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Abstract

We study a mathematical model of biological neuronal networks composed by any
finite number N ≥ 2 of non necessarily identical cells. The model is a deterministic
dynamical system governed by finite-dimensional impulsive differential equations. The
statical structure of the network is described by a directed and weighted graph whose
nodes are certain subsets of neurons, and whose edges are the groups of synaptical
connections among those subsets. First, we prove that among all the possible networks
such that their respective graphs are mutually isomorphic, there exists a dynamical
optimum. This optimal network exhibits the richest dynamics: namely, it is capable
to show the most diverse set of responses (i.e. orbits in the future) under external
stimulus or signals. Second, we prove that all the neurons of a dynamically optimal
neuronal network necessarily satisfy Dale’s Principle, i.e. each neuron must be either
excitatory or inhibitory, but not mixed. So, Dale’s Principle is a mathematical necessary
consequence of a theoretic optimization process of the dynamics of the network. Finally,
we prove that Dale’s Principle is not sufficient for the dynamical optimization of the
network.

MSC 2010: Primary: 92B20. Secondary: 37N25, 34A37, 05C22, 05C79.
Keywords: Neural networks, Impulsive ODE, Discontinuous dynamical systems, Directed
& Weighted Graphs, Mathematical model in Biology.

1 Introduction

Based on experimental evidence, Dale’s Principle in Neuroscience (see for instance [1, 2])
postulates that most neurons of a biological neuronal network send the same set of bio-
chemical substances (called neurotransmitters) to the other neurons that are connected
with them. Most neurons release more than one neurotransmitter, which is called the “co-
transmission” phenomenon [3, 4], but the set of neurotransmitters is constant for each cell.
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Nevertheless, during plastic phases of the nervous systems, the neurotransmitters that are
released by certain groups of neurons change according to the development of the neuronal
network. This plasticity allows the network perform diverse and adequate dynamical re-
sponses to external stimulus: “Evidence suggests that during both development (in utero)
and the postnatal period, the neurotransmitter phenotype of neurons is plastic and can be
adapted as a function of activity or various environmental signals” [4]. Also a certain phe-
notypic plasticity occurs in some cells of the nervous system of mature animals, “suggesting
that a dormant phenotype can be put in play by external inputs” [4].

Some mathematical models of the neuronal networks represent them as deterministic
dynamical systems (see for instance [5, 6, 7, 8]). In particular, the dynamical evolution of
the state of each neuron during the interspike intervals, and the dynamics of the bursting
phenomenon, can be modelled by a finite-dimensional ordinary differential equation (see
for instance [8, 9] and in particular [10] for a mathematical model of a neuron as a dy-
namical system evolving on a multi-dimensional space). When considering a network of
many neurons, the synaptical connections are frequently modelled by impulsive coupling
terms between the equations of the many cells (see for instance [7, 11, 12, 13]). In such a
mathematical model, Dale’s Principle is translated into the following statement:

Dale’s Principle: Each neuron is either inhibitory or excitatory. We recall that a
neuron i is called inhibitory (resp. excitatory) if its spikes produce, through the electro-
biochemical actions that are transmitted along the axons of i, only null or negative (resp.
positive) changes in the membrane potentials of all the other neurons j 6= i of the network.
The amplitudes of those changes may depend on many variables. For instance, they may
depend on the membrane instantaneous permeability of the receiving cell j. But the sign
of the postsynaptical actions is usually only attributed to the electro-chemical properties of
the substances that are released by the sending cell i. In other words, the sign depends only
on the set of neurotransmitters that are released by i. Since this set of substances is fixed
for each neuron i (if i satisfies Dale’s Principle), the sign of its synaptical actions on the
other neurons j 6= i is fixed for each cell i, and thus, independent of the receiving neuron j.

In this paper we adopt a simplified mathematical model of the neuronal network with a
finite number N ≥ 2 of neurons, by means of a system of deterministic impulsive differential
equations. This model is taken from [11, 13], with an adaptation that allows the state
variable xi of each cell i be multidimensional. Precisely xi is a vector of finite dimension,
or equivalently, a point in a finite-dimensional manifold of an Euclidean space. The finite
dimension of the state variable xi is larger or equal than 1, and besides, may depend on
the neuron i. The dynamical model of the network is the solution of a system of impulsive
differential equations. This dynamics evolves on a product manifold whose dimension is the
sum of the dimensions of the state variables of its N neurons.

We do not assume a priori that the neurons of the network satisfy Dale’s Principle.
In Theorem 16 we prove this principle a posteriori, as a necessary final consequence of
a dynamical optimization process. We assume that during this process, a plastic phase
of the neuronal network occurs, eventually changing the total numbers of neurons and
synaptical connections, but such that the graph-scheme of the synaptic connections among
groups of mutually identical cells remains unchanged. We assume that a maximal amount
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of dynamical richness is pursued during such a plastic development of the network. Then,
by means of a rigourous deduction from the abstract mathematical model, we prove that,
among all the mathematically theoretic networks N of such a model, those exhibiting an
optimal dynamics (i.e. the richest or the most versatile dynamics) necessarily satisfy Dale’s
Principle (Theorem 16).

The mathematical criteria to decide the dynamical optimization is the following: First,
in Definition 9, we classify all the theoretic neuronal networks (also those that hypothetically
do not satisfy Dale’s Principle) into non countably many equivalence classes. Each class is a
family of mutually equivalent networks, with respect to their internal synaptical connections
among groups of cells (we call those groups of cells synaptical units in Definition 6). Second,
in Definitions 11 and 14, we agree to say that a network N has an optimal dynamics
conditioned to its class, if the dynamical system modelling any other network N ′ in the
same class as N , has a space of orbits in the future that is a subset of the space of orbits
of N . In other words, N is the network capable to perform the richest dynamics, namely,
the most diverse set of possible evolutions in the future among all the networks that are in
the same class.

RESULTS TO BE PROVED:
In Theorem 15 we prove that the theoretic dynamical optimum exists in any equivalence
class of networks that have isomorphic synaptical graphs.
In Main Theorem 16 we prove that such an optimum is achieved only if the network N
satisfies Dale’s Principle.
In Main Theorem 17 we prove that the converse of Theorem 16 is false: Dale’s Principle
is not sufficient for a network exhibit the optimal dynamics within its synaptical equivalence
class.

The results are abstract and theoretically deduced from the mathematical model. They
are epistemologically suggestive since they give a possible answer to the following question:
Epistemological question: Why does Dale’s Principle hold for most cells in the nervous
systems of animals?

Mathematically, the hypothesis of searching for an optimal dynamics implies (through
Theorem 16) that at some step of the optimization process all the cells must satisfy Dale’s
Principle. In other words, this principle would be a consequence, instead of a cause, of an
optimization process during the plastic phase of the network. This conclusion holds under
the hypothesis that the dynamical optimization (i.e. the maximum dynamical richness) is
one of the “natural” pursued aims during a certain changeable development of the network.

Finally, we notice that the converse of Theorem 16 is false: there exist mathematical
examples of simple abstract networks whose cells satisfy Dale’s Principle but are not dy-
namically optimal (Theorem 17). Thus, Dale’s Principle is necessary but not sufficient for
the dynamical optimization of the network.

Structure of the paper and purpose of each section:
In Section 2 we write the hypothesis of Main Theorems 16 and 17. From Section 3 to

6 we prove Main Theorem 16. The proof is developed in four steps, one in each separate
section. The first step (Section 3) is devoted to prove the intermediate result of Proposition
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7. The second step (Section 4) is deduced from Proposition 7. The third step (Section 5)
is logically independent from the first and second steps, and is devoted to obtain the two
intermediate results of Proposition 13 and Theorem 15. Section 6 exposes the fourth step
(the end) of the proof of Main Theorem 16, from the logic junction of the previous three
steps, using the intermediate results (Propositions 7 and 13, and Theorem 15).

