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ESTE NUMERO 

En noviembre de 1991, la Universidad de la República Oriental del 

Uruguay otorgó el título de Doctor Honoris Causa a José Luis Massera. La 

ceremonia tuvo lugar en un Paraninfo desbordante, de público y emoción. 

Este número de las "PMU" recoge dos de los discursos pronunciados en esa 

oportunidad, el del Profesor Jacob Palis y el del propio Massera. Más 

adelante publicaremos trabajos que fueron presentados en el coloquio 

científico que por tal motivo tuvo lugar. Nos asociamos así al homenaje a un 

colega y maestro del cual, como matemáticos y como uruguayos, nos sentimos 

orgullosos. 
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DISCURSO DE JOSE LUIS MASSERA 

Señor Ministro de Educación y Cultura, Dr. Guillermo García 

Costa; 

Señor Rector de la Universidad, Ing. Quím. Jorge Brovetto; 

Señores miembros del Consejo Directivo Central y de los Con- 

sejos de las diversas Facultades, particularmente de Ingeniería, 

de Ciencias, y de Humanidades y Ciencias de la Educación; 

Colegas matemáticos, uruguayos y extranjeros, que han acepta- 

do la invitación de concurrir a este evento, algunos de ellos 

teniendo que viajar desde Europa y los Estados Unidos, entre los 

cuales se encuentran científicos de muy alto nivel internacional; 

Querido amigo Misha Cotlar, que naturalmente ¡integra el 

elenco precedente, pero que se distingue de los demás por el hecho 

de que formó parte, hace más de 50 años, junto con Rafael Laguar- 

dia, conmigo y unos pocos más, de ese pequeño grupo de jóvenes en- 

tusiastas, básicamente autodidactas, que desafiando dificultades 

de todo orden, incluso las que derivaban de la falta de una forma- 

ción académica suficiente, nos lanzamos con decisión y audacia a 

la empresa casi quijotesca de iniciar el camino de la investiga- 

ción matemática en el Uruguay. Sin que lo dicho signifique 

menospreciar el papel que jugaron en ese proceso personalidades de 

la talla del Ingeniero Don Eduardo García de Zúñiga y del 

matemático español Don Julio Rey Pastor; 

Queridos matemáticos uruguayos que, partiendo de aquellas ra- 

Íces, se incorporaron sucesivamente y se siguen incorporando en 

escala creciente a las sucesivas generaciones que forman el tron- 

co, las ramas y las hojas y flores de ese árbol que se ha dado en 

llamar la escuela matemática uruguaya; 

Queridos estudiantes que ya anuncian nuevos brotes fecundos 

de aquel árbol; 

Queridos funcionarios administrativos, que han tomado parte 

imprescindible en este proceso, sintiéndolo también como cosa 

suya, y que hoy han hecho posible el éxito de esta reunión; 

Queridos familiares, amigas y amigos, compañeras y compañe- 

ros: E 

Antes que nada, quiero agradecer a todos los que, con su ini- 

ciativa y esfuerzo, jugaron algún papel para que los órganos de 

gobierno universitarios adoptaran la decisión de concederme el tí- 

 



tulo de Doctor Honoris Causa. He recibido otros, de parte de di- 

versas Universidades, algunas de gran tradición y renombre, que 

fueron concedidos, sin duda por la valoración de méritos científi- 

cos, pero cuya motivación concreta fue la campaña por mi libertad 

-y esa motivación honra a dichas casas de estudio por la sensibi- 

lidad demostrada ante el problema del respeto a los derechos huma- 

nos-, en momentos en que estaba preso por la dictadura que enton- 

ces sufríamos. Pero, sin mengua de aquellos otros, valoro este tí- 

tulo, entre otras cosas, porque procede de mi muy querida Univer- 

sidad de la República en la que he vivido, trabajado y estudiado 

durante tantos años de mi vida. 

Agradezco también los elogios que aquí se han pronunciado. 

Fuera de lo estrictamente científico, pienso que en ellos pesa la 

relación de fraternidad, amistad y estimación que me unen perso- 

nalmente a todos estos colegas y amigos. Entendiéndolo así, hasta 

me complace lo que puedan tener de excesivo, en tanto ello esté 

motivado por otros valores de la relación humana que para mí son 

muy importantes, como también lo eran para Laguardia. Esa relación 

mutua de exigencia y aprecio, camaradería y respeto, es un rasgo 

típico de nuestra escuela, es el cemento fuerte que le da unidad y 

fortaleza y que esperemos se conserve sin fisuras en su sucesivo 

desarrollo. 

Más allá de que, cuando plantábamos las primeras semillas, no 

podíamos prever la frondosidad que adquiriría y que sigue desarro- 

llándose, ese árbol de que hablaba fue el producto de una decisión 

muy consciente del papel que la investigación científica debía ju- 

gar en una Universidad digna de merecer su nombre. En aquella épo- 

ca, la Facultad de Medicina y alguna otra daban ejemplo de insti- 

tutos que, sin mengua del desarrollo de cursos curriculares, dedi- 

caban no pocos esfuerzos a la investigación. Por otro lado, Recto- 

res como Cassinoni y Maggiolo desarrollaron ampliamente el tema; 

este último elaborá el Plan que lleva su nombre, que propone una 

reestructura total de la Universidad, una de cuyas aristas desta- 

cadas es precisamente el papel central de la investigación, dando 

él mismo el ejemplo en el Instituto de Máquinas que dirigía. Ejem- 

plo digno de destacarse, además, porque tomaba como objeto de la 

investigación una obra concreta, de enorme importancia económica, 
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tanto para el Uruguay como para la Argentina, como lo es el estu- 

dio del comportamiento del río Uruguay y de la proyectada represa 

y usina hidroeléctrica de Salto Grande. 

El ejemplo es también ilustrativo en relación a otro aspecto 

que vale la pena destacar. Aún hoy, hay docentes que piensan que 

la investigación debe autolimitarse dentro de niveles muy modes- 

tos; si se-me permite la expresión, con espíritu de "pago chico". 

Creemos que esto es profundamente erróneo, y la escuela matemática 

uruguaya nunca ha aceptado semejantes limitaciones. La meta ideal 

que buscamos es colocarse a nivel de la matemática mundial, si es 

posible sobrepasando ese nivel. Y nos enorgullecemos de que hoy 

mismo haya jóvenes de menos de treinta años de edad -que, por aña- 

didura, se formaron en parte en el clima adverso de la dictadura- 

alcancen estas metas. Naturalmente, no en todas las ramas de la 

ciencia -que sería una pretensión inalcanzable en un país tan pe- 

queño como el nuestro-, pero sí en los campos en que nos propone- 

mos concentrar el esfuerzo. Sólo apuntando alto y lejos, creando 

un clima de alta exigencia, podemos esperar tales resultados. Y es 

obvio que ello no significa descalificar investigaciones origina- 

les de menor nivel, cosa que puede ocurrir cuando se persiguen 

aplicaciones que, sin embargo, son tecnológicamente importantes. 

Ahora que el Uruguay encara el Mercosur -desafío de grandes 

proporciones-, es con esa mentalidad que debemos afrontarlo. Hay 

que comprender que el desafío no es sólo en el campo estrictamente 

económico, sino también científico y tecnológico. Y sobre la Uni- 

versidad y los universitarios recae, por ende, una parte importan- 

te de la responsabilidad nacional. 

Termino. Ha sido un rasgo permanente de mi vida el que no pu- 

diera nunca separar mi actividad científica de aspectos sociales y 

políticos que me son muy caros. Durante bastantes años, esas dos 

esferas pudieron coexistir sin demasiados conflictos. Pero a ello 

se debe que nunca he trabajado en régimen de dedicación total pese 

a que haya sido y siga siendo ferviente partidario de que ese ré- 

gimen se extienda a la gran mayoría de los universitarios. Como 

era inevitable, en determinado momento la contradicción hizo cri- 

sis: fue cuando salí electo diputado, cargo que mantuve durante 

nueve años; aún así, nunca dejé de dar clases. La crisis siguiente 

Y 

 



fue más tajante, cuando la dictadura me expulsó de la Universidad 

y posteriormente me privó de la libertad. Al reconquistarla, luego 

de casi diez años, sin vacilar asumí, junto con otros colegas, lo 

que eran tareas absolutamente prioritarias, de reconstruir lo que 

había sido devastado. Sucesivamente concentré mi esfuerzo en lle- 

var a buen fin el proyecto esencial del PEDECIBA, en restaurar 

condiciones de buen funcionamiento del IMERL y de la Facultad de 

Ingeniería, cuyo Consejo integré, y finalmente en poner en marcha 

el proyecto de creación de la Facultad de Ciencias. 

Insisto en que en esas tareas nunca ocupé posiciones de pri- 

mer plano sino que trabajé como participante de esfuerzos colecti- 

vos. Sea como fuere, sumando todo, fueron quizás veinticinco años 

en los que debí estar apartado de la investigación matemática. Es 

demasiado tiempo, sobre todo si se tiene en cuenta los ritmos con 

que, como todas las ciencias, se desarrolla en esta época en que 

vivimos. Estoy convencido de que me era imposible retornar a ella. 

Me pareció preferible emprender un nuevo camino: la filosofía, con 

la esperanza de que pudiera hacer algún aporte a la historia y la 

filosofía de la matemática, y resolver en ese terreno algunas 

cuestiones que me inquietaban y probablemente inquieten a otros. 

Sin saber, como es lógico, qué me deparará el destino en esta nue- 

va ruta, estoy satisfecho por haber tomado esa decisión. Al fin de 

cuentas, se hace camino al andar...
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DISCURSO DE JACOBO PALIS 

Señor Ministro de Educación y Cultura, Señor Rector de la 

Universidad, Señores Decanos, Señoras y Señores, Caros Colegas, 

José Luis Massera. 

O matemático e sua dignidade 

José Luis Massera é um exemplo, quase uma lenda, para 

várias geracgóes de matemáticos latino-americanos. Quando iniciava 

meus primeiros passos como matemático, dele ouvi falar, com 

respeito e fascínio, como o cientista que pioneiramente formava, 

quase que por milagre, uma escola matemática uruguaia, cujos 

trabalhos eram admirados nos centros mais avancados da America do 

Norte e Europa. Também ouvi falar de seus ideais sociais e de sua 

dignidade... 

Em sua matemática, Massera exibiu um talento nato, 

autodidata, vigoroso, original. Desbravou novas trilhas nessa 

imensa e bela floresta dos Sistemas Dinámicos  -Equacoés 

Diferenciais-, área maior da Matemática Contemporánea. Assim, 

desenvolveu uma obra definitiva de grande interesse atual e 

futuro sobre a estabilidade assintótica dos sistemas dinámicos em 

termos da existéncia de funcoés de Lyapunov, cobra em parte 

publicada em Annals of Mathematics em 1949 e 1956. Repetiríamos, 

vinte, trinta anos depois seus métodos... Assim é que nos anos 

sessenta surge a idéia de filtracoés e no início dos anos setenta 

aparece no mesmo Annals of Mathematics um artigo de Smale e Shub 

sobre o tema e, finalmente, chegamos á compreensáío, talvez mais 

bem sintetizada por Conley, de que em geral um sistema dinámico 

consiste de pecas recorrentes e ciclos entre elas, as quais sáo 

entaó "ordenadas" através da existéncia de funcóes de Lyapunov, 

precisamente á la facon de Massera. 

Como explicar o fenómeno de que parte dos fundamentos 

desta área central da Matemática, tenha sido feita em nosso 

continente com relativamente pequena tradigao científica, em seu 

extremo sul, aqui, em um canto (por sinal dos mais belos) do 

mundo e, sobretudo, com tanta originalidade e finesse que 

tornar-se-ia definitiva?. Só um talento exuberante, transbordante 

como o de Massera! 

