network
contains an inhibitory neuron, then all the orbits eventually reach the contractive zone.

Proposition 3.9. If the network contains an inhibitory neuron and if p ∈ N is such that
α+ pminj 6=i |Hji| > θ, then ρp+1(Σ) ⊂ Σ∗.

Proof. Let us define for each p ∈ N the set Zp of the points of the Poincaré section that
stay outside of Cc̄ during p iterations:

Zp := {V ∈ Σ : ρj(V) ∈ Σ \ Cc̄, 1 6 j 6 p}.

We are going to show that if the network contains an inhibitory neuron and p is such
that α+ pminj 6=i |Hji| > θ, then Zp is empty, that is ρp(Σ) ⊂ Cc̄, and by Proposition 3.8,
ρp+1(Σ) ⊂ Σ∗. Afterwards, i denotes an inhibitory neuron of the network.

First suppose that Z1 6= ∅ and take V ∈ Z1. By construction of the set Z1, if V ∈ Z1,
then ρk(V) > c̄ for some k ∈ I. This neuron k cannot fire at time t̄(V), since if it would
then ρk(V) = 0, which contradicts ρk(V) > c̄. Therefore,

φ
t̄(V)
k (V) +

∑

j∈J(V) : Hjk>0

Hjk < θ

and it follows that

ρk(V) = φ
t̄(V)
k (V) +

∑

j∈J(V) : Hjk>0

Hjk +
∑

j∈J(V) : Hjk<0

Hjk < θ +
∑

j∈J(V) : Hjk<0

Hjk.

If J(V) contains an inhibitory neuron then ρk(V) < θ − minj 6=i |Hji| = c̄, which is a
contradiction. Thus J(V) contains only excitatory neurons and i does not belong to
J(V). Therefore, the component i of ρ(V) satisfies:

ρi(V) = φ
t̄(V)
i (V) +

∑

j∈J(V)

Hji = (Vi − β)e−γt̄(V) + β +
∑

j∈J(V)

Hji > Vi +min
j 6=i

|Hji|.

So, we have proved that if V ∈ Z1 then ρi(V) > Vi +minj 6=i |Hji|.

If we suppose now that Zp 6= ∅ for a p > 1 and if we take V ∈ Zp, then ρj(V) ∈ Z1

for all j ∈ {0, . . . , p− 1}. By induction it follows that

θ > ρpi (V) = ρi(ρ
p−1(V)) > ρp−1

i (V) + min
j 6=i

|Hji|

> ρp−2
i (V) + 2min

j 6=i
|Hji| > · · · > Vi + pmin

j 6=i
|Hji|
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As Vi > α, we have just obtained that α + pminj 6=i |Hji| < θ if Zp 6= ∅. Thus, if
α+ pminj 6=i |Hji| > θ the set Zp is empty and ρp(Σ) ⊂ Cc̄.

Remark 3.10. Proposition 3.9 allows to obtain an estimation of the transient time ttrans
necessary for all the orbits of the network to enter into the contractive zone Σ∗. Let p0 is
the smallest integer such that α+p0minj 6=i |Hji| > θ, that is p0 := ⌈(θ − α)/minj 6=i |Hji|⌉.
Then any orbit of the network, with an initial condition in the Poincaré section Σ, enters
into the contractive zone after p0 returns in Σ. Now recall that the return time (or the
inter-spike interval) is the necessary time for the network to enter in the firing regime from
its initial state V ∈ Σ, that is t̄(V). A straightforward computation using the equation
(6) of the flow, shows that an upper bound of t̄(V) for V ∈ Σ is T := log (β/(β − θ)).
Therefore, we deduce the following upper bound for ttrans:

ttrans 6 p0T =

⌈

θ − α

minj 6=i |Hji|

⌉

log

(

1 +
θ

β − θ

)

.

It follows that the stronger the interactions are, the shorter is the transient time to enter
into the contractive zone. On the other hand, if β−θ is small then the condition (H3) can
permit very small interactions. In such a case, the upper bound does not prevent from
very long transients. Nevertheless, the transient time remains always finite.

Corollary 3.11. If there exists V ∈ Σ such that ρp(V) /∈ Σ∗ for all p ∈ N then the
network contains only excitatory neurons.

To close this section about the contraction properties of (the return map of) IF neural
networks we state the following Theorem 3. It proves that if the parameters of a network
satisfy the hypothesis (H3) and (H4) then its return map is piecewise contractive in the
whole Poincaré section.

Theorem 3. Under the hypothesis (H1), (H2), (H3) and (H4), if at least one neuron is
inhibitory, then there exists an adapted metric and a partition P ′ of the Poincaré section
Σ such that the return map ρ is piecewise contractive in Σ with respect to P ′.

The proof of the theorem is given appendix 7.2. It follows from Proposition 3.8 and
Proposition 3.9 which allow to prove that ρ is “eventually piecewise contractive” (see
Lemma 7.1 in appendix 7.2). This is a generalization for piecewise continuous maps of the
definition of eventually contractive maps (see for instance Definition 2.6.11 in [16]). Then,
the classical arguments to prove the existence of an adapted metric can be reproduced for
piecewise continuous maps.

In the sequel of the paper we will based our study on Proposition 3.8 and Proposition
3.9. They show that for the region of parameters defined by (H3) and (H4), the Poincaré
section contains two important regions: the contractive zone (Σ∗), which is a forward
invariant set of the return map, and the set of the points whose orbit never fall in the
contractive zone. This last set can be non-empty only for networks composed exclusively
of excitatory neurons (cf Corollary 3.11). We study these networks in the Section 4. In the
case of the networks containing inhibitory neurons, all the orbits drop into the contractive
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zone after a finite time (Proposition 3.9). The study of the asymptotic dynamics reduces
then to the analysis of the dynamics of the return map in the contractive zone. This is
the purpose of Section 5.

4 Synchronization

In this section we prove the part (1) of Theorem 1 stating sufficient conditions for the
global synchronization of a network.

Definition 4.1. We say that an orbit {V(t)}t∈R+ is a synchronized orbit of the network,
if Vi(t) = Vj(t) for all i, j ∈ I and t ∈ R

+. We say that the network globally synchronizes,
if for any initial state V(0) there exists t0 ∈ R

+ such that {W(t) = V(t + t0)}t∈R+ is a
synchronized orbit.

Up to a time translation, a network admits only one synchronized orbits and this orbit
is periodic. Indeed, suppose a synchronized orbit intersects the Poincaré section at a
point V ∈ Σ. Since V ∈ Σ, one of its component is equal to zero, and since V belongs
to a synchronized orbit, all its components are equal. It follows that any synchronized
orbit intersects Σ at the same point, which is the origin 0 of Rn. Moreover, as in the
sub-threshold regime all the neurons obey to the same the differential equation (2), if
V = 0, then all the neurons reach the threshold spontaneously at the same time and their
potential is reset to 0 at the same time. In other word ρ(0) = 0 and therefore the orbits
of 0 is a periodic orbit of the network.

Latter on, we will call V ∈ Σ a state of eventual synchronization, if there exists l ∈ N

such that ρl(V) = 0. Note that a network globally synchronizes if and only if all the
points of the Poincaré section are states of eventual synchronization.

Theorem 4. Under hypothesis (H1), if the network is exclusively composed of excitatory
neurons, that is min

j 6=i
Hji > 0, and if the number n of neurons satisfies

n >









θ

min
j 6=i

Hji









2

, (26)

where ⌈x⌉ denotes the first integer larger or equal to x, then the network globally synchro-
nizes. Moreover, the transitory time before the global synchronization of the network is
not larger than

ttrans := ln

(

β − α

β − θ

)
1

γ

+









θ

min
j 6=i

Hji









ln

(

β

β − θ

)
1

γ

.

In networks of excitatory neurons, the synchronization state is persistent. That is to
say, the network recovers its synchronization in a finite time, if a small perturbation is
applied to the orbit of the synchronized state 0 ∈ Σ. Precisely, the flow φt that solves
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the differential equation (2) depends continuously on the initial state V for fixed t > 0,
provided that in the interval (0, t) no neuron fires. Therefore, there exists δ∗ > 0 such
that if ‖V − 0‖ < δ∗ then ‖φt(V) − φt(0)‖ < m, where m := min

j 6=i
Hji. If i is the first

neuron to reach the threshold potential from the perturbed state V at time t̄(V), the
potential of all the other neurons belongs to (θ−m, θ] at this instant. Since the minimum
interaction with i is of magnitude m, the firing of i induces the firing of the other neurons.
The interactions being instantaneous, the potential of i and of the other neurons are reset
to 0 simultaneously and ρ(V) = 0. The same argument works as well to prove that the
global synchronization is stochastically stable. If a synchronized orbit suffers a stochastic
perturbation such that, at the instant when a first neuron reaches the threshold, the
potential of the other neurons is sufficiently near the threshold, then this orbit goes back
to the Poincaré section at the synchronized state.