On the one hand, the intermediate results (Propositions 7 and 13, and Theorem 15)
are necessary stages in the logical process of our proof of Main Theorem 16 which ends in
Section 6. In fact, Theorem 16 establishes that, if there exists a dynamical optimum within
each synaptical equivalence class of networks, this optimal network necessarily satisfies
Dale’s Principle. But this result would be void if we did not prove (as an intermediate
step), that a dynamically optimal network exists (Theorem 15). It would be also void if we
did not prove that the synaptical equivalence classes of networks exist (Definition 9). The
synaptical equivalence classes of networks could not been defined if the inter-units graph
of the network did not existed (Definition 8). And these graph exists as an immediate
corollary of Proposition 7. So, Proposition 7 must be proved as an intermediate step for our
final purpose. Finally, the end of the proof of Main Theorem 16 argues by contradiction:
if the dynamically optimal network did not satisfy Dale’s Principle, then Proposition 13
would be false. So, we need first, also as an intermediate step, to prove Proposition 13.

On the other hand, to prove all the required intermediate results, we need some other
(previous) mathematical statements from which we deduce the intermediate results. So,
we start posing all the previous mathematical statements (obtaining them from the general
hypothesis of Section 2), in a series of mathematical definitions, comments and remarks
that are at the beginning of Sections 3, 4 and 5.

In Section 7, we end the proof of Main Theorem 17 stating that Dale’s Principle is
not sufficient for the dynamical optimization. Its final statement is proved by applying
directly some of the definitions, intermediate results and examples of Sections 3, 4 and 5
(in particular, those of Figures 1, 2 and 3).

Finally, in Section 8 we write the conclusions obtained from all the mathematical results
that are proved along the paper.

2 The hypothesis
(The model by a system of impulsive differential equations)

We assume a simplified (but very general) mathematical model of the neuronal network
which is defined along this section. The model, up to an abstract reformulation, and
a generalization that allows any finite dimension for the impulsive differential equation
governing each neuron, is taken from [11] and [13]. In the following subsections we describe
the mathematical assumptions of this model:

2.1 Model of an isolated neuron
Each neuron i, while it does not receive synaptical actions from the other cells of the
network, and while its membrane potential is lower than a (maximum) threshold level θi > 0,
and larger than a lower bound Li < 0, is assumed to be governed by a finite-dimensional
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differential equation of the form

dxi

dt
= fi(xi) if Li ≤ xi,1 < θi, (1)

where t is time, xi is a finite-dimensional vector (xi,1, . . . , xi,k) whose components are real
variables that describe the instantaneous state of the cell i, and fi : R

k 7→ R
k is a Lipschitz

continuous function giving the velocity vector dxi/dt of the changes in the state of the cell
i, as a function of its instantaneous vectorial value xi(t). The function fi is the so called
vector field in the phase space of the cell i. This space is assumed to be a finite dimensional
compact manifold. The advantages of considering that dim(xi) ≥ 1 (not necessarily 1) are,
among others, the possibility of showing dynamical bifurcations between different rythms
and oscillations that appear in some biological neurons [10], that would not appear if the
mathematical model of all the neurons were necessarily one-dimensional.

One of the components of the vectorial state variable xi (which with no loss of generality
we take as the first component xi,1) is the instantaneous membrane potential xi,1(t) = Vi(t)
of the cell i.

In the sequel, we denote xi(t
−
1 ) = lim

t→t−
1

xi(t) and xi(t
+
1 ) = lim

t→t+
1

xi(t).

In addition to the differential equation (1), it is assumed the following spiking con-
dition [9]: If there exists an instant t1 such that the potential Vi(t

−
1 ) = xi,1(t

−
1 ) equals

the threshold level θi, then xi,1(t
+
1 ) = 0. In brief, the following logic assertion holds, by

hypothesis:

xi,1(t
−
1 ) = θi ⇒ xi,1(t

+
i ) = 0. (2)

Here, 0 is the reset value. It is normalized to be zero after a change of variables, if necessary,
that refers the difference of membrane potential of the cell i to the reset value. A more
realistic model would consider a positive relatively short time-delay ∆t1 between the instant
t1 when the membrane potential arrives to the threshold level θi, and the instant t1 + ∆t1
for which the potential takes its reset value 0. During this short time-delay, the membrane
potential shows an abrupt pulse of large amplitude, which is called spike of the neuron i.
The impulsive simplified model approximates the spike to an abrupt discontinuity jump, by
taking the time-delay ∆t1 equal to zero. Then, the spike becomes an instantaneous jump
of the membrane potential xi,1(t) from the level θi 6= 0 to the reset value 0 which occurs at
t = t1 according to condition (2).

We denote by δθi
(xi,1) the Dirac delta supported on θi. Namely −

∫
t
θi dδθi(t)(xi,1) (via

the abstract integration theory with respect to the Dirac delta probability measure) denotes
a discontinuity step −θi that occurs on the potential xi,1(t) at each instant t = t1 such that
xi,1(t

−
1 ) = θi. In other words:

xi,1(t
+
1 ) − xi,1(t

−
1 ) = −θi,

and so
xi,1(t

+
1 ) = xi,1(t

−
1 ) − θi = θi − θi = 0.

After the above notation is adopted, the dynamics of each cell i (while isolated from the
other cells of the network) is modelled by the following “impulsive differential equation”:

dxi

dt
= Fi(xi), where
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Fi(xi) = fi(xi) − ~θiδθi
(xi,1). (3)

In the above equality ~θi = (θi, 0, . . . , 0) is the jump vector with dimension equal to the
dimension of the state variable xi. Namely, at each spiking instant, only the first component
xi,1 (the membrane potential) is abruptly reset, since the jump vector has all the other
components equal to zero.

Strictly talking, the equation (2.1) is not a differential equation, but the hybrid between
the differential equation dxi/dt = fi(xi) plus a rule, denoted by dxi/dt = −~θiδθi

(xi,1). This

impulsive rule imposes a discontinuity jump of amplitude vector −~θi in the dependence of
the state variable xi(t) on t. Therefore, xi(t) is not continuous, and thus it is not indeed
differentiable. It is in fact discontinuous at each instant t = t1 such that xi,1(t

−
1 ) = θi, i.e.

when the Dirac delta ∆θi
(xi,1) is not null.

Nevertheless, the theory of impulsive differential equations follows similar rules than
the theory of ordinary differential equations. It was early initiated by Milman and Myshkis
[14], cited in [15]. In particular, the existence and uniqueness of solution for each initial
condition, and theorems of stability, still hold for the impulsive differential equation (2.1),
as if it were an ordinary differential equation [14, 15].

2.2 Model of the synaptical interactions among the neurons

The synaptical interactions are modelled by the following rule: If the membrane potential
xi,1 of some neuron i arrives to (or exceeds) its threshold level θi at instant t1, then the

cell i sends an action ~∆i,j to the other neurons j 6= i. In particular ~∆i,j may be zero if no
synaptical connection exists from the cell i to the cell j. This action produces a discontinuity
jump in the membrane potential xj,1. We denote by ∆i,j the signed amplitude of the
discontinuity jump on the membrane potential xj,1(t) of the neuron j, which is produced
by the synaptical action from the neuron i, when i spikes. The real value ∆i,j may depend
on the instantaneous state xj of the receiving neuron j just before the synaptic action from
neuron i arrives. For simplicity we do not explicitly write this dependence. Thus, the
symbol ∆i,j denotes a real function of xj, which we assume to be either identically null or
with constant sign.

