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ESTE NUMERO

En noviembre de 1991, la Universidad de la Republica Oriental del
Uruguay otorgé el titulo de Doctor Honoris Causa a José Luis Massera. La
ceremonia tuvo lugar en un Paraninfo desbordante, de publico y emocién.
Este numero de las "PMU" recoge dos de los discursos pronunciados en esa
oportunidad, el del Profesor Jacob Palis y el del propio Massera. Mas
adelante publicaremos trabajos que fueron presentados en el coloquio
cientifico que por tal motivo tuvo lugar. Nos asociamos asi al homenaje a un
colega y maestro del cual, como matematicos y como uruguayos, nos sentimos
orgullosos.
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DISCURSO DE JOSE LUIS MASSERA

Sefior Ministro de Educacién y Cultura, Dr. Guillermo Garcia
Costa;

Sefior Rector de la Universidad, Ing. Quim. Jorge Brovetto;

Sefiores miembros del Consejo Directivo Central y de los Con-
sejos de las diversas Facultades, particularmente de Ingenieria,
de Ciencias, y de Humanidades y Ciencias de la Educaciédn;

Colegas matemdticos, uruguayos y extranjeros, gue han acepta-
do la invitacién de concurrir a este evento, algunos de ellos
teniendo que viajar desde Europa y los Estados Unidos, entre los
cuales se encuentran cientificos de muy alto nivel internacional;

Querido amigo Misha Cotlar, gque naturalmente integra el
elenco precedente, pero que se distingue de los demas por el hecho
de que formbé parte, hace mis de 50 afios, junto con Rafael Laguar-
dia, conmigo y unos pocos mids, de ese pequefio grupo de jévenes en-
tusiastas, bésicamente autodidactas, que desafiando dificultades
de todo orden, incluso las que derivaban de la falta de una forma-
cidén académica suficiente, nos lanzamos con decisidén y audacia a
la empresa casi quijotesca de iniciar el camino de 1la investiga-
cién matemdtica en el Uruguay. Sin gque 1lo dicho signifique
menospreciar el papel que jugaron en ese proceso personalidades de
la talla del Ingeniero Don Eduardo Garcia de 2Gfiiga y del
matemdtico espafiocl Don Julio Rey Pastor;

Queridos matematicos uruguayos que, partiendo de aguellas ra-
ices, se incorporaron sucesivamente y se siguen incorporando en
escala creciente a las sucesivas generaciones que forman el tron-
co, las ramas y las hojas y flores de ese &rbol que se ha dado en
llamar la escuela matemdtica uruguaya;

Queridos estudiantes que ya anuncian nuevos brotes fecundos
de aquel &rbol;

Queridos funcionarios administrativos, que han tomado parte
imprescindible en este proceso, sintiéndolo también como cosa
suya, y que hoy han hecho posible el é&xito de esta reunién;

Queridos familiares, amigas y amigos, compafieras y compafie-
ros: ;

Antes gue nada, quiero agradecer a todos los que, con su ini-
ciativa y esfuerzo, jugaron algin papel para que los 6rganos de
gobierno universitarios adoptaran la decisién de concederme el ti-



tulo de Doctor Honoris Causa. He recibido otros, de parte de di-
versas Universidades, algunas de gran tradicién y renombre, gque
fueron concedidos, sin duda por la valoracién de méritos cientifi-
cos, pero cuya motivacién concreta fue la campafia por mi libertad
-y esa motivacién honra a dichas casas de estudio por la sensibi-
lidad demostrada ante el problema del respeto a los derechos huma-
nos—-, en mementos en que estaba preso por la dictadura que enton-
ces sufriamos. Pero, sin mengua de aquellos otros, valoro este ti-
tulo, entre otras cosas, porque procede de mi muy querida Univer-
sidad de la Repiiblica en la que he vivido, trabajado y estudiado
durante tantos afios de mi vida.

Agradezco también los elogios que aqui se han pronunciado.
Fuera de lo estrictamente cientifico, pienso que en ellos pesa la
relacién de fraternidad, amistad y estimacidén gue me unen perso-
nalmente a todos estos colegas y amigos. Entendiéndolo asi, hasta
me complace lo que puedan tener de excesivo, en tanto ello esté
motivado por otros valores de la relacidn humana que para mi son
muy importantes, comoc también lo eran para Laguardia. Esa relacidn
mutua de exigencia y aprecio, camaraderia y respeto, es un rasgo
tipico de nuestra escuela, es el cemento fuerte que le da unidad y
fortaleza y que esperemos se conserve sin fisuras en su sucesivo
desarrollo.

Mas alld de que, cuando plantdbamos las primeras semillas, no
podiamos prever la frondosidad que adquiriria y que sigue desarro-
llandose, ese Arbol de gue hablaba fue el producto de una decisién
muy consciente del papel que la investigacién cientifica debia ju-
gar en una Universidad digna de merecer su nombre. En aguella épo-
ca, la Facultad de Medicina y alguna otra daban ejemplo de insti-
tutos gue, sin mengua del desarrollo de cursos curriculares, dedi-
caban no pocos esfuerzos a la investigacidn. Por otro lado, Recto-
res como Cassinoni y Maggiolo desarrollaron ampliamente el tema;
este filtimo elaboré el Plan que lleva su nombre, gue propone una
reestructura total de la Universidad, una de cuyas aristas desta-
cadas es precisamente el papel central de la investigacién, dando
€l mismo el ejemplo en el Instituto de Maquinas que dirigia. Ejem-
plo digno de destacarse, ademds, porque tomaba como objeto de la

investigacién una obra concreta, de enorme importancia econémica,
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tanto para el Uruguay como para la Argentina, como lo es el estu-
dio del comportamiento del rio Uruguay y de la proyectada represa
y usina hidroeléctrica de Salto Grande.

El ejemplo es también ilustrativo en relacidén a otro aspecto
gue vale la pena destacar. AGn hoy, hay docentes gque piensan gque
la investigacién debe autolimitarse dentro de niveles muy modes-
tos; si se-me permite la expresién, con espiritu de "pago chico".
Creemos que esto es profundamente errdéneo, y la escuela matemdtica
uruguaya nunca ha aceptado semejantes limitaciones. La meta ideal
que buscamos es colocarse a nivel de la matemdtica mundial, si es
posible sobrepasando ese nivel. Y noé enorgullecemos de que hoy
mismo haya jévenes de menos de treinta afios de edad -que, por afia-
didura, se formaron en parte en el clima adverso de la dictadura-
alcancen estas metas. Naturalmente, no en todas las ramas de la
ciencia -que seria una pretensién inalcanzable en un pais tan pe-
quefio come el nuestro-, pero si en los campos en que nos propone-
mos concentrar el esfuerzo. S&lo apuntando alto y lejos, creando
un clima de alta exigencia, podemos esperar tales resultados. Y es
obvio que ello no significa descalificar investigaciones origina-
les de menor nivel, cosa que puede ocurrir cuandoc se persiguen
aplicaciones que, sin embargo, son tecnoldgicamente importantes.

Ahora que el Uruguay encara el Mercosur -desafio de grandes
proporciones-, es con esa mentalidad que debemos afrontarlo. Hay
que comprender que el desafio no es sblo en el campo estrictamente
econdmico, sino también cientifico y tecnolégico. Y sobre la Uni-
versidad y los universitarios recae, por ende, una parte importan-
te de la responsabilidad nacional.

Termino. Ha sido un rasgo permanente de mi vida el que no pu-
diera nunca separar mi actividad cientifica de aspectos sociales y
politicos que me son muy caros. Durante bastantes afios, esas dos
esferas pudieron coexistir sin demasiados conflictos. Pero a ello
se debe que nunca he trabajado en régimen de dedicacién total pese
a que haya sido y siga siendo ferviente partidario de que ese ré-
gimen se extienda a la gran mayoria de los universitarios. Como
era inevitable, en determinado momento la contradiccién hizo cri-
sis: fue cuando sali electo diputado, cargo que mantuve durante

nueve afios; aan asi, nunca dejé de dar clases. La crisis siguiente
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fue mas tajante, cuando la dictadura me expulsd de la Universidad
y posteriormente me privé de la libertad. Al reconquistarla, luego
de casi diez afios, sin vacilar asumi, junto con otros colegas, lo
que eran tareas absolutamente prioritarias, de reconstruir lo que
habia sido devastado. Sucesivamente concentré mi esfuerzo en lle-
var a buen fin el proyecto esencial del PEDECIBA, en restaurar
condiciones de buen funcionamiento del IMERL y de la Facultad de
Ingenieria, cuyoc Consejo integré, y finalmente en poner en marcha
el proyecto de creacién de la Facultad de Ciencias.

Insisto en gque en esas tareas nunca ocupé posiciones de pri-
mer plano sino que trabajé como participante de esfuerzos colecti-
vos. Sea como fuere, sumando todo, fueron quizés veinticinco afios
en los que debi estar apartado de la investigacién matemé&tica. Es
demasiado tiempo, sobre todo si se tiene en cuenta los ritmos con
que, como todas las ciencias, se desarrolla en esta época en gue
vivimos. Estoy convencido de que me era imposible retornar a ella.
Me parecid preferible emprender un nuevo camino: la filosofia, con
la esperanza de gque pudiera hacer alglin aporte a la historia y la
filosofia de la matemdtica, y resolver en ese terreno algunas
cuestiones que me inquietaban y probablemente inguieten a otros.
8in saber, como es légico, qué me deparard el destino en esta nue-
va ruta, estoy satisfecho por haber tomado esa decisién. Al fin de

cuentas, se hace camino al andar...
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DISCURSO DE JACOBO PALIS

Sefior Ministro de Educacién y Cultura, Sefior Rector de 1la
Universidad, Sefiores Decanos, Sefioras y Sefiores, Caros Colegas,
José Luis Massera.

0 matemidtico e sua dignidade

José Luis Massera & um exemplo, gquase uma lenda, para
varias geragdes de matemdticos latino~americanos. Quando iniciava
meus primeiros passos como matemdtico, dele ouvi falar, com
respeito e fascinio, como o cientista que pioneiramente formava,
guase gque por milagre, uma escola matemdtica uruguaia, cujos
trabalhos eram admirados nos centros mais avangados da America do
Norte e Europa. També&m ouvi falar de seus ideais sociais e de sua
dignidade...

Em sua matemdtica, Massera exibiu um talente nato,
autodidata, vigoroso, original. Desbravou novas trilhas nessa
imensa e ©bela floresta dos Sistemas Dinfmicos -Equagoés
Diferenciais-, A&4rea maior da Matemdtica Contemporédnea. Assim,
desenvolveu uma obra definitiva de grande interesse atual e
futuro sobre a estabilidade assintética dos sistemas diné&micos em
termos da existéncia de fungo&s de Lyapunov, obra em parte
publicada em Annals of Mathematics em 1949 e 1956. Repetiriamos,
vinte, trinta anos depois seus métodos... Assim & que nos anos
sessenta surge a idéia de filtracoés e no inicio dos anos setenta
aparece no mesmo Annals of Mathematics um artigo de Smale e Shub
sobre o tema e, finalmente, chegamos & compreensdo, talvez mais
bem sintetizada por Conley, de que em geral um sistema dindmico
consiste de pegas recorrentes e ciclos entre elas, as quais sdo
entad "ordenadas" através da existéncia de fungdes de Lyapunov,
precisamente & la fagon de Massera.

Como explicar o fenémeno de que parte dos fundamentos
desta A4rea central da Matemdtica, tenha sido feita em nosso
continente com relativamente pequena tradigao cientifica, em seu
extremo sul, aqui, em um canto (por sinal dos mais belos) do
mundo e, sobretudo, com tanta originalidade e finesse que
tornar-se-ia definitiva?. S6 um talento exuberante, transbordante
como o de Massera!

A rica, notével, pioneira contribugdc matematica de

Massera permeia outros tépicos de grande interesse matemdtico,



como por exemplo:

1) sua demonstragdo do teorema da variedade estdvel, com
seu enunciado geral, como o ensinamos hoje, feita no inicio dos
anos cinquenta e publicada no Boletin de 1la Facultad de
Ingenieria, Montevideo,

2)seus resultados sobre a. existéncia de solugdes
subharménicas de equagdes de segunda ordem e de solugdes
periddicas de equagdes diferenciais, publicados em 1949-1950 em
Annals of Mathematics e Duke Mathematical Journal,

3)a teoria, construida com Schdffer,para equagdes
lineares ou guasi-lineares onde introduzem-se conceitos como o de
dicotomia exponencial, precurssor do conceito de hiperbolicidade
e por 1isto mencicnado no trabalho classico de Anosov sobre
hiperbolicidade global publicado varios anos depois. Segquiu-se,
entdo, a construgio da teoria hiperbdlica, de importancia central
nesta area, por Smale e outros matemdticos. Também nos trabalhos
de Massera e Schdffer aparece uma forma "linear" de estabilidade
estrutural ligada & dicotomia exponencial, assim como a
estabilidade estrutural & ligada & hiperbolicidade em geral, como
proposto por Smale e eu préprio uma dé&cada depois, ao final dos
anos sessenta, e comprovado por Marfié had apenas alguns anos. Mais
ainda, o contexto de Massera e Schidffer & infinito-dimensional e
seus métodos, em particular aqueles relativos A geometria do
espago, inspiraram inGmeros trabalhos de pesgquisa. A obra foi
publicada em Annals of Mathematics em 1958 e 1959 e em
Mathematischen Annalen em 1960, bem como no 1livro "Linear
Differential Equations and Function Spaces", Accademic Press,
1966.

Os trabalhos de Massera tiveram especial destaque em
varios 1livros classicos de equagdes diferenciais como os de
Lefschetz, Hartman e o de Reissig-Sansone-Conti e, posterior-
mente, no trabalho de Anosov acima mencionado. E o seu fino
espirito indagativo e de visdo ao mesmo tempo ampla e profunda o
levaram, nos dias de hoje, a Histdéria e Filosofia da Ciéncia e,
em particular, da Matematica.

De tanta riqueza cientifica e extraordinadria per-

sonalidade usufruiram, naturalmente, jovens matematicos uruguaios
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de varias geragdes como Lumer, Schidffer, Gandulfo, Lewowicz e
ainda o brasileiro Onuchic, que veio especialmente para trabalhar
com Massera. O ambiente matemdtico gque conseguiu criar, com
Laguardia, no Instituto de Matematica y Estadistica de 1la
Facultad de Ingenieria nos anos cinquenta ainda causam admiracgédo.
Hoje, reconstruido e ampliado este ambiente, volta a Matematica
uruguaia a. se destacar no cendrio mundial. Constitiise em exemplo
maior para todos nés que lutamos por uma matemdtica e, em geral,
uma Ciéncia, de alta qualidade em todo o mundo e ndo apenas nos
paises ditos do Primeiro Mundo, concientes que somos de sua
importé&ncia para o desenvolvimento econdmico e social e a
integridade cientifico-cultural de uma nagdo. A atividade de
pesquisa basica e aplicada,sem compromissos de gqualidade como
sempre proclamou Massera, influenciam diretamente o nivel de
competéncia dos gquadros técnicos de um pais e ndo pode ser
considerado, por simplismos de eventuais dirigentes, como
atividade de 1luxo de uma nagdo rica!. Tamanho absurdo parece
ganhar forcga em alguns de nossos ©paises ccmo se fora
"conventional wisdom", arriscando wuma frigil mas Jja rica
estrutura cientifica construida com tanto esforgo, humano e
econdmico, através décadas de trabalho, tantas vezes herdico, de
teimosos cientistas nativos como José Luis Massera.

Figura maior da Matemdtica e da Ciéncia Lati-
no-Americana, Massera tem sua obra e sua humanidade reconhecidas
em todo o mundo, tendo sido homenageado pelas Universidades de
Roma (La Sapienza), Humboldt de Berlin, Quito, Budapest, Puebla,
San Andrés (Bolivia), Habana e, para meu orgulho, Federal do Rio
de Janeiro. Reconhecimento que com toda justiga & hoje ampliado
por sua Universidade, la Universidad de la Repiblica, e em cuja
homenagem nés, seus amigos, colegas e admiradores temos a honra,
a alegria, uma imensa alegria, de participar. Pequeno tributo a
uma grande pessoa gque brutalizada por seus ideais sociais,
respondeu com o destemor e a dignidade. Exemple maior de
humanismo, de pessoa-integridade, de pessoa-Ciéncia, nés o
admiramos e queremos muito, José Luis Massera, e sua vida, esteja
certo, ndo foi e ndo serd em vdo. Ela marcard uma etapa de luta
e sofrimento gquase inacreditével, neste mundo por vezes absurdo.