A rica, notável, pioneira contribucáo matemática de 

Massera permeia outros tópicos de grande interesse matemático,



como por exemplo: 

1)sua demonstracáo do teorema da variedade estável, com 

seu enunciado geral, como o ensinamos hoje, feita no início dos 

anos cinquenta e publicada no Boletín de la Facultad de 

Ingeniería, Montevideo, 

2)seus resultados sobre a.  existéncia de  solucqóes 

subharmónicas de equacgóes de segunda cordem e de  solucoes 

periódicas de equacgóes diferenciais, publicados em 1949-1950 em 

Annals of Mathematics e Duke Mathematical Journal, 

3)Ja teoria, construida com Scháffer,para  equacóes 

lineares ou quasi-lineares onde introduzem-se conceitos como o de 

dicotomia exponencial, precurssor do conceito de hiperbolicidade 

e por isto mencionado no trabalho clássico de Anosov sobre 

hiperbolicidade global publicado vários amos depois. Seguiu-se, 

entáo, a construcáo da teoria hiperbólica, de importáncia central 

nesta area, por Smale e outros matemáticos. Também nos trabalhos 

de Massera e Scháffer aparece uma forma "linear" de estabilidade 

estrutural ligada Áá dicotomia exponencial, assim como a 

estabilidade estrutural 2 ligada á hiperbolicidade em geral, como 

proposto por Smale e eu próprio uma década depois, ao final dos 

anos sessenta, e comprovado por Mañé há apenas alguns anos. Mais 

ainda, o contexto de Massera e Scháffer é infinito-dimensional e 

seus métodos, em particular aqueles relativos á geometria do 

espaco, inspiraram inúmeros trabalhos de pesquisa. A obra foi 

publicada em Annals of Mathematics em 1958 e 1959 e em 

Mathematischen Annalen em 1960, bem como no livro "Linear 

Differential Equations and Function Spaces", Accademic Press, 

1966. 

Os trabalhos de Massera tiveram especial destaque em 

vários livros clássicos de equagóes diferenciais como os de 

Lefschetz, Hartman e o de Reissig-Sansone-Conti e, posterior- 

mente, no trabalho de Anosov acima mencionado. E o seu fino 

espírito indagativo e de visáo ao mesmo tempo ampla e profunda o 

levaram, nos dias de hoje, á História e Filosofia da Ciéncia e, 

em particular, da Matemática. 

E De tanta riqueza científica e extraordinária per- 

sonalidade usufruiram, naturalmente, jovens matemáticos uruguaios 

10



de várias geracóes como Lumer, Scháffer, Gandulfo, Lewowicz e 

ainda o brasileiro Onuchic, que veio especialmente para trabalhar 

com Massera. O ambiente matemático que conseguiu criar, com 

Laguardia, no Instituto de Matemática y Estadística de la 

Facultad de Ingeniería nos anos cinquenta ainda causam admiracgáo. 

Hoje, reconstruido e ampliado este ambiente, volta a Matemática 

uruguaia a. se destacar no cenário mundial. Constitúise em exemplo 

major para todos nós que lutamos por uma matemática e, em geral, 

uma Ciéncia, de alta qualidade em todo o mundo e náo apenas nos 

paises ditos do Primeiro Mundo, concientes que somos de sua 

importáncia para oO desenvolvimento económico e social e a 

integridade científico-cultural de uma nacáo. A atividade de 

pesquisa básica e aplicada,sem compromissos de qualidade como 

sempre proclamou Massera, influenciam diretamente o nível de 

competéncia dos quadros técnicos de um país e náo pode ser 

considerado, por simplismos de  eventuais dirigentes, como 

atividade de luxo de uma nagáo rica!. Tamanho absurdo parece 

ganhar forca em alguns de  nossos paises como “se fora 

"conventional wisdom", arriscando uma frágil mas já rica 

estrutura científica construida com tanto esforcgo, humano e 

económico, através décadas de trabalho, tantas vezes heróico, de 

teimosos cientistas nativos como José Luis Massera. 

Figura maior da Matemática e da  Ciéncia  Lati- 

no-Americana, Massera tem sua obra e sua humanidade reconhecidas 

em todo o mundo, tendo sído homenageado pelas Universidades de 

Roma (La Sapienza), Humboldt de Berlín, Quito, Budapest, Puebla, 

San Andrés (Bolivia), Habana e, para meu orgulho, Federal do Rio 

de Janeiro. Reconhecimento que com toda justica é hoje ampliado 

por sua Universidade, la Universidad de la República, e em cuja 

homenagem nós, seus amigos, colegas e admiradores temos a honra, 

a alegria, uma imensa alegria, de participar. Pequeno tributo a 

uma grande pessoa que brutalizada por seus ideais socials, 

respondeu com o  destemor e a dignidade. Exemplo maior de 

humanismo, de  pessoa-integridade, de pessoa-Ciéncia, nós O 

admiramos e queremos muito, José Luis Massera, e sua vida, esteja 

certo, náo foi e náo será em váo. Ela marcará uma etapa de luta 

e sofrimento quase inacreditável, neste mundo por vezes absurdo. 
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Integrals and Invariant Theory 

Walter R. Ferrer Santos 

Mathematical Sciences Research Institute 

1000 Centennial Drive. Berkeley. CA 94720. USA* 

June 28, 1990 

Abstract 

In this paper we describe how -since Hilbert's work in Invariant 
Theory in 1890- the concept of integral has been a basic tool in Rep- 

resentation and Invariant Theory. We describe also the limitations 

and the overcoming of some of the limitations of this tool. We end by 
presenting an extension of the concept and of some of the results. 

1 The case of a finite group 

Let k be a fixed field of characteristic p. If G is a finite group we call G 
the category of finite dimensional k-representations of G. In other words 
G is the category whose objects are finite dimensional k vector spaces Y 

equipped with right linear actions of G' on Y and whose morphisms are the 
G-equivariant k-linear maps. We consider k as an object of G by equipping 

it with the trivial G-action. An object S in € is called simple if the only 

subobjects of S are S and [0]. An object of G is called semisimple if it is 
the direct sum of simple objects or equivalently if any of its subobjects has a 

G-complement.If M € G we denote as M = [m € M :m.y =mVy € G). 
We call F(G) the k-algebra of all functions of G into k with the operations 

defined at every point. Clearly F(G) is an object of G if we define an action 
as follows. For € G and fE F(G) (f. My) = f(ry). 
  

“Supported by NSF Grant 8505550 during his stay at the Mathematical Sciences Re- 
search Institute. 
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Definiton 1.1 An integral for G is a mapI: F(G) > k€G. We denolte as 
—f the subspace of the linear dual of F(G) consisting of all the integrals. 

The linear map lo given as lo(f) = Eyes (y) is a non zero element of f. 

One can easily show that f has dimension 1 over k. 
In fact, if we call 6, the element of F(G) that takes the value l at yEe G 

and 0 at all the other points of G, we have that 6,.h = 65-19. Then if L is 

an integral 1(6,) = X(6,) for all ,y € G. We call i this common value. If 

f € F(G) we have that f = Yyea F(9)6,- Applying 1 to the above equality 
we obtain that 

1(f) =i) f(9) =ilo(S) (1) 
yEeG 

Then every integral is a constant multiple of l¿. 

We say that the group G admits a normalized integral if there is an 
element J € f such that J(1) = 1. Here 1 is the unit elment of F(G), i.e., 

- the function on G that takes the constant value 1 € k. 
It is easy to see that G'admits a normalized integral if and only if p does 

not divide the order of G (that will be denoted as |G|). 
In fact: equation 1 shows that for any J € f, J(1) is a non-zero constant 

multiple of |G] = 1p(1). H moreover J is normalized J(1) 4 0 and our 
conclusion follows. 

In what follows we show how the existence of a normalized integral for a 

group implies that: 

EX If f : M —= N isa surjective map in G, then f(M“) = NC. 

SP 11 A: M > k is a surjective morphism in G there exists an element 
m € MC such that Am) = 1. 

SS All objects of Y are semisimple. 

RO There exists a family of linear maps Ry € G for M € G such that: 

o Ru . M — mM“. 

olff:M=NEG then fRy = Rmf. 

o lí m€ MC then Ry(m) = m. 
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FG Let A be an N-graded commutative k-algebra in which (E acts by 
algebra automorphisms that preserve the grading. Suppose also that 
the part of degree zero is the base field £. Then if A is finitely generated 

over k so is AC. 

The validity of property SS in the case in which G is invertible in + 

is known as Maschke's Theorem (see [24]). A family of maps as in RO is 

called a family of Reynolds Operators. This name appeared for the first. time 

in the mathematical literature in a paper by Garret Birkhof (see [1])* and 
refers to the engineer Osborne Reynolds who used “averaging operators” 

to study certain problems in fluid dynamics. The fact that the existence 

of a normailzed integral implies condition FG is nothing but E. Noether's 

theorem (see [29] and [30]) on finite generation of invariants for a finite group 
in a particular case in which the proof besides becoming extremely elementary 

can be easily generalized to other contexts. 

We indicate briefly the main steps in the proofs of the mentioned results. 

It is clear that RO implies EX and that EX implies SP. Moreover. SS 

implies RO (just use the semismplicity of M to construct the projection 
of M onto M9) and RO implies the existence of a normalized integral (a 
normalized integral is nothing but the Reynolds Operator corresponding to 
M = F(G)). To prove the equivalence of the existence of a normalized 
integral with conditions EX, SP, SS and RO, we need to verify Lhat: 

e SP implies SS. 

e The existence of a normalized integral implies condition SP. 

The first implication follows by considering the restriction map from 
Hom;(M, N) to Homj¿(N, N') where N is a subobject of M. Consider the G- 

submodule of Hom;(N, N') given by the multiples of the identity map and call 
X its inverse image by the restriction. An element of X% € Hom¿(M, N)* 
that is sent by the restriction to the identity map on N will split the inclusion 

of Nin M. 

It is convenient to introduce the viewpoint of comodules (that will be 

developped in more deatils in Section 4) to prove the second implication. To 
  

1The author would like to thank Prof. 1. Kaplansky for providing the above reference 

and for helping him find a path through the “maze” of the classical literature on the 
subject. 
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an arbitrary object AY € G we can associate a map Xq : M —= MG F(G) 

in the following way 119/(m) = m9 9 0,. In particular if we apply this 

construction to F(G) itselí we obtain a map A: F(G) = F(6) 6 F(G) that 

together with the multiplication of functions in "(G), the unit and evaluation 

at the identity. gives to F(G) a structure of bialgebra. The map 111 defined 

above is a comodule structure on A/. The construction of 1 47 from the action 

of G on M can easily be reversed to obtain the action from the comodule 

structure. In that way we obtain a hijective correspondence between the 

F(G)-comodule structures in a vector space M and the G-actions on M. If 
J is a normalized integral and M is an arbitrary object of G, we can define 

the map Jy = (id 8 J)xm. In explicit terms Jy(m) = |G|* Y m.g. 
Now, as to the proof of condition SP, if A: M — k € G is surjective and 

m is an element of M such that A(m) = 1, the element Jy(m) is in MS and 

sent to 1 by A. 

It is worth noticing that the map Jy that is defined in terms of the 
normalized integral J can be though of as an “averaging process” in M. The 
existence of this “averaging process” (that in fact is an operator as in RO) 

is the crucial ingredient of the above proof. 
As to the proof of FG we observe first that as A is finitely generated over 

k all the homogeneous components A, are finite dimensional k-spaces. There 

is a Reynolds Operator for each A, and all of them can be put together to 
define a Reynolds Operator for A. It is not hard to prove that this operator 

can be chosen so that it verifies the following multiplicativity condition: 

Ralfg) =$Ra(g) Vf € AT ge A (2) 

Call A4 = On>0 An the null ideal of A. Consider AS and call T the ideal that 
it generates in A. By Hilbert Basis Theorem (that Hilbert proved in order to 
be able to conclude that certain rings of invariants were finitely generated, 
see [15]) there exists a finite set of elements F that generate 7. We prove 
that the k-algebra generated by F is all of A“. fa € AS is an homogeneous 

invariant that is not in k it will be in AR. Then a = yes ajf with as € Á. 

Apply Ra to this equation and call b; = Ra(as). Using equation 2 one has 

that a = Y jerbyf - The elements by have smallest degree than a. Then, by 

induction, we can conclude that they belong to the k-algebra generated by 

F. Vhen, the same happens to a. 
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2 Integrals in the work of Hilbert and Weyl 

on Invariant Theory 

The proof that the existence of a normalized integral for a finite group implies 

condition FG that we just presented is an adaptation of Hilbert's proof (see 

[15]) of Gordan's theorem (see [12)) on the finite generation of the invariants 
of binary forms (in the language of XIX century invariant theory “on the 

finiteness of the independent. invariants of quantics”). The same idea was 

applied later by Hilbert (see [16]) to the case of n-ary forms (see [14] for 

a historical analysis of these —and other- mathematical concepts related to 

classical invariant theory and the excellent survey by A. Borel ([2]) -from 
which we borrowed heavily- on the work on these subjects of Weyl and 

also of Hurwitz and Schur). These n-forms were intractable by the classical 

methods: either the “symbolic methods” developped by the German school 

(Aronhold, Clebsch and Gordon) or the “algorithmic methods” developped 

by the British (and North American) School (Boole, Cayley, Sylvester and 
Salmon). 