We denote by ~∆i,j = (∆i,j, 0, . . . , 0) the discontinuity jump vector, with dimension equal
to the dimension of the variable state xj of the cell j. In other words, the discontinuity jump
in the instantaneous vector state xj of the cell j, that is produced when the cell i spikes,
is null on all the components of xj except the first one xj,1, i.e. except on the membrane
potential of the neuron j. In formulae:

xi,1(t
−
1 ) = θi ⇒ xj,1(t

+
1 ) = xj,1(t

−
1 ) + ∆i,j

xj(t
+
1 ) = xj(t

−
1 ) + ~∆i,j. (4)

Thus, the dynamics of the whole neuronal network is modelled by the following system of

6



impulsive differential equations:

dx1

dt
= F1(x1) +

∑

i6=1

~∆i,1δθi
(xi,1),

dx2

dt
= F2(x1) +

∑

i6=2

~∆i,2δθi
(xi,1),

. . .
dxj

dt
= Fj(xj) +

∑

i6=j

~∆i,jδθi
(xi,1), (5)

. . .
dxN

dt
= FN (xN ) +

∑

i6=N

~∆i,Nδθi
(xi,1),

where N is the number of cells in the network.

Definition 1 (Excitatory, inhibitory and mixed neurons) The synapses from cell i
to j is called excitatory if ∆i,j > 0 and it is called inhibitory if ∆i,j < 0. If ∆i,j = 0 then
there does not exist synaptical action from the cell i to the cell j. A neuron i is called
excitatory (resp. inhibitory) if ∆i,j > 0 (resp. ∆i,j < 0) for all j such that ∆i,j 6= 0. The
cell i is called mixed if it is neither excitatory nor inhibitory. Dale’s Principle (which we do
not assume a priori to hold) states that no neuron is mixed.

Remark 2 It is not restrictive to assume that no cell i is indifferent, namely no cell i sends
null synaptical actions to all the other cells, i.e.

6 ∃ i ∈ {1, 2, . . . ,m} such that ∆i,j = 0 ∀j 6= i.
In fact, if there existed such a cell i, it would not send any action to the other cells of the
network N . So, the global dynamics of the network is not modified (except for having one
less variable) if we take out the cell i from N .
All along the paper we assume that the network N has at least 2 neurons and no neuron is
indifferent.

2.3 The refractory rule

To obtain a well defined deterministic dynamics from the system (5), other complementary
assumptions are adopted by the model. First, a refractory phenomenon (see for instance
[16, page 725]) is considered as follows: If some fixed neuron j spikes at instant t1, then
its potential xj,1 is reset to zero becoming indifferent to the synaptical actions that it may
receive (at the same instant t1) from the other neurons. Second, if for some fixed neuron j at
some instant t1, the sum

∑
i6=j max{0,∆i,j} of the excitatory actions that j simultaneously

receives from the other neurons of the network, is larger or equal than θj − xj,1(t
−
1 ), then j

itself spikes at instant t1, regardless whether xj,1(t
−
1 ) = θi or not. In this case, at instant

t1 the cell j sends synaptical actions ∆j,h to the other neurons h of the network, and then,
the respective potentials xh,1 will suffer a jump ∆j,h at instant t1. This process may make
new neurons h to spike in an avalanche process (see [13]). This avalanche is produced
instantaneously, when some excitatory neuron spontaneously arrived to its threshold level.
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But due to the refractory rule, once each neuron spikes, its membrane potential refracts all
the excitations or inhibitions that come at the same instant. So, the avalanche phenomenon
is produced instantaneously, but includes each neuron i at most once. Then, each interaction
term ~∆i,jδθi

(xi,1) in the sum at right of Equation (5) is added only once at each spiking
instant t1.

3 First step of the proof
(Graphs, parts and units)

The purpose of this section is to prove Proposition 7 and to state the existence of an “Inter-
units Graph” (Definition 8). These are intermediate results (the first step) of the proof of
Main Theorems 16 and 17. We will prove these intermediate results by logical deduction
from several previous statements and hypothesis. So, we start by including the needed
previous statements in the following series of mathematical definitions:

Let N be a network of N ≥ 2 neurons, according to the model defined in Section 2.

Definition 3 (The network’s graph) We call a directed and weighted graph G the graph
of the network N if the vertices of G are the cells i ∈ {1, 2, . . . , N} of N , each edge
ei,j, i 6= j of G, corresponds to each nonzero synaptical action from the cell i to the cell j
and conversely, and ei,j has weight ∆i,j 6= 0. (See the example of Figure 1.)
To unify the notation, we agree:
• N denotes either the network or its graph;
• i is either a cell of N or a node of the graph;
• ∆i,j denotes either the synaptical action from i to j, or the weight of the edge ei,j in the
graph, or this edge itself.

Definition 4 (Structurally identical cells) Two different cells i 6= j are structurally
identical if Fi = Fj in the respective differential equations (2.1), ∆i,j = ∆j,i = 0, and
∆h,i = ∆h,j for all h 6= i, j. These conditions imply that the dynamical systems that
governs neurons i and j are the same. So, their future dynamics may differ only because
their initial states xi(0) and xj(0) may be different. Note that, if i and j are structurally
identical, then by definition, the edges of the graph at the receiving nodes i and j (from any
other fixed sending node h) are respectively equally weighted by ∆h,i = ∆h,j. Nevertheless,
the edges from i and j, as sending nodes of the network, are not necessarily identically
weighted, i.e. ∆i,h may be different from ∆j,h.

In Figure 1 we represent a graphG with three mutually identical cells 1, 2 and 3, provided
that F1 = F2 = F3 in the equation (2.1) and ∆h,1 = ∆h,2 = ∆h,3 for h = 4, 5. Besides, the
graph G has two other nodes, which corresponds to the neurons 4 and 5. The cells 4 and 5
are not mutually identical because the synaptical actions that they receive from the other
cells are not equal.

The above definitions and the following ones are just mathematical tools, with no other
purpose than enabling us to prove Theorems 16 and 17. They are not aimed to explain
physiological or functional roles of subsets of real biological neurons in the brain or in the
nervous system. Nevertheless, it is rather surprizing that the following abstract mathe-
matical tools, which we include here just to prove Theorems 16 and 17, have indeed a
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Figure 1: The graph of a network N = {1, 2, 3, 4, 5}. The directed and weighted edges
correspond to the nonzero synaptical interactions ∆j,i among the neurons j 6= i.

resemblance with concepts or phenomena that are studied by Neuroscience. In particular,
the following Definitions 5 and 6 of homogeneous part and synaptical unit of a neuronal
network, are roughly analogous to the concepts of regions, subnetworks or groups of many
similar neurons, characterized by a certain structure and a collective physiological role. For
instance some subnetworks or layers of biological or artificial neurons are defined according
to the role of their synaptical interactions with other subnetworks or layers [17].

Definition 5 (Homogeneous Part) An homogeneous part of the neuronal network is a
maximal subset of cells of the network that are mutually pairwise identical (cf. Definition
4). As a particular case, we agree to say that an homogeneous part is composed by a single
neuron i when no other neuron is structurally identical to i. In Figure 1 we draw the graph
of a network composed by three homogeneous parts A,B and C. The homogeneous part
A is composed by the three identical neurons 1, 2 and 3, provided that F1 = F2 = F3 and
∆h,1 = ∆h,2 = ∆h,3 for h = 4, 5. The homogeneous parts B = {4} and C = {5} have a
single neuron each because ∆h,4 6= ∆h,5 for some h (for instance for h = 2).

Definition 6 Synaptical Unit A synaptical unit is a subset U ⊂ A of an homogeneous
part A of a neuronal network such that:
• For any neuron h 6∈ A there exists at most one neuron i ∈ U such that ∆i,h 6= 0.
• A is partitioned in a minimal number of sets U possessing the above property.

In particular, a synaptical unit may be composed by a single neuron. This occurs, for
instance, when for some neuron h 6∈ A and for any neuron i ∈ A the synaptical interaction
∆i,h from i to h is nonzero. In Figure 1 we draw the graph of a network composed by three
homogeneous parts A, B and C such that: A is composed by three identical neurons 1, 2
and 3, that form two synaptical units U1 := {1} and U2 = U3 := {2, 3}. In fact, the cells 1
and 2 can not belong to the same unit because there exist nonzero actions departing from
both of them to neuron 4. One can also form the two synaptical units of A by defining
U1 = U3 := {1, 3} and U2 := {2}. The homogeneous part B is composed by a single neuron
4, and thus, it is a singe synaptical unit U4 = {4} = B. Analogously C is composed by a
single neuron 5, and thus it is a single synaptical unit U5 := {5} = C. The total number
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of neurons of the network in Figure 1 is 5, the total number of synaptical units is 4, the
total number of homogeneous parts is 3, the total number of nonzero synaptical interactions
among the neurons is 9, but the total number of synaptical interactions among different
homogeneous parts is only 5 (see Figure 2).