11



Mas também da grande, da imensa alegria pela feitura por suas e
por outras poucas mios, da melhor Matemdtica e pela construgio de
ambiente cientifico em nossos paises, em nosso continente, como
ainda de um exemplo maior de dignidade humana e finesse de
espirito como o seu.

José Luis Massera, obrigado por seu legado. Obrigado
por seres.:
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Integrals and Invariant Theory

Walter R. Ferrer Santos

Mathematical Sciences Research Institute

1000 Centennial Drive. Berkeley. CA 94720. USA*

June 28, 1990

Abstract
In this paper we describe how -since Hilbert’s work in Invariant
Theory in 1890- the concept of integral has been a basic tool in Rep-
resentation and Invariant Theory. We describe also the limitations
and the overcoming of some of the limitations of this tool. We end by
presenting an extension of the concept and of some of the results.

1 The case of a finite group

Let k be a fixed field of characteristic p. If G is a finite group we call G
the category of finite dimensional k-representations of G. In other words
G is the category whose objects are finite dimensional k vector spaces V
equipped with right linear actions of G on V and whose morphisms are the
G-equivariant k-linear maps. We consider k as an object of G by equipping
it with the trivial G-action. An object S in G is called simple if the only
subobjects of S are S and {0}. An object of G is called semisimple if it is
the direct sum of simple objects or equivalently if any of its subobjects has a
G-complement.If M € G we denote as M® = {me€ M :m.g =mVyg € G}.

We call F(G) the k-algebra of all functions of G into k with the operations
defined at every point. Clearly F'((G) is an object of G if we define an action
as follows. For z € G and f € F(G) ([.x)(y) = f(xy).

*Supported by NSF Grant 8505550 during his stay at the Mathematical Sciences Re-
search Institute.
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Definiton 1.1 An integral for G isa map 1: F(G) = k € G. We denole as
[ the subspace of the lincar dual of F(G) consisting of all the integrals.

The linear map Ig given as In(f) = ¥,c f(9) is a non zero element of [.

One can easily show that [ has dimension 1 over k.

In fact, if we call é, the element of F(G) that takes the value 1 at g €
and 0 at all the other points of G, we have that 6;.h = ép-1,. Then if Lis
an integral I(6,;) = I(4,) for all x,y € G. We call i this common value. If
f € F(G) we have that f = 3" ¢ f(9)6,. Applying I to the above equality

we obtain that
I(f)=i) flg) =ilo(f) (1)

g€G

Then every integral is a constant multiple of Ip.

We say that the group G admits a normalized integral if there is an
element J € [ such that J(1) = 1. Here 1 is the unit elment of F(G), i.e.,
~ the function on G that takes the constant value 1 € k.

It is easy to see that G admits a normalized integral if and only if p does
not divide the order of G (that will be denoted as |G]).

In fact: equation 1 shows that for any J € [, J(1) is a non-zero constant
multiple of |G| = Ip(1). If moreover J is normalized J(1) # 0 and our
conclusion follows.

1In what follows we show how the existence of a normalized integral for a
group implies that:

EX If f: M — N is a surjective map in G, then f(M%) = N€.

SP I A: M — kis a surjective morphism in G there exists an element
m € M€ such that A\(m) = 1.

SS All objects of G are semisimple.

RO There exists a family of linear maps Ry € G for M € G such that:
o Ry : M — M. |
eIl f:M— Ne€Gthen fRy = Ry /.
e If m € M® then Ry(m) = m.

14



FG Let A be an N-graded commutative k-algebra in which G acts by
algebra automorphisms that preserve the grading. Suppose also that
the part of degree zero is the base field k. Then if A is finitely generated
over k so is A®.

The validity of property SS in the case in which G is invertible in &
is known as Maschke’s Theorem (see [24]). A family of maps as in RO is
called a family of Reynolds Operators. This name appeared for the first time
in the mathematical literature in a paper by Garret Birkhofl (sce [1])! and
refers to the engineer Osborne Reynolds who used “averaging operators”
to study certain problems in fluid dynamics. The fact that the existence
of a normailzed integral implies condition FG is nothing but E. Noether’s
theorem (see [29] and [30]) on finite generation of invariants for a finite group
in a particular case in which the proof besides becoming extremely elementary
can be easily generalized to other contexts.

We indicate briefly the main steps in the proofs of the mentioned results.

It is clear that RO implies EX and that EX implies SP. Moreover, SS
implies RO (just use the semismplicity of M to construct the projection
of M onto M%) and RO implies the existence of a normalized integral (a
normalized integral is nothing but the Reynolds Operator corresponding to
M = F(G)). To prove the equivalence of the existence of a normalized
integral with conditions EX, SP, SS and RO, we need to verify that:

e SP implies SS.
o The existence of a normalized integral implies condition SP.

The first implication follows by considering the restriction map from
Homy(M, N) to Homy(N, N) where N is a subobject of M. Consider the G-
submodule of Hom (N, N) given by the multiples of the identity map and call
X its inverse image by the restriction. An element of X¢ C Homy(M, N)®
that is sent by the restriction to the identity map on N will split the inclusion
of Nin M.

It is convenient to introduce the viewpoint of comodules (that will be
developped in more deatils in Section 4) to prove the second implication. To

YThe author would like to thank Prof. 1. Kaplansky for providing the above reference
and for helping him find a path through the “maze” of the classical literature on the
subject.
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an arbitrary object Al € G we can associate a map xar : M — M @ F(G)
in the following way \y/(m) = ¥ m.g > 8,. In particular if we apply this
construction to (@) itself we obtain a map A : F(G) — F(G) @ F(G) that
together with the multiplication of functions in F'(G'), the unit and evaluation
at the identity. gives to F'((7) a structure of bialgebra. The map \ar defined
above is a comodule structure on Al. The construction of y ps from the action
of G on M can casily be reversed to obtain the action from the comodule
structure. In that way we obtain a bijective correspondence between the
F(G)-comodule structures in a vector space M and the G-actions on Af. If
J is a normalized integral and M is an arbitrary object of G, we can define
the map Jps = (¢d © J)xar- In explicit terms Jpr(m) = |G| 3 m.g.

Now, as to the proof of condition SP,if A : M — k € G is surjective and
m is an element of M such that A(m) = 1, the element Jps(m) is in M and
sent to 1 by A.

It is worth noticing that the map Jus that is defined in terms of the
normalized integral J can be though of as an “averaging process” in M. The
existence of this “averaging process” (that in fact is an operator as in RO)
1s the crucial ingredient of the above proof.

As to the proof of FG we observe first that as A is finitely generated over
k all the homogeneous components A, are finite dimensional k-spaces. There
is a Reynolds Operator for each A, and all of them can be put together to
define a Reynolds Operator for A. It is not hard to prove that this operator
can be chosen so that it verifies the following multiplicativity condition:

Ra(fg) = fRa(9)Vf€ A®, g€ A (2)

Call Ay = @,50 An the null ideal of A. Consider AS and call T the ideal that
it generates in A. By Hilbert Basis Theorem (that Hilbert proved in order to
be able to conclude that certain rings of invariants were finitely generated,
sec [15]) there exists a finite set of elements F that generate Z. We prove
that the k-algebra generated by F is all of A®. If a € A® is an homogencous
invariant that is not in k it will be in AY. Then a = ¥ jcr asf with a; € A.
Apply R4 to this equation and call by = R4(a;). Using equation 2 one has
that @ = 3" ;e7 by f . The elements by have smallest degree than a. Then, by
induction, we can conclude that they belong to the k-algebra generated by
F. Then, the same happens to a.
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2 Integrals in the work of Hilbert and Weyl
on Invariant Theory

The proof that the existence of a normalized integral for a finite group implies
condition FG that we just presented is an adaptation of Hilbert’s proof (see
[15]) of Gordan’s theorem (sce [12]) on the finite generation of the invariants
of binary forms (in the language of XIX century invariant theory “on the
finiteness of the independent invariants of quantics™). The same idea was
applied later by Hilbert (see [16]) to the case of n-ary forms (see [14] for
a historical analysis of these —and other- mathematical concepts related to
classical invariant theory and the excellent survey by A. Borel ([2]) —-from
which we borrowed heavily- on the work on these subjects of Weyl and
also of Hurwitz and Schur). These n-forms were intractable by the classical
methods: either the “symbolic methods™ developped by the German school
(Aronhold, Clebsch and Gordon) or the “algorithmic methods” developped
by the British (and North American) School (Boole, Cayley, Sylvester and
Salmon).

The strengths and limitations of both XIX century schools on Invariant
Theory have been extensively studied in articles dealing with the history and
philosophy of mathematics (see for example the comments in H. Weyl’s book
“The Classical Groups: Invariants and Representations” [37, pg 27-29] or
[31] for a comparative analysis of both schools). It is interesting to note that
recently some of the classical methods have heen revitalized with success ( see
for example [20] and [18]).

In what follows we sketchly describe some of the aspects of the work done
in Representation and Invariant Theory around the period 1890-1930 that
are relevant to our presentation.

Consider the group S1,((") acting by algebra automorphisms on the al-
gebra C[X,Y] as follows: (note that it is only necessary to define the action
on the generators X and }')

( “ b ) X =dX —bY
¢ d

( “ ) Y o= —eX 4 aY
o
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If we fix a natural number d the k-subspace S; of k[X, Y] generated by
X K=YV iy B invariail..
Gordon’s Theorem “on the finiteness of the independent invariants of

quantics” states that the algebra §(.S,)%2()

is finitely generated.

In a remarkable paper published in 1851 (see [6]) Cayley abandoned his
old methods to produce invariants (based on the so called “hyperdetermi-
nants”) in favor of the method of differential operators (see [31] for a de-
scription of the work of the British School on Invariant Theory).

Consider the derivations & : 5(Sy) — S(Sq), 1 =0, ..,d given (on a sistem
of generators of Sy) as &(X99Y7) = §;;.

It is well known that if A is an arbitrary commutative algebra and D(A)
denotes the (k vector space) of all k-derivations of A, then D(A) has a natural
structure of A-module with respect to the usual multiplication.

- Taking special S(S;)-linear combinations of the derivations ¢;, Cayley
defined two elements X, Y € D(S(S4)) and proved (see [14] for a precise
description of the above differential operators) that 5(5;)%2(©) = {a €
8(54) : A(a) = Y(a) = 0}.

Hilbert’s proof of the finite generation of the ring S(5;)5%2(¢) used X
and ) to construct a map with the properties of (2) and with that, together
with his Basis Theorem proceeded in the same fashion than in Section 1.
For n-ary forms in a later paper [16] he used what become known as Cayley
{-process to perform the same steps.

Hilbert himself was aware that his Basis Theorem and the existence of a
map with the properties of (2) were all that was needed to prove the finite
generation of invariants. In particular other maps R have to be constructed
if one is dealing with other group actions.

In accordance with [14], Hilbert was able to apply his method to other
groups than SL,, in particular he suceeded constructing an analog tothe
Q-process for the rotation group in the real 3-dimensional space, i.e., the
group of real orthogonal transformations.

Tlurwitz, which was a student of Klein and a former teacher of Hilbert,
solved in 1897 the problem of finite generation of invariants for the real
orthogonal group in n-space in 1897, by constructing the required Reynolds
operators by integration (see [19]). The extension to compact Lie Groups
was iImmediately observed.

Morcover it had alrcady been observed (by 19.11. Moore and Maschke
among others) that in the case of a finite group the “averaging process”
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besides the finite generation of invariants also yielded the semisimplicity of
the representations.

I. Schur, in a paper in 1924, extended this result on the semisimplicity
of the representations to the real orthogonal group (see [33]) and observed
that the theory could be extended to other groups as long as an “averaging
process” could be constructed. He didn’t develop the general theory because
in his own words (see [14]) “ [the rotation and orthogonal groups] stand out,
not only by virtue of the important role they play in applications but also
by virtue of the fact that here the integral calculus provides a solution of the
counting problem that is practically useful”. The “counting problem™ was
a problem proposed (and solved) by Cayley “on the number of independent
covariants” of fixed degrees.

In 1924-26 Hermann Weyl, with the aid of E. Cartan’s results on Lie
Algebras, extended Schur’s theory to all complex semisimple Lie groups (see
[35] and [36]). His methods consisted in using again an “averaging process”
of integration via what he called first the “unitarian restriction™ (“unitare
Beschrankung”) and later the “unitarian trick”. If G is an arbitrary complex
semisimple Lie Group and K is a maximal compact subgroup it can be
proved that if V is a G-module, the G-submodules of V' coincide with the
K-submodules. Being K compact the integration can be carried along i\ and
the results about the representations and invariants for G can be obtained
from the corresponding results for K. In the case in which G is the special
linear group SL,(C), K can be taken to be the special unitary group SU,(C)
and that is the reason for the name of the trick. It is worth noticing that
particular cases of this “trick” had already been used by Hurwitz and Schur
in the papers just mentioned. Weyl proved (among many other things) what
is now called Weyl’s Theorem: All the representations of a semisimple Lie
Algebra are completely reducible. The method of his proof was to pass from
the Lie Algebra to a connected and simply connected complex Lie Group
and then to apply to this group his “unitarian trick” to reduce the ])rohlem
to the situation of a compact group.

It was observed later by Schiffer (1933 unpublished) that the existence
of Reynolds operators (as was mentioned in the particular case of a finite
group in Section 1) could be deduced by purely algebraic means from the
semisimplicity. This appears as an Appendix to the Second Edition of [37)(
see Appendix C).

Completely algebraic proofs of Weyl’s Theorem were obtained later (for
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arbitrary fields of characteristic zero) and we shall sce that some type of
integral or “averaging process” plays an important role in this algebraic ap-
proach.

3 Integrals and Lie Algebras

The historical comments that follow are based on [3, Note Historique, Cha-
pitres I a III] and [2]. Results on the complete reducibility of Lie Algebras
seem to have appeared for the first time around 1890 in some unpublished
work of Study. His work was cited by Lie and Engel in their joint book
[23]. Study proved that the representations of sla(C) are completely re-
ducible and Lie and Engel conjectured that the same was true for sly(C)
(in accordance to Borel —see [2]- who refers to Hawkins for this fact, Study,
in a letter to Sophus Lie in 1890, conjectured the full reducibility of the
representations of an arbitrary semismple Lie Algebra). In 1926 Weyl (see
[36]) proved (and remarked that E. Cartan had used the result implicitly)
the complete reducibility of the representations of a semisimple Lie Algebra
using his “unitarian trick” (see [2] for an interesting discussion whether E.
Cartan was aware or not at that time of the complete reducibility).

Casimir (a physicist) realized around 1932 that an operator that plays
a role on quantum theory (the “square of the magnitude of the moment of
momentum” - see [2, pg 63] -) and that he had generalized from sl; to a
general semisimple Lie Algebra (and is now called the Casimir operator),
could be used to produce an algebraic proof of the full reducibility of the
representations of slz. This was generalized in 1935 by Casimir and van der
Waerden (see [5]) to produce the first purely algebraic proof of the complete
reducibility.

The proof that is frequently presented in modern literature (see for ex-
ample [3] or [11]) is Brauer’s proof that appeared in 1936 (see [4]).

A cohomological proofl was presented in 1937 in [38]. In the mentioned
papers J. . C. Whitehead defined the first two cohomology groups of a Lie
Algebra and used them to prove the mentioned semisimplicity result.

The authors mentioned above worked with real or complex base fields.
The development of the theory of Lie Algebras (in particular the general-
ization of some of the above results to the case of other base ficlds) is due
mainly to N. Jacobson (sce for example [21]).
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In order to illustrate the use of integrals in the algebraic proof of Weyl’s
Theorem we proceed as follows.

It is not hard to see (one has to proceed in a similar way as in Section
1) that the complete reducibility of the representations of a Lie algebra L is
equivalent to the following condition (that in analogy with the considerations
of Section 1 we call analogous SP): (SP) For every surjective morphism of
L-modules A : V — k there is an element v € V¢ such that A(v) = 1.

We prove that if £ is a semisimple lie algebra over an algebraically closed
field of characteristic zero condition (SP) is verified.

Consider A and V as above, call W the kernel of A and form the exact
sequence of L-modules:

s W o VA kD (3)

where L acts trivially on % (being semisimple this is the only way it can act
on k).