Proof. of Theorem 4: As the network does not contain inhibitory neurons, a time t+
from which the potential of all the neurons is larger or equal to zero exists. This time is
smaller than the necessary time for a neuron, with an initial potential equal to α, to reach
the threshold spontaneously. That is to say,

t+ 6
1

γ
ln

(

β − α

β − θ

)

,

recall (6). Besides, after t+, it is in the set

Σ+ := {V ∈ Σ : Vi > 0 ∀ i ∈ I}
that the orbits of the network intersect the Poincaré section. Therefore, to prove the
global synchronization of the network, it is enough to do it for the initial states in Σ+.
Thus, we are going to show that there exists a natural number l such that ρl(V) = 0 for
all V ∈ Σ+.

Let us denote

m := min
j 6=i

Hji > 0 and p :=

⌈

θ

m

⌉

, (27)

We state and prove two claims to achieve the proof of the theorem.

Claim 1: For any initial state V of the network in Σ+, each neuron fires at least once
before the pth return of the orbit of V in Σ+. In brief, the set Jp(V) defined by

Jp(V) :=

p−1
⋃

j=0

J(ρj(V))

is equal to I for any V ∈ Σ+.

Let i ∈ I. Let us show that if i /∈ Jp−1(V), that is i /∈ J(ρj(V)) for all j ∈ {0, . . . , p− 2},
then i ∈ J(ρp−1(V)). If i /∈ Jp−1(V), then, by definition of ρ, for any j ∈ {1, . . . , p − 1}
we have:

ρji (V) = φ
t̄(ρj−1(V))
i (ρj−1(V)) +

∑

k∈J(ρj−1(V))

Hki > ρj−1
i (V) +m,
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where the inequality is obtained using that φ
t̄(V)
i (V) > Vi for all V ∈ Σ and i ∈ I, and

the fact that all the interactions are excitatory. By induction it follows that ρp−1
i (V) >

Vi + (p − 1)m. We deduce that

φ
t̄(ρp−1(V))
i (ρp−1(V)) +

∑

k∈J(ρp−1(V))

Hki > ρp−1
i (V) +m > Vi + pm > pm > θ,

which implies that i ∈ J(ρp−1(V)) and proves the claim.

Claim 2: For any initial state of the network V ∈ Σ+, there exists j0 ∈ {0, . . . , p − 1}
such that the number of neurons that fire simultaneously at time t̄(W), where W is the
jth return of the orbit of V in Σ+, is larger than θ/m. In brief, for all V ∈ Σ+, there
exists j0 ∈ {0, . . . , p− 1} such that #J(ρj0(V)) > θ/m.

Let V ∈ Σ+ and j0 be such that #J(ρj0(V)) > #J(ρj(V)) for all j ∈ {0, . . . , p − 1}.
According to Claim 1, we have n = #Jp(V). Therefore,

n = #Jp(V) 6

p−1
∑

j=0

#J(ρj(V)) 6 p#J(ρj0(V)).

Using (26) we prove Claim 2:

#J(ρj0(V)) >
n

p
=

⌈

θ

m

⌉

.

The quotient θ/m is the number of times that the minimum synaptic weight m has
to be added to the potential of a neuron with the minimal potential 0 to reach θ. Claim
2 shows that at some finite instant, the number of neurons that fire simultaneously is at
least as large as this quotient. Thus, the firing of these neurons necessarily induces the
firing of any other, at the same instant. Indeed, in the mathematical notation, using Claim
2 we obtain

φ
t̄(ρj0 (V))
i (ρj0(V)) +

∑

k∈J(ρj0 (V))

Hki > ρj0i (V) +m
θ

m
> θ, ∀i ∈ I, V ∈ Σ+.

Therefore, J(ρj0(V)) = I and ρl(V) = 0 with l = j0 + 1.

The global synchronization of the network need at most a time t+ to enters in the set
Σ+ and j0+1 6 p iterates of the return map. Thus, the transitory regime does not exceed
the time

ttrans =
1

γ
ln

(

β − α

β − θ

)

+
p

γ
ln

(

β

β − θ

)

=
1

γ

(

ln

(

β − α

β − θ

)

+

⌈

θ

m

⌉

ln

(

β

β − θ

))

.

24



Theorem 4 shows that a network of excitatory neurons globally synchronizes if the
number of neurons n is sufficiently large. This theorem only requires the hypothesis (H1),
to ensures the obvious fact that no neuron has an infinitely negative potential. As all the
synapses are supposed excitatory, the hypothesis (H2) and (H4) are not needed. Likewise,
the hypothesis (H3) of the existence of a lower bound ǫ > 0 for the interactions is not
required. In particular, positive but arbitrarily small interactions may affect the length
of the transitory regime, but do not prevent the network from globally synchronizing,
provided n is sufficiently large. Finally, if the number of neurons does not satisfies (26)
the global synchronization may not occur. We illustrate this statement with a simple
example involving two neurons and constant interactions.

Proposition 4.2. Let I = {1, 2} and H12 = H21 = H ∈ (0, θ). The orbit {ρk(V)}k∈N of
the point

V = (β − x, 0) where x :=
1

2

(

√

H2 + 4β(β − θ)−H
)

is not synchronized. It is a period two orbit, the points of which are (β−x, 0) and (0, β−x).

Proof. A straightforward computation shows that β − x < θ if and only if H < θ, and
β − x > 0 if and only if H > −θ. Thus, the condition H ∈ (0, θ) ensures that V ∈ Σ and
not equal to (0, 0). Now, let us show that ρ(V) = (0, β − x). As V1 > 0 = V2, the neuron
1 fires spontaneously at time t̄(V) = t1(V) and J0(V) = {1}. Using (8) with V2 = 0, we
obtain

φ
t̄(V)
2 (V) +H = β − β(β − θ)

(β − V1)
+H = β − β(β − θ)

x
+H = β − x.

Since β − x < θ, we deduce that the neuron 1 does not induce the firing of the neuron 2,
and J1(V) = J0(V). Thus J(V) = {1}, and

ρ1(V) = 0 and ρ2(V) = φ
t̄(V)
2 (V) +H = β − x,

which proves that ρ(V) = (0, β − x). Substituting V1 by ρ2(V) and V2 by ρ1(V) in the
proof of ρ(V) = (0, β − x), we obtain ρ2(V) = (β − x, 0) = V

The result of Proposition 4.2 can be easily extended to an arbitrary large number of
neurons. For example, in a network with 2k = n neurons, with equal synaptic weight H/k
where H ∈ (0, θ), any initial state such that half of the neurons have their potential equal
to (β − x), and the other half have their potential equal to 0, is a periodic point of period
2.

When Hypothesis (H3) is assumed, and thus the interactions are bounded bellow by a
positive number (which tends to zero when (β− θ) tends to zero), the global synchroniza-
tion is not sure, since the hypothesis of Proposition 4.2 can be satisfied as well. However,
according to Lemma 3.7, there is always some initial states for which the network syn-
chornizes.

Proposition 4.3. Under Hypothesis (H1) and (H3), if the network is exclusively composed
of excitatory neurons, and if its orbit visits the contractive zone Σ∗, then the network
synchronizes, independently of its size.
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Proof. Suppose the orbit of the network visits Σ∗ at a point V. Since Σ∗ ⊂ Cc̄ and I
is only composed of excitatory neurons, the hypothesis of Lemma 3.7 are satisfied. We
deduce that J(V) = I, and so ρ(V) = 0.

Now, if the network has also inhibitory neurons, any orbit visits Σ∗ after a finite
transitory regime, see Proposition 3.9. Therefore, if the network does not synchronizes, it
is because the excitatory neurons stop to fire after a finite time. We prove rigorously this
results in what follows.

Definition 4.4. We say that V ∈ Σ is a state of eventual death of the neuron i, if there
exists p ∈ N such that i /∈ J(ρj(V)) for all j > p.