When a synaptical unit U has more neurons, the following quotient QU diminishes: QU

is the number of synaptical connections departing from the cells of U divided by the total
number of neurons of U . In fact, by Definition 6, for each synaptical unit U there exists at
most one nonzero synaptical action to any other fixed neuron h of the network, regardless
how many cells compose U . So, if we enlarge the number of cells in U , the number of nonzero
synaptical actions departing from the cells of U remains constant. Thus, the quotient QU

diminishes. Although this quotient QU becomes smaller when the number of neurons of the
synaptical unit U enlarges, in Theorem 15 we will rigourously prove the following result:

The dynamical system governing a neuronal network N with the maximum number of
neurons in each of its synaptical units, is the richest one, i.e. N will exhibit the largest set
of different orbits in the future, and so it will be theoretically capable to perform the most
diverse set of processes.

The following result proves that any neuronal network, according to the mathematical
model of Section 2, is decomposed as the union of at least two homogeneous parts, and
each of these parts is decomposed into pairwise disjoint synaptical units. It also states the
existence of an upper bound for the number of neurons that any synaptical unit can have.

Proposition 7 (Intermediate result in the proof of Main Theorems 16 and 17)
Let N be any network according to the mathematical model defined in Section 2. Then:

(i) The set of neurons of N is the union of exactly l ≥ 2 pairwise disjoint homogeneous
parts.
(ii) Each homogeneous part A is the union of a positive finite number of pairwise disjoint
synaptical units.
(iii) The total number of neurons of each synaptical unit is at least one and at most l− 1.
(iv) For each synaptical unit U and for each homogeneous part B there exists a unique real
number ∆U,B that satisfies the following properties:

∆U,B = 0 if and only if ∆i,h = 0 for all i ∈ U and for all h ∈ B. In particular ∆U,A = 0
if U ⊂ A.

∆U,B 6= 0 if and only if ∆i,h = ∆U,B for one and only one neuron i ∈ U and for all
h ∈ B, and ∆j,h = 0 for all h ∈ B and all j ∈ U such that j 6= i.

Proof: (i) We denote i ≡ j if the cells i and j are structurally identical according to
Definition 4. We add the rule i ≡ i for any cell i. Thus, ≡ is an equivalence relation. From
Definition 5 the ≡ classes of neurons are the homogeneous parts of the network.

Since the equivalence classes of any equivalence relation in any set determine a partition
of this set, then the network, as a set of neurons, is the union of its pairwise disjoint
homogeneous parts. Denote by l ≥ 1 the total number of different homogeneous parts that
compose the network. Let us prove that l ≥ 2. In fact, if l were equal to 1, then, by
Definition 4, ∆i,j = 0 for any pair of cells, contradicting the assumption that no cell is
indifferent (see the end of Remark 2). We have proved Assertion (i).
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(ii) Fix an homogeneous part A, and fix some neuron i ∈ A. Consider the set of neurons
Si := {h : ∆i,h 6= 0}. The set Si is nonempty because the cell i is not indifferent (see
Remark 2). Choose and fix a neuron h ∈ Si. We discuss two cases: either h ∈ Sj for all
j ∈ A, or the set {j ∈ A : h 6∈ Sj} is nonempty.

In the first case, for each neuron j ∈ A the singleton {j} (formed by the single element
j), satisfies Definition 6. Thus, {j} is a synaptical unit for all j ∈ A and assertion (ii) is
proved.

In the second case, consider the set A′ := {i}
⋃
{j ∈ A : h 6∈ Sj} ⊃6= {i}. Consider also

(if they exist) all the singletons {j} where j ∈ A is such that h ∈ Sj. These latter sets {j}
satisfy Definition 6 and, thus, they are pairwise disjoint synaptical units, which are also
disjoint with A′. Besides, their union with A′ compose A. So, it is now enough to prove
that A′ is also the union of pairwise disjoint synaptical units.

Now, we choose and fix a neuron i′ ∈ A′ such that i′ 6= i. (Such a neuron exists because
A′ 6= {i}). By construction of the set A′, we have h 6∈ Si′ . But, since the neuron i′ is not
indifferent, there exists h′ ∈ Si′ . So, we can repeat the above argument putting i′ in the
role of i, h′ in the role of h, and A′ in the role of A.

Since the number of neurons is finite, after a finite number of steps (repeating the above
argument at each step), we obtain a decomposition of A into a finite number of pairwise
disjoint sets that are synaptical units, ending the proof of Assertion (ii).
(iii) Let U be a synaptical unit. By Definition 6, U ⊂ A where A is an homogeneous part
of the set of neurons. By Assertion (i) there are exactly l− 1 ≥ 1 other homogeneous parts
B 6= A. From Definitions 4 and 5, for any fixed i ∈ U : ∆i,h = ∆i,h′ for all h, h′ ∈ B. So,
for each B we denote

∆i,B := ∆i,h ∀ h =∈ B.

Since any neuron i ∈ U ⊂ A is not indifferent, there exists at least one homogeneous part
B 6= A such that ∆i,B 6= 0. Besides, applying Definition 6, for each homogeneous part
B 6= A, there exists at most one neuron i ∈ U such that ∆i,B 6= 0. The last two assertions
imply that there is a one-to-one correspondence (which is not necessarily surjective) from
the set of neurons in U to the set of homogeneous parts that are different from A. Then,
the number of neurons in U is not larger than the number of existing homogeneous parts
B 6= A, i.e. it is not larger than l − 1. We have proved Assertion (iii).
(iv) Fix an arbitrary synaptical unit U ⊂ A (where A is the homogeneous part that contains
U) and an arbitrary homogeneous part B (in particular, B may be A). As in the above
proof of Assertion (iii), for each neuron i ∈ U it is defined ∆i,B such that ∆i,h = ∆i,B

for all h ∈ B. By Definition 6, either ∆i,B = 0 for all i ∈ U , or ∆i,B 6= 0 for one and
only one cell i ∈ U . In the first case we define ∆U,B = 0 and in the second case we define
∆U,B = ∆i,B. By construction, Assertion (iv) holds: in particular, from Definitions 4 and
5, we have ∆i,h = 0 for all i ∈ U ⊂ A and for all h ∈ A. So, ∆U,A = 0 if U ⊂ A. �

Definition 8 (Inter-units graph - Intermediate result in the proof of Theorems
16 and 17) As a consequence of Proposition 7 the graph of a neuronal network N can be
represented by a simpler one, which we call the inter-units graph. This is, by definition, the
graph whose nodes are not the cells but the synaptical units. Each directed and weighted
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edge in the inter-units graph, links a synaptical unit U ⊂ A with the synaptical unit V ⊂ B
(A 6= B). It is weighted by the synaptical action ∆U,B 6= 0. For instance, the network N of
Figure 1 is represented by the inter-units graph of Figure 2.

Figure 2: The inter-units graph of the network N = {1, 2, 3, 4, 5} of Figure 1. It is composed
by three homogeneous parts A, B and C. The part A is composed by two synaptical units
U1 = {1, 3} and U2 = {2}, the part B is the single unit U4 = {4} and the part C is the
single unit U5 = {5}.

Interpretation: The inter-units graph of a neuronal network, according to Definition 8,
recovers the essential “anatomy” of the spatial distribution of the synaptical connections of
the network, among groups of mutually identical cells (the so called synaptical units). This
description, by means of the inter-units graph, recalls experimental studies on the synaptical
activity of some neuronal subnetworks of the brain. For instance, in [17], Meǵıas et al. study
the spatial distribution of inhibitory and excitatory synapses inside the hippocampus.