The strengths and limitations of both XIX century schools on Invariant 
Theory have been extensively studied in articles dealing with the history and 
philosophy of mathematics (see for example the comments in H. Weyls book 

“The Classical Groups: Invariants and Representations” [37, pg 27-29] or 
[31] for a comparative analysis of both schools). It is interesting to note that 

recently some of the classical methods have been revitalized with success (see 

for example [20] and [18)). 
In what follows we sketchly describe some of the aspects of the work done 

in Representation and Invariant Theory around the period 1890-1930 that 

are relevant to our presentation. 

Consider the group SL,(() acting by algebra automorphisms on the al- 

gebra C[X, Y] as follows: (note that it is only necessary to define the action 
on the generators X and Y) 

( 4 ] K=aX — 
cod 

( a b ) Fa SER 

sd 
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If we fix a natural number d the k-subspace Sg of k[X, Y] generated by 

A lA 

Gordon's Theorem “on the finiteness of the independent invariants of 

quantics” states that the algebra S(SJ%2ÓO is finitely generated. 

In a remarkable paper published in 1854 (see [6]) Cayley abandoned lis 

old methods to produce invariants (based on the so called “hyperdetermi- 

nants”) in favor of the method of differential operators (see [31] for a de- 
scription of the work of the British School on Invariant Theory). 

Consider the derivations €; : S(S4) — S(Sg), 1 =0,.., d given (on a sistem 

of generators of Sy) as E (XHIY3) = 655. 
It is well known that if A is an arbitrary commutative algebra and D(A) 

denotes the (k vector space) of all k-derivations of A, then D(A) has a natural 
structure of A-module with respect to the usual multiplication. 

- Taking special S(Sg)-linear combinations of the derivations É;, Cayley 

defined two elements Y, Y € D(S(S4)) and proved (see [14] for a precise 
description of the above differential operators) that S(S¿J21%) = [a € 

S(Sa) : A(a) = Ya) = 0). 
Hilbert's proof of the finite generation of the ring S(SyJLU% used Y 

and Y to construct a map with the properties of (2) and with that, together 

with his Basis Theorem proceeded in the same fashion than in Section 1. 

For n-ary forms in a later paper [16] he used what become known as Cayley 
N-process to perform the same steps. 

Hilbert himself was aware that his Basis Theorem and the existence of a 

map with the properties of (2) were all that was needed to prove the finite 

generation of invariants. In particular other maps R have to be constructed 

If one is dealing with other group actions. 
In accordance with [14], Hilbert was able to apply bis method to other 

groups than SL£,,, in particular he suceeded constructing an analog to'the 

Q-process for the rotation group in the real 3-dimensional space, i.e., the 

group of real orthogonal transformations. 

Hurwitz, which was a student of Klein and a former teacher of Hilbert, 

solved in 1897 the problem of finite generation of invariants for the real 

orthogonal group in n-space in 1897, by constructing the required Reynolds 

operators by integration (see [19]). The extension to compact Lie Groups 

was immediately observed. 

Moreover it had already been observed (by E. IT. Moore and Maschke 

among others) that in the case of a finite group the “averaging process” 

18



besides the finite generation of invariants also yielded the semisimplicity of 

the: representations. 

I. Schur, in a paper in 1924, extended this result on the semisimplicity 

of the representations to the real orthogonal group (see [33)) and observed 

tliat the theory could be extended to other groups as long as an “averaging 

process” could be constructed. He didnt develop the general theory because 

in his own words (see [14]) “ [the rotation and orthogonal groups] stand out, 
not only by virtue of the important role they play in applications but also 

by virtue of the fact that here the integral calculus provides a solution of the 

counting problem that is practically useful”. The “counting problem” was 

a problem proposed (and solved) by Cayley “on the number of independent 

covariants” of fixed degrees. 
In 1924-26 Hermann Weyl, with the aid of E. Cartan's results on Lie 

Algebras, extended Schur's theory to all complex semisimple Lie groups (see 

[35] and [36]). His methods consisted in using again an “averaging process” 
of integration via what he called first the “unitarian restriction” (“unitáre 
Beschránkung” ) and later the “unitarian trick”. If G is an arbitrary complex 
semisimple Lie Group and XX is a maximal compact subgroup it can be 

proved that if V is a G-module, the G-submodules of Y coincide with the 

K'-submodules. Being K compact the integration can be carried along /' and 
the results about the representations and invariants for G' can be obtained 

from the corresponding results for X'. In the case in which G is the special 

linear group S£,(C), XX can be taken to be the special unitary group SU, (C) 

and that is the reason for the name of the trick. It is worth noticing that 

particular cases of this “trick” had already been used by Hurwitz and Schur 

in the papers just mentioned. Weyl proved (among many other things) what 

is now called Weyl's Theorem: All the representations of a semisimple Lie 

Algebra are completely reducible. The method of his proof was to pass from 

the Lie Algebra to a connected and simply connected complex Lie Group 
and then to apply to this group his “unitarian trick” to reduce the problem 
to the situation of a compact group. : 

It was observed later by Schiffer (1933 unpublished) that the existence 
of Reynolds operators (as was mentioned in the particular case of a finite 
group in Section 1) could be deduced by purely algebraic means from the 

semisimplicity. This appears as an Appendix to the Second Edition of [37]( 

see Appendix C). 
Completely algebraic proofs of Weyl's TPheorem were obtained later (for. 
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arbitrary fields of characteristic zero) and we shall secc that some type of 

integral or “averaging process” plays an important role in this algebraic ap- 

proach. 

3  Integrals and Lie Algebras 

The historical comments that. follow are based on [3, Note Historique, Cha- 
pitres l a UM] and (2]. Results on the complete reducibility of Lie Algebras 
seem to have appeared for the first time around 1890 in some unpublished 

work of Study. His work was cited by Lie and Engel in their joint book 

[23]. Study proved that the representations of sl2(C) are completely re- 

ducible and Lie and Engel conjectured that the same was true for sl, (C) 

(in accordance to Borel -see [2]- who refers to Hawkins for this fact, Study, 
in a letter to Sophus Lie in 1890, conjectured the full reducibility of the 

representations of an arbitrary semismple Lie Algebra). In 1926 Weyl (see 

[36]) proved (and remarked that E. Cartan had used the result implicitly) 
the complete reducibility of the representations of a semisimple Lie Algebra 

using his “unitarian trick” (see [2] for an interesting discussion whether E. 

Cartan was aware or not at that time of the complete reducibility). 

Casimir (a physicist) realized around 1932 that an operator that plays 

a role on quantum theory (the “square of the magnitude of the moment of 

momentum” - see (2, pg 63] -) and that he had generalized from slz to a 

general semisimple Lie Algebra (and is now called the Casimir operator), 

could be used to produce an algebraic proof of the full reducibility of the 

representations of sl. This was generalized in 1935 by Casimir and van der 

Waerden (see [5]) to produce the first purely algebraic proof of the complete 
reducibilit y. 

The proof that is frequently presented in modern literature (see for ex- 

ample [3] or [11]) is Brauer's proof that appeared in 1936 (see [4)). 

A cohomological proof was presented in 1937 in [38]. In the mentioned 

papers J.11.C. Whitehead defined the first two cohomology groups of a Lie 

Algebra and used them to prove the mentioned semisimplicity result. 

The authors mentioned above worked with real or complex base fields. 

The development of the theory of Lie Algebras (in particular the general. 

ization of some of the above results to the case of other base fields) 15 due 

mainly to N. Jacobson (sce for example [21]). 
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In order to illustrate the use of integrals in the algebraic proof of Weyl's 

Theorem we proceed as follows. 

It is not hard to see (one has to procecd in a similar way as in Section 

1) that the complete reducibility of the representations of a Lic algebra £ is 

equivalent to the following condition (that in analogy with the considerations 
of Section 1 we call analogous SP): (SP) For every surjective morphism of 

£L-modules A : Y — k there is an element v € VE such that A(v) = 1. 

We prove that if £ is a semisimple lie algebra over an algebraically closed 

field of characteristic zero condition (SP) is verified. 
Consider A and V as above, call W the kernel of A and form the exact 

sequence of £-modules: 

UoW=ovLi (3) 

where £ acts trivially on k (being semisimple this is the only way it can act 
on k). 

Without much labour one can reduce the problem to the case where W 

is a simple faithful L-module. We call p : L£ — End(W) the corresponding 

representation. The reduction to the case in which W is simple is obtained 

by reasoning by induction in the dimension of W. To be able to assume that 

W is faithfull we proceed as follows: take £' the kernel of the representation 

of L in W, it follows that £* also acts trivially on Y (here we have to use that 

£L' coincides with its derived subalgebra). In this way (3) becomes an exact 

sequence of L/£'-modules and W is now faithfull as an £/£'-module. The 
validity of the result in this case implies the validity of the general result. 

In Section 1 we used an averaging process to produce the element we 
needed in VS“. llere we will show how a basic ingredient of the classical 

proofs, the “Casimir element”, can be used to perform the same “averaging 

process” in our category. 

We start by defining a bilinear form By in £ by the following formula: 

Bwlz,y) = trw(p(u)p(y)) 

A direct verification shows that for any 2,7,y € £ the bilincar form By 

verifies By(ad(2)x,y) = Bw(z,ad(y)z). 
Consider the ideal of £ defined as (1 € L : Byw(r,y) = 0W y € Lj. The 

above ideal is solvable (by Cartan's criterion) and because of the semisim- 

pliciby of £ it has to be zero. In other words, the form By 1s non degenerate. 
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We use By to establish an identification of £ and £*.. Using this identifi- 

cation we can construct an isomorphism of £-modules between fomp(£, £) E 

Ec =£eL. 
Call by: the element of LO £ that is the image of the identity map on 

£ via this isomorphism. As the identity on £ is annihilated by the action of 

£ so is by. Call U(L) the universal envelopping algebra of L and consider 

the element cy of U(L) given as the image of by by the multiplication map 

from L O £ into U(L£L). 
The element cy is called the Casimir element of W and belongs to the 

center of U(L) (this because by» is annihilated by £). 
If T is an arbitrary £-module the element cy defines by multiplication 

an £-endomorphism of T. We denote this endomorphism as cyT- 

More explicitly: 1f [x;),(fy;); 1 = 1,..,dim£ are dual basis of £ with 

respect to By then cw = > 2;Yy;- Considered as an operator in W, the 

element cy is equal to Y; p(2;)p(y;), in other words cw,w = »; p(x:)p(yi). 
Then, trw(cww) = Di trw(p(x:)p(y:)) = Y Bwlzi,y;) = dim£. Thus, 

the operator cww is not zero. By Schur's Lemma we conclude that cw.y = 
r idyr for some r € k*. 

We consider now the maps cw,y and Tw = id — rey y : VW => V. 

The last map, that is closely related to the constructions of [5] and [4], 
sends Y into V£ and plays the role of the “averaging process” of Section 1. 

It is clear that U(L£)V C W (it is enough to check that if v € V and 
z E £L then A(xv) = 0 and this is evident because £ acts trivially on k). 

Suppose now that v is an arbitrary element of V, we prove that Tw(v) = 

v—r"Acyw E VE. In fact, x(v—r7*eyv) =xv=r"*rcyv = xv—T"cyrw = 
rav = 0. The equality before the last is true because 21v € W and 

in W multiplication by cy amounts to multiplication by the scalar r. 
If v is chosen in such a way that A(v) = 1 then A(rw(v)) = A(w — 

r”icyv)=1—r"*Acyv) = 1. The last equality is a consequence of the fact 
that cwv € W. Thus, the element ry(v) verifies the required conditions. 

TU=T 

It 1s important to note the following: in the case of a finite group the “av- 

craging processes” for the G-modules were constructed (see the construction 

of Jy from J in Section 1) from a normalized integral for F(G). An anal- 

ogous construction that would give all maps Ty in terms of a “normalized 

integral” could be developped here with the continuous dual of the universal 
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envelopping algebra of £ playing the role of F(G). Being this envelopping 

algebra an infinite dimensional k-space, the constructions are more elaborate 

and will be omitted. See [17] for details. 
In the next Section we consider the situation of an arbitrary Hopf Algebra. 

The case of a finite group and of a Lie Algebra appear as specializations of 

this situatjon. 