Without much labour one can reduce the problem to the case where W
is a simple faithful £-module. We call p : £ — End(W) the corresponding
representation. The reduction to the case in which W is simple is obtained
by reasoning by induction in the dimension of W. To be able to assume that
W is faithfull we proceed as follows: take L’ the kernel of the representation
of £ in W, it follows that £’ also acts trivially on V' (here we have to use that
L' coincides with its derived subalgebra). In this way (3) becomes an exact
sequence of £/L'-modules and W is now faithfull as an £/L-module. The
validity of the result in this case implies the validity of the general result.

In Section 1 we used an averaging process to produce the element we
needed in VC. llcre we will show how a basic ingredient of the classical
proofs, the “Casimir element”, can be used to perform the same “averaging
process” in our calegory.

We start by defining a bilinear form By in £ by the following formula:

Bw(z,y) = triw(p(x)p(y))

A direct verification shows that for any z,x,y € L the bilincar form By
verifies By (ad(z)z,y) = Bw(z,ad(y)z).

Consider the ideal of £ defined as {z € £ : Bw(a,y) = 0Vy € L}. The
above ideal is solvable (by Cartan’s criterion) and because of the semisim-
plicity of £ it has to be zero. In other words, the form By is non degenerate.
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We use By to establish an identification of £ and £* . Using this identifi-
cation we can construct an isomorphism of £-modules between flom (L, L) =
LBL ELEL,

(all by the element of £ @ L that is the image of the identity map on
L via this isomorphism. As the identity on £ is annihilated by the action of
L so is by Call U(L) the universal envelopping algebra of £ and consider
the element ¢y of U(L) given as the image of by by the multiplication map
from £ @ L into U(L).

The element cw is called the Casimir element of W and belongs to the
center of U(L) (this because by is annihilated by £).

If T is an arbitrary £-module the element cy defines by multiplication
an L-endomorphism of T. We denote this endomorphism as cy 7.

More explicitly: if {z;},{y:}; ¢ = 1,..,dim L are dual basis of £ with
respect to Bw then ew = 3 z;y;. Considered as an operator in W, the
element cw is equal to 3; p(x:)p(v:), in other words ew,w = 3_; p(x:)p(yi)-

Then, trw(eww) = ¥ trw(p(z:)p(y:)) = ¥ Bw(zi,yi) = dim L. Thus,
the operator cw w is not zero. By Schur’s Lemma we conclude that ¢y =
ridy for some r € k*.

We consider now the maps ewy and 7w = id —r~lewy : V — V.

The last map, that is closely related to the constructions of [5] and [4],
sends V into V£ and plays the role of the “averaging process” of Section 1.

It is clear that U(L)V' C W (it is enough to check that if v € V and
z € £ then A(zv) = 0 and this is evident because £ acts trivially on k).

Suppose now that v is an arbitrary element of V', we prove that rw(v) =
v—r~lewv € VE. In fact, (v —-r~lewv) = zv—r'zewv = av —r ey =
Irzv = 0. The equality before the last is true because xv € W and
in W multiplication by ¢y amounts to multiplication by the scalar r.

If v is chosen in such a way that A(v) = 1 then A(rw(v)) = AMv —
rlewv) = 1 —r~1\(ewv) = 1. The last equality is a consequence of the fact
that cwv € W. Thus, the element 7y (v) verifies the required conditions.

1

U — T~

It is important to note the following: in the case of a finite group the “av-
craging processes” for the G-modules were constructed (see the construction
of Jpr from J in Section 1) from a normalized integral for I'((:). An anal-
ogous construction that would give all maps 7y in terms of a “normalized
integral” could be developped here with the continuous dual of the universal
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envelopping algebra of £ playing the role of F(G). Being this envelopping
algebra an infinite dimensional k-space, the constructions are more elaborate
and will be omitted. See [17] for details.

In the next Section we consider the situation of an arbitrary Hopf Algebra.
The case of a finite group and of a Lie Algebra appear as specializations of
this situation.

4 Integrals for Hopf Algebras

The fact that some of the above considerations about integrals, representation
theory and finite generation of invariants can be generalized to the context of
Hopf Algebras seems to have been observed for the first time by Sweedler and
Larson around 1968 (see [22] and [34]). Their considerations were motivated
(see [34, Introduction]) by some results of Hochschild (see [17, page 63-64]).
In [17] it is proved that if £ is a finite dimensional Lie Algebra over a field
of characteristic zero and we call K the continuous dual of the universal
envelopping algebra U(L) of £, then £ is semisimple if and only if there
exists an L-morphism J : K — k that sends the unit of X into the unit of the
base field. The map J was called a gauge for the Hopf algebra X, and the
concept of gauge was defined for an arbitrary Hopf Algebra. A gauge is what
later was called an integral except that it verifies the additional condition
of sending 1 into 1. In [17] it was also observed (without proof) that “.
an affine algebraic group is fully reducible if and only if its Hopf Algebra of
polynomial functions has a gauge”.

In this section we will present Sweedler’s arguments relating the existence
of a “normalized integral” for a Hopf Algebra H with the analogue of what
we call in Section 1 condition SP.

Let H be a Hopf algebra defined over an arbitrary field k and call A, e, 1, u
and o its comultiplication, counit, multiplication, unit and antipode respec-
tively. The clement u(1;) will be written as 1.

Definiton 4.1 A linear map J : H — k such that uoJ = (idyg ® J) 0 A is
called an integral for H. If J also verifies Jou = zd’,;L it is called a normalized
integral.

In the definition above o denotes the composition of functions. In the
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future we will omit this symbol and represent the composition by juxtaposi-
tion.

If M is an H-comodule its structure map will be denoted as \as. If A is
an H-comodule we call M¥ = {m € M : xp(m) = m & 1}. We consider &
as an H-comodule with the trivial structure (i.e. xp(a) = a & u(1g)).

We consider the analogue of condition SP of Section 1.

Definiton 4.2 We say thal an H-comodule M verifies condilion SP if for
every non zero morphism A : M — k there exists an element m € M such
that A(m) = 1.

The following result generalizes the considerations of Section 1 and is due (in
another formulation) to Sweedler ([34]).

Theorem 4.1 The Hopf Algebra H admits a normalized integral if and only
if all H comodules verify condition SP.

Proof : Note first that by the application of condition SP to an ap-
propriate comodule of homomorphisms one can easily prove that the validity
of condition SP for all comodules is equivalent to the condition that all the
H-comodules are semisimple (see Section 1 for the case of a finite group).

Suppose that condition SP is valid for all H-comodules. If we consider
the unit map v : k — H as an injective H-comodule map the complete
reducibility implies that there exists an H-map J : H — k that splits u. The
map J verifies the definition of a normalized integral for H.

. Conversely, suppose there is a normalized integral J. If A : M — k is
a surjective H-map and m € M is such that A(m) = 1 the element n =
(:d @ J)xm(m) belongs to MH.

Moreover A(n) = Aid ® J)xm(m) = (id @ IJ)(A @ id)xm(m) = (id @
J(A(m)®1) = 1.

Q.E.D.

Once this point is settled we can proceed in the same way as in Section 1
and thus prove the first fundamental theorem on invariants for the action of a
“co-semisimple” (i.e. with all the comodules semisimple) Hopf Algebra on a
graded finitely generated algebra. This, in a cerlain sense finishes completely
the subject and in that sense can be considered as a culmination of the line
initiated- by Hilbert in 1890 in order to prove finiteness of invariants using
conveniently constructed “normalized integrals”.
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Hilbert’s technique works extremely well in characteristic zero where it
can be applied to all semisimple groups but has a very serious drawback in
arbitrary characteristic. i

It was proved by Nagata in 1964 (see [27]) that the only connected alge-
braic groups in positive characteristic whose algebras of polynomial functions
have a normalized integral are the tori (Nagata didn’t formulate the results
in terms of integrals but in an equivalent form).

In 1964-65 Mumford introduced some basic ideas that were the key to
the overcoming of the mentioned drawbacks. In dealing with Geometric
Invariant Theory, Mumford introduced a concept weaker than the concept of
complete reducibility —that of “geometric reductivity”- and conjectured that
in characteristic p every reductive group is geometrically reductive (see [26]).

It was immediately proved by Nagata that for any geometrically reductive
group the first theorem on invariants is true (see [28]) and by Nagata and
Miyata that any geometrically reductive group is reductive (see [25]).

It took longer to prove Mumford’s Conjecture. In 1975 Haboush, us-
ing some of Steinberg’s ideas about representations of semisimple algebraic
groups, proved that every reductive affine algebraic group is geometrically
reductive and in that way (because of the results of Nagata just mentioned)
settled the problem of finiteness of invariants for all reductive groups (see
[13]).

It is interesting to note that the proof of Nagata uses the condition of
“geometric reductivity” in an extremely ingenious (but rather obscure) way
to make up for the lack of an integral. Even though Mumford’s Conjecture
has been settled for more that 10 years, there aren’t in the literature available
proofs that “jump” directly form the reductivity of G to the finiteness of the
invariants without using the intermediate step of the geometric reductivity
in the same way as did Nagata.

Any attempt Lo search for a family of algebraic groups for which the first
theorem on invariants is true and that is larger than the family of reductive
groups was shown to be fruitless by Popov in 1979 (see [32]) by showing thatif
G is an affine algebraic group such that for any finitely generated k-algebra
A the subalgebra A% is finitely generated, then G is reductive.

. In the next Section we show that a “relative approach” to the problem
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of the finite generation of invariants can be of a certain interest. We prove
the finite generation of invariants for a family of finitely generated algebras
under conditions that guarantee the existence of a certain type of “generalized
integral” in situations in which the given group is not necessarily reductive.

5 A Relative Approach to Invariants and In-
tegrals

In some special cases we may want to study invariants for non reductive
groups. Consider for example the following situation.

Let G be an affine algebraic group ( defined over an algebraically closed
field of arbitrary characteristic) and A a closed subgroup of G. The problem
of giving a representation theoretical condition equivalent to the geometric
condition that G/K is affine has been completely solved by Cline, Parshall
and Scott (see [7] for the original proof or [8] for a more elementary proof).
In the mentioned paper the authors generalize the concept of induced repre-
sentation to the category of algebraic groups and prove that G/ K is an affine
variety if and only if the induced representation functor from K-modules to
G-modules is exact. If the induction functor is exact we say that K is exact
in G.

A first step in the proof that G/A" is an affine variety is the proof that
the algebra P(G)* of K-invariant polynomial functions on G is finitely gen-
erated.

A possible approach to the finite generation of P(G)! is the following: the
exactness hypothesis is easily seen to be equivalent to P(G) being injective
as a I{-module. It follows from the very definition of injectivity that if P(G)
is injective as a K-module there exists a map J : P(K) — P(G) that sends 1
into 1 and that is a morphism of K-modules. This morphism should play the
role of a normalized integral and allow us to prove that P(G)" is a ﬁmtely
generaled algebra.

This approach is relative in the sense that the “normalized integral” takes
values in P((7) and it will only help us to prove that certain k-algebras (that
are related to P((7) in a sense we formalize later) have finitely generated
invariants.

The study of this situation i the case of an afline group K acting on
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an affine variety X and the corresponding proof of the finite generation of
the invariants as well as other consideralions about the existence of quotient
varieties will appear in [9].

In what follows we present a generalization of some of these results to the
case of a Hopf Algebra. At the same time we introduce some simplifications
of the arguments in [9].

Definiton 5.1 Let H be a commulative Hopf Algebra defined over a field k
and A an H-comodule algebra. An A-integral for H is a morphism of H-

comodules J : H — A. A normalized A-integral is an A-integral such that
J(1) =1.

Definiton 5.2 Let A be an H-comodule algebra as above and M a right A-
module that is al the same time a right H-comodule. We say that M is an
(A, H)-odule if for allm € M,a € A we have that xp(ma) = xp(m)xa(e)
where x4 and xps denote the corresponding comodule structure maps (if € =
1a;®@h€e AQH andn=3ym;®k; € M@ H, n{ we denotes the following
element of M @ H : né = Y m;.a; @ k;h;). In the case in which the (A, H)-
odule is also an A-algebra R in such a way that the multiplication map of

R and the action of A on R are H-comodule maps, we say that it is an
(A, H)-odule algebra.

For the rest of this section H will be a commutative Hopf Algebra defined
over a field k and A a commutative H-comodule algebra. The structure maps
for H will be denoted as in Section 4 (and o will be the antipode). The
comodule structure map for A will be denoted as y 4 and the multiplication
as p4. If M is an arbitrary H-comodule its structure map will be denoted
as xup and the action of A on M as jupg.

The role of a Reynolds operator for an (A, H)-odule M is played by the
map Rps constructed below.

Lemma 5.1 Suppose that H admils a normalized A-integral that we call J
and let M be an arbitrary (A, Il )-odule. The k-lincar map Rpyp : M — M
defined as Ray = pum(2d @ J)(id @ o) xar verifies:

1. R?\/! == 'R.M and RMUW) = M”.

2.If f : M -+ N is a morphism of (A, H)-odules and Ry, Ry arc the
corresponding maps then : Ry [ = [Rag.
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3. IfmeM and a € A¥ then Rpr(ma) = Rar(m)a.

4. If R is an (A, H)-odule algebrar € R and s € R7, we have Rp(rs) =
R(r)s.

Proof :

1. We want to prove that xa(Rasr(m)) = Rar(m)®1 for allm € M. Using
the fact that yps is a morphism of H-comodules and then the definition
of normalized integral we deduce that: xRy = (1d @ p)(pear @ 2d &
1d) (i d®@s®id)(1dR@1dRI ®1d)(1d ®1d @ A)(xa @ 2d)(2d @ o)\ M-

" Using now the coassociativity and the properties of the antipode we
deduce that: i on = (zd ® ,u)(yM ®Rid® zd)(zd ®s® ld)(?d @id @
JRud)(1d®:1d®o®o)(id®id® s)(id ® A ® 1d)(1d @ A)xm-

By direct verification we see that the last expression can be written as
follows: xMRm = (1 d @ p){pm ®1d @ 1d)(idRI R id ®id)(id @ 0 &
d®0)(1d®idQA)id® s)(:d ® A)xm = (ppm(id @ J) @id)(2d & o C.
p(id @ o)A)(id ® 5)(1d @ A)xns-

Now, p(id ® o)A = ue by the very definition of o. If we substitute
this formula in the last equality for xpsRas we obtain that: xRy =
(m(id @ J)(id ® 0) ® 1d)(id ® s)(id @ ue ®@ id)(id @ A)xns-

Using the fact that (e ®id)A = id and computing the above expression
at an arbitrary m € M we conclude that yyRpy(m) = Ry(m) &1

If we start with an element m of M¥ we see that Rps(m) = ,uM(vd %y
Ixm(m) = pu(m @ I(1)) = pu(m @1) =

In this way the proof of the first assertion is finished.

2. The following chain of equalities follow immediately from the hypoth-
esis about f and will prove our assertion: Ry f = un(id @ Jo)xnf =
pn(1d@JIo)(f®id)xm = un(fR1d)(id@Io)xm = fpm(id o)y m =
TRum.

3. Using the fact that the action of A on M is compatible with the co-
module structures on M and A respectively, one gets that Rpy(ma) =
pr (2d 0 Ja)(xm(m)xala)) Using the commutativity of A we conclude
that pp(2d @ Jo)(xp(m)(a @ 1) = (pp(ed € Io)xpr () )a = Rag(m)a.
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4. The proof of this assertion is similar to the one we just wrote.

Q.E.D.

We have the tools to prove (in a way that is similar to the original proof

by Hilbert as sketched in Section 1) a first approximation to the finite gen-

eration of the rings of invariants for the (A, H)-odule algebras provided that
Il admits a normalized A-integral.

Lemma 5.2 Suppose thalt A and I are as above and also that A s a Noethe-
rian ring. Let R be a commulative (A, H)-odule algebra that as an A-algebra
is finitely generated. Suppose moreover that R 1s graded by the natural num-
bers in such a way that Ry = A and that the structure of H-comodule of R
is compatible with the grading. If H has an A-normalized integral then RY
is a finitely generated A™ -algebra.

Proof : Call Ry = @,50 R, the null ideal of R and call T the ideal
generated by R¥ in R. As R is finitely generated over A it is Noetherian,
therefore 7 can be generated by a finite set of H-fixed elements F that we
can assume are homogeneous. Any f € F will bein f € Rﬁn with d(f) > 0.