Each synaptical unit acts, in the inter-units graph, as if it were a single neuron. The
spatial statical structure of groups of synaptical connections is the only observed object
by this graph. Besides, the inter-units graph does not change if the number of neurons
composing each of the many synaptical units, change. In the following section, we will
condition the study of the networks to those that have mutually isomorphic inter-units
graphs, i.e. they have the same statical structure of synaptical connections among groups
of identical cells.

In Section 5, we will look on the dynamical responses of the network that have the same
(statical) inter-units graph of synaptical connections. Any change in the number of neurons
will change the space of possible initial states, and so the space of possible orbits and the
global dynamics. So, among all the networks that have isomorphic inter-units graphs, the
network with more neurons should, a priori, exhibit a larger diversity of theoretic possible
dynamical responses to external stimulus.

For instance, two identical neurons 1 and 2 in a synaptical unit U define a space of
initial states (and so of orbits) that is composed by all the pairs (x1(0), x2(0)) of vectors
in the phase space of each neuron. But three identical neurons 1, 2 and 3 in U , define a
space of initial states composed by all the triples (x1(0), x2(0), x3(0)) of vectors. So, the
diversity of orbits that a neuronal network can exhibit, enlarges if the number of neurons
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of each synaptical unit enlarges. In Section 5, we will study the theoretical optimum in
the dynamical response of a family of networks that are synaptical equivalent. We will
prove that this optimum exists and that it is achieved when the network has the maximum
number of cells (Theorem 15).

4 Second step of the proof
(Synaptical equivalence between networks)

The purpose of this section is to prove the existence of an equivalence relation (Definition
9) in the space of all the neuronal networks modelled by the mathematical hypothesis of
Section 2. This is the intermediate result in the second step of the proof of Main Theorems
16 and 17. We will deduce this intermediate result from the previous ones obtained in
Section 3.

Let N and N ′ be two neuronal networks according to the model defined in Section 2.
Denote:
N and N ′ the numbers of neurons of N and N ′ respectively,
i and i′ a (general) neuron of N and N ′ respectively,
l and l′ the respective numbers of homogeneous parts of N and N ′, according to Definition
5.
s and s′ the respective numbers of synaptical units according to Definition 6.
B and B′ a (general) homogeneous part of N and N ′ respectively.
U and U ′ a (general) synaptical unit of N and N ′ respectively.
∆U,B, ∆U ′,B′ the synaptical weights, according to part (iv) of Proposition 7, of N and N ′

respectively.

Definition 9 (Synaptically equivalent networks - Intermediate result in the proof
of Main Theorems 16 and 17)
We say that N and N ′ are synaptically equivalent if:
• l = l′, s = s′, according to the above notation.
• There exists a one-to-one and surjective correspondence ϕ from the set of synaptical units
U of N and the set of synaptical units U ′ = ϕ(U) of N ′ such that

∆U,B = ∆U ′,B′ ∀ (U,B),

where B′ = ϕ(B) is the homogeneous part of the network N ′ whose synaptical units are
the images by ϕ of the synaptical units that compose B.
• For any synaptical unit U of N

Fi = Fi′ ∀ i ∈ U, ∀ i′ ∈ U ′ = ϕ(U),

where Fi and Fi′ are the second terms of the impulsive differential equations (2.1) that
govern the dynamics of the neurons i and i′, respectively.

In other words, the networks N and N ′ are synaptically equivalent, if there exists an
isomorphism ϕ between their respective inter-units graphs such that all the neurons in the
unit U of the network N are structurally identical to all the neurons in the unit ϕ(U) of
the network N ′.

13



Figure 3: The graph of a network N ′ = {1, 2, 3, 4, 5, 6}. It is composed by three homoge-
neous parts A′, B′ and C ′. This network N ′ is synaptically equivalent to the network N of
Figure 1.

For example, let us consider the network N ′ of Figure 3. Assume that F1 = F2 = F3,
F5 = F6 in the respective impulsive differential equations (2.1). Also assume that ∆′

h,1 =
∆′

h,2 = ∆′
h,3 for h = 4, 5 and ∆′

3,5 = ∆′
3,6. Then, the network N ′ has 3 homogeneous parts

A′ = {1, 2, 3}, B′ = {4}, C ′ = {5, 6}. Analogously to the example of Figure 1, the part
A′ of the network N ′ is composed by two synaptical units U ′

1 = U ′
3 = {1, 3} and U ′

2 = {2},
and the part B′ is composed by a single synaptical unit U ′

4 = {4}. Finally, the part C ′ of
the network of Figure 3 is composed by a single synaptical unit U ′

5 = U ′
6 = {5, 6}.

Assume that the interactions ∆i,j and ∆′
i,j of the networks N and N ′ of Figures 1 and

3 respectively, satisfy the following properties:
∆i,j = ∆′

i,j for all i, j ∈ {1, 2, 3, 4} such that i 6= j,
∆5,j = ∆′

5,j for all j ∈ {1, 2, 3},
∆3,5 = ∆′

3,5 = ∆′
3,6,

∆5,4 = ∆′
6,4.

Then, the inter-units graph of Figure 2 also corresponds to the network N ′. So, the
networks N and N ′ of Figures 1 and 3 are synaptically equivalent.

We note that, for synaptically equivalent networks, the number of neurons, and also the
number of nonzero synaptical interactions, may vary. For instance, the networks of Figures
1 and 3 are synaptically equivalent, but their respective total numbers of of neurons and of
synaptical interactions are mutually different.
Comments: The equivalence relation between networks N and N ′, according to Defi-
nition 9, implies that both N and N ′ will have exactly the same dynamical response (i.e.
they will follow the same orbit), provided that, for any dynamical unit U of N , the initial
states of all the neurons in U are mutually equal and also equal to the initial states of
all the neurons in the dynamical unit U ′ = ϕ(U) of the other network. In fact, since the
impulsive differential equations (2.1) that govern the dynamics of all those neurons coincide,
and since the synaptical jumps that each of those neurons receive from the other neurons of
its respective network also coincide, their respective deterministic orbits in the future must
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coincide if the initial states are all the same.
Nevertheless, if not all those initial states are mutually equal, for instance if some exter-

nal signal changes the instantaneous states of some but not all the neurons in a synaptical
unit, then their respective orbits will differ, during at least some finite interval of time. In
this sense, each synaptical unit with more than one neuron, is a group of identical cells that
distributes the dynamical process among its cells, i.e. it has the capability of dynamically
distributing the information.

In brief, two synaptically equivalent networks have, as a common feature, the same
statical configuration or “anatomy” of the synaptical interactions between their units (i.e.
between groups of identical cells, equally synaptically connected). Then, both networks
would evolve equally, under the hypothetical assumption that all the initial states of the
neurons of their respective synaptical units coincided. But the two networks may exhibit
qualitatively different dynamical responses to external perturbations or signals, if these
signals make different the instantaneous states of different neurons in some synaptical unit.
Such a difference produces a diverse distribution of the dynamical response among the cells.

5 Third step of the proof
(Dynamically optimal networks)

The purpose of this section is to prove Proposition 13 and Theorem 15. These are inter-
mediate results (the third step) of the proof of Main Theorems 16 and 17. We will prove
these intermediate results by logical deduction from several previous statements and hy-
pothesis. So, we start by including the needed previous statements in the following series
of mathematical definitions, remarks and notation agreements:

We condition the study to the networks of any fixed single class, which we denote by C,
of synaptically equivalent networks according to Definition 9. In this section we search for
networks exhibiting an optimum dynamics conditioned to C.
Notation:

We consider the mathematical model of a general neuronal network N ∈ C, given by
the system (5) of impulsive differential equations. We denote by

X(t) = (x1(t), x2(t), . . . , xN (t))

the instantaneous state of the network N at instant t, whereN ≥ 2 is the number of neurons
of the network, and xi ∈Mi is the instantaneous state of the neuron i ∈ {1, 2, . . . , N}. Since
by hypothesis xi evolves on a finite-dimensional compact manifold Mi, the state X of the
network evolves on the finite-dimensional compact product manifold M , defined by the
following equality:

M := M1 ×M2 × . . .×MN .