4 Integrals for Hopf Algebras 

The fact that some of the above considerations about integrals, representation 
theory and finite generation of invariants can be generalized to the context of 

Hopf Algebras seems to have been observed for the first time by Sweedler and 

Larson around 1968 (see [22] and [34]). Their considerations were motivated 
(see [34, Introduction]) by some results of Hochschild (see [17, page 63-64]). 
In [17] it is proved that if £ is a finite dimensional Lie Algebra over a field 

of characteristic zero and we call XK the continuous dual of the universal 

envelopping algebra U(£) of £L, then £ is semisimple if and only if there 
exists an £-morphism J : X — k that sends the unit of K into the unit of the 

base field. The map J was called a gauge for the Hopf algebra XK, and the 

concept of gauge was defined for an arbitrary Hopf Algebra. A gauge is what 

later was called an integral except that it verifies the additional condition 

of sending 1 into 1. In [17] it was also observed (without proof) that “.. 

an affine algebraic group is fully reducible if and only if its Hopf Algebra of 

polynomial functions has a gauge”. 
In this section we will present Sweedler's arguments relating the existence 

of a “normalized integral” for a Hopf Algebra H with the UE of what 
we call in Section 1 condition SP. 

Let H be a Hopf algebra defined over an arbitrary field k and call A, e, 1, u 

and o its comultiplication, counit, multiplication, unit and antipode respec- 

tively. The element u(1¿) will be written as 1. 

Definiton 4.1 A linear map J : H —= k such that uo J = (idy O J)o A is 

called an integral for H. 1$3 also verifies Jou = td; it is called a normalized 
integral. : 

In the definition above o denotes the composition of functions. In the 
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future we will omit this symbol and represent the composition by juxtaposi- 

tion. 

If M is an H-comodule its structure map will be denoted as 1m. HAZ is 

an H-comodule we call MY = [m € M : xu4(m) =m06 1). We consider k 

as an H-comodule with the trivial structure (e. x4(0) = a u(l4)). 

We consider the analogue of condition SP of Section 1. 

Definiton 4.2 We say thal an H-comodule M verifies condilion SP 4f for 

every non zero morphism A: M > k there exists an element m € MY such 
that Am) = 1. 

The following result generalizes the considerations of Section 1 and is due (in 
another formulation) to Sweedler ([34)). 

Theorem 4.1 The Hopf Algebra H admits a normalized integral if and only 
if all H comodules verify condition SP. 

Proof : Note first that by the application of condition SP to an ap- 

propriate comodule of homomorphisms one can easily prove that the validity 

of condition SP for all comodules is equivalent to the condition that all the 

H-comodules are semisimple (see Section 1 for the case of a finite group). 

Suppose that condition SP is valid for all A-comodules. 1f we consider 

the unit map u : k > H as an injective H-comodule map the complete 

reducibility implies that there exists an H-map J : H —= k that splits u. The 

map J verifies the definition of a normalized integral for H. 
. Conversely, suppose there is a normalized integral J. 1 A: M = k is 

a surjective H-map and m € M is such that A(m) = 1 the element n = 
(1d O D)ixu(m) belongs to MP. 

Moreover A(n) = A(id € IDixu[m) = (id 9 DA 9 1d)]xu(m) = (id O 
(Am) 9 1) =1. 

Q.E.D. 

Once this point is settled we can proceed in the same way as in Section 1 
and thus prove the first fundamental theorem on invariants for the action of a 

“co-semisimple” (1.e. with all the comodules semisimple) Hopf Algebra on a 
graded finitely generated algebra. This, in a certain sense finishes completely 

the subject and in that sense can be considered as a culmination of the line 

initiated- by Hilbert in 1890 in order to prove finiteness of invariants using 
conveniently constructed “normalized integrals”. 
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Hilbert's technique works extremely well in characteristic zero where it 

can be applied to all semisimple groups but has a very serious drawback in 

arbitrary characteristic. 

lt was proved by Nagata in 1964 (see [27]) that the only connected alge- 
braic groups in positive characteristic whose algebras of polynomial functions 

have a normalized integral are the tori (Nagata didn't formulate the results 

in terms of integrals but in an equivalent form). 

In 1964-65 Mumford introduced some basic ideas that were the key to 

the overcoming of the mentioned drawbacks. In dealing with Geometric 

Invariant Theory, Mumford introduced a concept weaker than the concept of 

complete reducibility —-that of “geometric reductivity”- and conjectured that 
in characteristic p every reductive group is geometrically reductive (see [26)). 

It was immediately proved by Nagata that for any geometrically reductive 

group the first theorem on invariants is true (see [28]) and by Nagata and 
Miyata that any geometrically reductive group is reductive (see [25)). 

It took longer to prove Mumford's Conjecture. In 1975 Haboush, us- 

ing some of Steinberg's ideas about representations of semisimple algebraic 

groups, proved that every reductive affine algebraic group is geometrically 

reductive and in that way (because of the results of Nagata just mentioned) 
settled the problem of finiteness of invariants for all reductive groups (see 

[13)). 
It is interesting to note that the proof of Nagata uses the condition of 

“geometric reductivity” in an extremely ingenious (but rather obscure) way 

to make up for the lack of an integral. Even though Mumford's Conjecture 
has been settled for more that 10 years, there aren't in the literature available 

proofs that “jump” directly form the reductivity of G to the finiteness of the 
invariants without using the intermediate step of the geometric reductivity 
in the same way as did Nagata. 

Any attempt. to search for a family of algebraic groups for which the first 

theorem on invariants is true and that is larger than the family of reductive 
groups was shown Lo be fruitless by Popov in 1979 (see [32]) by showing thatif 
G is an affine algebraic group such that for any finitely generated k-algebra 

A the subalgebra AC is finitely generated, then G is reductive. 

. In the next Section we show that a “relative approach” to the problem 
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of the finite generation of invariants can be of a certain interest. We prove 

the finite generation of invariants for a family of finitely generated algebras 

under conditions that guarantee the existence of a certain type of “generalized 

integral” in situations in which the given group is not necessarily reductive. 

5 A Relative Approach to Invariants and In- 

tegrals 

In some special cases we may want to study invariants for non reductive 

groups. Consider for example the following situation. 

Let G be an affine algebraic group ( defined over an algebraically closed 
field of arbitrary characteristic) and Xí a closed subgroup of G. The problem 

of giving a representation theoretical condition equivalent to the geometric 

condition that G/K is affine has been completely solved by Cline, Parshall 
and Scott (see [7] for the original proof or [8] for a more elementary proof). 
In the mentioned paper the authors generalize the concept of induced repre- 

sentation to the category of algebraic groups and prove that G/K is an affine 

variety if and only if the induced representation functor from K'-modules to 

G-modules is exact. If the induction functor is exact we say that K is exact 
in G. 

A first step in the proof that G/K' is an affine variety is the proof that 

the algebra P(G)F of K-invariant polynomial functions on G is finitely gen- 

erated. 

A possible approach to the finite generation of P(G)* is the following: the 

exactness hypothesis is easily seen to be equivalent to P(G) being injective 

as a K-module. It follows from the very definition of injectivity that if P(G) 
is injective as a K'-module there exists a map J : P(K) —> P(G) that sends 1 
into 1 and that is a morphism of K'-modules. This morphism should play the 

role of a normalized integral and allow us to prove that P(G)* is a ol 
generated algebra. 

This approach is relative in the sense that the “normalized integral” takes 

values in P(G) and it will only help us to prove that certain k-algebras (that 

are related to P(G) in a sense we formalize later) have finitely generated 
invarianís. 

The study of this situation in the case of an affine group /í acting on 
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an affine variety X and the corresponding proof of the finite generation of 

the invariants as well as other considerations about the existence of quotient 

varieties will appear in [9]. 

In what follows we present a generalization of some of these results to the 

case of a Hopf Algebra. At the same time we introduce some simplifications 

of the arguments in [9]. 

Definiton 5.1 Let H be a commutative Hopf Algebra defined over a field k 

and A an H-comodule algebra. An A-integral for H is a morphism of H- 

comodules J: H —= A. A normalized A-integral is an A-integral such that 

Mm =1. 

Definiton 5.2 Let A be an H-comodule algebra as above and M a right A- 

module that is at the same time a right H-comodule. We say that M is an 

(A, H)-odule if for all m € M,a € A we have that xu[ma) = xmlm)xala) 
where xa and xm denote the corresponding comodule structure maps (if £ = 

2 40h¡€ AQH andy => m,¡0k; € MOH, ní we denotes the following 

element of MOQH : n¿ = Y mj,.a,0 kjh;). In the case in which the (A, H)- 

odule is also an A-algebra R in such a wey that the multiplication map of 

R and the action of A on R are H-comodule maps, we say that út is an 

(A, H)-odule algebra. 

For the rest of this section E will be a comnutative Hopf Algebra defined 

over a field k and A a commutative H-comodule algebra. The structure maps 
for H will be denoted as in Section 4 (and o will be the antipode). The 

comodule structure map for A will be denoted as x4 and the multiplication 

as a. 1 M is an arbitrary H-comodule its structure map will be denoted 

as xm and the action of Aon M as jp. 

The role of a Reynolds operator for an (A, )-odule M is played by the 

map R y constructed below. 

Lemma 5.1 Suppose that H adimits a normalized A-integral that we call J 

and let M be «un arbitrary (A, 11)-odule. The k-linear map Rm: M => M 

defined as Ru = tu(id O I)(id O 0)xm verifies: 

1. Ry = Rm and Ru(M) = M7. 

2. Iff : M -> ÑN is a morphism of (A, 1) -odules and Rm,Ryp. are the 

corresponding maps then : Ryf = [Rm- 
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3. Ifme M andace A? then Ry(ma) = Rar(mja. 

4. If R is an (A, H)-odule algebra r € R and s € RF, we have Rag(rs) = 

R(r)s. 

Proof : 

1. We want to prove that xm(Rar(m)) = Ru(m)081 for all m € M. Using 

the fact that y is a morphism of H-comodules and then the definition 

of normalized integral we deduce that: xy4Rm = (1d 0 pltxm Oido 

1d) (ide s 01d (id81d8 J 8 1d)(id O :d SV Axim 9 id)d O 0)xm- 

Using now the coassociativity and the properties of the antipode we 

deduce that: xmRm = (1d O pum 9 1d 9 id)(1d O s O id)(id O id E 

J80id(id891d89 08 0)(d8 1d8 s](id 8 A 9 id)(1d O Alxm. 

By direct verification we see that the last expression can be written as 

follows: xmMRm = (id % y) um 8 1d 80 :d) (id 8 J 8 1d8 id ido 
id € 0)(1d O 1d 8 AJ(ud 8 sd O AJxm = (mido) Odd aC. 
p(1d 8 A) (id 8 sd O AJxm- 

Now, u(2d Y AJA = ue by the very definition of a. If we substitute 

this formula in the last equality for xy Rm we obtain that: xa Rm = 

(uu(id O (id 9 0) O 1d) (id O sd O ue O id) (1d Y AJxm- 

Using the fact that (e Sid) A = id and computing the above expression 
at an arbitrary m € M we conclude that xmMRm(m) = Ry(m) 6 1. 

If we start with an element m of M* we see that Rulm) = uu(rd Co 

D)xur(m) = ym(m 9 J(1)) = yu(m 9 1) = m. : 

In this way the proof of the first assertion is finished. 

2. The following chain of equalities follow immediately from the hypoth- 

esis about f and will prove our assertion: Ry f = uy(id O Jo)xyf = 
unido Jo (fOidxm = un($8iD(idB Jo) xm = SfumlidoJo)xm = 

SRu. 

3. Using the fact that the action of A on M is compatible with the co- 

module structures on M and A respectively, one gets thal Rar (ma) = 

umd JoMxim(m)ixala)) Using the commutativity of A we conclude 

that py (1d 9 JN(xu(m)la 1) = (uu(lido Jo)xu(m))a = Raur( raja. 
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4. The proof of this assertion is similar to the one we just wrote. 

Q.E.D. 
We have the tools to prove (in a way that is similar to the original proof 

by Hilbert as sketched in Section 1) a first approximation to the finite gen- 

eration of the rings of invariants for the (A, A)-odule algebras provided that 

IT adiits a normalized A-imtegral. 

Lemma 5.2 Suppose that A and [1 are as above and also that A 1s a Noethe- 

rian ring. Let RR be a commutative (A, H)-odule algebra that as an A-algebra 

is finitely generated. Suppose moreover that R is graded by the natural num- 

bers in such a way thal Ry = A and that the structure of H-comodule of R 

is compatible with the grading. If H has an A-normalized integral then R* 

is a finitely generated A* -algebra. 