In other words, a state of eventual death of a neuron is a state such that the neuron
stops to emit spikes after a certain time. Therefore, we define a state of the (continuous
time) model of eventual death as a state whose orbit intersects the Poincaré section in a
state of eventual death.

Proposition 4.5. Under the hypothesis (H1), (H2), (H3) and (H4), if the network is
composed of excitatory and inhibitory neurons, then the states of the network are either
states of eventual synchronization or states of eventual death of all the excitatory neurons.

Proof. Let i be an excitatory neuron and V ∈ Σ. By Proposition 3.9 we can assume
V ∈ Σ∗ without loss of generality. We have, either i /∈ J(ρj(V)) for all j ∈ N or there
exists j ∈ N such that i ∈ J(ρj(V)). In the first case V is a state of eventual death
of the neuron i. In the second case, by Proposition 3.8 it follows ρj(V) ∈ Σ∗ for all
j ∈ N, and then we can apply Lemma 3.7 to deduce that J(ρj(V)) = I. This implies
ρj+1(V) = 0.

5 Asymptotic dynamics of networks with inhibitory neu-

rons

In the previous section we studied the dynamics of networks composed exclusively of
excitatory neurons. Now we focus on networks containing at least one inhibitory neuron.
Along this section, we assume Hypothesis (H1), (H2), (H3) and (H4) on the parameter
values, and that the set I− of inhibitory neurons is non empty.

Section 5.1 is a preliminary section where a more precise characterization of the return
map in the contractive zone Σ∗ is given. We study its continuity pieces and show that it
satisfies a general definition of piecewise contracting maps. In Section 5.2, we introduce
the concepts of stable set and sensitive set. Then, in Section 5.3 we give and we comment
the principal results about the asymptotic dynamics of the return map in both of these
sets. It contains in particular Theorem 5, which is a more detailed version of the part 2)
of Theorem 1, about the dynamics in the stable set. Finally, the ending Section 5.4 is the
proof of a proposition contained in Section 5.3.
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5.1 Continuity pieces of the return map in the contractive zone Σ
∗.

In Proposition 3.9 we have shown that any orbit of a network containing inhibitory neurons
finally drops into the forward invariant contractive zone Σ∗. Then, it is not restrictive to
consider this space as our new phase space5. In Section 2.2, we introduced the partition
P of the Poincaré section defined by (12). When restricting our the phase space to Σ∗,
this partition becomes

P∗ := {Σ∗
J}J∈P (I) where Σ∗

J := ΣJ ∩ Σ∗ ∀ J ∈ P (I).

As before, if the initial state of the network is V ∈ Σ∗
J , then, when the network enters in

the firing regime at time t̄(V), the neurons that fire are exactly those of the set J . As
a starting point to the study of the asymptotic dynamics of neural networks containing
inhibitory neurons, we give here a detailed description of the partition P∗. It will allow
to show that the return map satisfies a general definition of piecewise contractive map.

First of all, some atoms of P∗ are empty. Indeed, by Lemma 3.7, if J contains excitatory
neurons and J 6= I, then Σ∗

J = ∅. As a consequence, the possibly nonempty sets of P∗ are:
the set Σ∗

I of the initial states such that in the firing regime all the neurons fires, and the
sets Σ∗

J of the initial states such that in the firing regime only some inhibitory neurons
fire. It follows that

Σ∗ =
⋃

J∈P (I−)

Σ∗
J

⋃

Σ∗
I ,

where I− ⊂ I is the set of the inhibitory neurons and P (I−) denotes the set of all the
nonempty subsets of I−.

Each set Σ∗
J admits an explicit formulation which is useful to study the topological

properties of P∗.

Let J ∈ P (I−) and suppose the initial state of the network is V ∈ Σ∗
J . Since the firing

of an inhibitory neuron cannot lead another neuron to fire, if all the neurons of J fire,
it is because they all reach the threshold spontaneously at the same time t̄(V). In other
words, ti(V) = t̄(V) for all i ∈ J and tk(V) > t̄(V) for all k /∈ J . The initial potential
of all the neurons of J is thus the same and it is larger than the potential of the other
neurons. So, we can conclude that

Σ∗
J = {V ∈ Σ∗ : Vi = Vj > Vk ∀ i, j ∈ J and ∀ k /∈ J} ∀ J ∈ P (I−). (28)

Now let J = I and and suppose the initial state of the network is V ∈ Σ∗
I . Then,

either all the neurons reach spontaneously the threshold at the same time, or at least one
excitatory neuron reaches the threshold before the others and induces the firing of all the
others by avalanche. In both cases ti(V) = t̄(V) for some i in the set I+ of the excitatory
neurons. So, we can conclude that

Σ∗
I = {V ∈ Σ∗ : max

i∈I+
Vi > Vk ∀ k ∈ I}. (29)

5From now on, ρ will denote the return map restricted to Σc.
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Let us study the topological properties of the sets Σ∗
J . We consider the relative topology

induced by R
n in Σ.

In the case where J contains only one neuron, then it is an inhibitory neuron, and
according to (28)

Σ∗
{i} = {V ∈ Σ∗ : Vi > Vk ∀ k 6= i} ∀ i ∈ I−.

A set Σ∗
{i} is open, and its topological boundary, that we denote ∂Σ∗

{i}, is the set

∂Σ∗
{i} = {V ∈ Σ∗ : Vi > Vk ∀ k ∈ I and ∃ k 6= i : Vi = Vk}. (30)

Suppose now that J ⊂ P (I−) contains two or more neurons, and let V ∈ Σ∗
J . From

(28) it follows that Vi > Vk for all i ∈ J and k ∈ I, and Vi = Vj for all i, j ∈ J . Therefore,
V belongs to the intersection of the boundary of the sets Σ∗

{i} such that i ∈ J . We deduce
that

Σ∗
J ⊂

⋃

i∈J

∂Σ∗
{i} ∀J ⊂ P (I−) such that #J > 2. (31)

Finally, let us study the set Σ∗
I . According to (29), its interior

◦
Σ∗
I is

◦

Σ∗
I = {V ∈ Σ∗ : max

i∈I+
Vi > Vk ∀ k ∈ I},

and its boundary is the subset of Σ∗
I defined by

∂Σ∗
I = {V ∈ Σ∗ : max

i∈I+
Vi > Vk ∀ k ∈ I and ∃ j ∈ I− : Vj = max

i∈I+
Vi}. (32)

If V ∈ ∂Σ∗
I , then there exists j ∈ I− such that Vj > Vk for all k ∈ I, with equality for a

k ∈ I+ and thus different of j. In other words V ∈ ∂Σ∗
{j} for a j ∈ I−. It follows that

∂Σ∗
I ⊂

⋃

i∈I−

∂Σ∗
{i}.

To sum up, the previous analysis shows that Σ∗ can be decomposed as the union of
#I−+2 pairwise disjoint sets: the open sets Σ∗

{i} (one for each inhibitory neuron i ∈ I−),
the interior of Σ∗

I , and the closed set with empty interior ∂P∗. This last set is the union of
∂Σ∗

I with the sets Σ∗
J such that J contains only inhibitory neurons and #J > 2. Moreover,

it coincides with the union of the topological boundaries of the open sets Σ∗
{i}. So, we

have

Σ∗ =
⋃

i∈I−

Σ∗
{i}

⋃ ◦

Σ∗
I

⋃

∂P∗ where ∂P∗ :=
⋃

i∈I−

∂Σ∗
{i}. (33)

Each set of the type Σ∗
{i} consists of the initial states of the network for which, in the

firing regime, only the inhibitory neuron i fires. The set
◦
Σ∗
I are the initial states of

the networks for which only excitatory neurons (one or several) reach spontaneously the
threshold. According to Lemma 3.7, the firing of these excitatory neurons induces the
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synchronization of the network. Finally, for the initial states V ∈ ∂P∗, at least two
neurons reach the threshold spontaneously and at least one is inhibitory. If they are all
inhibitory, then only these neurons fire (it corresponds to the case where V ∈ Σ∗

J , with
#J > 1), but if one of them is excitatory, its firing induces the synchronization of the
network (it corresponds to the case where V ∈ ∂Σ∗

I).