In other words, M is the cartessian product of the manifolds {Mi}1≤i≤N . Then

dim(M) =

N∑

i=1

dim(Mi) (6)

Definition 10 (Dynamics of the network) Consider any initial state

X0 = X(0) = (x1(0), x2(0), . . . , xN (0)) ∈M

of the network N , i.e. xi(0) ∈Mi is the state of the neuron i at the instant t = 0.
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The solution X(t), t ≥ 0 of the system (5) of impulsive differential equations that govern
the dynamics of N , exists and is unique, provided that the initial condition X(0) = X0 ∈M
is given (see for instance [14], cited in [15]). We denote:

Φ(X0, t) := X(t) such that X(0) = X0,

and call Φ the (deterministic) dynamical system (or, in brief, the dynamics) associated to
the network N . It is an autonomous deterministic dynamical system.

For any autonomous deterministic dynamical system (also if it were not modelled by
differential equations), we have the following properties:

Φ(X0, 0) = X0,

Φ(Φ(X0, t), s) = Φ(X0, t+ s)

∀ X0 ∈M, ∀ t, s ≥ 0.

So, for any fixed instant T > 0 the state Φ(X0, T ) plays the role of a new “initial” state,
from which the orbit {Φ(Φ(X0, T ), s)}s≥0 evolves for time s ≥ 0. This orbit coincides with
the piece of orbit {Φ(X0, T + s)}T+s≥T (for time ≥ T ) that had the initial state X0.

Definition 11 (Partial Order in C)
Let N and N ′ be two networks in C and denote by Φ and Φ′ the dynamics of N and

N ′ respectively. Denote by M and M ′ the compact manifolds where Φ and Φ′ respectively
evolve.

We say that N is dynamically richer than N ′, and write

N ′ ⊑ N ,

if there exists a continuous and one-to-one (non necessarily surjective) mapping

ψ : M ′ 7→M

such that
ψ(Φ′(X ′

0, t)) = Φ(ψ(X ′
0), t) ∀ t ≥ 0, (7)

for any initial state X ′
0 ∈M ′.

In other words, N ′ ⊑ N if and only if the dynamical system Φ′ of N ′ is a subsystem of
the dynamical system Φ of N , up to the continuous change ψ of the state variables.

From Definition 11 it is immediately deduced the following assertion:
N ′ ⊑ N and N ⊑ N ′ if and only if their respective dynamical systems Φ′ and Φ are

topologically conjugated.
This means that the dynamics of N and N ′ are “the same topological dynamical sys-

tem,” up to an homeomorphic change in their variables which is called a conjugacy. So, we
deduce:

“⊑” is a partial order in the class C of synaptically equivalent networks up to conjugacies.
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As an example, assume that the numbers N and N ′ of neurons of N and N ′ satisfy
N = 2N ′. Then X0 = (x1(0), x2(0), . . . , x2N ′(0)), X ′

0 = (x′1(0), x
′
2(0), . . . , x

′
N ′(0)). Define

the function ψ by:
ψ(X ′

0) = ψ(x′1, x
′
2, . . . , x

′
N ′) =

= (x′1, x
′
1, x

′
2, x

′
2, . . . , x

′
N ′ , x′N ′) = X0.

If this function ψ satisfies Equality (7), then each orbit {Φ′(X ′
0, t)}t≥0 of the dynamical

system of N ′, is identified with one orbit Φ(X0, t) of the dynamics of N . Along this orbit
Φ(X0, t), each two consecutive identical neurons have the same initial states, and thus also
have coincident instantaneous states for all t ≥ 0. Nevertheless, the whole dynamics Φ of
the network N also includes many other different orbits, which are obtained if the initial
states of some pair of consecutive identical neurons of N are mutually different.

Remark 12 From Definition 11, since ψ : M ′ 7→ M is continuous and one-to-one, we
deduce that the image ψ(M ′) is a submanifold of M which is homeomorphic to M ′. This is
a direct application of the “Domain Invariance Theorem” (see for instance [18]). Therefore:

dim(ψ(M ′)) = dim(M ′).

Besides, ψ(M ′) ⊂M . So, M contains the submanifold ψ(M ′) that has the same dimension
than M ′. We deduce the following statement:

N ′ ⊑ N ⇒ dim(M ′) ≤ dim(M). (8)

In extensum:
If the dynamics of N is richer than the dynamics of N ′, then the dimension of the

manifold M where the dynamics of N evolves, is larger or equal than the dimension of the
manifold M ′ where the dynamics of N ′ evolves.

From the above remark we deduce the following result:

Proposition 13 (Intermediate result in the proof of Main Theorems 16 and 17)
If N and N ′ are synaptically equivalent and if N ′ ⊑ N , then the number of neurons of

N is larger or equal than the number of neurons of N ′.

Proof: Both networks are synaptically equivalent; so, each neuron i of N is structurally
identical to some neuron (which we still call i) of N ′. This implies that the finite dimension
of the variable xi ∈Mi in the network N is equal to the finite dimension of the corresponding
variable x′i ∈M

′
i in the network N ′. Thus,

dim(Mi) = dim(Mi). (9)

After Equality (6) applied to the networks N and N ′ respectively, we obtain:

dim(M) =
N∑

i=1

dim(Mi), (10)

dim(M ′) =

N ′∑

i=1

dim(M ′
i), (11)

where N and N ′ are the number of neurons of N and N ′ respectively. From Inequality (8)
we have:

17



dim(M ′) ≤ dim(M),

Finally, substituting (10) and (11), we obtain:
N ′∑

i=1

dim(M ′
i) ≤

N∑

i=1

dim(Mi),

and joining with (9) we conclude N ′ ≤ N , as wanted.
�

Definition 14 (Dynamically optimal networks) We say that a network N ∈ C is a
dynamical optimum conditioned to the synaptical equivalence class C (i.e. within the class
C) if N ′ ⊑ N for all N ′ ∈ C.

Theorem 15 (Existence of the dynamical optimum
-Intermediate result in the proof of Main Theorems 16 and 17)

For any class C of synaptically equivalent neuronal networks there exists a dynamical
optimum network conditioned to C. This optimal network has the maximum number of cells
among all the networks of the class C.

Proof: The class C of synaptically equivalent networks is characterized by the numbers l
and s of homogeneous parts and synaptical units respectively, and by the real values ∆U,B

of the synaptical connections between the dynamical units U and the homogeneous classes
B 6⊃ U .

For each dynamical unit U , we denote by lU ≤ l− 1 the number of homogeneous classes
B 6⊃ U such that ∆U,B 6= 0. Thus, lU ≥ 1 because each cell i ∈ U is not indifferent, and
so, there exists at least one nonzero synaptical action departing from i. (Recall that by
Definitions 4 5, the nonzero synaptical actions only exist between cells belonging to different
homogeneous parts.)

Construct a network N as follows:
First, compose each dynamical unit U with exactly lU cells. Then, there exists a surjec-

tive one-to-one correspondence ΛU between the set of cells i ∈ U and the set of homogeneous
parts B 6⊃ U satisfying ∆U,B 6= 0.

Second, define the synaptical connections departing from each cell i of each dynamical
unit U , by the following equalities:

∆i,j := ∆U,B 6= 0 ∀ j ∈ B if B = ΛU (i), (12)

∆i,j := ∆U,B = 0 ∀ j ∈ B if B 6= ΛU (i). (13)

We will prove that the network N such constructed is dynamically optimal within the class
C:

Fix any network N ′ ∈ C. Consider the dynamical systems Φ and Φ′ corresponding to
the networks N and N ′ respectively. Denote by M and M ′ the compact manifolds where Φ
and Φ′ respectively evolve. According to Definition 11, to prove that N ′ ⊑ N it is enough
to construct a continuous one-to-one mapping ψ : M ′ 7→M satisfying Equality (7).
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Let X ′
0 ∈M ′. For any cell i′ ∈ N ′, the initial state x′i′(0) is a component of X ′

0. Let us
define X0 = ψ(X ′

0) ∈ M satisfying Equality (7). To do so, we must define the initial state
xi(0) of any cell i of the network N .