We prove by induction on the grading that R¥ = A¥[F]. For the elements
of degree zero (i.e. the elements of A") there is nothing to prove. Suppose
we know that for all n < I we have that R¥ C A¥[F|. Take r € RfT,. As
r €I wehaver =3 ;crrsf with r; € R. Now we apply the map Rr to the
above equality and let p; = Rp(r;) € R¥. After decomposing each p; into
its homogeneous components we can assume that we have an equality of the
form r = 3~ ;e x 54 f with each sy homogenous of positive degree and H-fixed.
Comparing degrees in the above equality we deduce that s; € Rﬁlud{n.
Using the inductive hypothesis we see that Rﬁl_d”) C A¥[F] and so that
r € AR [F). Q.E.D.

The usual method of going from the graded to the non graded situation
can also be adapted to our context.

Theorem 5.1 Lei Il he a commutative Hopf Algebra and A a Noetherian
H-comodule algcbra. Suppose also that H has a normalized A-integral. Let
R be a commultative (A, Il)-comodule algcbra that as an A-algebra is finilely
~genervated. Then R is a finitely generated AY -algebra.

Proof : Let Vo denote the finite-dimensional f1-comodule spanned (as a.
k-vector space) by a finite set of A-generators of R. Call S the k-symmetric
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algebra built on V and consider the (A, H)-odule algebra S (3 A, Applying
the universal property of the symmetric algebra to the map given by the
inclusion of V into R, we construct a map of H-comodules from S — R
that after tensoring with the cannonical map from A into R will become a
surjective morphism of (A, f1)-odule algebras from S . A into R. We call
this map ®. By Lemma 5.1 2. we have that Rpd = ¢R,,., . Using the
above equality and Lemma 5.1-1 we deduce that the map ¢ when restricted
to (S® H)H is an algebra: homomorphism onto R”. Applying Lemma 5.2 to
S ® A we conclude that (S ® A)" is a finitely generated A'-algebra. Then,
the same happens to RF.

Q.E.D.

In the case in which A¥ itself is finitely generated as a k-algebra and all
the hypothesis of Theorem 5.1 remain valid we conclude that R is finitely
generated over k. Clearly if A is finitely generated over k the Noetherian
hypothesis of Theorem 5.1 is verified.

So that the (A, H)-odule algebra A is a “testing object” for the validity
of the first theorem of invariants in our particular context.

In what follows we describe two particular cases in which the finite gen-
eration of A as a k-algebra can be guaranteed.

We first recall a result from [10]: If H and K are commutative Hopf
Algebras defined over a field k and 7 : H — K is a surjective normal bialgebra
map (see [10] for the definitions) then H is injective when considered as a K
module via the usual restricition of scalars functor.

We observed at the beginning of Section 5 (in the particular case of the
Hopf Algebra of an affine group) that if H is a Hopf Algebra and A an H-
comodule algebra, the injectivity of A as an /{-comodule implies the existence
of an A-normalized integral for H.

Applying this to the case of K and I as above, we conclude that there
exists an H-normalized integral for A’

Now, if H itself has an A-normalized integral by composition we obtain
an A-normalized integral for K.

We apply the above considerations to the case in which /I = () the
algebra of polynomial functions of an affine algebraic group defined over an
algebraically closed field & and K = P((7,) is the algebra of polynomial
functions of its unipotent radical.

The resull that follows appeared in [9]) in an equivalent context. We
write down here the (adapted) proof for the sake of completness. '
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Theorem 5.2 Let G be an affine algebraic group defined over an algebrai-
cally closed field k and let A be a commutative finilely generated (G-module
algebra. If P(G) has a normalized A-integral then AT is a finitely generated
h-algebra.

Proof : Let (G, be the unipotent radical of (. As we observed before
P(G,) has a normalized A-integral that we call J. Following a trick we learnt
from [7] we transform the map J : P(G,) — A that is a map of (;,-modules
and sends one into one into another map I : P(G,) — A that is a morphism
of G,-modules and of k-algebras, in other words a multiplicative A-integral.
In this case the map R4 : A — A constructed in Lemma 5.1. 1s an algebra
homomorphism that sends A onto A%+,

We conclude then that A% is a finitely generated k-algebra. As the
quotient G/G,, is reductive, the Nagata-Mumford theory (see [28]) guarantees
that AS = (A%«)C/C« is finitely generated as a k-algebra.

Q.E.D.

The author doesn’t know if the existence of a normalized A-integral for
the Hopf Algebra H implies in general that A¥ is finitely generated. The
above Theorem gives an affirmative answer for the case in which H = P(G)
for some affine group G. The obstructions to the generalization of the above
proof to the case of an arbitrary commutative Hopf Algebra are multiple.
The more serious one seems to be the lack of a theory of “reductive Hopf
Algebras”.

Let us finally say that another case in which we can prove that the ex-
istence of the A-integral and the finite generation of A implies the finite
generation of A is the case in which A is graded with Ay = k and the H-
comodule structure preserves the grading. The proof will be omitted because
it is a copy of the ones already written. We use the integral to construct a
map with the required properties going from A to A and then we proceed
by induction on the degree.
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RESUMEN

En lo que sigue se proponen bandas de confianza conservativas para la tendancia de un
modelo gaussiano, autoregresivo de orden p . Los resultados son vélidos para muestras
finitas. Las bandas son conservativas en el sentido de que |a probabilidad de que las
bandas cubran a la funcion considerada es al menos el nivel prefijado.

1. Introduccién. In this preprint we look for nonparametric
conservative bands for the trend function g(t) of a gaussian
stationary autoregressive model of order p based on
observations Yy, ...,YN verifying

Yi=Yy=g(t)+X;, astsb, (=1,....N) (1.1)

where { X; : j21} is an autoregressive stationary process of order

p, i.e.,
X] =¢1 Xi_1+ ¢2Xj-2+' . '+¢pxj-p+ U} (12)

and { U; :j21} is a gaussian white noise.
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Conditions under which there is a stationary solution to
equation (1.2) are well known, and will be assummed in what
follows, i.e. we will suppose that the coeficients G1,.--,¢p

satisfy
h(z)= 1- 12 - 092%-. ... - $pzP#0 for |z[<1.  (1.3)

The bands will be conservative in the sense that the
probability that the true function g lies on the band is at least the
prefixed level 1-x, and the results are valid for finite sample
sizes.

The case where { X;: j21 } is a gaussian white noise has been

considered by Hall and Titterington (1988) where conservative
confidence bands for the regression function, related to those of
Knaﬂ', Sacks and Ylvisaker (1988) in that they are based on linear
(in the data) estimates of the regression function at any given
point, are proposed. Their proposal gives confidence bands for
which calculation of widths are very easy. Some related work have
also be done by Wahba (1983) and by Silverman (1985) from a
Bayesian point of view, that leads to spline methods to construct
confidence bands. ‘

Basically the idea is to divide the interval where we are
working, let say the interval [0,1] into m  subintervals I;, 1 <is m
for m an integer that satisfy N=2mr, where N s the sample
size. At each of these subintervals using an average of the response
variables in the subinterval, construct a confidence interval for the
average g;of the regression function g on the cell, and obtain
from it a confidence band for the function g(t), t eI; using some
constrain in the local behaviour of the function g. Finally some
bound to the joint coverage probability will provide the
conservative bands. Then the width of the confidence band will
have two components: a deterministic one from the smoothness
constrain or ‘"interpolation error" and another one from the
confidence interval for the averages of the response variables or
"stochastic component”.
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With the same idea, Fraiman and Pérez-Iribarren (1991)
consider two extensions for the i.i.d. case, one of them that allows
overlapping between the observations at each local average and the
other one by using local medians instead of local means. In both
cases some optimal election of the number of observations at each
local average (or local median), and the number of subintervals was
possible.

Following the same approach we will provide conservative
confidence bands for the trend function g verifying the model
defined through (1.1) and (1.2), based on local means in the
gaussian case.

2. _Main Results. For the sake of simplicity we will begin

considering the AR(1) case. Let X,,..., Xy, r > 1 be observations
verfying
Xj=0 Xj.1 + U (=1,...,2r) (2.1)

|e|<1,where Uj is a gaussian white noise E(U;)=0, var(U,)=0?=
(1-02)var(X ;).

Define Wj = Xpyju1 - Xpj (=0,...,r-1) and V;=W-Wj, (j=1,...,r-1).
The following lemmas will be proved in the Appendix. Lemma 2.1

provides an estimation of the variance of X;which is independent

of the average of the response variables at each subinterval.
Therefore without loss of generality we will assume in what

follows that var(X j)=1. Lemma 2.2 will deal with the "stochastic

component " while Lemma 2.3 does it with the "deterministic
component”,

Lemma 2.1 If {Xi ) 1 [ERSR - verify (2.1) we have that:
a) E(W;)=0, var(W)) = 2(1-02+1) (=0, .... , r-1), and
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E(Y)=0 var(V;) = 2(1-02) Gt e« P10
2

b) E,rxi is independent of Wy (k=0, ...., r-1) , and therefore
=1

independent of the vector (Wq, Wy, ..., W)

2r
c) { X, V4, ..., Vo4} is a set of independent random variables.
=1

1§ sen2ir _a?

d)a ?v(@,r)= var ( 2)':‘,rx/ (21)"% ) = — f dA
’ e 2r sen2X/2 |1 - peir|2

o J

< (1-e))2a2= (1+[R])/(1-]0]).

-1
a) (rz ij) / 2(1-2?) has a Chi-square distribution with r-1 degrees

=1
of freedom, and {(1-02)"%(1-1/r)" iz: x} /{v(o,r);gvf}"& has a
Student distributioﬁ with r-1 degrees of freedom.
Let 0" ¢ (-1,1) , and define V| = W, - "W, Aj= Gtrsj,1)-g(t.),
W = Yiujur - Yrj= Wi+ Aj and V, =W, - 0°W,, .

Lemma 2.2 Under the assumptions of Lemma 2.1 we have

r-1 »g r-1 o
a)P(}_‘_V] 2a)2zP( LVy2za) forallaz0.
j=1 j=1

i r-1
b) Moreover, we have that P ( rz Vja 2a)2P( rz ij 2 a) for all a = 0.
j=1 jmi

c) If a is such that

toocm P ({05 010% T} o{( TV ) ven }4 | 5 a)
i I=

, and 0 is such that |@| < |P'| < 1 then

40



. 2r r-1~
P (|(1-1071) -1m*% T x/ (SV )4 | <a) 21-«.
j=1 Jn'l
A proof of Lemma 2.3, that will deal with the interpolation
error can be found in Hall and Titterington (1988), or in Fraiman
and Pérez-lribarren (1991).

Lemma 2.3 If tig1-t; =8> 0 for all =1, .. .2r and g verifies a

Lipschitz condition of order one on the interval [t;,t5,] with
constant C > 0 we have that | g(t) - g | < C { 8(2r+1) /2} for all

s 2r
te [ty,t] where g = (1/2r) T g(t).
j=1

We are now ready to construct a conservative confidence band
for the trend of a gaussian AR(1) process. Let subdivide the
interval where we are working, that we will assume without loss
of generality the interval [0,1] , into m subintervals I i=1,... m
each of them containing 2r,observations corresponding to values
Ii € Ii . Let

Vi= (1/2r;) Yd) G=1,....m).

z
tiel]

Thus, ¥; = (1/21)) t;ZIi alt) + (1/2r) 'EI‘ X(t) =

gi+(1/21) tﬁh X(t)
In order to obtain conservative confidence bands it is

reasonable to assume that var(X;) and @ are unknown. However we

will need an upper bound of |P| as well as an upper bound of the
Lipschitz condition constant for the function g. The value 07| will
play the role of the upper bound of [?| . More precisely we will
assume the following hypothesis.

Hi. @"is such that |2] < |@"| < 1 holds.

He. The function g verifies a Lipschitz condition of order one, at
each subinterval I;, i.e. there exists C;> 0 such that |g(x)-g(x")| <
Ci [x-x'| for all x,x' € I, i=1, .... , m.
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For each i=1, .... ,m, let a; be such that P(|t,i_-,| <q;) =1-a/m
where tre1 denotes a random variable with Student distribution

with r-1 degrees of freedom. The following theorem provides the
confidence band construction, and is a consequence of Lemma 2.2
(c), Lemma 2.3, and Bonferroni inequality.

[heorem 2.1 Under H1 and H2, if model (2.1) is verified we
have that gt

P(g(t)ed; tel,i=1, .., m)21-x

where J| = [Li_Fh] , Li-vi' {a|35f2r1(1'|0.1)} {ri/(ri*1)}% -
{Ci5 (2r+1)/2}, Ry=Y;+ {ad/ 2r;(1-]07| )} /(-1 +
{Ci5 (2r+1) /2} ,(i=1,...,m),

5= I'i-1~ = ~
agi=( ]21 Vfi )% and V,. are the corresponding variables V; for the

I;interval .

We now turn to the AR(p) case.
Let (Y;,X;) j=1, ..., N be observations verifying (1.1) and (1.2),

r>p and consider W i = Xeyjer- Xrg (=0, . . . ,r-1) as before.
Define V]’ W]_1_,,p- ¢1W]_2+p'. g .'¢ij_1 (j=-1, o ,r'p) ; 0|=' E(Xl"‘l Xj)

. We may assume without loss of generality that var(X;)=1.
Let «_q -(¢;..... ¢p )and ¢ =(,.. ¢p)‘. For the AR(p) case p=1 H1

will be the following assumption.

H1:¢ is such that 0<1- 3101 < 1-3 10,1, $16,1<1.
l=1 l=1 i=1
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p
Remark 2.1, We use the condition ¥ |¢,|<1 in order to prove (d) of the
=1

following Lemma. This condition follows from (1.3) if p=1.
Moreover, if ¢;2 0 for all i=1,...,p is also a consequence of (1.3).
The following lemmas will be proved in the Appendix.

Lemma 2.4 I Xyzj=150::2r} verifies (1.2) we have

a) E (V;)=0, var (V;)=2 (1- §¢19|)-20'2 for j=1, . . . ,r-p where
l=1
o %= var (U,).

2
b) 3 X is independent of W, ( k=0, . . . 1)
i=m1

2r
c) )‘_ Xi, Vi, .. . Vip } 18 2 sel of independent random variables.

d) dzv(¢ )= var{ 2 X/ (2:')/z } =
- =
T

= (1/2m) [{sen2rr/ (2r sen2A/2)} (0% [1- Soe[F) dr <
- o =t

p .
< o2/ i- S0 i Sen<r.

=1 im1
e) 2 V /(20‘2) has a chi-square distribution with r-p degrees of
j-
freedom, and (1-p/r)*% .21 Xi/ { fv] Y2 | V(6.1 )/z} has a

Student distribution with  r-p degrees of freedom
Let J2+F-‘ w2+p “1 "‘f 1ep ~ L 12+p d

W ot WL T \.f\{m‘J and V, = W _, -9, W, o24p = - -~ O Wi
Lemma 2.5 Under the assumptions of Lemma 2.4 we have
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a)P(r_E:(V;. )223)2P(EVf2a) for all a 2 0.

j=1 jm1
N

b) Moreover we have that

r-1 <5 r-1 2
P(z; Vi za)zp(jz'qvj >a) forallaz0.
J- =

c) Let ¢' verifying H1 and a such that

2r r- |
-« =P ({0} S X /{( 3 VE) e }4).

im1 j=1

2r o - g
Then P (| {(-pV0}*% (1- 310,03 X; /(3 V2 )% <a)>
l=1

im1 j=1
i 20 r-p _ 3
P(|{tr-pMn}2 X X /{ v(®.0) ( f V2)}%| <a)21- .
im1 j=1

Finally in the same way as for the AR(1) case we get the following
result. Al

Theorem 2.2 Under H1 and. H2, if the model (1.1) and (1.2) is
verified we have that if

Ji=[Ti- {2 (1-pim) %)/ {2r- 16710} - 18 @ren) /2 ; Tie
: |=1

+ {ad@; (1-p/r)2}/ {2r(1- i 16, 1)} +Ci8 (@r+1) /2 ]
l=1
P(g(t) € JI ,tel, Y (. m) 21«

- r-p ~ ~ ~
where o;=( % Vlz_i )"'5 and V; are the corresponding V; variables
j=1

for the interval I;; a; are such that P ( Et’i'Pl <a)=21- «/m and tp

is a random variable with Student distribution with r-p degrees of
freedom.