The return map is continuous in
◦
Σ∗
I and in any Σ∗

{i}, because each of these sets is

open, and contained in the interior of a set ΣJ where ρ is continuous (see (13)). So, the
boundary set ∂P∗ contains all the discontinuity points of the return map. Let us give an
intuitive idea explaining why those discontinuities appear. For an initial state V ∈ ∂P∗

at least two neurons fire in the firing regime, say i ∈ I− and j ∈ I. But, there exists an
arbitrarily small perturbation W of V that belongs to Σ∗

{i}, i.e. such that only the neuron

i fires in the firing regime. This implies the existence of a gap between ρ(V) and ρ(W),
since ρj(V) = 0 and ρj(W) 6= 0, except for a very specifics value of Hij. The following
lemma makes rigorous this intuitive idea.

Lemma 5.1. If V ∈ ∂P∗, then there exists a sequence {Um}m∈N of points of Σ∗ such
that lim

m→∞
Um = V and lim

m→∞
‖ρ(Um)− ρ(V)‖ > µ where

µ := min{|α|,min
i 6=j

|Hij + θ|}. (34)

Proof. Let V ∈ ∂P∗ and i ∈ I− such that V ∈ ∂Σ∗
{i}. By definition of boundary, there is

a sequence {Um}m∈N of points of Σ∗
{i} such that lim

m→∞
Um = V. For all k 6= i, we have

lim
m→∞

ρk(U
m) = lim

m→∞
max{α, β − (β − Um

k )(β − θ)

β − Um
i

+Hik}

= max{α, β − (β − Vk)(β − θ)

β − Vi
+Hik}.

On the other hand, if V ∈ ∂Σ∗
{i}, it belongs to a set Σ∗

J such that i ∈ J and #J > 2

(possibly J = I). Therefore, there is j 6= i in J such that Vi = Vj and it follows that
lim

m→∞
ρj(U

m) = max{α, Hij + θ}. As j ∈ J and V ∈ Σ∗
J , we have ρj(V) = 0, and we

obtain that

lim
m→∞

‖ρ(V) − ρ(Um)‖ > lim
m→∞

|ρj(V)− ρj(U
m)| = |max{α, Hij + θ}|

which leads to the desired inequality.

To conclude this section we give a general definition of a piecewise contractive map
and we show that the return map fulfill this definition.

Definition 5.2. (Piecewise contractive map) A map ρ, from a compact set Σ∗ ⊂ R
n to

itself, is said to be piecewise contractive if it satisfies the following three conditions:
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1) There exists a finite family Σ∗
{0},Σ

∗
{1}, . . . ,Σ

∗
{p} of pairwise disjoint open sets such that

Σ∗ =

p
⋃

i=0

Σ∗
{i}.

2) There exists a constant λ < 1 such that for all i ∈ {0, 1, . . . , p}

‖ρ(V) − ρ(W)‖ 6 λ‖V −W‖ ∀V,W ∈ Σ∗
{i}.

3) The map ρ has a discontinuity jump larger than a constant µ > 0 in the borders ∂Σ∗
{i}

of a the sets Σ∗
{i}.

Under the hypothesis (H1), (H2), (H3) and (H4), and the additional generic hypothesis

min
i 6=j

|Hij + θ| 6= 0,

which stipulates that the smallest inhibitory interaction is different from −θ, the return
map of the network is piecewise contractive.

First, by Proposition 3.8, the set Σ∗ is compact and ρ(Σ∗) ⊂ Σ∗. Second, if we denote
Σ∗
{0} the interior of Σ∗

I and p the number of inhibitory neurons, the decomposition (33) of

Σ∗ shows that the condition 1) is satisfied. Third, the condition 2) is also satisfied because
Σ∗ is a contractive zone with respect to the partition P, and thus it is also a contractive
zone with respect to the partition P∗. Finally, the Lemma 5.1 shows that 3) is true for
µ := min{|α|,min

i 6=j
|Hij + θ|}, since α < 0 by Hypothesis (H1) and min

i 6=j
|Hij + θ| 6= 0.

The results of the sequel of this section apply to any abstract piecewise contractive
map satisfying Definition 5.2. So, they apply in particular to the return map under the
hypothesis mentioned above. To simplify the notations, and to fit with those of Definition
5.2, we will denote Σ∗

{0} the interior of Σ∗
I . It does not mean that a new neuron 0 is

introduced in the network, it rather recall that if V ∈ Σ∗
{0} then ρ(V) = 0. Also, I0 will

denote the set {0, 1, . . . ,#I−}.

5.2 The stable and the sensitive sets.

In order to study the asymptotic dynamics of the return map, we divide the contractive
zone Σ∗ in two complementary sets: the stable set S and the sensitive set C = Σ∗ \ S.

Definition 5.3. (Stable set) A point V ∈ Σ∗ is stable, if for all ν > 0 there exists δ > 0
such that for all p ∈ N:

if ‖ρp(V)−W‖ < δ then ‖ρk(ρp(V)) − ρk(W)‖ < ν ∀ k > 1. (35)

We call stable set and denote S the set of all the stable points.
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If V is a stable point, then any sufficiently small perturbation of V, or of a point of
its orbit, has an orbit which remains near the orbit of V. For instance, if the initial state
of a network is stable, one can expect that a small perturbation may modify slightly and
temporary the inter-spike intervals, but would not change the firing neurons.

Definition 5.4. (Sensitive set) A point V ∈ Σ∗ is sensitive, if there exists ν > 0 such
that for all δ > 0 there are p ∈ N and W ∈ Σc satisfying:

‖ρp(V)−W‖ < δ and ‖ρk(ρp(V)) − ρk(W)‖ > ν for some k > 1.

We call sensitive set and denote C, the set of all the sensitive points.

The sensitive set is the set of the points that are not stable. For a network in a sensitive
state, there exit arbitrarily small perturbations that produce a consequent change of its
time evolution. Typically, such perturbations modify the firing neurons at an instant of
its evolution.

Lemma 5.5. The stable set S is forward invariant, i.e ρ(S) ⊂ S, and the sensitive set C
is backward invariant, i.e ρ−1(C) ⊂ C.

Proof. Let us prove that ρ(S) ⊂ S. Take V ∈ S. Then for all ν > 0 there exists δ > 0
such that for all p > 1

if ‖ρp−1(ρ(V))−W‖ < δ then ‖ρk(ρp−1(ρ(V)))− ρk(W)‖ 6 ν ∀k > 1.

The last assertion is the definition of stable point applied to ρ(V). Therefore ρ(S) ⊂ S.
As C is the complement in Σ∗ of S, and ρ(S) ⊂ S we have ρ−1(C) ⊂ C.

Lemma 5.5 proves that if a network is initially in a stable state then it is forever stable.
If it is in a sensitive state, its past states are sensitive, but its future states can be stable.

Now, we give a useful characterization of the stable set:

Lemma 5.6. Let us denote d the distance induced by the norm ‖ · ‖, that is d(V,W) =
‖V − W‖ for all V and W in Σ∗. For all η > 0, let Sη be the set of the stable points
whose orbit is at a distance larger than η of ∂P∗:

Sη := {V ∈ S : d(ρp(V), ∂P∗) > η ∀ p ∈ N} ∀η > 0

then,

S =
⋃

η>0

Sη. (36)

Proof. By definition, Sη ⊂ S for any η > 0. Now, let V ∈ S and suppose by contradiction
that V /∈ Sη for all η > 0. Let δ > 0 and µ be the discontinuity jump of ρ in ∂P∗ defined
in (34). As V is a stable point, there exits 0 < δ0 < δ such that for all p ∈ N

if ‖ρp(V) −U‖ < δ0 then ‖ρ(ρp(V)) − ρ(U)‖ <
µ

4
.
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As V /∈ Sδ0/2, there exist p0 and W ∈ ∂P∗ such that

‖ρp0(V) −W‖ <
δ0
2

< δ.

By Lemma 5.1, there exist U ∈ Σ∗ such that

‖W −U‖ <
δ0
2

and ‖ρ(W) − ρ(U)‖ >
µ

2
.

For this U, we have ‖ρp0(V)−U‖ 6 ‖ρp0(V)−W‖+ ‖W −U‖ < δ0. Thus,

‖ρ(ρp0(V)) − ρ(W)‖ > |‖ρ(W) − ρ(U)‖ − ‖ρ(ρp0(V))− ρ(U)‖| >
∣

∣

∣

µ

2
− µ

4

∣

∣

∣
=

µ

4
.

To sum up, we have shown the existence of a ν := µ/4 such that for an arbitrary δ > 0,
there exists p0 and W such that

‖ρp0(V)−W‖ < δ and ‖ρ(ρp0(V)) − ρ(W)‖ > ν.

It follows that V belongs to the sensitive set, which is a contradiction. We conclude that
for all V ∈ S there exists η > 0 such that V ∈ Sη.