Proof : Call Ry, = O, >0 Ra the null ideal of R and call 7 the ideal 
generated by RE in R. As R is finitely generated over A it is Noetherian, 
therefore T can be generated by a finite set of H-fixed elements F that we 
can assume are homogeneous. Any f € F will bein f € RE with d(f) > 0. 

We prove by induction on the grading that RY = A*P[F]. For the elements 
of degree zero (i.e. the elements of A%) there is nothing to prove. Suppose 

we know that for all n < l we have that RY C A*P[F]. Take r € Rfz,- As 
r€T welhaver = Y jerr¡f with r; € R. Now we apply the map Ra to the 

above equality and let p; = Ra(r,) € RP. After decomposing each py into 
its homogeneous components we can assume that we have an equality of the 

form r = Yyer s¡f with each sy homogenous of positive degree and H-fixed. 
Comparing degrees in the above equality we deduce that sí € Pira-as 

Using the inductivo hypothesis we see that Rias) C AR[F] and so that 

r € AR[F). Q.E.D. 
The usual method of going from the graded to the non graded situation 

can also be adapted to our context. 

Theorem 5.1 Le! 1 be a commutative Hopf Algebra and A a Noetherian 

H-comodule algebra. Suppose also that H has a normalized A-integral. Let 
R be a commulative (A, H)-comodule algebra that as an A-algebra is finitely 
generated. Then RF is a finitely generated AY -algebra. 

Proof : Let Y denote the finite-dimensional H-comodule spanned (as a 

k-vector space) by a finite set of A-generators ol R. Call S the k-symmetric 
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algebra built on V and consider the (A, H)-odule algebra 5 (04 A. Applying 

the universal property of the symmetric algebra to the map given hy the 

inclusion of V into R, we construct a map of HH -comodules from 5 —= R 

that after tensoring with the cannonical map from A into R will become a 

surjective morphism of (A, /1)-odule algebras from S €. A into R. We call 

this map 0. By Lemma 5.1 2. we have that Rg0 = PR y. 1. Using the 

above equality and Lemma 5.1-1 we deduce that the map Y when restricted 

to (S8 HE)” is an algebra: homomorphism onto RY. Applying Lena 5.2 to 
S OA we conclude that (S O A)” is a finitely generated A%-algebra. Then, 
the same happens to R*. 

Q.E.D. 
In the case in which A* itself is finitely generated as a k-algebra and all 

the hypothesis of Theorem 5.1 remain valid we conclude that RY is finitely 

generated over k. Clearly if A is finitely generated over k the Noetherian 
hypothesis of Theorem 5.1 is verified. 

So that the (A, H)-odule algebra A is a “testing object” for the validity 
of the first theorem of invariants in our particular context. 

In what follows we describe two particular cases in which the finite gen- 

eration of AP as a k-algebra can be guaranteed. 
We first recall a result from [10]: 1H H and K are communtative Hopf 

Algebras defined over a field k and r : 1] —= K is a surjective normal bialgebra 
map (see [10] for the definitions) then H is injective when considered as a K 
module via the usual restricition of scalars functor. 

We observed at the beginning of Section 5 (in the particular case of the 
Hopf Algebra of an affine group) that 1 H' is a Hopf Algebra and A an HA- 

comodule algebra, the injectivity of A as an H-comodule implies the existence 

of an A-normalized integral for H. 
Applying this to the case of K and H as above, we conclude that there 

exists an H-normalized integral for A. 

Now, if H itself has an A-normalized integral by composition we obtain 
an A-normalized integral for K'. 

We apply the above considerations to the case in which // = P(G) the 

algebra of polynomial functions of an affine algebraic group defined over an 

algebraically closed field k and N = P(G,,) is the algebra of polynomial 
functions of its unipotent radical. 

The result that follows appeared in [9)) in an equivalent context. We 

write down here the (adapted) proof for the sake of completness. 
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Theorem 5.2 Let G be an affine algebraic group defined over an algebrai- 

cally closed field k and let A be a commutative finitely generated G-module 

algebra. If P(G) has a normalized A-integral then AC is a finitely generated 

k-algebra. 

Proof : Let G, be the unipotent radical of €. Ás we observed before 
P(G,,) has a normalized A-integral that we call J. Following a trick we learnt 

from [7] we transform the map J : P(G,) — A that is a map of G,-modules 

and sends one into one into another map 1: P(G,) — A that 1s a morphism 
of G,-modules and of k-algebras, in other words a multiplicative A-integral. 

In this case the map Ra : A — A constructed in Lemma 5.1. is an algebra 
homomorphism that sends A onto A“. 

We conclude then that A%: is a finitely generated k-algebra. As the 
quotient G/G,, is reductive, the Nagata-Mumford theory (see [28]) guarantees 
that AS = (4%)9/Gu is finitely generated as a h-algebra. 

Q.E.D. 
The author doesn't know if the existence of a normalized A-integral for 

the Hopf Algebra H implies in general that A% is finitely generated. The 
above Theorem gives an affirmative answer for the case in which H = P(G) 
for some affine group G. The obstructions to the generalization of the above 
proof to the case of an arbitrary commutative Hopf Algebra are multiple. 
The more serious one seems to be the lack of a theory of “reductive Hopf 

Algebras”. 
Let us finally say that another case in which we can prove that the.ex- 

istence of the A-integral and the finite generation of A implics the finite 
generation of A* is the case in which A is graded with Ay = k and the H- 
comodule structure preserves the grading. The proof will be omitted because 

it is a copy of the ones already written. We use the integral to construct a 

map with the required properties going from A to A% and then we proceed 

by induction on the degree. 
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NONPARAMETRIC CONSERVATIVE BANDS FOR THE TREND OF 

GAUSSIAN AR(p) MODELS. 
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and 
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RESUMEN 

En lo que sigue se proponen bandas de confianza conservativas para la tendencia de un 

modelo gaussiano, autoregresivo de orden p . Los resultados son válidos para muestras 

finitas. Las bandas son conservativas en el sentido de que la probabilidad de que las 

bandas cubran a la funcion considerada es al menos el nivel prefijado. 

1, Introducción, In this preprint we look for nonparametric 

conservative bands for the trend function gí(t) of a gaussian 

stationary autoregressive model of order p based on 

observations Yi, .- . ,Yp verifying 

Y ¡=Yy=9(t)+Xj¡, astsb, (f=1,...,N) (1.1) 

where [ X;¡ : j21) is an autoregressive stationary process of order 

p, í.e., 

Xj = bs Xj1+ do Xj9 + E dp Xj.p+ Y; (1.2) 

and (Uj :j21] ¡is a gaussian white noise. 
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Conditions under which there is a stationary solution to 

equation (1.2) are well known, and will be assummed in what 

follows, ¡.e. we will suppose that the coeficients Pisorei Ba 

satistfty 

h(2)= 1- $42 - d22%-....- Pp HO for [ad 1. (1.3) 

The bands will be  conservative in the sense that the 

probability that the true function g lies on the band is at least the 

prefixed level 1-x, and the results are valid for finite sample 

sizes. 

The case where ( X¡ : jz1 ) is a gaussian white noise has been 

considered by Hall and Titterington (1988) where conservative 

confidence bands for the regression function, related to those of 

Knafl, Sacks and Ylvisaker (1988) in that they are based on linear 

(in the data) estimates of the regression function at any given 

point, are proposed. Their proposal gives confidence bands for 

which calculation of widths are very easy. Some related work have 

also be done by Wahba (1983) and by Silverman (1985) from a 

Bayesian point of view, that leads to spline methods to construct 

confidence bands. 

Basically the idea is to divide the interval where we are 

working, let say the interval [0,1] into  m  subintervals I;¡, 1 <i< m 

for mi an integer that satisfty Na=2mr, where N ¡is the sample 

size. At each of these subintervals using an average of the response 

variables in the subinterval, construct a confidence interval for the 

average g¡of the regression function  g on the cell, and obtain 

from it a confidence band for the function  gí(t), t «el; using some 

constrain in the local behaviour of the function gq. Finally some 

bound to the joint coverage probability will provide the 

conservative bands. Then the width of the confidence band will 

have two components: a deterministic one from the smoothness 

constrain or "interpolation error" and another one from the 

confidence interval for the averages of the response variables or 

"stochastic component". 
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With the same idea, Fraiman and Pérez-lribarren (1991) 

consider two extensions for the ¡.i.d. case, one of them that allows 

overlapping between the observations at each local average and the 

other one by using local medians instead of local means. In both 

cases some optimal election of the number of observations at each 

local average (or local median), and the number of subintervals was 

possible. 

Following the same approach we will provide conservative 

confidence bands for the trend function g verifying the model 

defined through (1.1) and (1.2), based on local means in the 

gaussian case. 

2. Main Results, For the sake of simplicity we will begin 

considering the AR(1) case. Let X,,...,Xo,, r > 1 be observations 

verfying 

X¡=0 Xj4 +Uj  (j=1,....2r ) (2.1) 

[0|<1,where U; is a gaussian white noise E(Uy)=0, var(U,)=a? = 

(1-02)var(X ¡). 

Define Wi Xraj+t = Xr.j (¡=0,...,r-1) and V¡=W;¡eW;, (j=1,...,r-1). 

The following lemmas will be proved in the Appendix. Lemma 2.1 

provides an estimation of the variance of X ¡which is independent 

of the average of the response variables at each subinterval. 

Therefore without loss of generality we will assume in what 

follows that var(X ¡)=1. Lemma 2.2 will deal with the "stochastic 

component ” while Lemma 2.3 does it with the "deterministic 

component”. 

Lemma 2,1 If eS al. 2 a 20) verify (2.1) we have that: 

a)  E(W;)=0, var(W) = 2(1-02+1) (¡=0, ...., r-1), and 
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E(Y)=0 var(V;) = 2(1-02) (fat, ...., 1-1). 

2r 
b) EX; is independent of W (k=0, .... , r-1), and therefore 

¡=1 

independent of the vector (Wo, W,, .... , W..;). 
2r 

Cc) (EX, Vi, .... , Vr.1) is a set of independent random variables. 
¡m1 

sen2ar POE - EA de q: HAUÓNE a 
27 ¿ 2rsen?A/2 |1 - Peiaj2 a 

dja2v(0 a var ( Ex! (2n% ) = 
[a 1 

s  (1-10120%= (1+/0/9/(1-181). 

-1 
e) (z ví) / 2(1-02) has a Chi-square distribution with r-1 degrees 

imm1 

2r «1 
of freedom, and ((1-22)4(1-1/4 E xp) / (v(0,r) E VÍ) has a 

¡m1 ja1 

Student distribution with r-1 degrees of freedom. 

Let 0” € (-1,1) , and define V;¡ = W; - 4 'W,,,Aj= glt,,;,1)-9(t,.j), 

Y = Yeejot 5 Yi. > Wj + Aj and Vi = W - e, . 

Lemma 2.2 Under the assumptions of Lemma 2.1 we have 

rd .o rios 

aP(EY 2a)2P( XV 22) for all a>0. 
j=1 j=1 

ri pl 

b) Moreover, we have that P( Y ve 2a)>2P( 5 vi 2 a) for all a > 0. 
j=1 j=1 

Cc) If a is such that 

1-a«=P(|((1-23%(1-1/0)4 S xp 1051 EV) Me.) Pl|s<a) 
im j= 

, and 0” is such that [0] < |0"] < 1 then 
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$ 2r Ti 
P (Jae) (1-19 Tx/(29)4| <a) >1-0. 

¡m1 j=1 

A proof of Lemma 2.3, that will deal with the interpolation 

error can be found in Hall and Titterington (1988), or in Fraiman 

and Pérez-Iribarren (1991). 

Lemma 2.3 If tiritj¡=8 > O for all ja 1, . . .,2r and g verifies a 

Lipschitz condition of order one on the interval [t,,to,] with 

constant C > 0 we have that | g(t) - g | <C ( 8(2r+1) /2) for all 
m 2r 

te [t,,t2r] where y = (1/2r) Y gltj). 
ju1 

We are now ready to construct a conservative confidence band 

for the trend of a gaussian AR(1) process. Let subdivide the 

interval where we are working, that we will assume without loss 

of generality the interval [0,1] , into m subintervals I¡ ¡=1,...,m 

each of them containing 2r¡observations corresponding to values 

|< 1; - Let 

Y¡= (1/25) dal Y) (i=1,...,m). 