So, fix i ∈ N . Denote by U the synaptical unit to which i belongs, and denote by
B = ΛU (i) the unique homogeneous class of the network N satisfying (12). We denote

∆i,B := ∆i,j = ∆U,B 6= 0 ∀ j ∈ B, (14)

where i ∈ U and B = ΛU (i).
Since N ′ is synaptical equivalent to N (because both networks N and N ′ belong to the

same class C), we apply Definition 9 to deduce the following equalities:

∆U ′,B′ = ∆U,B = ∆i,B 6= 0,

where U ′ = ϕ(U), B′ = ϕ(B). (15)

From Definition 6, there exists a unique cell i′ ∈ U ′ such that

∆i′,B′ = ∆U,B′ 6= 0. (16)

Summarizing, for any fixed neuron i ∈ U ⊂ N we have constructed a unique cell i′ ∈
U ′ = ϕ(U) ⊂ N ′ such that Equalities (14), (5) and (16) hold. In other words, we have
constructed a mapping Π : i′ = Π(i), defined from the synaptical equivalence between the
networks N and N ′, such that:

∆Π(i),ϕ(B) = ∆i,B 6= 0 ∀ i ∈ N , (17)

where B = ΛU (i) is the unique homogeneous class in N satisfying (12).
Assertion A: The mapping Π transforms each cell i of the network N into the cell i′ = Π(i)
in the network N ′, which is structurally identical to i.

In fact, assertion A follows from the fact that N and N ′ are synaptically equivalent (cf.
Definition 9) and from Equality (17).

Let us prove that Π is surjective. In fact, for each i′ ∈ N ′, there exists at least one
homogeneous part B′ such that ∆i′,B′ 6= 0, because i′ is not indifferent. By Definition 9,
B′ = ϕ(B) where ϕ is a one-to-one and surjective transformation between the homogeneous
parts of N and N ′. Therefore, there exists a unique homogeneous part B of N such that
∆i′,B′ = ∆U,B 6= 0, where B = ϕ−1(B′), U = ϕ−1(U ′) and i′ ∈ U ′. By construction of the
network N , if ∆U,B 6= 0, then there exists a unique i ∈ U such that ∆U,B = ∆i,B. Then, we
deduce that ∆i′,ϕ(B) = ∆i,B 6= 0. Joining with (17), and recalling that for each synaptical
unit U ′ there exists at most one cell i′ ∈ U ′ such that ∆i′,B′ 6= 0, we deduce i′ = Π(i). This
proves that Π is surjective.

We define the initial state xi(0) of the cell i ∈ N by

xi(0) := xΠ(i)(0),

and the mapping ψ : M ′ 7→M by

ψ(X ′
0) = X0 such that
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xi(0) = x′Π(i)(0) ∀ i ∈ N . (18)

The mapping ψ is continuous because the components xi(0) of ψ(X ′
0) are components x′i(0)

of X ′
0. Thus, small increments in the components x′i′(0) of X ′

0 imply small increments in
the components xi(0) of X0 = ψ(X ′

0). Besides, the mapping ψ is one-to-one (but non
necessarily surjective). In fact, if X ′

0 6= Y ′
0 then, at least one component x′i′(0) of X ′

0 differs
from the respective component y′i′(0) of Y ′

0 . Since Π is surjective, there exists i such that
i′ = Π(i). So, applying Equality (5) we obtain xi(0) 6= yi(0), where yi(0) = y′Π(i)(0). Thus

ψ(X ′
0) 6= ψ(Y ′

0) proving that ψ is one-to-one.
To end the proof of the first part of Theorem 15, it is now enough to check that the

mapping ψ satisfies Equality (7):
From Equality (5) and from the surjectiveness of Π, for each initial state X ′

0 of the
network N ′, and for each neuron i′ ∈ N ′, the corresponding set of neurons i ∈ Π−1(i′) ⊂ N
have initial states xi(0) which equal x′i′(0). Besides, from Assertion A, i ∈ Π−1(i′) and
i′ are structurally identical. Now, we consider Equalities (14), (5) and (17), applied to
any neuron j ∈ N and j′ = Π(j) ∈ N ′, in the respective roles of i and i′ = Π(i). We
deduce that the synaptical interaction jumps ∆j′,i′ that i′ receives from any other neuron
j′ ∈ N ′ coincides with the synaptical interaction jumps ∆j,i that i ∈ Π−1(i′) receives from
j ∈ Π−1(j′) in the network N . Therefore, both i′ and Π−1(i′) satisfy the same impulsive
differential equation (5). Besides, their respective initial conditions x′i′(0) and xΠ−1(i′)(0)
coincide, due to Equality (5). Since the solution of the impulsive differential equation (5)
that satisfies a specified initial condition is unique, we deduce the following statement:

For any instant t ≥ 0 the state xi′(t) coincides with the instantaneous state xi(t), where
i ∈ Π−1(i′).

Recalling Definition 10 of the dynamics Φ and Φ′ of the networks N and N ′ respectively,
we deduce:

X(t) = (. . . , xi(t), . . .) =: Φ(X(0), t),

X ′(t) = (. . . , x′Π(i)(t), . . .) =: Φ′(X ′(0), t).

Applying again Equality (5), which defines the mapping ψ for each fixed instant t ≥ 0 as
the new initial state, we conclude

Φ(ψ(X ′
0), t) = ψ(Φ′(X ′

0), t),

proving Equality (7), as wanted.
We have proved that N ′ ⊑ N for all N ′ ∈ C. Thus, in each synaptical equivalence class

C there exists a network N that is the dynamical optimum conditioned to C.
Now, let us prove the second part of Theorem 15. We have to show that the number

N of neurons in N is the maximum number of neurons of all the networks in the class C.
In fact, since N ′ ⊑ N , after Proposition 13 we get N ′ ≤ N , where N ′ is the number of
neurons of N ′, for all N ′ ∈ C. �

6 End of the proof of Dale’s Principle
Let ℵ be the set of all the neuronal networks according to the mathematical model defined
in Section 2. Let C ⊂ ℵ be a fixed class of synaptically equivalent networks. The purpose
of this section is to end the proof of the following Main Theorem of the paper:
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Theorem 16 (Dale’s Principle is necessary for the dynamical optimization)
If N is the dynamical optimum network conditioned to C, then all the neurons of N

satisfy Dale’s Principle.
Namely, any neuron of N is either inhibitory or excitatory.

End of the proof of Theorem 16: Let N be the dynamical optimum among the networks in
C. Therefore,

N ′ ⊑ N ∀ N ′ ∈ C.

Thus, applying Proposition 13, the numbers N and N ′ of neurons in N and N ′ respectively,
satisfy

N ′ ≤ N. (19)

Denote by ∆j,h the synaptical action from the neuron j to the neuron h 6= j in N , for any
j ∈ {1, . . . , N}. Assume by contradiction that there exists a neuron i ∈ N which
is mixed, according to Definition 1. Let us fix such a value of i. Now, we construct a new
network N ′ ∈ C as follows:

First, include in N ′ all the neurons j ∈ N , in particular j = i. Define in N ′ the
synaptical interactions ∆′

j,h as follows:

∆′
j,h := ∆j,h ∀ h 6= j if j 6= i.

∆′
i,h := max{0,∆i,h} ∀ h 6= i.