Note that each set Sη is forward invariant and does not contain point of ∂P∗. In other
words,

ρ(Sη) ⊂ Sη and Sη ⊂
⋃

i∈I0

Σ∗
{i} ∀ η > 0. (37)

and by (36) the same relations are true for S. It follows in particular that ρ is continuous
in any Sη and in S. Also ∂P∗ is a subset of the sensitive set. The relations (37) show
that if the initial state of the network is stable, then either it get synchronized, if its
orbit visit Σ∗

{0}, or only inhibitory neurons fire and never at the same time. The situation
where various inhibitory neurons fire simultaneously occurs only when the network is in a
sensitive state.

5.3 Principal results on the asymptotic dynamics

In this subsection we prove Theorem 5 which states that the limit sets attracting the
stable points is only composed of limit cycles. The number of limits cycle can be finite or
infinite, but it is always countable. The proof essentially relies on the contraction property
of the return map. Since the map is not continuous, it is not possible to apply directly
a classic fixed point theorem for contractive maps. Nevertheless, we give a generalization
of the Banach fixed point theorem for piecewise contractive maps. It states the existence
of periodic orbits - maybe of periods different from one and not necessarily unique - that
attract all the stable points.

Definition 5.7. (ω-limit set) The ω-limit set ω(V) of a point V ∈ Σ∗ is the set of the
limit points of the future orbit of V, that is:

ω(V) = {W ∈ Σ∗ : ∃ {pk}k∈N : lim
k→∞

pk = +∞ and lim
k→∞

ρpk(V) = W}.
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For a set A ⊂ Σ∗, we denote ω(A) the union of all the ω- limit sets of the points of A.
That is,

ω(A) :=
⋃

V∈A

ω(V).

In other words, W belongs to the ω-limit set of V if there exists a subsequence of the
orbit of V which converges to W. As the phase space Σ∗ is compact, the ω-limit set of
any point is nonempty. Intuitively, the ω-limit set of V is the set of the points of Σ∗ for
which there exists an arbitrarily small neighborhood which is always visited by the orbit
of V. In this sense, the points of ω(V) are those which attract the orbit of V. The set
ω(V) is forward invariant if ρ is continuous in ω(V), which is not necessarily the case for
any V. Nevertheless, the ω-limit set is the same for all the points of a same orbit.

Definition 5.8. (Limit cycle) A set L ⊂ Σ∗ is a limit cycle, if it is a periodic orbit whose
basin of attraction

B(L) = {W ∈ Σ∗ : ω(W) = L}
contains an open neighborhood of L.

Now we state the two important results of this section:

Proposition 5.9. For any η > 0 such that Sη 6= ∅, the set Sη contains only a finite
number N(η) of limit cycles, and any point of Sη belongs to the basin of attraction of one
of these limit cycles. In other words, for all η > 0

ω(Sη) =

N(η)
⋃

i=1

Li,

where each set Li is a limit cycle included in Sη.

We postpone the proof of the proposition to Section 5.4. This proposition allow us
to deduce the following theorem which is a more detailed statement of the part 2) of
Theorem 1. As well as Proposition 5.9, this theorem is true for any piecewise contractive
map satisfying Definition 5.2.

Theorem 5. If S 6= ∅, any stable point belongs to the basin of attraction of a limit cycle
contained in the stable set. The number of these limit cycles is countable. In other words,

ω(S) =
N
⋃

i=1

Li,

where each set Li is a limit cycle included in S. Moreover, the number N of limit cycles
is finite if d(ω(S), ∂P) > 0 and it is infinite, but countable, if d(ω(S), ∂P) = 0.

Proof. By Lemma 5.6 any stable point V belongs to a Sη for some η > 0. Therefore, by
Proposition 5.9, it belongs to the basin of attraction of a limit cycle in Sη ⊂ S, that is
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ω(V) is a limit cycle contained in S. As for all η′ > η we have Sη′ ⊂ Sη we can rewrite
(36) as

S =
⋃

k∈N

S l
k

where l := max
V∈Σ∗

d(V, ∂P∗).

Since for each k ∈ N the set ω(Sl/k) is a finite union of limit cycles and S is a countable
union of the sets Sl/k, it follows that ω(S) is a countable union of limit cycles.

If d(ω(S), ∂P∗) > 0, then there exists η > 0 such that d(ω(S), ∂P∗) > η. Since the
points of ω(S) are stable, the return map is continuous in ω(S) and therefore ω(S) is
invariant. It follows that the orbit of any point of ω(S) remains at a distance larger than
η of ∂P∗. In other words, ω(S) ⊂ Sη. By Proposition 5.9 it implies that ω(ω(S)) is a finite
union of limit cycles. But as ω(S) contains only periodic points we have ω(ω(S)) = ω(S).
This show that if d(ω(S), ∂P∗) > 0 then ω(S) is a finite union of limit cycle.

Now suppose d(ω(S), ∂P∗) = 0. Then, either ω(S)∩∂P∗ 6= ∅, or there exits an infinite
sequence of different points of ω(S) which converges to a point of ∂P∗. The first option is
impossible since ω(S) ⊂ S and ∂P∗ is a subset of the sensitive set. Therefore, the second
option holds and ω(S) is infinite. This ends the proof, since in the other hand, we know
that is it countable.

Now we detail the consequences of the previous results on the dynamics of IF neural
networks.

Theorem 5 states that if the initial state V of a network is stable (i.e. V ∈ S) then,
when time tends to infinity, the network tends to fire periodically, since it is attracted by
a limit cycle. If an excitatory neurons fires, this limit cycle is a synchronized orbit. But
if no excitatory neuron fires, then the asymptotic firing patterns of each neuron present a
common period but they are not synchronized (recall (37), two inhibitory neurons cannot
fire at the same time). According to the initial stable state of the network, the attracting
limit cycle can change. The stable set contains only a countable number of limit cycles
and certainly, for most values of the parameters, this number is finite. However, it can
also be infinite.

The situation described above does not prevent the stable dynamics of the network
from exhibiting a behavior which seems chaotic, in a wide sense of the term. By definition
of the stable set, any sufficiently small perturbation is damped and does not modify the
asymptotic periodic pattern of the network. Nevertheless, the size of such perturbation
depends on the set Sη to which the initial state of the network belongs. If η is large, then
large perturbations are allowed. But if η is small, then the orbit of V can get near to the
discontinuity set ∂P∗, or more generally, near to a sensitive point. in such a case some
small perturbations (but non arbitrarily small) can change significantly the behavior of the
network. The most probable effect is a change of the limit cycle attracting the network.
Also, the network enters into a transitory regime before reaching this new limit cycle.

Moreover, the transitory time before the network gets near to a limit cycle and the
period of this limit cycle cannot decrease when η decreases (see Remark 5.12). In other
words, the initial stable states whose orbits get the closer to the sensitive points have
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the larger transitory times. Besides, the limit cycles attracting them have the largest
periods. It follows that those limit cycles may never be observed during a finite time of
experimentation, since the network is in a transient regime and/or it tends to a limit cycle
of very large period. This phenomenon most probably occurs if the distance between ω(S)
and ∂P∗ is equal to zero. In such a case ω(S) contains an infinite number of limit cycles,
and for any given number δ > 0, there is an infinity of limit cycles at a distance smaller
than δ of ∂P∗. Thus, most of the initial states of the network have an orbit which is
attracted by one of these limit cycles of large period. Furthermore, if a small perturbation
is applied repeatedly to one of these orbits, for example by rounding errors in numerical
simulations or in the presence of noise, it can maintain the orbit in the same region, but
change many times the limit cycles it is attracted by.

Theorem 5 and Proposition 5.9 are results about the asymptotic dynamics of the stable
set. However, Lemma 5.6 allows us to make some comments about the dynamics of the
complementary set, namely the sensitive set. This lemma proves that any stable point
belongs to a set Sη for some η > 0. Therefore, all the points of the orbit of a stable point
V are at a distance larger than η(V) > 0 of ∂P∗. It follows that the sensitive set consists
of the points whose orbit is arbitrarily near to ∂P∗. These points are those of ∂P∗ and of
all its pre-images

⋃

k∈N

ρ−k(∂P∗), as well as the points whose ω-limit set contains a point

of ∂P∗. Formally,

C =
⋃

k∈N

ρ−k(∂P∗)
⋃

C where C := {V ∈ Σ∗ : ω(V) ∩ ∂P∗ 6= ∅}.