3. Some examples, In this section we give some artificial examples
from simulated data. Figures 3.1 and 3.2 shows respectively, 2000
observations from a gaussian AR(1) process with p =01, 0 = 0.2
and trend function Y = 0.5 + | x-0.5 | and a 95% conservative
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confidence band constructed using 20 subintervals, a Lipschitz
constant c=1 and a overestimation for p , p = 0.11. The graph in
Figure a 3.2 corresponds to a step functions taking values Bi+ and E-‘.{l

, i=1, .. .,20 , where B 1” and B" denotes the upper and lower bounds

of a 95% confidence band, which are plotted by joining succesive
values by straight lines. The graph of the true function is also
given. We can see, for instance, that there is clear evidence against
the hypothesis that the true trend function is linear.

Figure 3.1 Figure 3.2
Figures 3.3 corresponds to 400 data of an AR(2) process with
¢ 1=0.1, ¢,=-0.05 , ¢=0.3 and trend function y= | x-0.5 |. A 95%

uniform conservative confidence band constructed using 8
subintervals, a Lipschitz constant c=1 and a overestimation for |¢ 4]

+dal |¢1'| N |¢,‘;] = 0.185 is given in Figure 3.4.
Figure 3.3 Figure 3.4
Finally Figure 3.5 and 3.6 corresponds to 2400 data from an

AR(2) process with ¢4=0.25 , ¢,=0.1 , ¢=0.2 and trend function y=
0.5 + | x-0.5 |. The overestimation of |[¢,]| + |¢| used on figure 3.6

was l¢1'] + !¢2'l = 0.37 , and we use 10 subintervals and c=1.

Figure 3.5 Figure 3.6

Appendix, We will give now the proofs of Lemmas 2.2, 2.4 and 2.5.

Proof of Lemma 2.4
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a) E(V,)=0 since E(W;)=0. EW W,) =20;- 205, i20. if

we define Pgy=1.

Thereforo
?i-i ¢, P|i-l| = 0, implies that
‘ =1 _
E (Wii (Wi $1Wieq= o - $pWicp)) =
' 2(0-P2y.i41) - 2li (@) P2k-intar) =0.  (4.9)
=1

Thus,

Var (V) = E ((Wirp- 35 6 Wirap) ( Wirap - i@lwl-l-up) )
) I's1 -

. =E (wi-"ﬂ) (;‘\N’-ﬁ.p" i¢l W]-l-1+p ) o
l=1

2 (1- 02]4'29-1) -2|§1¢|( p[' 92]1-294-1) =2 (1'|i ¢] p|)"2¢2 (j=1,, r-p).
= =1

2 2r 2r
B B ) BrnerXed Y= 2, @i 25 @iy = O
1-1 ]-1

j= 1
2r 7 27

since ;1°|r+k+i-ll -ZOIM._rl taking | = 2r-j+1 ; and
= j'- 1

independence follows since the variables are gaussian.

c) Since (Vy,...,Vyp) depends on the vector (W, ..., W)

: : 2r
which is independent of 3 X, (c) will holds if we show that
: im1
E (VjVy,)=0 fori =1 , which follows easily from (4.1).

d) If f(A\) denotes the spectral density of a stationary process
{ X;:t21} we have that
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_ j’" sen3)\T/2

. Tsen2)/2 f(A) dA

.

var (3 X,/ T"2)
t=1

(see for instance, Anderson ( (1971) pag 459). Therefore

2r ™ 2
var ( Exl/(zr)wz) - 1/21:[ i%ﬂ |1-f: &, einl| 2 dx
. -Tr i-]

. __sen3ir i
ild} [)21/2x I Srsenza/z A -02(1-il¢,l)2

since |1-i¢ eir |2 > (1- R.,(f‘,cb oir) 2 2 (1- f:w )2

l=1 fe= 1

and i|¢ll<1.

l=1
@) Follows from a) and ¢). «

Proof of Lemma 2.2, a) We have that

r-1 r-1
YVv? - 121 {(Vi+ (e-27) Wyq)>.

j=1

Let Z, = (P-0')W,
Z, = (0-07)W, = (0-0°)V, + 0Z,

j=1
Z;= (0-0 )W, = (-0") :):‘o"‘ Vi + 01z, (j=2,...,r-1).

r-1 j-1
rﬁ Vi? = Z [V;+(e-0") t D Mo B2 Sl W M )
a . (4.2)
Let B = { r-z: Vi2 2a}, 1lgthe indicator function of the set B and
= r-k-1
fx V1, « -« V1 Z 2 V2 defined as in (4.2). for, k= 0,...,r-2.
P(B) = E ( E (1lg /v1,... o Zy) ) =
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= E(E (Mg ooy ffo (Vis - oo Vet ZO}H/ Vas oo Vi2, Z9)) 2

E ( E (ﬂ[a,...cc.) {f1 (V1, LU 'Vf-2rz1) * Vf—1} / V1r LR !Vr-2' 21) )

since conditional to V., ..., V., Z; we have that
fo(Vqs v VetsZy) = (Vg +¢ )2 +b  withb =1 (Vy, ... V2,2
and

r-2 .
c=(0-07) Yorlv.+0"22 and therefore
i-‘l
P(V2,+b2a)sP((Vyy+c)l+b2a) (4.3)

which follows from the fact that V,; is a zero mean normally
distributed random variable. Therefore

2
E (Mg 400) fo V1, -+ - Ve hZy)D) 2 E (Mg 400y {Fy (Vi4eenVie2iZy) + Vi })
=E (E (g yoo) { (Vau -« - Ve2sZa) # V211 Ve oo Ve 24y Vi ) )

; 2 2
=E (E-(1|[a'+°°) {fa (Vi) . .o Veady) +Vo+V 4}/ Ve Vs, Z4,V0))
by using the same argument, so we get that

E (g 400y {fo V1, - - - Venidq) 2
E (T casy B2 (Vo -+ - VpasZi) o+ Vog# Vi)

Finally ve get a) by iterating the argument already used.
With analogous argument we get b)

c) will be shown directly in Lemma 2.5. «
Proof of lemma 2.5, a) Let W, 4=(W,,,Wp,,... \W,), B be the

backward operator and P (B,¢) = i ¢iB' . We will first prove that
im1

for all j
V] = V] + g My o o -V]-1-V.!p-1)

48



where a;: RI*P1, R is a real function. Moreover, is a linear function

in all variables.
Effectively, we have that

-

Vi = {FP(B,¢)IW, = {I-P(B,0)}Wy + P (B,0 -0)Wp = Vi ay(Wp.q) -
V= {1-P(B.0") Wpys = Vot P (B -0)Wp,y =

=V + (¢1-‘¢1)Wp+ (¢:;'¢2)Wp-1+---+ (Q;F‘¢p)w1 =)

V(-0 1)V1+(0y-01) P(B.OIWpt (d-02)Wpr# . . . +{d-0p)W, =

Va+ a3(V4,Wp.)
since V; =W, P (B,6)W, .

Finally, since

Visg= {IFP(B,0 )}Wpyj = Vi,i+ P (B,d-0)W,p,; =
Vier+ (91-¢)Wpiju+ . . . +($s-0p) W,

the desired result follows by using recursively

that Wp+j-s = Vj-s+1, - ii ¢iwp+j-s-l as in V2'
=1

Now we get a) using a similar argument as those used in the AR(1)
case (Lemma 2.2), where the funcuon ay(Vy, ...., Vj4,W,.4) plays

L) *1 i
the role of (0-0°) '2 eFlvp+ 01! Z,.
=1

b) follows as in Lemma 2.2.

2r 2r r=
c) Let tp=a ( (r-p)ir} 172 z X {(Var(z Xi)2r) }-1!2 (f Vi2 )-112
jm 1 = 1 j=1

Then, Lemma 2.4 d) implies that
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" trp 2 (rp)/r}"zlzxui fV a (1- im’r[)
=1

and the conclusion follows easily from b) and Lemma 2.1 b) and ¢) «
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2000 DATA FROM A GAUSSIAN AR(1) PROCESS

¥iva 0002

et 0.8 Q.7

0.1

RO=0.1,

Figure 3.1

95% UNIFORM CONFIDENCE BAND

FOR THE TREND OF AN AR(1) PROCESS

0.7

ROSTAR=0.11, SGMA=0.2, C=1, IR=20.

Figure 3.2



400 DATA FROM A GAUSSIAN AR(2) PROCESS

TREND=ABS(X—0.8)

1.6
e
1.4
12 = + +
+¢ '\+ + ++
1 - +
+
+ =] +4+ 4
—_ + + 4
0.8 =44 ++.H-;" . + ;‘; . ¥4
+ + + +
0.8, ++ ++ e+ # + 0t 'l"++-t"4‘:
*i ++ 53+ i Wied Ty %A
¥ it * TR L e
04— *, & P o =+ ¥ = ¥ 2R W
oy X + o+ T BT ;+_p-++ P
+4 % L+ +h o+ + 44 + 4
S T+ T e + + +
0.2 ++'H"++++ gt _’-9,4. :++ Joat 4 4,*4:' 1
+
W Mk * +"‘i¢} ok e '*‘!"4‘\1-.‘-14-*'=
) -F++++ 4 +::" 1, +?+:1;;+; +++w " i
+ +
—0.2 + + * Py _:‘"’-!- + 4 _,,;4-# ++ -+
-+
* N ¥+ M + *
04~ b B g
+ +
-0.6 . . S — - . -
o] 0.128 0.25 0.378 0.8 0.625 0.75 0.875 1
PHI(1)=0.1, PHI(2)=~.03, SIGMA=0.3.
Figure 3.3
g95% UNIFORM CONFIDENCE BAND
FOR THE TREND OF AN AR(2) PROCESS
1.6
1.4
1.2 —
T—
OJT
0.6 — —I_I——
0.4 —

e e

— ]

‘—‘—\_J

0.4 —

-0.8 v 7 ; ¥
0.125 0.25 0.373 035 0.623

PHISTAR(1)=0.11, PHISTAR(2)=—.038.
Figure 3.4
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2400 DATA FROM A GAUSSIAN AR(2) PROCESS

o 1 0.2 3 0.4 0.8 0.8 0.7 0.8 0.9 1
PHI(1)=0.25,PHI(2)=0.1, SIGMA=0.2.
Figure 3.5

95% UNIFORM CONFIDENCE BAND

FOR THE TREND OF AN AR(2) PROCESS

0 —m - - S e e e e
0 a1 02 0.3 0.4 as 0.6 0.7 0.8 0.9 1

PHISTAR(1)=0.26,FHISTAR(2)=0.11, C=1.
Figure 3.6
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ON STABLE AND UNSTABLE SETS
by J. Lewowicz and J. Tolosa

0.Introduction
Let f:M—M be an homeomorphism M of the smooth compact
connected riemannian manifold M. For € > 0, x € M call

Sg(x) = {y- e M: dist(f"(x),f"(y)) =€, n = 0}
and
V(i) = {y e M: dist(f"(x),f"(y)) =g, n = o}

the e-stable and es-unstable sets of x.

Stable and unstable sets are basic elements of the
dynamical structure of f and a fundamental tool to face problems
of classification of dynamical systems under conjugacy. See, for
intance, [F)], for the case of Anosov diffeomorphisms, and [H], [L]
in connection with the topological equivalence of expansive
homeomorphisms of surfaces. In case f is expansive, for any X € M,
these stable and unstable sets contain non-trivial (infinite)
connected pieces.

In this paper we obtain some general results on the
existence of such connected pieces at each x € M (Proposition
1.1). When x is a periodic point which 1is not a repellor
(attractor) it is easy to show that Sc(x)(Ue(x)) contains such a
piece, for any € > 0. However, points X in a minimal set may have
trivial s_(x) and U, (x) for small € > O. Consider the Denjois map
of s', i.e., take a rotation of s' by an angle 2ma, where o is
irrational, and replace the points of a dense orbit {x, neZ} by
intervals of size decreasing with |n|, in order to get a new space
also homeomorphic to s'. The Denjois transformation may be defined
by asigning to each point that was not on the added intervals, the
previous image under the rotation, and mapping linearly the

interval we put instead of X into the one replacing x neZ.

'
Any two points which do not lie in the same added int:;val will
be, under some positive and some negative iteration at a distance
larger than the 1length of the interval replacing X, In fact,
between these two points we find, in the original rotation,

positive and negative iterates of x . Thus, for any x in the
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Denjois -minimal set which is not an end-point of some added
interval, Se(x) = Ue(x) = {x} if ¢ > 0, is small enough.

For each end point of the interval replacing X that
also belongs to the Denjois minmal set, there is a non-trivial
connected set which is at the same time the g-stable and
e-unstable set (£ small) of it. Moreover, this connected set has
the property that its diameter decreases under positive and
negative iteration. Proposition 1.1 shows that if for arbitrarily
small € no limit point of f has an e-stable (and e-unstable) set
with this property, then for each x € M which is not a periodic
repellor (attractor) there is a non-trivial connected set included
in Sc(x} (resp. Uc(x)). Theorem 2.2 shows that this property on
the limit set of f is Co—gene— ric; thus, for f in a c’-residual
subset of Hom (M), and each x € M, Se(x), Us(x) contain
non-trivial connected pieces.

Let now dim M=2; the description of local stable and
unstable sets and the classification results of [H], [L] are based
chiefly on the existence of those connected pieces, and on the
fact that two such pieces meet at most at one point. As a matter
of fact the same description of local stable and unstable sets may
be obtained, even for non-expansive f, at points where the above
mentioned properties of these stable and unstable pieces hold for
them and for neighboring points. This is the case for instance if
we take the homeomorphism of 5 defined, after indentifying, x to

-X on Tz,applying the usual linear Anosov map [i i

get a non-expansive homeomorphism of s? which, except at the image

] of T°. We

of branch points under the canonical projection, the stable and
unstable sets are topological manifolds.

We show that for f in a ¢° residual set of Hom (M), if f
has a non-trivial attractor Cc < Q(f), these connected pieces
Ce(x) c Se(x), Ds(x) = Uc(x) meet only at x, provided x € C. Then
the arguments in (L] permit to show to Dc(x) is an arc.

Thus, for almost all attractos, the connected unstable
sets of each of its points are arcs.

Finally, we want to thank the participants of the
Seminar on Dynamical Systems of the IMERL, for useful

conversations on these topics.
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1.General results

Let M be a compact conneced smooth riemannian manifold
and £ a homeomorphism of M onto M. Let w(f) (x(f)) denote the set
of all w-limit points {a-limit points) of £, i.e.

w(f) = Y, w(x) , a(f) = U a(x)

where w(x) (a(x)) is the set of w-limit points (resp. «-limit
points) of “x. Obviously w(f) v a(f) < Q(f); as usual Q(f) stands

for the set of non-wandering points of f.

Proposition 1.1

Assume there is a sequence of positive numbers P+
pw—»o, such that for any p = P there is no point x € w(f) and
connected set C containing x such that dist (£"(x),f"(y)) s p for
every Yy € C and all n € Z and that dist (x,z) = p, for some z € C.
Then, for any € > 0 and x € M, there is a compact connected set

C.(x), x € C_(x) # {x} such that dist(f"(x),£f'(y)) = & for every

y € cs(x) and all n =z 0, unless x is a periodic repellor.

Proof Let £ be a positive number and x € M; we shall assume
first that for some m with p, = P < €, £ has the following

property: for each k=1,2,..., there is n_> 0 such that, for some
n n -V

, 0S¥ = n, f'v(BUk(fk(x))) is not included in B _(f* (x)).

14

(For ¢ > 0, X € M, Ba(x) denotes the ball {y € M: dist(x,y) = a}).

Let y e B_(f*(x)) be such that f£7(y) ¢« B

1/k p
n -V nk n
(£F* (x)). Take an arc joining f “(x) to y within B (f Yy
n
say a(t), 0 = t =1, a(0) = £ 5 (%), a (1) =y, and let t°_ be

the supremum of those t e [0,1] such that f'v(ak([o,t))) is
nk—V

contained in the interior of Bp(f (x)) for every v, 0 = v = n .

Thus, tor these v,

= n -V
£7(a, (10, £1)) c B (£° (x)),

and ol some vk, 0 = vk = n,

k

57



£ (2, ((0,£0)) 3B (£ *(x)) * ¢
K Kk [}

For each k, we choose then such a v and show that %iﬂm
VL W ey In fact, if some sub-sequence of v, were bounded, we
would have that for infinitely many k, v = N, for some fixed N,
and therefore f' would map sets of diameter at least p onto sets
of arbitrarily small diameter, which is absurd.