Thus, Y; = (1/2r,) cn g(t) + (1/21) eh Xt) = 

¿1 0 
In order to obtain conservative confidence bands it is 

9 +(1/2r,) E 

reasonable to assume that var(X ¡) and € are unknown. However we 

will need an upper bound of |0| as well as an upper bound of the 

Lipschitz condition constant for the function g. The value |0”| will 

play the role of the upper bound of |0] . More precisely we will 

assume the following hypothesis. 

Hi. 0 is such that |0] < ]0"] < 1 holds. 

Hz. The function g verifies a Lipschitz condition of order one, at 

each subinterval l,, ¡.e. there exists C¡> O such that |g(x)-g(x")] < 

C;¡ [x-x'] for all x,x' € 1;, im1, .... , m. 
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For each ¡=1, .... ,m, let a, be such that Pltr;-1 1 <a) =1-x/m 

where tr denotes a random variable with Student distribution 

with  r¡-1 degrees of freedom. The following theorem provides the 

confidence band construction, and is a consequence of Lemma 2.2 

(c), Lemma 2.3, and Bonferroni inequality. 

Theorem 2.1 Under H1 and H2, if model (2.1) is verified we 

have that a 

P(g(t) € y; tel, l=1, ....,m) > 1-x 

where Ji = [L,R¡] , L;¡=Y;- (a/9 ¡/2r;(1-10*1) (r/(r1))% - 

(Ci (217+1)//2), A=V¡+ (a¡7¡/ 2r(1-10 1 )) (rn (r-1))% + 
[C¡8 (2r¡+1) /2) ,(i=1,...,m)), 

a mi pe a 

T¡=( y Y, ya and V;¡ are the corresponding variables V; for the 
jui ” ' 

1, interval pm 

We now turn to the AR(p) case. 

Let (Y¡,Xj) j=1, .. . , N be observations verifying (1.1) and (1.2), 

r>p and consider W; = Xp,j,1- Xp ¡ (j=0, .. . ,r-1) as before. 

Define Vi= W¡-4+p" d1Wij.2sp"- - -0pWjy G=1, ... 1p) 5 01= E(Xj,1 Xj) 

. We may assume without loss of generality that var(X ¡)=1. 

Let $ (9, o. 9, * and d (Ppo 9)" For the AR(p) case p21 H1 

will be the following assumption. 

H1: 9” is such that 0st- Y l9/1 < 1-X lo, 1. Hlo,1<1. 
1:21 m1 ¡m1 
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p 
RBemark 2,1, We use the condition Y|4¡|<1 in order to prove (d) of tha 

ls 1 

following Lemma. This condition follows from (1.3) if px=1. 

Moreover, if $¡2 0 for all ¡=1,....p ¡s also a consequence of (1.3). 

The following lemmas will be proved in the Appendix. 

Lemma 2,4 If ( Xj ¡j=1d,...,2r) verifies (1.2) we have 

a) E (Vj¡)=0, var (V¡)=2 (1- E o0)= 20? forj=t,...,rp where 

a var (U,). 

2 
b) Y X; is independent of W, (K=0,..... ,r-1) 

|=1 

2 , 
o ( z Xp Vi, > - + Vip ) is a set of independent random variables. 

a) ov(o 5 var $ X¡! (2r )4 ) = 
+ j=1 

T 
= (1/27) [(senzar / (2r sen?a/2)) (92/11 - Loy 1?) da < 

-T A 

s 07/(1- Ho Y it Flel<t. 
1m1 

e) $ V; ¡[(20?) has a chi-square distribution with r-p degrees of 
j=1 

freedom, and  (1-p/r)4 > Xi! [( 2 v ya ( v(ó,r) 14) has a 
¡m1 ja 

Student distribution with  r-p degrees of AA 
t 

Let Wi2+p =Mespr > ++ Was) y - asp" > Wir , 

< = Meled ej = “W +A, and V; = Wap” d, 5 asp 7-7 dp W 

Lemma 2,2 Under the assumptions of Lemma 2.4 we have 
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r-1 r-1 +3 2 
a)P(Y (Y, '22)>2P(Y V¡>a) forallaz0. 

jui j=1 
Ss 

b) Moreover we have that 
f-1 -2 r-1 2 

Pi Vi sa)eP (PV; >a) foralla >0. 
j=1 j=1 

c) Let y verifying H1 and a such that 

2r r- ¡ 

LP (rn EXE) vn yA). 
j=1 m1 

2r e 

Then P (| ((onp4 (- Dio 0 E VEA] sa) 
1 im1 j=1 

y 2r rp_ A 

PJ ¿Ex von (Y Ep] saje toa. 
¡m1 j=1 

Finally in the same way as for the AR(1) case we get the following 

result. E 
Theorem 2,2 Under H1 and. H2, if the model (1.1) and (1.2) is 

verified we have that if 

di [Y - (815, (1-0119'%)/ (er t- $ 16/10) - 058 (21741) /2 5 Y+ 
; l22 1 

+ (2%, (1-p/r)%)/ (2ri(1- y l9,1)) +C/5 (2r+1) /2 ] 
|=1 

P(g(t) €J,,t€ 1, i=1, ....,m) 2 1-x 
a T-Pp- o = 

where 0 ¡=( Y Vi ya and Vi are the corresponding Y; variables 
jur 

for the interval l,; aj, are such that P ( [tr,-pl Ss ay) 2 1- x/m and tip 

is a random variable with Student distribution with r¡-p degrees of 

freedom. 

3. Some examples, In this section we give some artificial examples 

from simulated data. Figures 3.1 and 3.2 shows respectively, 2000 

observations from a gaussian AR(1) process with p=0.1,0=0.2 

and trend function Y = 0.5 + | x-0.5 | and a 95% conservative 
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confidence band constructed using 20 subintervals, a Lipschitz 

constant C=1 and a overestimation for p ,p'= 0.11. The graph in 

Figure a 3.2 corresponds to a step functions taking values =M and e 

, tal, ...,20, where B : and B; denotes the upper and lower bounds 

of a 95% confidence band, which are plotted by joining succesive 

values by straight lines. The graph of the true function is also 

given. We can see, for instance, that there is clear evidence against 

the hypothesis that the true trend function is linear. 

Figure 3.1 Figure 3.2 

Figures 3.3 corresponds to 400 data of an AR(2) process with 

$,=0.1, $2=-0.05 , 4=0.3 and trend function y= | x-0.5 |. A 95% 

uniform conservative confidence band constructed using 8 

subintervals, a Lipschitz constant c=1 and a overestimation for |¿ +] 

+ibol, 19, | + [9,1 = 0.165 is given in Figure 3.4. 

Figure 3.3 Figure 3.4 

Finally Figure 3.5 and 3.6 corresponds to 2400 data from an 

AR(2) process with $,=0.25 , $2=0.1 , 94=0.2 and trend function y= 

0.5 + | x-0.5 |]. The overestimation of |9,| + |$2| used on figure 3.6 

was lo, + [9,1 = 0.37 , and we use 10 subintervals and C=1. 

Figure 3.5 Figure 3.6 

Appendix, We will give now the proofs of Lemmas 2.2, 2.4 and 2.5. 

Proof of Lemma 2,4 
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a) E(V¡)=0 since E(W;)=0. E(W;W,¡) = 20;- 207;,;,, 120. if 

we define P¿=1. 

Therefore 

MY 91 =0, implies that 
7 la 1 

E (Wii (Wi- 91Wi.1" --- - 9pW.p)) = 

2 i-Por-is1) - 23 $ Pin Pakito 1) =0. (4.1) 
m1 

Thus, 

Var (Vi) = E ( (Wj1,p- y 9: Wir1+p) (Wis+p- 29 Wii) ) 
] Pa 1 » 

o = E (Wisop (Wip 9 Wip ) A 
m 1 

2 (1- Pojr2p-1) 239 e. - O ojs2p-1-1) =2 a-Í $,0)=20? (jut,, r-p). 
» um 1 

2r 2r 2r 

b) E(( dd X;) (roto 17 Xx) ) > y kt a : 0 jej > 0 
jo 1 ju 1 m1 

2r 2r 

since 2 Pre 2 O ejer taking fo = 2rj+1 ; and 
m fot 

independence follows since the variables are gaussian. 

c) Since (Vi, ..., Vrp) depends on the vector (Wo, ... , Wr.p) 
' 2r 

which is independent of y X;¡, (c) will holds if we show that 
im 1 

E (V¡Vj,¡)=0 fori2 1 , which follows easily from (4.1). 

d) If f(A) denotes the spectral density of a stationary process 

[X,:t21 ) we have that 

46



_ f sen2AT/2 

-Tsen2a/2 FA) da 
var ( y Xx 11) 

(see hal ra Anderson ( (1971) pag 459). Therefore 

var ( Ex / (2) ua; = 1/21 E A a -Y 9,eiAl] ? dA 

abro irte E a error 
since | md pei? > (1 mln > a! 9,17 

ei mn .. 

and $ $,|<1. 
la 1 

e) Follows from a) and c). +» 

Proof of Lemma 2,2, a) We have that 

r-1 “9 r-1 . 2 

EV =- Y 1v+ (0-0) W,1?. 
j= 1 ju 1 

Let Z; =(0-0)Wo 
Zo = (0-0 )W, = (0-0 )V, + 0Z, 
....+«. +... .. 

j-1 

Z; = (0-0 )W;¡, = (0-0”) Den Vii + 2 Z,  (j=2,...,r-1). 

r=1 r-1 j-1 Ú 

y Y? = Y, [V¡+(0-8") $ 070 Fz,] fo (Vas... V.1,Z1) 
ja 1 ju 1 la 1 

(4.2) 
r-1 

Let B=( Y, v¡? 22), 1lg the indicator function of the set B and 
ju 1 

rmk-4o. 

fk(Vi, ... Vrgo1Z1) = Y V¡? defined as in (4.2). for, k= 0,....r-2. 
ju 1 

P(B) =E(E(llg /Vi, -.. Vro, Zi) ) = 
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= El E (lía, +00) (fo (Vi, aer ¿Wr.1,21)) / Va, Ana VWr-2s Z1) 12 

TA AS A TA AS 
since conditional to Vy,...,Vr.2, Z, we have that 

hlVii..VeZa) > (Vi +0) +b with bet, (Va, .. . ¿Vr2,Z1) 
and 

r-2. 

C= (0-0) > Aa p0ez, and therefore 
im 1 

Pp +b2a)sP((V.y+c)+b>a) (4.3) 

which follows from the fact that V,, is a zero mean normally 

distributed random variable. Therefore 

E (Mia, sos) lo (Vis > - > Vr9Z))) 2 E (Mia, q09) (1 (Varo Vr.2,21) + Vi.11) 

=E(E (lia,soo) lla (Vas +++ VrrZa) + Vii) / Vas ++ + Vicos Zas Vr) ) 

2 2 
2E (E (Ma +00) fa (Vi, > - > VMrgrZ4) +Vp.2+Vp.1) / Viso. ¿Vrogs 21, W1-1)) 

by using the same argument, so we get that 

Eb Bolio + Mea 

E (llla,so00) (fa (Vi, - - - Vr.3,Z1) + Vi. 2+V7.1)). 

Finally ve get a) by iterating the argument already used. 

With analogous argument we get b) 

c) will be shown directly in Lemma 2.5. + 
Proof of Lemma 2 a) Let Wo-1= (Wo. 1 Wo.2,... Wo. B be the 

backward operator and P (B,4) = $ 06¡B' . We will first prove that 
im 1 

for all j 

Vi . Vi + a¡ (Va, o... Wi-1:Wp.1) 
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where aj: AP, R is a real function. Moreover, is a linear function 

in all variables. 

Effectively, we have that 

te 

V, = (-P(B,9 ))W, = (1-P(B,9)W, + P (B,0 -4)W, = Vy+ ay(Wp.,) . 

Va¿= (1-P(B,9") Wp,1 = Va + P (B,9 -9) Wo = 

= Va + (0,-4:)Wp + (d2-02)Wp.1+.+ (d9-9p)W = 

Var(9;-01)V+(0,-04) P(B,0)Wp+ (d2-92)Wp.1+. - - Hdy-0p)W, = 

Va+ a2(V; 'Wp.1 ) 

since V; = W;- P (B,$)W. 