The points of C that are not in C have an orbit which is eventually stable and Theorem
5 applies for them after a transitory time. The set C is invariant, and for any initial state
V in this set, there exit arbitrarily small perturbations that produce a large deviation
in its orbit. The invariance of C and its sensitivity to arbitrary small perturbations are
ingredients of the concept of chaos. However, they are not enough to ensure the presence
of chaos from a strict mathematical point of view. In particular, the existence of piecewise
contractive maps exhibiting chaotic attractors is a widely open question. Also, the exact
nature of the possible attractors of C has been few documented. We can nevertheless
mention [8], where this question is investigated for piecewise affine contractive maps. In
this paper, it is shown that the attractor of C can have any type of cardinality (finite,
countable infinite and uncountable). In particular, the most complex found attractor is a
transitive union of a Cantor set and an infinite countable set, which does not contain any
periodic orbit.

From the results of this section, it follows that the piecewise contractive character of
the return map leads the stable dynamics to be asymptotically periodic. However, it does
prevent the network from exhibiting a dynamics that can seem chaotic when observed at
finite time scales. The richness of this dynamics depends on the interrelations between
the stable set and the chaotic set. If the asymptotic sets of the stable dynamics remain
far from the discontinuities of the return map, then numerical simulations should observe
a stable periodic behavior. But, in the other case, this periodic behavior may be not
observed at finite time scales and/or in presence of perturbations, for an important set of
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initial states of the network. Also, non periodic attractors exist in the sensitive set and
can coexist with the periodic attractors of the stable set.

5.4 Proof of Proposition 5.9

To prove Proposition 5.9 we introduce the so-called atoms of a set Sη. For all i ∈ I0, we
define Fi : P (Σ∗) → P (Σ∗), where P (Σ∗) denotes the set of all the subsets of Σ∗, by:

Fi(E) = ρ(E ∩ Σ∗
{i} ∩ Sη) ∀E ⊂ Σ∗.

Given k ∈ N and (i1, i2, . . . , ik) ∈ Ik0 , we call atom of generation k the set

Ai1i2...ik = Fik ◦ Fik−1
◦ · · · ◦ Fi1(Σ

∗
{i1}

)

and we call family of the atoms of generation k the set Ak = {Ai1i2...ik , (i1, i2, . . . , ik) ∈
I0

k}. Note that the forward invariance of Sη by ρ ensures that any atom is contained in
Sη.

Lemma 5.10. For all k ∈ N, we have

i) If V ∈ Sη, then ρk(V) belongs to an atom of generation k.

ii) Any atom of generation k + 1 is contained in an atom of generation k.

iii) Denotes diam(A) the diameter of A and let dk = max
A∈Ak

diam(A). Then lim
k→∞

dk = 0.

Proof. i) It follows from the forward invariance of Sη and from the inclusion Sη ⊂ ⋃

i∈I0

Σ∗
{i}

stated in (37). Assume that there exists V ∈ Sη. Then, there exists i1 ∈ I0 such that
V ∈ Σ∗

{i1}
∩ Sη. It follows that

ρ(V) ∈ ρ(Σ∗
{i1}

∩ Sη) = Fi1(Σ
∗
{i1}

) ∈ A1.

By induction, suppose that ρk(V) belongs to Ai1...ik ∈ Ak. From (37) it follows that
ρk(V) ∈ Σ∗

{ik+1}
∩ Sη for some ik+1 ∈ I0. Using the induction hypothesis we obtain

ρk+1(V) ∈ ρ(Σ∗
{ik+1}

∩ Sη ∩Ai1...ik) = Fik+1
◦ · · · ◦ Fi1(Σ

∗
{i1}

) ∈ Ak+1.

ii) Let Ai1i2...ik+1
be an atom of generation k + 1. Then,

Ai1i2...ik+1
= Fik+1

◦ · · · ◦ Fi2 ◦ Fi1(Σ
∗
{i1}

)

⊂ Fik+1
◦ · · · ◦ Fi2(Σ

∗)

⊂ Fik+1
◦ Fik ◦ · · · ◦ Fi2(Σ

∗
{i2}

) ∈ Ak.

iii) It is enough to show by induction that

diam(A) 6 λk−1diam(Σ∗) ∀A ∈ Ak. (38)
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Since any atom is a subset of Σ∗, it is true for k = 1. Assume (38) is true for k = k0.
Take A = Ai1i2...ik0+1

∈ Ak0+1 and V, W ∈ A. Then A = ρ(A′ ∩ Σ∗
{ik0+1}

∩ Sη) where

A′ = Ai1i2...ik0
∈ Ak0 . Therefore, there exists V

′, W′ ∈ Σ∗
{ik0+1}

∩A′ such that V = ρ(V′)

and W = ρ(W′). Applying the contraction property and the induction hypothesis we
obtain:

‖V −W‖ = ‖ρ(V′)− ρ(W′)‖ 6 λ‖V′ −W′‖ 6 λdiam(A′) 6 λk0diam(Σ∗),

which implies the desired result, since V and W are arbitrary in the atom A.

Lemma 5.11. There exists k > 1 such that if A ∈ Ak then A ⊂ Σ∗
{i} for some i ∈ I0.

Proof. Let k > 1 such that dk < η/2 and A ∈ Ak not empty. Take V ∈ A and i ∈ I0 such
that V ∈ Σ∗

{i} (recall A ⊂ Sη and (37)). Let E = Σ∗ \ Σ∗
{i} and let ∂E be its boundary.

We denote d(V, E) the distance between the point V and the set E. We have:

d(V, E) = d(V, ∂E) = d(V, ∂Σ∗
{i}) > d(V, ∂P∗) > η.

Let W ∈ A then d(W,V) 6 diam A 6 dk < η/2 and from

d(W, E) > d(V, E) − d(W,V) > η − η

2
> 0

we deduce that W /∈ E. Then W ∈ Σ∗
{i}.

Remark 5.12. The number of iteration k of the return map that ensure that any atom
of generation k of Sη is included in a continuity piece of the return map depends on η.
This number is an upper bound on the transitory time for all the orbits of Sη to enter in
the attraction basin of a limit cycle and on the period of this cycle. When η increases this
upper bound decreases. The largest transitory times and the largest period are therefore
those of the points of the sets Sη with the smallest η.

Lemma 5.13. If there exist (i0, i1, . . . , ip−1) ∈ Ip0 and a family of sets B0, B1, . . . , Bp−1

satisfying

i) Bk ⊂ Σ∗
{ik}

for all k ∈ {0, . . . , p− 1} and

ii) ρ(Bp−1) ⊂ B0 and ρ(Bk−1) ⊂ Bk for all k ∈ {1, . . . , p− 1},

then there exists a unique periodic point of period p in B0 whose orbit is the ω- limit set
of any point contained in the union of the Bk’s.

Proof: Since by i) each Bk is contained in a contractive piece of ρ, by ii) the map ρp is
contractive in B0 and ρp(B0) ⊂ B0. Then, by the fixed point theorem of Banach, there
exists a unique periodic point Ṽ of period p in B0.

We prove now that ifV ∈ Bk, then ω(V) is the orbit L of Ṽ. Without loss of generality
we can assume V ∈ B0. It is enough to show that ω(V) = ω(Ṽ), since the ω-limit set of
a periodic point coincides with its orbit.
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Let {pj}j∈N be a sequence of natural numbers such that lim
j→∞

pj = +∞ and such that

either lim
j→∞

ρpj(V) or lim
j→∞

ρpj(Ṽ) exists. Since V and Ṽ belong both to B0, according

to ii) ρpj (V) and ρpj(Ṽ) belong to the same continuity piece for all j ∈ N. Using the
contraction property we obtain:

lim
j→∞

‖ρpj(V) − ρpj(Ṽ)‖ 6 lim
j→∞

λpj‖V − Ṽ‖ = 0.

It follows that both lim
j→∞

ρpj (V) and lim
j→∞

ρpj (Ṽ) exist and are equal. This proves that

ω(V) = ω(Ṽ) as wanted. ✷

Proof of Proposition 5.9: Step 1 Let k̃ ∈ N be such that the thesis of Lemma 5.11 is true.
We show that the image by ρ of any atom of Ak̃ is contained in an atom of Ak̃. Suppose
A ∈ Ak̃. By Lemma 5.11, there exists i ∈ I0 such that A ⊂ Σ∗

{i}, and since any atom

is contained in Sη, we have ρ(A) = ρ(A ∩ Σ∗
{i} ∩ Sη) = Fi(A). Then, ρ(A) ∈ Ak̃+1, and

according to ii) of Lemma 5.10 it is included in an atom of Ak̃.