Oon the other hand, if n - v _ were unbounded we could

find y € wr(x) and a compact connected set C, y € C,

dist (y,z) = p, for some zeC, such that dist (f“(y),f"(u)) = p for
every u € C and all n € 2, in contradiction with the hypothesis of
the proposition. Indeed, such a connected set C may be obtained as

n -V
follows: assume that f£°%

k(x)) converges to say, Y (the
construction is the same in case we have to replace o~ by a

convergent sub-sequence) and take

v
¢ = A clos [Jgkf J(aj([o,tj])}]

n
Thus, n o= v is bounded, and therefore the arcs f k(ak([o,th)

have diameters bounded away from zero. The set

By (7 = A

, elos (0 '(a,(10,£]1))]

satisfies <clearly the requirements of the thesis of the
proposition.

Let us suppose now that the assumption made in the first
paragraph of this proof does not hold. Then, for every m with
Rl R there is k = k(m) > 0 such that for every n = 0.

-V n - n-
f [Bm(f (x))] < B, (£77(x))
if o = v s n. Consequently, for any y € wf(x), we have that

£(B,, (¥)) < B, (£ (y)), n =0

As p;*ao, we get that wf(x) is uniformly Lyapunov stable

in the past. Take y e w_(x); since dist|x,clos({f"(y): n e Z})| >0
contradicts the stability in the past of wr(x), it follows that
X € w_ (x) and that w_(x) is a minimal set which, because of its
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uniform stability properties, consists of almost-periodic motions
([N.S] p. 390).
If x is not a periodic point, we choose p < &, the

corresponding kn = k and a point y = B“m(x), Y # X, Y € wroq.

Join x to y through an arc contained in ka(x), and let n—% =

n
be a sequénce of negative integers such that fi(x)—ax. Since on

account of the uniform stability of wf(x) in both senses, the
diameters of the nfdterates of this arcs are bounded away from
zero, we take Es(x) as the usual intersection, for i = 0, of the
closures of the unions of the nj-iterates of the arc, j = i.

Clearly, C_(x) satisfies the required properties.

If x is periodic, and the diameters of fm(Bbm(x)),
n = 0 do not tend to zero, the previous arguments apply and permit
to construct a set C_(x) as required. This complete the proof of

the proposition.

Remark The same arguments prove that, unless x is a periodic

attractor, there exits a compact connected set Dc(x),
X € De(x) = {x}, such that dist(f“(x),fn[y)) = €& for every

Yy € Dc(x) and n=0.
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2.Generic Properties
Let M and f be as before. Call

Sé(x) = {y € M: dist(f"(x), £'(y)) s &, n= o}

and Ué(x) = {y e M: dist(f"(x), £ (y)) =€, n = o}

Let f satisfy axiom A. Since every basic set of f is
isolated and f/Q(f) expansive, we may choose g = €. > 0, such that
Sc(x) n Uc(x) = {x} for evry x € Q(f). For every f satisfying

axiom A we choose once for all such an €.

Lemma 2.1

Let f satisfy the axiom A and strong-transversality
conditions.Then for every m=1,2,..., there is a (?—neighbourhuod
U(f,m) of £ such that if g € U(f,m), for any x € flI(g) we have that

[s2e0 - sz ) nuiea =9,

where € = €
Proof Arguing by contradiction, let us assume that for some
m > 0 there 1is a sequence {gv} of homeomorphisms of M that
converges to £ in the c® topology and such that for each

v =1,2,..., there exists x, € ﬂ(gv), and

9 g g
v v v
Yo & [Se (xv) = .8 s/lxv) ] n Uc (%) .
For these v, let h, denote a semi-conjugacy between f
and g, i.e.. a continuous map of M onto M, such that
fuhv = h,-g,. Furthermore let the hvrconverge in the c° topology

to the identity map of M [Hu].

We have that dist[g;(xv), g:(yv)] < ¢ for every n € Z
and that

aist(g,” (x,),9,”(v,)] > e/m,

n n

v v
for some i, > 0. LeF 2, =g, (xv), u, =4, (Yv) and call (zm,uw)

a limite pair of (zv,uv). Clearly z > u_ and dist
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(f(zw),f (u ))=€, n € Z. But since z, € Q (gv), hv(ﬂ(gv)) ¢ Q(E)
and dist(zv,hv(zv))—+ﬂ we get that hv(zv)mazm,and that z e Q(f);

a contradiction.

Theorem 2.2

There is a C’-residual set T such that if g € &, & > 0,
and x € M, then S;(x) (UZ(x)) contains a compact connected set

Ce(x)(De(x)), X € Ce(x) z {x}(x e Ds(x) # {x}), unless x is a
periodic repellor (resp. attractor).

Proof For f satisfying the axiom A and strong transversality
conditions, take the chosen £, = 0 such that for x e Q(f),

S;(x} n Ué(x) = {x} where, as before, e = €. Let m be a
positive integer and let U(f,m) be the co-neighbourhood of f given
by Lemma 2.1. call Nu the union of the U(f,m) for all f satisfying

the above mentioned conditions; then Z = 81 L. is a c%-residual
ne
set [S5].
If g € X, for each m, g belongs to some U(f,m). Choose
p >0, € « p < € in such a way that, when m—w, lim p = 0.
m m m m

Then, if x € Q(g) and C 1is a compact connected set
containing x such that dist(g"(x),g"(y) = p, for every y € C and

all n € Z, we have that dist(x,z) < P, for any z € C, for

otherwise, z e [s:(x) - S;/_(x)] n Ug(x) in contradiction with
Lemma 2.1. Therefore the thesis of the theorem follows from
Proposition 1.1 and the fact that there is a c®-residual subset of
Hom M, such that each homeomorphism in this set has no periodic
attractors or repellors [PPSS].
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3.The size of stable and unstable sets

' In (L 1, section 1, it is shown that if f is an Anosov
diffeomorphism of a compact connected riemannian manifold there
exists a positive integer m such that, either ”(f“‘);uﬂ = 2 |u] or
||(f'"'):( u = 2|u|, for each u e TM and every X € M. But the
arguments there, also show the existence of such an m, with the
same property on the resfriction of a diffeomorphism f of M, to a
compact f-invariant hyperbolic subset C of M. Let A:KIEJC TxM —R be

the positive gquadratic form defined, for u e TM, x € C, by

m=-1 m=-1
A(w) =3 Y [(£) ul®. Then it is easy to check that
1=0 j=0

A(f/u)- 2A(u) + A((f“);u) =

= 1€ 2u®=2 ) ®+] (£7) "u)®

that is positive for every u e TM, fu] # 0, x € C. Because of the
continuity of £/, (£ ')/, this quadratic form satisfies the same
properties on a neighbourhood of C, and moreover, we can define
for %,y in some neighbourhood of C a function V(x,y) = A(u), where
exp u =y, provided y is close enough to x. For some o > 0 we
will have again on account of the continuity of £/, (f ')’ that if
0 < dist(x,y) < «a,
V(£(x),£(y)) - 2V(x,y) + V(£ (x),£ (y)) > o.

Let f now satisfy axiom A&, Bi, i=1,2,...r being its
r

basic sets, Q(£f) =UR. Let p > a9,

p < rln;:} ( rlu_lg s dlst(xl,xs)), and a > 0 be so that on

J )

x €B
1

{x € M: dist (x,Q(f)) < p } we may define a quadratic function V
with the above mentioned property for 0 < dist(x,y) < «. Let
c. > 0, and let k > 0 and 8 > 0 be chosen so that V(x,y) = k
implies dist(x,y) = €; and dist(x,y) > & if V(x,y) = k. Let
U = Uu(f,p,k) be a Co-neighbourhood of £ such that for g € U

{x € M:dist(x,Q(g)) = g} c {x € M: dist(x,Q(f)) < p}

and that if dist(x,B) < p, dist (y,B) < p, for B a basic set of
f that is not a periodic repellor, and if 0 < dist(x,y) < a, we
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have
1)v(g ™ (x),97 (y)) > k, for some y with V(x,y)=k.
11)V(g(x),g(y)) - 2V(x,y) + V(g (x),g (y)) > 0 for every y
with V(x,y) = k.
Let g be a homeomorphism of M and let Ce(x)' Dc(x)
denote the connected components containing x of the g-stable set
Se(x) and Fhe g-unstable set Uc(x) of x.

Lemma 3.1

Let g € U(f,p,k). Assume that for some x € M and some
f-basic set B that is not a periodic repellor (atracttor) we have
that for n = 0 (n = 0), dist(g"(x),B) = p/2.

Then C_(x) (resp. D_(x)) contains a point y such that
dist(x,y) = &.

Proof We prove that C_(x) contains such an y, arguing by
contradiction. Assume then that each connected set Jjoining x to
ka(x), where

v (x) = {y e M: V(x,y) = X }
contains a peint y such that for some n > 0,
g'(y) ¢ v;(g“(x)). Because of the compactness of V (x) we may

assume that all those n are less than some N > 0. Choose v > Nj;
then for some ze BVk(gV(x)) g'l(z) 2 Vk{gv'l(x}) because of 1i).

Join gv(x) to z through an arc a:[o,ly—ﬂﬁ(gv(x)). Let t be the
supremum of those t for which

o v—
9"[a[0.t1] - Vk[g "(x) |,
0 = n = vy. Then because of the contradiction assumption,

for some p, 0 < p < v; gr(a(t)) e av#(ng(x)), and, at the same

time, g "(a(t’)) e Vi(gvm(x)), for 0 = n 5= v, which is absurd on
account of ii).

For f satisfying axiom A and the strong transversality
property, and for n > 0 choose P 0 < HL % % and kn =05

dist(x,y) = % if v(x,y) = k in order that each g e U(f,p ,k)
n n

fullfils conditions i) and ii).
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Denote V(f,n) a c%-neighbourhood of included in
U(f,p_,x ) such that for g € V(f,n) there is a semiconjugacy h,

1

foeh = heg such that dist(x,h(x)) <
union, for f satisfying axiom A and the strong transversality

for X € M. Let ¥ be the
n

conditions, of the V(f,n). Then £ = o #_ is c’-residual.

-

Proposition 3.2

Let g € £ and let C be a compact g-invariant susbset of
M, C ¢ Q(g), that is either connected or transitive. Assume
moreover that € is an attractor, i.e., there exists a
neighbourhood U of C, g(clos U) c int U, such that nQog“(U) = C.

Then for each £ > 0, the diameters of Cc(x) are bounded away from
zero, on U. The diameters of Dc (x) are bounded away from zero on
c.

Proof Let g € Z. Given € > 0, choose n such that % < g,

E < dist(c,M-U). E < diam C. Then g € V(f,n) for some f with the

axiom A and strong transversality properties. Since € < Q(g),
h(c) < Q(f) and as h(C) is connected or f-transitive, it is

included in some basic set B of f. Since E < dist(c,M-U) there is

a neighbourhood W of h(C) such that clos(h™'(W)) c U. From this
remark it follows that B = h(C) is also an attractor. Then Lemma
3.1 applies and permits to obtain easily the thesis of the
proposition since B, being connected and infinite (i— < diam C) can
not be the orbit of a periodic point.



4.Dim M = 2
Let g:M—M, g € Z, have a compact attractor C < Q(g),
diam ¢ = d > 0, and let U be an open neighbourhood of C such that

ngog"(u) = C, and p a positive number so that the ball of radius

10p centered at each x € M, is homeomorphic to a disk in R® and

that {x e M: dist(x,C) = 10 p} & Wi
Let €, 0 < £ < Ig and let. o > 0, ¢ < € be so that if
dist(x,C) < f% ; Cc(x) contains a point b dist(x,yo) = ¢, and

that for x € C, D_(x) contains Z,, dist(x,zo) = o.
Since C is an attractor De(x) ¢ C for each x.€ C, since

dist(g™(x),g"(z)) = €, n = 0, for z e D_(x), implies

n
z €0, 9 (U)= cC.
Let f:M—M satisfying axiom A and strong transversality
be such that g is semi-conjugate to f through h, f<h = h-g,

dist(x,h(x)) < % , for every x e M; § < o¢. h(C) = B is an
attracting basic set of f as we have shown before; moreover

n!(h(c))

C, for otherwise there would exist y ¢ C such that

h(g™"(y)) f(h(y)) € € for n = 0; thus g '(y) € U for n = 0
which is absurd.

For f satisfying axiom A and x € M, we will denotes as
usual,

Wi(x) = {y e M: dist(f"(x),f"(y))— 0 as n— w}, and W'(x) the
unstable manifold. For £ > 0,
W;(x) = {y € W'(x): dist(f"(x),f"(y)) s €, n =z 0}.W;(x) is defined

similarly.

Lemma 4.1
h(D_(x)) < W'(h(x)) if x e C.

Proof Consider, for x € C, h(Dc(x)) c B, and let B,y be the
end points of the maximum arc containing h(x) = £ and included in

h(D_(x)) n W'(£). Construct a neighbourhood of this maximum arc by
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taking a very close but strictly larger arc of W'(£) with end
points B’¢ h(DC(x)) to the left of B and 7’ ¢ h(Ds(x)) to the
right of ¥ and by tracing through each point m of this new arc the
local stable manifolds w;,(n) where 8’ is chosen so small that the
neighbourbood constrcuted in this way is homeomorphic to a
rectangle r = b x ¢ where b,c ¢ R are intervals, b homeomorphic to
the arc with end points B/,y’ and ¢ homeomorphic to w;,(E). We may
assume that through each point ¢ included in B and in this
rectangle we may trace for some 8, 0 < 6 < g, W;(C) and that this
arc meets W;(g}: if this were not the case we may take negative
iterates of f in order to get that the maximum arc with end points
B,¥, becomes small enough to apply the local product structure on
B.

If h(D (x)) does not coincide with this maximum arc, we
may assume that the rectangle is so small that h(De(x)) contains
some points in the exterior of the rectangle. Thus, the connected
component of h(Ds(x)) n r containing £ must reach the boundary of
the rectangle. Through each (¢ that belongs to this connected

component we trace W;(C) and find the intersection WS(E) n W;(().

We claim that the range of the mapping C—%W;(E) n W;(C)
is {£&} which is absurd.

If not we would get a non-trivial subarc & of w;(g)
contained in B. Since the unstable arc through £ is also included
in B we obtain that B contains open sets. Since stable manifolds
of points in int B = B° are also included in B° as it is easy to
show inasmuch as this happens for stable manifolds of the interior

periodic points, we get on account of the local product structure

on B that 4B° = ¢, i.e., B = M. But this implies that f is Anosov;
on the other hand this arc & on W;(E) has the property that for n
= 0, f£f"(8) is contained in a disk of radius p, which is
impossible.

Thus, h(D_(x)) coincides with an arc of W' (h(x)).
Lemma 4.2
h(c (x))c W (h(x)).

h(D_(x)) n h(C_(x)) = (h(x)}.
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Proof Let again B,7 denote the end-points of the maximum arc
By containing h(x)=€ of h(C_(x) n w;(g). We iterate f forward in
order to get £"(B7) < W;(f"(ﬁ)), for some n > 0, where 8, 0< 8 <g,
is such that WB(C) n m;(f“(g)) =. (¢} for £ .= w;(f“(e)). If
h(cc(x)) had other points than those of By, then, as in the
previous lemma, we would get projecting through W;{C) on W;(f"(E))
a non-trivial arc or W;(f“(E)) whose forward iterates have
diameter less than 4e < p. Let 5 be an f-periodic point m € B, so
close to £"(£) that by projection through W;(C), for { in that
arc, we get another non-trivial arc &, & ¢ W'(n); the diameter of
£f°(8), n = 0 is this time, less than 6e < p. The unstable manifold
through m can be obtained as kgﬁ?”(é), i being the period of 7.
Let T ~an accumulation point of W'(n). This implies that W;(r)
meets twice W“(m), and we get, therefore, a disk of radius 2p

centered at T containing another disk D bordered by an unstable
arc and a stable one. Now we finish the proof of both assertions
of the lemma by showing that this is impossible. Since at the
border of D the diameter is less than 4p, for some n > 0, £ (D) is
so close to B that we may define on f"(D) and consequently on D, a
stable vector field which never vanishes. Take half stable
manifolds entering D and starting on the unstable border of D.
Since no half stable manifold can neither stay in the interior of
D nor meet the stable border of D, we get that the continuous map
that sends a point on the unstable border of D to the first point
where the half stable manifold through it meets again this
unstable border, has a fixed point, which is absurd.

Lemma 4.3

Cg(x) n De(x) = {x}, for ¥ € C.
Proof Let y € Cc(x) n DE(x) and suppose dist(x,y) > 0. Choose
f satisfying axiom A and strong-transversality, such that
feh = heg and 2dist(x,h(x)) < dist(x,y)-.