Finally, since 

Visi= (-P(B,9 ))Wpsj= Visi+ P (B,0 -9)Wp,¡ = 

Visi+ (1-91) Wosj1+. .  +Hdo-9p)W) 

the desired result follows by using recursively 

that Wo+j-s = Vis+t = z bi W sj as in W. 

m1 

Now we get a) using a similar argument as those used in the AR(1) 
case (Lemma 2.2), where the funcuon ajl(V;, .... , Y, Wp.1) plays 

-1 
the role of (0-0) $ y 0H zo. 

im 1 

b) follows as in Lemma 2.2. 
2r 2r r- 

C) Let tp = 0 ( (r-p)/r) 192] YX, [(var( Y X0/2r) pe ($ Y pana 

la 1 e] ja 1 

Then, Lemma 2.4 d) implies that 
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2r r- 

trop > ( (repr 121 X 1 ( E ye (- $ 19 11) 
l= 1 J= 1 fa 1 

and the conclusion follows easily from b) and Lemma 2.1 b) and c) » 
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ON STABLE AND UNSTABLE SETS 

by J. Lewovwicz and J. Tolosa 

0. Introduction 

Let f:M—=M be an homeomorphism M of the smooth compact 

connected riemannian manifold M. For € > 0, X e M call 

S¿(x) = ly e M: dist(f”(x),£f”(y)) =€, n= o) 

o) 
Stable and unstable sets are basic elements of the 

and 

vÉ(x) = ly e M: dist(£”"(x),£” (y)) lA Mm - 3 lA 

the e-stable and e-unstable sets of x. 

dynamical structure of f and a fundamental tool to face problems 

of classification of dynamical systems under conjugacy. See, for 

intance, [F], for the case of Anosov diffeomorphisms, and (H], (L] 

in connection with the topological equivalence of expansive 

homeomorphisms of surfaces. In case f is expansive, for any x € M, 

these stable and unstable sets contain non-trivial (infinite) 

connected pieces. 

In this paper we obtain some general results on the 

existence of such connected pieces at each x € M (Proposition 

1.1). When x is a periodic point which is not a repellor 

(attractor) it is easy to show that S¿ 00 (0,00) contains such a 

piece, for any £ > 0. However, points x in a minimal set may have 

trivial S,(x) and U, (x) for small e > 0. Consider the Denjois map 

of s”, i.e., take a rotation of s by an angle 2na, where a is 

irrational, and replace the points of a dense orbit tx. ne Z) by 

intervals of size decreasing with |n|, in order to get a new space 

also homeomorphic to s'. The Denjois transformation may be defined 

by asigning to each point that was not on the added intervals, the 

previous ¡image under the rotation, and mapping linearly the 

interval we put instead of xr into the one replacing Ar Oe Z. 

Any two points which do not lie in the same added interval will 

be, under some positive and some negative iteration at a distance 

larger than the length of the interval replacing x,- In fact, 

between these two points we find, in the original rotation, 

positive and negative iterates of Xx," Thus, for any xXx in the 
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Denjois -minimal set which is not an end-point of some added 

interval, S¿(x) = U, (x) = (x) if e > 0, is small enough. 

For each end point of the interval replacing Ios that 

also belongs to the Denjois minmal set, there is a non-trivial 

connected set which is at the same time the e-stable and 

e-unstable set (e small) of it. Moreover, this connected set has 

the property that its diameter decreases under positive and 

negative iteration. Proposition 1.1 shows that if for arbitrarily 

small e no limit point of f has an e-stable (and e-unstable) set 

with this property, then for each x e M which is not a periodic 

repellor (attractor) there is a non-trivial connected set included 

in S¿(x) (resp. O, (x))- Theorem 2.2 shows that this property on 

the limit set of f is C'-gene- ric; thus, for f in a C”-residual 

subset cof Hom (M), and each x € M, Ss. ., U, (x) contain 

non-trivial connected pieces. 

Let now dim M=2; the description of local stable and 

unstable sets and the classification results of (H], (L] are based 

chiefly on the existence of those connected pieces, and on the 

fact that two such pieces meet at most at one point. As a matter 

of fact the same description of local stable and unstable sets may 

be obtained, even for non-expansive f, at points where the above 

mentioned properties of these stable and unstable pieces hold for 

them and for neighboring points. This is the case for instance if 

we take the homeomorphism of s* defined, after indentifying, x to 

2 HL 
L TL 

get a non-expansive homeomorphism of s? which, except at the image 

-x on T” ,applying the usual linear Anosov map ] of T”. We 

of branch points under the canonical projection, the stable and 

unstable sets are topological manifolds. 

We show that for f in a C” residual set of Hom (M), if £ 

has a non-trivial attractor C c QN(f), these connected pieces 

Co (x) € Ss.) > D¿ (x) c U, (x) meet only at x, provided x e C. Then 

the arguments in (L] permit to show to D¿ (x) is an arc. 

Thus, for almost all attractos, the connected unstable 

sets of each of its points are arcs. 

Finally, we want to thank the participants of the 

Seminar on Dynamical Systems of the  IMERL, for useful 

conversations on these topics. 
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1.General results 

Let M be a compact conneced smooth riemannian manifold 

and f a homeomorphism of M onto M. Let u(f)(a(f)) denote the set 

of all w-limit points (a-limit points) of f, i.e. 

v(£) = Y, w(x) , a(£) = Y a(x) 

where w(x)(a(x)) is the set of u-limit points (resp. a-limit 

points) of 'x. Obviously w(f£) uv a(f) c N(f); as usual N(f) stands 

for the set of non-wandering points of f. 

Proposition 1.1 

Assume there is a sequence of positive numbers Par 

Pp, 0, such that for any p = p,, there is no point x e 4(£) and 

connected set C containing x such that dist (f"(x),f”(y)) s p for 

every y € C€ and all n e Z and that dist (x,z) = p, for some z e C. 

Then, for any e > 0 and x e M, there is a compact connected set 

C¿(X), Xx € C.¿(X) * (x) such that dist(f*(x),£” (y)) = e for every 

Y € Co (x) and all n= 0, unless x is a periodic repellor. 

Proof Let e be a positive number and Xx e M; we shall assume 

first that for some m with P. = Pp <mbe, f has the following 

property: for each k=1,2,..., there is n, > 0 such that, for some 
n =P 

-v 
V, 0 xv Os ns É 

"e : , ; k 
(By tE (x))) is not included in ByE 69). 

(For 7 > 0, X € M, B_(X) denotes the ball (y e M: dist(x,y) sx o). 

Let y € B,,(£“(x)) be such that £” 

n -Y n n 

E (0). Take an arc joining f(x) to y vithin B,, (£ li 

YN) «€ En 

(£ 

n 

say a (t), 0 = ts 1, a (0) = tm, a,(1) = y, and let e, be 

the supremum of those t e (0,1] such that E” (a, ((0,t])) is 

n -Y 

contalned in the interior of B,(E* (0) for every v, 0 x vs n,* 

Thus, tor these v, 

Ema ([o t B pr (x (o, 910: € yk »). 

for some Y Ox v ss and fi id de Dn 
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=P n 

£ "(a (10,t*,1)) n oB,(£* 
-» 

(0) * +4 

For each k, we choose then such a Ya and show that lim, 

ma + wm, In fact, if some sub-sequence of v, Were bounded, we 

would have that for infinitely many k, a” N, for some fixed N, 

and therefore £' would map sets of diameter at least p onto sets 

of arbitrarily small diameter, which is absurd. 

On the other hand, if n, 7” Were unbounded we could 

find y € w,(x) and a compact connected set C, y esC, 

dist (y,z) = p, for some zeC, such that dist (£” (y), ,£*(u)) <= p for 

every u e C and all ne Zz, in contradiction with the hypothesis of 

the proposition. Indeed, such a connected set C may be obtained as 

n -Y 

follows: assume that £' E (x)) converges to say, y (the 

construction is the same in case we have to replace A,” * by a 

convergent sub-sequence) and take 

EJ e . Cc = 5, clos (9, (a,(10,33))) 

n 

Thus, n=” is bounded, and therefore the arcs f “a, (60/83) 

have diameters bounded away from zero. The set 

3 e 

0 (a, (1 1) 

satisfies clearly the requirements of the thesis of the 

on 
co 

C¿ (x) = ,n, clos (E 
k=1 

proposition. 

Let us suppose now that the assumption made in the first 

paragraph of this proof does not hold. Then, for every m with 

PL >= .eE there is k = k(m) > O such that for every n = 0. 

e” (a, c£*00)) c BL (17 (x)) 

if os v sn. Consequently, for any y € 9, we have that 

£(B,, (Y)) € B,(P (y), n<0 

As p_>0, we get that w,(x) is uniformly Lyapunov stable 

in the past. Take y € w.(x) 7 since dist[x,clos ((£*(y): n e Z))| >0 

contradicts the stability in the past of 0), it follows that 

Xx e w, (x) and that 9, (x) is a minimal set which, because of its 
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uniform stability properties, consists of almost-periodic motions 

([N.S] p. 390). 

If x is not a periodic point, we choose p, < Es the 

corresponding k =Xk anda point y e B_ (XxX), Y * X, Y € w,(x) - 1/k 

Join x to y through an arc contained in Br O and let $ 

n 

be a sequence of negative integers such that £'(x)>x. Since on 

account of the uniform stability of w,(x) in both senses, the 

diameters of the n citerates of this arcs are bounded away from 

zero, we take C, (x) as the usual intersection, for i = O, of the 

closures of the unions of the n “iterates of the are, j * 1. 

Clearly, C, (x) satisfies the required properties. 

If x is periodic, and the diameters of £”(B,.00), 

n < 0 do not tend to zero, the previous arguments apply and permit 

to construct a set Co (x) as required. This complete the proof of 

the proposition. 

Remark The same arguments prove that, unless x is a periodic 

attractor, there exits a compact connected set DOS 

x € D¿(x) = (x), such that dist(£”(x),£” (y)) = € for every 

Y € D¿(x) and ns0. 
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2.Generic Properties 

Let M and f be as before. Call 

A se (0) = (y e M: dist(f”(x), £”(y)) se, n= o) 

and Ue. (x) = (y e M: dist(f”(x), f”(y)) se, ns o) 

Let f satisfy axiom A. Since every basic set of f is 

isolated and f/Q0(f) expansive, we may choose £ = E, > 0, such that 

S¿(x) n 0, (x) = (x) for evry x e N(f). For every f satisfying 

axiom A we choose once for all such an E,- 

Lemma 2.1 

Let f satisfy the axiom A and strong-transversality 

conditions.Then for every m=1,2,..., there is a c”-neighbourhood 

U(f,m) of f such that if gy e U(f,m), for any x e M(g) we have that 

(si 00 - seco] n uloo = e. 
where e = Es* 

Proof Arguing by contradiction, let us assume that for some 

m > O there is a sequence 19,,) of homeomorphisms of M that 

converges to f in the e? topology and such that for each 

v=1,2,..., there exists X, € 2(9,) + and 

1 1 1 
Yi, € (s. (x,) Ss erf*p) ] n Ue (x] . 

For these v, let h, denote a semi-conjugacy between  f 

and 9: i.e.. a continuous -map of M onto M, such that 

foh, = h,*9,- Furthermore let the h,, “converge in the c” topology 

to the identity map of M [Hu]. 

We have that aist[gh (xy), 97 (%,)) < e for every n € Z 

and that 

"o "» aist [9,”(x,),9," (1,3) > e/m, 
mo ”, 

for some n, > O. EA 2, = 9, AY) + u, = 9, id and call (2, U,) 

a limite pair of (Z,,U,) > Clearly 2.* u and dist 
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EE (2,1 ,£ (qu, ))x=e, n eZ. But since z, € a (9,)+ h,(2(9,,)) e: 11€) 

and dist(z,.,h,(z,))—>0 we get that h,(2,,) >, , and that z, € N(£f); 

a contradiction. 

Theorem 2.2 

There is a C”-residual set YE such that if ge E, e > 0, 

and x e M, then se (x) (07 (x)) contains a compact connected set 

C¿ 009 (0.09), Xx € E, (x) *= dx)(x «e D¿ (x) = (x)), unless x is a 

periodic repellor (resp. attractor). 

Proof For f satisfying the axiom A and strong transversality 

conditions, take the chosen E, > 0 such that for x e Q(Í), 

sc (x) n U, (x) = (x) where, as before, e = E¿* Let m be a 

positive integer and let U(f,m) be the C*-neighbourhood of f given 

by Lemma 2.1. call Y the union of the U(f,m) for all f satisfying 
m 

the above mentioned conditions; then Z = A, A is a C-residual 

set [(S]. 

If g e E, for each m, g belongs to some U(f,m). Choose 

Pp. > O, = <p, <E€ in such a way that, when m—xw, lim pa 0. 