Step 2 Let V ∈ Sη and W = ρk̃(V). Then, from i) and ii) of Lemma 5.10 we deduce
that each point of the orbit of W belongs to an atom of Ak̃. Being the number of atoms
in Ak̃ finite, it must exist B0 ∈ Ak̃ such that ρj0(W) ∈ B0 and ρj0+p(W) ∈ B0 for some
j0 and p ∈ N. Let’s denote B1, B2, . . . , Bp−1 the atoms of Ak̃ that contain respectively
ρj0+1(W), ρj0+2(W), . . . , ρj0+p−1(W). By Step 1, the image by ρ of each of these atoms
is contained in an atom of Ak̃, so they must satisfy:

ρ(Bp−1) ⊂ B0 and ρ(Bk−1) ⊂ Bk ∀ k ∈ {1, . . . , p − 1}.

Moreover, by Lemma 5.11 there exists (i0, . . . , ip−1) ∈ Ip0 such that Bk ⊂ Σik
c for all

0 6 k 6 p − 1. Therefore, this family of atoms satisfy the hypothesis of Lemma 5.13.
Since ρk̃+j0(V) ∈ B0 and ω(V) = ω(ρk̃+j0(V)), we conclude that ω(V) is a periodic orbit
of period p contained in the union of the atoms Bk’s. Note that it may exit at most #Ak̃
different families satisfying Lemma 5.13 and thus at most #Ak̃ different periodic orbits in
Sη.

Step 3 We have shown that the ω-limit set of any point of Sη is a periodic orbit contained
in Sη. We finish the proof of the propostion by showing that any periodic orbit in Sη is
actually a limit cycle.

Suppose Ṽ is a periodic point of period p and let L = {Ṽ, ρ(Ṽ), . . . , ρp−1(Ṽ)} ⊂ Sη

be its orbit. We have to prove that there exists an open neighborhood of L which points
have L as ω-limit set (i.e, the basin of attraction of L contains an open neighborhood of
L). For all k ∈ {0, . . . , p − 1} we have ρk(Ṽ) ∈ Σ∗

{ik}
where (i1, . . . , ip) ∈ Ip0 . Since the

continuity piece Σ∗
{ik}

is open, there exists an open ball B(ρk(Ṽ), ak) of center ρ
k(Ṽ) and

radius ak > 0 whose closure is contained in Σ∗
{ik}

. Let 0 < a < min{ak, 0 6 k 6 p − 1}
and B be the open neighborhood of L defined by:

B =

p−1
⋃

k=0

Bk where Bk = B(ρk(Ṽ), a) ∀ k ∈ {0, . . . , p− 1}.
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We have Bk ∈ Σ∗
{ik}

, and if we show that ρ(Bp−1) ⊂ B0 and ρ(Bk−1) ⊂ Bk for all

k ∈ {0, . . . , p−1}, then we can apply Lemma 5.13 to prove that the open set B contains a
unique periodic orbit (L) which is the ω-limit set of all the points of B. We will only prove
that ρ(Bp−1) ⊂ B0, the other inclusions admit an analogous proof. If V ∈ Bp−1 then V
and ρp−1(Ṽ) belong to the same piece of continuity Σ∗

{ip−1}
. Applying the contraction

property of ρ we obtain:

‖ρ(V) − ρp(Ṽ)‖ 6 λ‖V − ρp−1(Ṽ)‖ < λa < a.

In other words ‖ρ(V) − Ṽ‖ < a which implies ρ(V) ∈ B0. ✷

6 Conclusion

In the present paper, we gave a mathematical analysis of the dynamics of IF neural
networks, with an arbitrary number of neurons interacting by instantaneous excitations
and inhibitions. The main purpose was to give a global analysis describing the asymptotic
behavior of all the solutions of the model.

Our study is in part motivated by the comparison of continuous time IF neural networks
with discrete time versions, such as those analyzed in [9]. An important characteristics of
the model of [9] is that it is piecewise contractive in the whole the phase space. In our
case where time is continuous, we show that the associated return map does not fulfill
this property trivially. In particular, we found sets of parameters where the return map
exhibits expansion and has a repulsive periodic orbit. It is therefore necessary to impose
some conditions on the parameters values for the return map to be piecewise contractive
in the whole phase space. We have proposed such conditions through the hypothesis
(H3), which states that the interactions have to be sufficiently strong, or equivalently, the
resistance of the neural membrane R and/or the external current Iext sufficiently weak.
However, since it is a non-trivial task to find parameters for which the return map exhibits
real expansion, there certainly exist other sets of parameters than those defined by (H3),
for which the return map is piecewise contracting in the whole phase space.

The property of piecewise contraction is mainly relevant to analyze the behavior of
networks containing inhibitory neurons. We also study the dynamics of networks exclu-
sively composed of excitatory neurons. For these networks, we only assume that all the
interactions are strictly positive. We show that if the number of neurons is sufficiently
large then, for any initial state, the network gets synchronized in a finite time. These
results complete the work of [23], since we allow the weights of the excitatory synapses
to be mutually different, while in [23] all the interactions are equal to a same constant.
The number of neurons that are necessary to provoke this global synchronization, as well
as the duration of the transient regime, is a decreasing function of the minimum positive
value of the interactions. We show in concrete examples, that if the number of neurons is
not large enough, then the global synchronization does not occur, since the network also
presents some non synchronized periodic orbits. The relevance of the number of neurons
(connections) for the synchronization has also been observed in [12] where the effectiveness
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of the connections between neurons is modeled by a random variable. The synchroniza-
tion is observed for high probability of connection. But if this probability is small, then
asynchronous states appear.

Coming back to the region of parameters defined by (H3), we have shown that the
return map of a network containing inhibitory neurons, satisfies a general definition of
piecewise contractive map (Definition 5.2). To analyze the asymptotic dynamics of such
maps, we define two complementary sets of the phase space: the stable set and the sensitive
set. The stable points fulfill a criterion of stability which is weaker than the negativeness
of all the Lyapunov exponents. Our criterion is well defined even for maps which are
neither differentiable nor continuous, and it is satisfied in particular by the maps with
negative maximal Lyapunov exponent. On the other hand, the orbit of a sensitive point
can be drastically modified by some arbitrarily small perturbations which change the firing
neurons. The sensitive set contains all the points whose orbit gets arbitrarily near to the
discontinuities set of the return map.

We show that the stable set of a piecewise contractive map contains a countable number
(possibly infinite) of limit cycles such that the union of their basins of attraction contains
all the stable points. It results that the asymptotic dynamics of a network with a stable
initial state is periodic. The limit cycles are persistent under deterministic and stochastic
perturbations, provided that their amplitude is small enough. Nevertheless, not all the
limit cycles have the same stability, in particular, those that are near to sensitive points,
can be destroyed by small, but non infinitesimal, perturbations. An orbit approaching
them can therefore suffer a drastic change under the influence of a small perturbation.
This perturbation typically changes the basin of attraction the orbits belongs to, and it
enlarges the transient time necessary to reach a limit cycle. Moreover, these “weakly”
stable cycles have the longest transient times to approach them and the largest periods.
In the extreme case where the stable set contains an infinite number of limit cycles, an
infinity of them are concentrated near to sensitive points. It results that these limit cycles
attract a large region of the phase space, and that their experimental observation needs
high precision and large time scales. The existence of very long disordered transients in
a stable dynamics has been described as stable chaos in [24] or virtual chaos in [9] and
has been observed in numerical simulations of neural networks in [9], [29] and [30)], for
instance.

On the other hand, the characterization of all the possible attractors of the sensitive
set is still an open question. Nevertheless, it is known that for one dimensional piecewise
contractive maps the attractor of the sensitive points is essentially a Cantor set. Also, in [8]
it has been reported that in higher dimension, other kind of attractors with a cardinality or
a complexity lower or higher than the one of a Cantor set can exist. None of the examples
described in [8] contains periodic orbits. We can therefore expect that the asymptotic
periodic dynamics of stable IF neural networks can coexist with a non periodic sensitive
dynamics. The coexistence of stable and sensitive dynamics in the same system, as well
as the abundance of stable chaos, depend on how intricate are the sensitive set and the
stable set and on their respective size.