Then h(x) # h(y) e h(Dc(x)) n h(ce(x)).
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Corollary 4.4
Let x € C and y € C_(x)(D.(x)). Then dia’m(gn(cc(x))-—m

(diam g" (D, (x))—0) when n—+= (resp., n— -=).
Proof Otherwise we would get a point z € w(x) and a
non-trivial connected set containing z and included in

Cc(x) n Dé(z).

Proposition 4.5

For x € C, De(x) is compact connected and locally

conected.

Proof It follows from the previous corollary that given e/,
0 < €’ < g, there exists 8 > 0 such that, if y e Cg(x)(De(x)) and
dist (x,y) < &, then yecc,(x) (resp. y € Ds,(x)). The proof of the
proposition is now tha same as that of Corollary 2.4, (p.121) of
[L] -
Theorem 4.6

There is a C’-residual set of Hom(M), such that if g e I
has a connected attractor, C ¢ Q(g), diam C > 0, then there
exists €, > 0, such that if & < €, X € C, the connected component

Dc(x) containing x of Uc(x) is a homeomorphic image of an

interval. Furthermore, %EELN dist(x,y) = 0 for y e Dc(x).

Proof Choose €, as in the second paragraph of this section,
and let & < g . Since, by the previous proposition, D_(x) is
locally connected, any two points may be joined by an arc within
De(x). Assume that for some o > 0, o < &£ there are three arcs
a,b,c in D, (%) with origin x, joining x to 8B_(x) and such that a
nb=bnc=anc-= {x}.

Take f satisfying axiom A and strong tranversality, and
semi-conjugate to g through h, where dist(x,h(x)) < & for x € M;
here 8§ > 0 is chosen so small that the end points of each one of
these arcs has a distance not less than 1058 to the other two arcs.
Then we can not have that the h-image of an end point of some arc
lies on the h-image of the other arcs; but this is impossible.

This argument proves that an interior point of an arc
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like, say, a, can not be joined to another point of D_ (x) through
an arc that meets a only at that point. This proves the first
assertion; on account of Corollary 4.4, this completes the proof.
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Abstract

We show that if M is a simply connected compact riemannian
manifold whose geodesic flow is completely integrable with collective
integrals, then the loop space homology of M with coefficients on any
field grows sub-exponentially.

1 Introduction and results

The study of completely integrable geodesic flows (and Hamiltonian systems
in general) has regained momentum in recent years, as new techniques have
been discovered to construct examples. Let us recall that a geodesic flow is
said to be completely integrable if it admits a maximal number of indepen-
dent conservation laws (i.e. first integrals) that Poisson-commute. Classical
examples are given by n-dimensional ellipsoids with different principal axes
(Jacobi, 1838), left invariant metrics on SO(3) (Euler, 1765), surfaces of
revolution (“Clairaut’s first integral”), and flat tori.

In part due to Poincaré’s realization that complete integrability was a
rare phenomenon, the subject went through a period in which very little
development occured. In the past decades the study of Hamiltonian actions
and the geometry of the moment map provided the necessary framework for
a solid theory of symmetries. As a consequence, new examples appeared.
In 1978, Mishchenko and Fomenko [10] constructed left invariant metrics
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on semi-simple Lie groups with completely integrable geodesic flows. Then
Thimm [13] devised a new method for constructing first integrals in invo-
lution on homogeneous spaces. In particular he was able to show that the
geodesic flow on real or complex Grassmannians is completely integrable.
Guillemin and Sternberg [8] strengthened this method and obtained further
examples. Very recently Spatzier and the author [11] constructed the first
non-homogeneous examples using riemannian submersions. We were able to
show that spaces like Eschenburg’s strongly inhomogeneous 7-manifold (2],
CP2#CP?" for n odd and the exotic 7-sphere constructed by Gromoll and
Meyer [3], have metrics with completely integrable geodesic flows.

A natural question arises: What are the geometric and topological prop-
erties of a compact riemannian manifold whose geodesic flow is completely
integrable? Some topological features are shared by all the previous examples
and we would like to draw attention to them. Following Grove and Halperin
[6] we will say that a simply connected compact manifold M™ is rationally
elliptic if the sum of the Betti numbers of the loop space of M with rational
coefficients grows sub-exponentially or equivalentely, if the rational homo-
topy of M, 7.(M) ® Q is finite dimensional. Homogeneous spaces are known
to have this property, although is rather restrictive [6]. Rational ellipticity
is shared by all the known examples of manifolds with completely integrable
geodesic flows, but in fact they verify the stronger property that their loop
space homology grows sub-exponentially even when the coefficient field has
positive characteristic.

Before we state our results let us set some terminology.

Let G be a compact connected Lie group acting by Hamiltonian trans-
formations on a symplectic manifold X with moment map ¢ : X — g¢* (cf.
[7] for defintion and properties of the moment map). We will say that the
action has multiplicity k if for generic z € X, the symplectic reduction of
Kerd ¢, (i.e. the quotient of Ker d¢, by its null subspace) has dimension k.
Since the symplectic reduction of a subspace is naturally symplectic, k can
only take even values. If kK = 0, then Ker d¢, is isotropic for generic z € X
and we obtain the notion of multiplicity free action introduced and studied
by Guillemin and Sternberg in [8, 9].

Let H be a G-invariant Hamiltonian, £y its Hamiltonian vector field
and H™'(a) = N a compact regular level surface. Let hy,(H) denote the
topological entropy of the flow of ég restricted to N. In this note we want
to announce:
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Theorem 1.1 If the action of G has multiplicity zero or two, then h,,,(H) =
0.

Examples of homogeneous spaces G/H such that action of G on T*(G/H)
“has multiplicity two are the Stiefel manifold SO(n + 1)/SO(n — 1) and the
Wallach manifold SU(3)/T2.

Let us now describe some of the interesting consequences that Theorem

1.1 has in the case of geodesic flows. Let M be a simply connected compact

riemannian manifold. If the topological entropy of the geodesic flow is zero

then the Morse Theory of the loop space implies that the loop space homology

of M with coefficients on any field grows sub-exponentially, via results of

Yomdin and Gromov [4, 5, 14, 12]. Thus from Theorem 1.1 we obtain:

Theorem 1.2 Let M be a simply connected compact manifold whose cotan-
gent bundle admits a compact Hamiltonian G-action with multiplicity k < 2.
Assume the set of G-invariant functions on T*M contains the Hamiltonian
associated with some riemannian metric. Then the loop space homology of
M with coefficients on any field grows sub-ezponentially.

Observe that Theorem 1.2 and thus Theorem 1.1 are false for k > 4. For
example M = §? x S?#5? x S? is a non-elliptic manifold, which admits a
2-torus action . The lift of this action to the cotangent bundle of M has
mutiplicity ¥ = 4. Any riemannian metric invariant under the torus action,
gives rise to a geodesic flow with positive topological entropy.

The idea behind Theorem 1.2 is very simple. If the geodesic flow ad-
mits a sufficiently large group of symmetries (k = 0,2), then M has severe
topological restrictions (ellipticity).

Let us now describe briefly why actions with multiplicity < 2 are relevant
to complete integrability. A function of the form fo ¢, for f : ¢g* — R is
called collective (cf. [7]). We can prove the following lemma.

Lemma 1.3 If there ezist fi, ..., f, in C*(g") such that fi0¢,..., f,0 ¢ are
s-independent functions that Poisson-commute on X", then the multiplicity
of the action is < 2(n —s) .

Observe that if s = n, that is, if we can find a full set of commutative
collective Hamiltonians, then the action is multiplicity free. This was proved
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in [8]. Note also that a G-invariant Hamiltonian H is also completely inte-
grable if it admits n — 1 independent commuting collective integrals besides
H. In this case the action has multiplicity < 2.

Most of the known examples of completely integrable geodesic flows arise
by considering collective integrals as above. The Thimm method (cf. [8, 13])
fits into this framework.

Let (M™",g) be a compact riemannian manifold whose geodesic flow is
completely integrable with first integrals Fy =|| . ||, F2, ..., F. We will say
that the geodesic flow is completely integrable with collective integrals if
the functions F;, 2 < 7 < n are collective with respect to the action of
some compact Lie group G that leaves the Hamiltonian associated with the
riemannian metric invariant. Combining Theorem 1.2 with Lemma 1.3 we
obtain:

Theorem 1.4 Let M™ be a simply connected compact riemannian mani-
fold whose geodesic flow is completely integrable with collective integrals.
Then the loop space homology of M with coefficients on any field grows sub-
ezponentially. .

It is a pleasure to thank my advisor Detlef Gromoll for his permanent
encouragement. His suggestions have been a constant source of ideas. I also
would like to thank Ralf Spatzier and Steve Halperin for several stimulating
discussions.

2 Sketch of the proof of Theorem 1.1

Let H be a G-invariant Hamiltonian, {5 its Hamiltonian vector field and
H-(a) = N a compact regular level surface. If g, denotes the flow of {4,
then G and g leave N invariant. Set ¢ = ¢/N, where ¢ is the moment map
associated with the action of G.

We say that z € X defines a stationary motion if there exists a 1-
parameter subgroup ¥, of G such that ¥,z = g,z. We denote by St(G)
the set of all z € X that define stationary motions.

Lemma 2.1 If g° denotes the annihilator of g, in g*, then
Ini dp: = ¢}
if z is not in St(G).
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Now let H C G be a closed subgroup and let Xg = {zx € X : G, = H}.
It is known that Xy is a symplectic submanifold of X. Moreover ¢ maps
each connected component of Xy into an affine subspace of g* of the form
p + h°, where h° denotes the annihilator of & in g* [7]. Let Ny denote the
normalizer of H in G. The following is a crucial lemma.

Lemma 2.2 Suppose the action of G on X has multiplicity k. Then the
action of Ny on Xy has multiplicity < k.

Let us now start with the proof of the theorem. Let Y = N/G, call = the
canonical projection and let §; be the induced family of homeomorphisms on
Y. According to [1, Theorem 19] we only need to show that A:p(§) = 0.
Suppose first that the action is multiplicity free. Then it is easy to see that
St(G) = X and the result follows.

Next, let us prove the theorem in the multiplicity two case. We will
actually prove more: §; has only trivial recurrence.

Let 4 denote an orbit of g; i.e. 4(t) = §& for some £ € Y. Take
z € 7~(£) and consider the orbit of g; through z. Thus 7 o y(t) = 4(2).
Let H = G,. Then since g; commutes with the G-action, we deduce that
v C Xy. Let ¢n, : Xy — n} denote the moment map corresponding to
the action of Ny on Xpy. In fact ¢n, takes values on a subspace of n} of
the form p + h° where A° is the annihilator of & in n};. Set ¢ = ¢n,(7) and
¥ = ¢NH/ XuNN.

Observe now that Lemma 2.1 says that c is a regular value of ¢ if p=*(c)N
St(Ng) is empty. Set Q. = ¢~ (c) — (™ (c) N St(Ng)). We have now two
possible cases:

(a) ¢ € St(Ng). If this happens, then clearly 4 is a fixed point and hence
trivially recurrent.

(b) z & St(Ng). In this case Q. is a non- empty submanifold of Xy N NV
and v C Q.. From now on we will work with the connected component of
Q. containing 4. Let K. denote the identity component of the stabilizer at
c of the coadjoint action of Ny on n}. Since the action of G on X has
multiplicity two by Lemma 2.2, the action of Ny on Xy has multiplicity at
most two. But it cannot be zero if € St(Ny) . Thus dim Q./K. = 1. Now
we also have two possible cases:

(bl) Q./ K. is a circle. In this case it follows inmediately that ¥ is a closed
orbit and hence trivially recurrent.

75



(b2) Q./ K. is an open interval I. Then Q. is diffeomorphic to O x I,
where O denotes a principal orbit for the action of K, on Q.. Also v intersects
every orbit of K once and only once. Thus if we assume that 4 is not a closed
orbit it follows that every G-orbit in X that intersects ()., does it in a single
K.-orbit. Hence we can find a G-invariant neighborhood W of z in X so
that there exists T' > 0 with the property that v(¢) & W for ¢t > T. But this
implies that 4(t) € m(W) for t > T and thus Z & w(9), proving that 4 is not
recurrent.

o
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Expansivity and Length Expansivity

’

for Geodesic Flows on Surfaces
Miguel Paternain
I.INTRODUCTION
A continuous flow ¢ on a metric space K is said to be expansive
if for every £ >0 there is 8 >0 with the property that if

dist(¢t(x),¢ (y)) <8 for every t € R,X,y € K and a

o ()
continuous map ¢:R»R with ¢(C) = 0,then y = ¢t(x),where [t]<e.

Related to expansivity we have the concept of length expansive
flow.A flow ¢, :M+M of diffeomorphisms of a riemannian manifold M

is said to be 1length expansive if every rectifiable curve £

not contained in an orbit of the flow satisfies

sup length ¢t(g) = o .
teR

3

Expansivity implies length expansivity.We show this in section
IV of this paper. The converse property is false by the example of
Remark 1.4 of [8].However it holds for certain geodesic flows.This

is one of the properties contained in the following theoren
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THEOREM 1
Given- a closed riemannian surface M:and denoting ¢t:UH+UH its
geodesic flow,where UM is the unit tangent bundle of M,the
following properties are equivalent

a) ¢ is expansive

b) ¢ is length expansive and M has no conjugate
points

c) M has no conjugate points and for any two

disjoint geodesics 7, and 7, of the universal covering of M

1

sup dist( Tl(t),wz(t)) = .
teR

Problem. Does any one of the implications above hold if dim M »>2 ?
Our second result requires to recall certain basic concepts of the
geometry of a riemannian manifold M without conjugate points.
Given. peMand v e Upu,consider a point p € M, where N:M+M is
the universal covering,and take v e Uﬁ M satisfying " (P)V = v.
Denote Br(x) the béll of radius r and centre x € M .Its boundary

8B _(x) is,by the absence of conjugate points,a submanifold
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p and

diffeomorphic to a sphere.Let 7y be the geodesic with 7 (0)

7(0) =V .
Denote u'(p,v,r) and u (p,v,r) the scalar curvatures at p in the

direction  of v of the  submanifolds 3B_(7(-x))
aBr(r(r)).Clearly u+(p,v,r) = u—(p,v,r) and u+(p,v,r)
decreases (and u (p,v,r) increases ) when r increases. Define

u+(p,v) = lim u+(p,v,r) and u (p,v) = lim u (p,v,r).Then
r++o roteo

u(p,v) = u(p,v).

These curvatures play a central rd8le in the study of manifolds
without conjugate points.For instance u+(p,v) > u (p,v) for all
(p,v) € UM if and only if the geodesic flow is Anosov

(Eberlein [2]).The continuity of ut and u” was an open problem
until Ballmann,Brin and Burns([1]) gave the first example of a
closed surface for which u'and u~ are discontinuous.When the
manifold has no focal points,then u' and u~ are continuous

(see [3] and [10]).

In the example of [1], u' and u~ coincide only at one orbit of

the geodesic flow.Compare this with the following result
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THEdREH 2
If M is a closed surface without conjugate points and its geodesic
flow is not expansive,then there exists a curve £:[a,b]-UM ,not
contained in an orbit for which

ut(£(t)) = u (£(t)) for almost every t e [a,b] .
Hence,the example of (1] 1is expansive,and then through the
techniques of Ghys [4] we get
COROLLARY
The example of Ballmann,Brin and Burns is topologically equivalent
to the geodesic flow of the constant negative curvature riemannian
structure.
I am grateful to Jorge Lewowicz for helpful comments on these

problems.



II. PRELIMINARIES
For the sequel, assume that M is a compact oriented
riemannian surface with no conjugate points. Let M stand for its
universal riemannian covering and UM for the unit bundle of M
endowed with its standard metric and the canonical projection
m : UM - M.
The geodesic flow ¢, : UM > UM is defined as
$LL,8) = S0 = (v, .(E), a'rc(t)) where { = (p,v) and 7, is the
geodesic with initial conditions 7,(0)= p, %C(O) = v.
Denote by at: UM + UM the geodesic flow of the universal. covering.
Since M is oriented it is possible to define e‘eg = (p,eiev)
(eiev is the rotation of v by an angle 8) for real 9. .
For { = (p,v) define

S(L) = {w € T, (UM) f <mE (W), v> = o}

It is well known (see [2]) that S({) is invariant in the

following sense:

$1(S(2)) = S(4,(8))
The vertical subspace is defined as V(L) = Ker ["é/S(C)] and the
horizontal subspace is the ortogonal complement of V({) in S({).