Second, add one more neuron in N ′, say the N + 1-th. neuron, which we make, by
construction, structurally identical to the i−th. neuron. Define

∆′
N+1,h := min{∆i,h, 0}

∀ h ∈ {1, 2, . . . , N} such that h 6= i,

∆′
N+1,i′ := 0, ∆i′,N+1 := 0.

The new neuron N + 1 is not indifferent in the network N ′ because i is mixed in N . (So,
there exists h 6= i such that ∆i,h < 0.)

It is immediate to check that N ′ is synaptically equivalent to N . In fact, all the neurons,
except the added one N + 1-th. cell in N ′, are respectively structurally identical in the
networks N and N ′. Besides, all the synaptical interactions, except those that depart from
i and N+1, are the same in both networks. Finally, also the nonzero synaptical interactions
that depart from i in the network N , are equal, either to the synaptical interactions that
depart from i in N ′ (if positive), or to those that depart from the new neuron N + 1 in
N ′ (if negative). So, N ′ is synaptically equivalent to N . In other words, N ′ ∈ C. To end
the proof, we note that the number N ′ of neurons of N ′ is N ′ = N + 1 > N , contradicting
Inequality (19). �
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7 Counter example
The purpose of this section is to exhibit a counter-example that shows that the converse of
Main Theorem 16 is false (Theorem 17).

Theorem 17 is the second Main Theorem of the paper. Its proof is deduced from the
intermediate results that were previously obtained along the paper, and is ended by showing
the explicit counter-example from Figures 1, 2 and 3.

Theorem 17 (Dale’s Principle is not sufficient for the dynamical optimization)
There exist neuronal networks according to the mathematical model of Section 2 that

satisfy Dale’s Principle and are not dynamically optimal conditioned to their respective
synaptical equivalence classes.

End of the proof of Theorem 17: We will show an explicit example of a dynamical suboptimal
network N within a synaptical equivalence class C, such that N satisfies Dale’s Principle.
We will exhibit such an example with N = 5 neurons, but it can be repeated (after obvious
adaptations) with any arbitrarily chosen number N ≥ 3.

Consider the network N of Figure 1. Assume, for instance, the following signs for the
nonzero synaptical interactions:
∆4,i > 0 for i = 1, 2, 3,
∆5,i < 0 for i = 1, 2, 3, 4,
∆1,4 < 0, ∆2,4 > 0, ∆3,5 < 0.

Then, the neurons 2 and 4 are excitatory and the neurons 1, 3 and 5 are inhibitory.
Thus, all the neurons of the network N satisfy Dale’s Principle.

As shown in Section 4, the network N ′ of Figure 3 is synaptically equivalent to the
network N of Figure 1. In other words, both networks N and N ′ belong to the same equiv-
alence class C. Since N ′ has exactly 6 neurons and N has 5 neurons, applying Proposition
13 we deduce that N ′ 6⊑ N . Thus N is not the optimal network of its class C. �

8 Final Comments
In Section 2 we posed the mathematical simplified (but general) model of biological neuronal
networks, by a system (5) of deterministic impulsive differential equations. In its essence,
this model was taken from [11] (some particular conditions of the model were also taken
from [9, 8, 12, 13, 10] and from the bibliography therein).

On the one hand, the mathematical model is an idealized simplification of the network,
because the spiking of each neuron is reduced to an instantaneous reset, without delay, of
its membrane potential. Also the synaptical actions are assumed to be instantaneous and
have no delay.

On the other hand, the abstract mathematical model is general, since we require neither
particular formulae, nor numerical specification, nor computational algorithms for the func-
tions fi, F1 and ∆i,j of Equations (1), (2.1) and (5), nor specific values for the parameters.

In Section 3 we defined the homogeneous parts of the network, composed by mutually
identical cells. The groups of neurons, which we call “synaptical units”, are formed by
structurally identical and synaptically representative neurons. In Proposition 7 we proved
that any neuronal network, according to the mathematical model described in Section 2,
is decomposable in more than one homogeneous part, and that each homogeneous part is
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decomposable into pairwise disjoint dynamical units. Then, a simplified graph, which we
called “inter-units graph” mathematically represents the statical structure of the synaptical
connections among the groups of neurons in the network. This theoretical approach have
rough similitudes with empirical research in Neuroscience [17], for which the structure of
synaptical connections among groups of neurons or regions in the brain is studied, regardless
how many neurons exactly compose each region.

In Section 4 we conditioned the study to a fixed family of networks that are mutually
synaptically equivalent. We denote this family by C, and call it a class. Even if this condition
may appear as a restriction, it is not. In fact, first, any neuronal network (provided that
it is mathematically modelled by the equations of Section 2), belongs to one such a class
C. Second, all the results that we proved along the paper stand for any arbitrarily chosen
class C of synpatically equivalent networks.

Each class C of synaptically equivalent networks gives a particular specification for the
number of synaptical units and for the inter-units graph. This specification implies a par-
ticular statical “anatomy” in the synaptical structure of the network, described by the
different groups of mutually identical neurons (and not by the neurons themselves). Each
group of neurons is a synaptical unit that has a characteristic functional role in the complex
synaptical structure of the network.

Roughly speaking, a class C of mutually synaptically equivalent neuronal networks works
as an abstraction of the following analogous example: When a Neuroscientist studies the
nervous system of certain species of animals, he is investigating a class of neuronal networks
composed by a relatively large amount of particular cases that are indeed different networks
(one particular case for each individual of the same species). But all the neuronal networks in
that class share a certain structure, which is given, for instance, by the genetic neurological
characteristics of the species. Some type of synaptical connections between particular groups
of neurons with specific physiological roles, is shared by all the healthy individuals of the
species. However, the exact number of neurons, and the exact number and weight of
synaptical connections between particular neurons, may vary from one individual to another
of the same species, or from an early age to a mature age of the same individual.

In Section 5 we studied the abstract dynamical system of any neuronal network defined
by the mathematical model of Section 2, and conditioned to a certain fixed class C of
mutually synaptically equivalent networks. In Theorem 15 we proved that (theoretically) a
dynamically optimal network exists in each class C.

The proof of Theorem 15 is constructive: first, we defined a particular network N ∈ C,
and second, we proved that N is the richest network of its class. This means that N would
potentially exhibit the most diverse set of dynamical responses (orbits in the future) when
external signals change the instantaneous state of some of its neurons.

Since the system is assumed to be deterministic, any network according to this model
will reproduce a unique response if the same instantaneous state occurs for all its neurons.
So, the space of responses is represented by the space of instantaneous states (or initial
states, if time T is translated to become 0). Nevertheless, this space may change from
one network to another of the same synaptical equivalence class C. If we assumed that the
“natural pursued aim” in the development of a biological neuronal network were to optimize
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the space of dynamical responses under stimulus, preserving the same characteristic and
functional structure between groups of cells, then, theoretically, the final (but maybe never
arrived) network would be N , constructed in the proof of Theorem 15.

In Section 6 we proved Theorem 16, which is one of the main results of the paper. It
states that the dynamically optimal network N in the class C must satisfy Dale’s Principle
(i.e. all its neurons are either excitatory or inhibitory but not mixed). So, if the natural
pursued aim in the development of the neuronal network were to optimize the space of
possible dynamical responses, then the tendency of the network during its plastic phases
will provoke that as many neurons as possible satisfy Dale’s Principle. From this point of
view, Theorem 16 shows that Dale’s Principle is a consequence of an optimization process.
So, it gives a mathematically possible answer to the following epistemological question:

Why does Dale’s Principle hold for most neurons of most biological neuronal networks?
Mathematical answer: Because maybe biological networks evolve pursuing the theoreti-

cal optimum or richest dynamics, conditioned to preserve the synaptical connections among
its different homogeneous groups of neurons.

Finally, in Theorem 17 we proved that Dale’s Principle is not enough for the neuronal
network be a dynamical optimum within its synaptically equivalence class. In other words,
Dale’s Principle would be just a stage of a plastic optimization process of the neuronal
network, but its validity does not ensure that the end of that hypothetical process of opti-
mization has been arrived.
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