It is mainly admitted that the existence of strong chaos needs expansivity. We have
shown that IF neural networks can have such a property. Our main purpose was to
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show that some conditions were needed for the return map to be piecewise contractive.
However, it would be interesting to make a deeper study of the phenomenon of non global
contraction or expansivity, in some region of the phase space, as in Theorem 2. Although
our result is stated in a different way, its proof relies on the existence of a repulsive periodic
orbit. We think that it is possible to find more of these orbits, which would be a further
step in the research of chaos in neural networks.

To sum up, in the present paper we give a rigorous analysis of the asymptotic dynamics
of a family of IF neural networks. Our analysis is principally qualitative and proved under
well posed hypothesis, which can certainly be relaxed. In particular, the results about the
stable dynamics of the networks under study are proved in some region of the parameters,
where the return map is a piecewise contraction. But these results apply to any piecewise
contractive map satisfying the general Definition 5.2. Therefore, Proposition 5.9 and
Theorem 5, as well as their consequences, will then be true for any neural network (possibly
more sophisticated) in the parameters region where its return map satisfies Definition 5.2.
Also, the proofs of the principal theorems and propositions give some hints to obtain more
quantitative results. We hope that the results of the present paper have helped to identify
some important concepts and to pose some basis of future studies.

7 Appendix: Some technical proofs.

7.1 Proof of Lemma 3.3

Let i 6= j ∈ I. To prove the Lemma 3.3, we suppose the neurons i and j satisfy the four
conditions (O1), (O2) and (O3) stated before the lemma.

Step 1: We show that Γi ⊂ ΣI\{j}, that is to say J(V) = I \ {j} (to prove Γj ⊂ ΣI\{i}

just permute i and j). Suppose V ∈ Γi. Then, Vk < Vi for all k 6= i and the neuron i
is the only neuron which reaches the threshold spontaneously at time ti(V) = t̄(V). It
implies that V ∈ Σi and J0(V) = {i} (recall (9)).

Now let us compute the set of the neurons that fire by interaction with the neuron i
at time t̄(V). Let k ∈ I \ J0(V) = I \ {i}, then using (8) with Vk = 0 we obtain

φ
t̄(V)
k (V) +

∑

l∈J0(V) :Hlk>0

Hlk = φ
ti(V)
k (V) +Hik = β − β(β − θ)

β − Vi
+Hik,

which belongs to (Hik, c
∗ + Hik) since Vi ∈ (c∗, θ). If k 6= j, then k /∈ {i, j} and by

hypothesis (O2) we have Hik > θ. Therefore, k ∈ J1(V). If k = j, by hypothesis (O1) we
have Hik < c∗ − θ and k /∈ J1(V). We deduce that J1(V) = I \ {j}.

Now let us compute the set of the neurons that fire by interaction with the neuron of
J1(V ) at time t̄(V). Let k ∈ I \ J1(V) = {j}, then using (8) with Vj = 0 and (O1) we
obtain

φ
t̄(V)
k (V) +

∑

l∈J1(V) :Hlk>0

Hlk = φ
ti(V)
j (V) +

∑

l 6=j :Hlj>0

Hlj < c∗ + θ − c∗ = θ.
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It follows that j /∈ J2(V). We deduce that J2(V) = J1(V) = I \ {j} and then J(V) =
I \ {j}.

Step 2: We show that there exists (a, b) ⊂ (c∗, θ) such that for all V ∈ Γi verifying
Vi ∈ (a, b) we have ρ(V) ∈ Γj. Suppose V ∈ Γi. From step 1, we have Γi ⊂ ΣI\{j},
which implies ρk(V) = 0 for all k 6= j. Remains to show that for some c∗ < a < b < θ, if
Vi ∈ (a, b) then ρj(V) ∈ (c∗, θ).

Since, t̄(V) = ti(V) using (8) we obtain

ρj(V) = gj(Vi) where gj(x) := β − β(β − θ)

β − x
+
∑

l 6=j

Hlj ∀x 6= β.

The function gj being strictly decreasing, gj(x) ∈ (gj(θ), gj(c
∗)) for all x ∈ (c∗, θ). By

(O3) we have gj(c
∗) = c∗ +

∑

l 6=j Hlj > c∗ and by (O1) we have gj(c
∗) < θ. It results

that gj(c
∗) ∈ (c∗, θ). Thus, the function gj being continuous there exists (a, b) ⊂ (c∗, θ)

such that gj(x) ∈ (c∗, θ) for all x ∈ (a, b). It follows that ρj(V) = gj(Vi) ∈ (c∗, θ) for all
Vi ∈ (a, b), which is the desired result.

Note that gj is injective in (c∗, θ), so ρ is injective Γi. This ends the proof of the Lemma
3.3.

7.2 Proof of Theorem 3

Lemma 7.1. Under the hypothesis (H1),(H2),(H3) and (H4) there exists c > 0 such that
for all n ∈ N

‖ρn(V) − ρn(W)‖ 6 cλn‖V −W‖ if V, W ∈ PJ0...Jn :=

n
⋂

i=0

ρ−i(ΣJi)

where J0, . . . , Jn ∈ P (I) and λ is the contraction constant of ρ in the contractive zone Σ∗.

Proof. Consider the integer p of Proposition 3.9 and define for all k ∈ {0, . . . , p}

ck = max
J0,...,Jk∈P (I)

sup

{‖ρk(V) − ρk(W)‖
λk‖V −W‖ , V 6= W ∈ PJ0...Jk

}

where PJ0...Jk =
k
⋂

i=0
ρ−i(ΣJi).

Let us show that ck is bounded for all k ∈ {0, . . . , p}. Fix a k ∈ {0, . . . , p} and
let J0, . . . , Jk ∈ P (I). The Poincaré map ρ being Lipchitz continuous on each ΣJi , by
construction of PJ0...Jk , the composition ρk is also Lipchitz continuous on PJ0...Jk . Then,
there exists a constant L > 0 such that

‖ρk(V)− ρk(W)‖ 6 L‖V −W‖ ∀ V, W ∈ PJ0...Jk ,
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and as a consequence

sup
V 6=W∈PJ0...Jk

‖ρk(V) − ρk(W)‖
λk‖V −W‖ 6

L

λk
.

It follows that ck is bounded for all k ∈ {0, . . . , p} and c := max
k∈{0,...,p}

ck exists.

Let n ∈ N and J0, . . . , Jn ∈ P (I). If n 6 p, then by definition of c

‖ρn(V)− ρn(W)‖ 6 cλn‖V −W‖ if V, W ∈ PJ0...Jn . (39)

If n > p, take (39) as an induction hypothesis. Let Jn+1 ∈ P (I) and suppose V, W ∈
PJ0...Jn+1

. As n > p by Proposition 3.9 and Proposition 3.8 we have ρn(Σ) ⊂ Σ∗. There-
fore, ρn(V) and ρn(W) ∈ Σ∗ ∩ ΣJn. From Proposition 3.6 it follows

‖ρn+1(V)− ρn+1(W)‖ 6 λ‖ρn(V) − ρn(W)‖

and from the induction hypothesis we obtain

‖ρn+1(V) − ρn+1(W)‖ 6 cλn+1‖V −W‖.

Let λ < µ < 1 and let n0 ∈ N be such that c
(

λα

µ

)n0

< 1. Consider the metric d

defined by

d(V,W) :=

n0−1
∑

i=0

‖ρi(V) − ρi(W)‖
µi

∀V,W ∈ Σ∗

and the partition P ′ of Σ defined by P ′ := {PJ0...Jn0
, J0 . . . Jn0

∈ P (I)}. To prove the
theorem it is enough to show that ρ is piecewise contractive in Σ with respect to P ′ for
the metric d. This is the purpose of the following calculation. First, note that for all V,
W in Σ, we have:

d(ρ(V), ρ(W)) =

n0
∑

i=1

‖ρi(V) − ρi(W)‖
µi−1

= µ

(

d(V,W) +
‖ρn0(V)− ρn0(W)‖

µn0
− ‖V −W‖

)

.

Now, suppose V and W in PJ0...Jn0
for some J0 . . . Jn0

∈ P (I). Then, applying Lemma
7.1 we obtain:

d(ρ(V), ρ(W)) 6 µ

(

d(V,W) + c

(

λ

µ

)n0

‖V −W‖ − ‖V −W‖
)

.

By definition of µ and n0, we have then

d(ρ(V), ρ(W)) 6 µd(V,W)
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which ends the proof of Theorem 3.
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