Put Y(Q) = { W e U(M S <w,v> = 0}

It is also well known (see [2]) that S({) can be
identified with Y(Q) x  Y(Q) and that, with such: an
identification, we can write
¢{(V,W) = (J(t), 5(t)), where J is the solution of the Jacobi

equation
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0

I+ K(r.(£))T

g

with initial conditions J(0) = V, J(0) = W

]

(here, K is the gaussian curvature of M).
Recall that u = J/J satisfies the Riccati equation
a+ o+ K(7,(t)) = o.
We say that u is the slope of (J,J).
As in [7] we define:
. (m,n,p) =Py (ig(g,m,n)
for (m,n,w).close to 0 € RS; moreover it can be shown (see [7])

that &, is a local diffeomorphism at 0 R’ and that if

¢

Fc (n,p) = Qc(o,n,w), then ch(o,O) and QEC(O,O) are vectors of
an dp

H({) and V(L) respectively.

Let BB(O) be the open ball of centre 0 and radius £ on

R°. Then, we can choose € such that Fc (Be(o)) = Ne(C) is
transversal to the orbits of ¢, for every { e UM.

Define m: C - {0} -~ s' as m(z) = g and
g(t) = m(J(t)+iJ(t)), where J is a solution of the Jacobi
equation.

Then, g;(%é)— ;::?gz. This implies that there is R > 0
such that if |J(t)| > R|J(t)|, then %é%%%- > 1. This yields
Remark 1

There is t = t (R) such that if |J(0)| > R|J(0)|, then
J(t) = 0 for some t, |t]| = t,- o



For suitable 3 > 0 and 9 € Na(C) we define
Pc e * NS(C) + Ne(a) as the projection along the geodesic flow,
’ -1
and set G“j = Fe ° P§,9° Fc.(Observe that the map (8,n,¢) -

Ge(n,;o) is differentiable and that GC = id).

Remark 2
There is 8 > 0 such that (Ge);(l,a) has slope > R if

|p|< & and |a| > 2R. o

Take { € UM. For |n| < & and t = 0, define‘C;(n) =

and C:(n) = C: as the unit vectors for which

7c-(0)=ﬂ5(it.n)
t

7 _(T)=r (%),
t

for some T = T (n,t)

(1)
and
7_g+(0)=md (ig,n)
t

7-c:(t)=7c(_t’ for some T = T (n,t)
Notice that, for fixed n, 'Ct (n,t) » +» as t » +». Define
af(n) = (n, ff(n)) in such a way that

F + &
=
o c‘

& e

Remark 3
J(t) = 0 for the Jacobi field J, with initial
conditions
d - _ &
= Ct(n)- Jt(O) .Jt(O)
n=0
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Analogously, for T = r"(no,t) as in (1) we have Jr(t) =0

for the Jacobi field Jt with initial conditions

[Jt(O), jt(O)] - - _ [Gc;hh)(at(n))] a
[¢]

Now define u;(c,s) = jt(s)/Jt(s), for J as in the
preceeding remark. It is well known (see [2]) that u;(c,s)
converges as. t » » to a function u ({,s) which is also a solution
~ of the Riccati equation. We will write u ' ({,0) = u ({). Reversing
time it is easy to find another limit solution u'such that

u' (=€) = -u (Q).

Remark 4

(See proposition 2.12 of [2]).

Let 0 # (V,W) € S(C). Then
lim [¢/(V,W)| = = if W= u ({)V o
t*+c0 2

On account of remarks 1,2 and 3 we can obtain to =
= t (R,3) such that
| (£5)7(n)| < 2R for |n| < & and t > t_. ‘

Then cf are uniformly lipschitz. This and Arzela-Ascoli
theorem permit to find Ct(n),. limit functions of Cf(n) for't; + 4w,

that are uniformly lipschitz.

Define 'n;(n) = 6((2(11), t'(n,t)] for T as in (1). As
(m)"(n) e S(n (n)) we get (€))7 (n) + $(C;(no). 0) a—gﬁ-f (n,,t) «

S(L(n)) -
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Therefore, T (n,t) is uniformly 1lipschitz in n and
consequently there is t&(n) , a limit function of T (n,t) - t, which
is uniformly lipschitz in n, Therefore, for suitable 8, we obtain
small r&(n).

set € (¢,n) = 3L (n), T (n,t) - )

and C(g,n) = (L (n), T (n)).
(Obviously a similar construction holds for the past).
ema 5
Assume that
8,(n) = ¢ (n), T (t)) € Ng(¢ (L)), for t = 0 and smooth

increasing surjective functions

0w R =R
n
As the foliation C ({,+*) is ¢ -invariant (i.e.&tc'((;,n)=
= c'(at(C) ,m) for suitable m), we get, for small §,

T (8) = Tt(n) + t where T are uniformly lipschitz. a

Now, we need the following lemma due to Green (see [5])

Lemma 1

Assume that L and 7, are geodesics of M, the

universal covering of M, such that 71(0) 12(0} and -}1(0)=t 5‘2(0),

then

sup dist (7 (t), 7,(R"))
t=0

and

il
8

sup dist (v,(%), TZ(R-))
ts30
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Let 7, and 7, be two different geodesics of M (i.e. 7, is not a
reparametrization of 7,)-
We say that they are asymptotic for the future if

sup dist (7,(t), 7,(R)) < e
tE0

and that they are asymptotic for the past if

sup dist (7 (t), 72(“‘1) <
ts0

and that they are bi-asymptotic if they are asymptotic both for
the future and for the past.

It is easy to see that ¢ is expansive if there is a > 0
t

such that

if there is a smooth surjective increasing function T : R -+ R,
with T(0) = 0 for which ¢1:(u (n) e Namt(C)) for every t € R then
g =m.. '

III. PROOF OF THE THEOREMS

EBroof of theorem 2:

If the geodesic flow is not expansive on the manifold
the same holds for the universal covering M and then we can find 7
€ Ng(L), € * m vectors of UM, and a smooth increasing surjective
function T with T(0) = 0, such that

Pry(M € Ns(¢, (Q)), for t e R (2)

this means that the geodesics TC and 1,“ bound a strip, because
they cannot cross on account of lemma 1.

Define I = {n/m¢(i{,n) is between 1( and 71!} and fix

some nn e I.



The geodesic segments {1(!“)(11), 0 = u = t'(no,t)} (t
t O

is the same as in the definition of (;) stay between Ty and 'Ic,

again, according to lemma 1. Therefore L) is asymptotic to
o

both rc and rn for the future.

Analogously 7 is asymptotic to both 1(: and 7_ for

Cﬂh! n
the past.

But then, c'(no) = c'(no), because if this is false
lemma 1 again implies

sup dist (1c+ (E) ., 'rC-’ (¢)) = »
tzo Ino) (nu)

and then for soﬂe t >0, 7v,+ (t) belongs to 7 (or 7_), and
o By © D < "
[+]

then su dist (7 t), 7,(R)) ==
g 8, cta §5 0 T

wich is a contradiction. Then we get that (= " on I.
Notice that (2) can be written as
Gt(n) = $({ (n), T,(n) + t) e N;(¢,(0))
for n € I and t € R, where '.l‘t are as in remark 5. Then we can

obtain positive numbers A, B and L for which

B=1(0,) =A [ |3/(X) (n)|dn - L.
I
We claim that the slope of [Pc c-m]'(c‘)'(n) equals
u (L (n)) for a.e. ne I.

If this were not true we could find a positive measure

set E ¢ I, so that

1im |3t’(c') ‘(n)| = w, for n € E, according to remark 4.

t*+0
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We may assume, via Egorov theorem, that the limit is
uniform in E and then

1im ‘LI&,.'(C_)’(“) |dn = w, which is absurd.

t*+

An analogous argument shows that the slope of

[Pc c+hn]’(c')’(n) equals u'({'(n)) for a.e.nel.Define £:I-UM as

g€(n) = ' (n) =" (n)

Then u* (£(n)) = u (£(n)) for a.e.n € I and this proves theorem 2.

Proposition 1.

Let ¢ be the geodesic flow of a compact surface without conjugate
points.Then if ¢ is length expansive it is expansive.

Proof :

If ¢ is not expansive,the arguments of the proof of theorem 2
show the existence of a curve £ such that

sup length ¢t(E ) <=,

teR
actualy
sup length ¢t(g ) = E%A
teR

for A B and L as in the proof of thorem 2.

Now we need the following lemmas



Lemma 2

Assume that ¢t is expansive and a« is as in the
preliminaries.

For every 0 < € < a there is T > 0 such that if

for some t > 2T we have that

¢rhﬂ(n) € Nc [¢ “ (C)] for Osust and some smooth
increasing function t with T (0)=0
then ¢tun(n) e ch2[¢ " (C)] for T = u 5 £-T7
Proof

If the lemma is false, for every K > 0 there are points

cx and M. numbers K = u s tl- K and functions rx(u)= t(F,cx,nJ,

such that
#nT, () e N (o, (&) for 0 su st

and dist [¢tkwg(nx)’ ¢%‘ (C‘)] =z B, for suitable g8 > 0

Let { and m be 1limit points of the sequences ¢u(cx) and
K

$r (M) respectively. Then dist (u,{) = B > 0. We also have
XUk

that

¢txlu+ux) (nK) . NC[ ¢(uﬂlxl(cl)] for -uls M tx-ux'

As t * = and tK—u‘ > was K » =, we get
(n) € Nc[ét (C)} for every t € R and some smooth increasing

¢

and surjective function t : R * R, T(0) = 0, which is absurd.

T(t)
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Lemma 3.
Assume that ¢ and « are as in lemma 2.
Given 0 < € < a, there is 8§ > 0 such that if |n| < 3,

[ C'(n)] € N, [au (C)] for u = 0.

then arm:

Proof
The lemma is an immediate consequence of the following
claim: there is & > 0 such that if |n| < &, then
$rnn[c; (n)] € N, [$u (C)] for Osust and some smooth increasing
function T such that t(0)=0.
If this were not true we could find sequences n, t., u
such that t'..x - Tsu s tx’ n 0, t e (where T is as in the

previous lemma) and

ath,[C;K(nK) ] € N, [3“ (C)] for 0 s u st

and dist [atx(ux)(cl;(nﬁ))' ¢ a () ]= €

If x and y are limit points of the projections (onto UM)

of 3, () ana ¥ (¢
K K

% (nx)] respectively, then x = y, nmx = muy
13

K
and ¢t“J(y) € Nc(gbt (x)) for t = 0 and some smooth increasing,

surjective function T:R -+ R ,T(0) = 0, which contradicts lemma 1.

Proposition 2

Let ¢ be the geodesic flow of a surface with no
conjugate points.Then ¢ is expansive if and only if there are no

bi-asymptotic geodesics on the universal covering of M.
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Proof

Assume that ¢t is expansive. If there are two
bi-asymptotic geodesics on the universal covering we can find, as
in theorem 2, a point { for which C’ = {  on some interval,
but this and lemma 3 contradict expansivity. The converse is

obviously true.

Proof of theorem 1:
We showed in [9] that if the geodesic flow of a compact surface is
expansive then the surface has no conjugate points;this and lemma
5 of section IV prove that a) implies b).On the other hand
proposition 1 says that b)-implies a) and'proposition 2 gives the
equivalence of a) and c).This completes the proof of theorem 1.
Corollary

The geodesic flow of the example in [1] is topologically
equivalent to an Anosov flow.
Proof

In [4], Ghys proves that a geodesic flow on a manifold
with no conjugate points and no bi-asymptotic geodesics on the
universal covering is topologically eguivalent to a geodesic flow
on a surface of constant negative curvature. Then the corollary

follows freom this and proposition 2.
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IV. EXPANSIVITY IMPLIES LENGTH EXPANSIVITY
Let ¢ :M x R » M be a non - singular flow on a compact riemannian
manifold M.For suitable € > 0 define
Ho(q) = { exp v such that <¢'(q,0),v> =0 and |v| < e }
Define
N(e) = {(x,y) € MxM such that y e He(x)} and

B(e) = {(x,y) € MxM such that dist (x,y) < e }
Choose 3 > 0 and c > 0 small numbers such that there is a unique
smooth fuﬁction T : B(8) x [-c,c] * R such that
¢(y,T(x,y,t)) € He(¢(x,t) for t € [-c,c] and (x,y)e B(8).

.

For U:N(8) » R define U:N(3)»R ,the derivative of U, as

Uey) = Lol U0, ey, Ty, )
Let U stand for the derivative of U.

The following lemma,which is based on techniques of ([6],is

proved in (9].
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Lemma 4.

If ¢ is expansive there is ¢>0 and a continuous function U:N(g) -+R
such that

U(x,y) = p and U(x,y) =0 iff X =y

.h(x,y) =0 and .b (x,y) =0 iff X =y .
With this lemma we can prove
Lemma 5.
If ¢ is expansive it is length expansive.
Proof:
Take 0 < r < r, such that if U(x,y) = r and U(x,z) = r, then

U(y,¢(z,T(y,2,0))) =r .

Choose r, <r such that if U(x,y) = r, and U(x,z) = r, then
U(y,¢(z,Tt(y,2,0))) < r. Take p >0 such that dist(x,y) =z p if
U(x,y) =r,.

..

The expansivity of ¢ and the condition U >0 permit to find T*SO
such that if r, s U(x,y) s r and U(x,y) = 0 (U(x,y) = 0 ),then
U(¢(x,t),¢(y,t(x,y,t))) = r,

2 ik 2
for some t, 0 = £t s T , (resp.,-T = ts 0 ).
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Set

T = sup { |T| such that U(¢(x,t),$(y,T))s r, and |t|s T }.
Consider a curve a :[0,1]+ M not contained in an orbit of ¢.
We may assume,without loss of generality,that the image of «
lies in B(c) in such a way that we can define « as
al(s) = ¢ (a(s),Tt(x(0),x(s),0)) for s e [0,1].
We may also assume that U(al(O),al(s)) s r, for s € [0,1]
and U(ax(O),ax(l)) == rz.
I I‘J(al(o),_qcl(l) = 0 we next show how the length of @
duplicates for the future i.e. when it is
positively translated by the flow.
If I:r.(ot1 (0) TN (1)) s 0 a similar procedure holds for the past .

set £(s) = é(a (s),T(a, (0),a (s),£)) .

Take 0 < s, < s, such that for some t, 0 = t = T*, we have

U(E.(0),&.(5))) =1 and U(£,.(0),&,.(s))) = r,.



Then

U(E,(8,) (£ (S,) , T(Ep(8) € (5,),0))) =

and therefore
Uiet(o):ft(ﬂo)) >0 and
U}Etﬁso). (€. (s8,) ,T(E (8),E (8),0))) >0 .
On account of this we can find numbers 0 = t = 2

2

and 0 = szl< u.zi s szz< u,® < 1 such that we can

define functions a': [s) , w' 1+ M, i=1,2
with the following properties
i 1 1
c @ (8) =¢ (a(s),T(e,(s,),a/(s),t))
¢ U (s)) , @) ) = oo
2

. U(az'(sz') : az'(uz')) = r .

. U(uzlfs; ),azl(s)) s r, for s € [sz‘, uzi ] .

This procedure of duplication can be carried out inductively in

the following way:
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Suppose that for some k > 1 we have defined curves

i 1 i 1 1+1 .
] - M, u = s, , 1= 1s 2

with the following properties:

(a) akl(s) =¢ (al(s),T (s) ) with | T (s) | = (k-1)T.

(b) U(a'(s) , «'(uh) ) =0.
() U(a'(sh) ,a'(mh ) =x,.

(d) U( a'(s'),a'(s)) sx, for se(s' ,u'].

Using the same procedure that we used to construct a;,we can

find numbers -

1 21-1 21-1 21 21 1
s 5 < = < 5
k B k+1 sk+1 u;m o

and curves

21-1 21-1 21-1

kel * qu ! kel I N
21 21 21
. -+

i * t ) My ] M

such that conditions (a) , (b), (c) and (d) hold for k+1

instead of k.
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Now define
B (s) =9 (a(s) ,(k-1)T) .
Oon account of the previous arguments there is P >0,close to p,

such that

k=1
dist ( Bk{skl) s ﬂk(ukl) ) =p, forisis=z .

k-1
Then length 8 =p 2 and hence there is R >0

k
such that length ¢ (ax) =R 2 for k = 0.
kT

This completes the proof of the lemma.
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