Then, if x e Q(g) and C is a compact connected set 

containing x such that dist(g9”(x),g”(y) <= p, for every y e C and 

all n € Z, We have that dist(x,z) < Pa for any z € C, for 

otherwise, z € [52 0 - Soja (2%) n UE (x) in contradiction with 

Lemma 2.1. Therefore the thesis of the theorem follows from 

Proposition 1.1 and the fact that there is a C”-residual subset of 

Hom M, such that each homeomorphism in this set has no periodic 

attractors or repellors [PPSS]. 
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3.The size of stable and unstable sets 

In [L,], section 1, it is shown that if f is an Anosov 

diffeomorphism of a compact connected riemannian manifold there 

exists a positive integer m such that, either CE”) qu] 2 2 [ul or 

[cy ul = 2ful, for each u < TM and every x e M. But the 

arguments there, also show the existence of such an m, with the 

same property on the restriction of a diffeomorphism f of M, to a 

compact f-invariant hyperbolic subset C of M. Let A: Y. TM —HR be 

the positive quadratic form defined, for u e TM, Xx € C, by 

m-i m-1 

A(u) = Y y [0 ru? Then it is easy to check that 
1=0 j=0 

A(£/u)- 2A(u) + a((£*) 1) = 

= | (£) ¿uló2 Ju 1% (87) “uf 

that is positive for every u e TM, [ul > 0, x e C. Because of the 

continuity of f', at), this quadratic form satisfies the same 

properties on a neighbourhood of C, and moreover, we can define 

for x,y in some neighbourhood of C a function V(x,y) = A(u), where 

exp, U= y, provided y is close enough to Xx. For some a > 0 we 

will have again on account of the continuity of f', (17). that if 

O < dist(x,y) < «, 

V(£(%) ¿E(Y)) - 2V(x%,y) + V(£*(0,£  (y)) > 0. 
Let f now satisfy axiom A, B., i=1,2,...r being its 

r 

basic sets, Qn(£) =,U,B.- Let p > o, 

p < pin ¡1 conin ne dist(x,,x,)), and a > 0 be so that on 

1 A J J 

(a e M: dist (x,0(f)) < p ) we may define a quadratic function V 

with the above mentioned property for 0 < dist(x,y) < aq. Let 

6 > 0, and let k > 0 and 3 > O be chosen so that V(x,y) = k 

implies dist(x,y) = e; and dist(x,y) > 3 if V(x,y) => K. Let 

U =. U(f,p,k) be a C”-neighbourhood of f such that for g e U 

(2 e M:idist(x,N(g)) <= £) € lx e M: dist(x,0(£)) < e) 

and that if dist(x,B) < p, dist (y,B) < p, for B a basic set of 

f that is not a periodic repellor, and if O < dist(x,y) < a, we 
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have 

iv(g*(x),9*(y)) > k, for some y with V(x,y)=k. 

11)V(9(%),9(Y)) - 2V(x,y) + V(g (x).9 (y)) > 0 for every y 
with V(x,y) => k. 

Let g be a homeomorphism of M and let Cc. + D¿ (x) 

denote the connected components containing Xx of the g-stable set 

S.(x) and the g-unstable set Ue (A) of x. 

Lemma 3.1 

Let g e U(f,p,k). Assume that for some xXx € M and some 

f-basic set B that is not a periodic repellor (atracttor) we have 

that for n=0 (n=<0), dist(g”"(x),B) s p/2. 

Then C, (X) (resp. De (0) contains a point y such that 

dist(x,y) = 8. 

Proof We prove that C¿(X) contains such an y, arguing by 

contradiction. Assume then that each connected set joining x to 

MO» where 

9,0) = [y em voy) =x ), 
contains a point Y such that for some n > Oo, 

9 (y) « Y. (97 (0). Because of the compactness of Vx) we may 

assume that all those n are less than some N > O. Choose v > N; 

then for some ze av, (9 (x)) g*(z) E v.ta” (0) because of ii). 

Join g” (x) to z through an arc a: [0,1], (9 (x)) - Let t be the 

supremum of those t for which 

- vw g”(aro,t1] < v,(9”"00), 
0 x= n = v. Then because of the contradiction assumption, 

for some p, 0 < p< v; g (a(t )) e ams 0). and, at the same 

time, g"(a(t')) e va 0), for 03 n< v, which ís absurd on 

account of ii). 

For f satisfying axiom A and the strong transversality 

property, and for n > 0 choose p, 0 <p < - and Xx > 0; 

dist(X,y) = > 1f V(x,y) s Ko: in order that each gq e U(f,p,k) 
n n 

fullfils conditions i) and ii). 
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Denote YV(f,n) a C“-neighbourhood of included in 

u(f,p ,/K ) such that for g «€ Y(f,n) there is a semiconjugacy h, 

feh = heg such that dist(x,h(x)) < - for x € M. Let NM _ be the 

union, for f satisfying axiom A and the strong transversality 

conditions, of the V(£,n). Then E =p . is Cc -residual. 

- 

Proposition 3.2 

Let gq e E and let C be a compact g-invariant susbset of 

M Cc N(g), that is either connected or transitive. Assume 

moreover that C is an attractor, i.e., there exists a 

neighbourhood U of C, g(clos U) c int U, such that 29" (U) = C, 

Then for each e > 0, the diameters of C¿(x) are bounded away from 

zero, on U. The diameters of Do (x) are bounded away from zero on 

E. 

Proof Let g € %. Given e > 0, choose n such that z < E, 

2 < dist(C,M-U). z < diam C. Then g e Y(£,n) for some f with the 

axiom A and strong transversality properties. Since C c NM(g), 

h(C) <c N(£) and as h(C) is connected or f-transitive, it is 

included in some basic set B of f. Since 2 < dist(C,M-U) there is 

a neighbourhood W of h(C) such that clos(h*(W)) < U. From this 

remark it follows that B = h(C) is also an attractor. Then Lemma 

3.1 applies and permits to obtain easily the thesis of the 

proposition since B, being connected and infinite E < diam C) can 

not be the orbit of a periodic point.



4.Dim M= 2 

Let g:M>M, g e E, have a compact attractor C c QM(g), 

diam C =d > 0, and let U be an open neighbourhood of C such that 

g”(U) = C, and p a positive number so that the ball of radius 
n£o 

10p centered at each x e M, is homeomorphic to a disk in R” and 

that lx e M: dist(x,C) <= 10 o) c UY: 

Let e, o<e<L and let. > 0, 9< e be so that if 

dist(x,C) < £ A C¿ (x) contains a point Yer dist (x,y,) = (, and 

that for x € C, D,(Xx) contains Z,, dist(x,2,) = 0. 

Since C is an attractor Do (x) c € for each x.e€ C, since 

distíg”(x),9"(Z2)) = €, n = 0, for z € D¿(X),  implies 

z €0, g” (U)= €, 

Let f:M>M satisfying axiom A and strong transversality 

be such that g is semi-conjugate to f through h, feh = heg, 

dist(x,h(x)) < z , for every x € M; - < 0. h(C) = B is an 

attracting basic set of f as we have shown before; moreover 

=1 
h"(h(c)) 

h(9” (y)) £”"(h(y)) € € for n = 0; thus g (y) e U for n= 0 

which is absurd. 

C, for otherwise there would exist y € C such that 

For f satisfying axiom A and x e M, we will denotes as 

usual, 

Wi(x) = (y e M: dist(f”(x),f* (y))> 0 as n> a). and W"(x) the 

unstable manifold. For £ > 0, 

0) = (y e W(x): dist(£*(x) ,£"(y)) = €, n = IS is defined 

similarly. 

Lemma 4.1 

h(D(x)) < Wín(0) if x ec. 

Proof Consider, for x € C, h(D, (x)) c B, and let fB,y be the 

end points of the maximum arc containing h(x) = € and included in 

h(D¿(x)) n W"(£). Construct a neighbourhood of this maximum arc by 
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taking a very close but strictly larger arc of W“(£) with end 

points BÉ h(D,¿(x)) to the left of B and 7” € h(D¿(X)) to the 

right of y and by tracing through each point n of this new arc the 

local stable manifolds Wo, (nm) where 6* is chosen so small that the 

neighbourbood constrcuted in this way is homeomorphic to a 

rectangle r = bx cc where b,c c R are intervals, b homeomorphic to 

the arc with end points f£*,r” and c homeomorphic to Ways (E) - We may 

assume that through each point (€ included in B and in this 

rectangle we may trace for some 9, 0<8<e, WS) and that this 

arc meets Wa (E): if this were not the case we may take negative 

iterates of f in order to get that the maximum arc with end points 

B,Y, becomes small enough to apply the local product structure on 

B. 

If h(D,(Xx)) does not coincide with this maximum arc, we 

may assume that the rectangle is so small that h(D, (x)) contains 

some points in the exterior of the rectangle. Thus, the connected 

component of h(D, (x)) n r containing £ must reach the boundary of 

the rectangle. Through each € that belongs to this connected 

component we trace W¿(3) and find the intersection ES) n uy (o) > 

We claim that the range of the mapping EW (E) n W¿(S) 

is (£) which is absurd. 

If not we would get a non-trivial subarc 3 of W5¿(€) 

contained in B. Since the unstable arc through £ is also included 

in B we obtain that B contains open sets. Since stable manifolds 

of points in int B = B” are also included in B” as it is easy to 

show inasmuch as this happens for stable manifolds of the interior 

periodic points, we get on account of the local product structure 

on B that 9B” = fp, i.e., B=M. But this implies that f is Anosov; 

on the other hand this arc 3 on W¿(E) has the property that for n 

s 0, £”(8) is contained in a disk of radius p, which is 

impossible. 

Thus, h(D,(x)) coincides with an arc of W(n(x)). 

Lemma 4.2 

h(C, (x))< Wio)). 

h(D¿() n h(C.(00) = (460). 
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Proof Let again f,7y denote the end-points of the maximum arc 

Br containing h(x)=£ of h(C,(x) n W5¿(E)- We iterate f forward in 

order to get f”"(By) < WA (£* (E). for some n > 0, where 0, 0< 68 <e, 

is such that W¿(3) n w¿(£” (E)) = (_) for E «€ W¿(£” (E))- If 

h(C, (x)) had other points than those of Br, then, as in the 

previous lemma, we would get projecting through W¿(T) on W¿(£” (£)) 

a non-trivial arc or W¿(£* (£)) whose forward ¡¡terates have 

diameter less than 4e < p. Let n be an f-periodic point n e B, so 

close to f”(£) that by projection through Wo» for € in that 

arc, We get another non-trivial arc 3, 53 c W"(n); the diameter of 

f”"(8), n= 0 is this time, less than 6e < p. The unstable manifold 

through y can be obtained as Lets), u being the period of y. 

Let Tan accumulation point of W"(n). This implies that W¿(T) 

meets twice W"(n), and we get, therefore, a disk of radius 2p 

centered at tT containing another disk D bordered by an unstable 

arc and a stable one. Now we finish the proof of both assertions 

of the lemma by showing that this is impossible. Since at the 

border of D the diameter is less than 4p, for some n > 0, f"(D) is 

so close to B that we may define on £”(D) and consequently on D, a 

stable vector field which never vanishes. Take half stable 

manifolds entering D and starting on the unstable border of D. 

Since no half stable manifold can neither stay in the interior of 

D nor meet the stable border of D, we get that the continuous map 

that sends a point on the unstable border of D to the first point 

where the half stable manifold through it meets again this 

unstable border, has a fixed point, which is absurd. 

Lemma 4.3 

C¿(x) ñ D¿ (Xx) = (x), for x e C. 

Proof Let y € C, (Xx) n D¿ (Xx) and suppose dist(x,y) > 0. Choose 

f «satisfying axiom A and strong-transversality, such that 

foh =heg and 2dist(x,h(x)) < dist(x, y). 

Then h(X) * h(y) € h(D,(x)) ñ h(C, (x))- 
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Corollary 4.4 

Let x e C and y e C_(x)(D,(Xx)). Then diám(g”(C, (x))—0 

(diam g”(D_(x))—>0) when n—>+w (resp., N> -w). 

Proof Otherwise we would get a point z € 04(x) and a 

non-trivial connected set containing zz and included in 

Co 00 n D¿[(Z)- 

Proposition 4.5 

For x € C, D¿(x) is compact connected and locally 

conected. 

Proof It follows from the previous corollary that given e£', 

O < eE! < e, there exists ¿ > 0 such that, if y e C, (X) (D, (Xx)) and 

dist (x,y) < 3, then Yelo, (x) (resp. y € Der (x)) - The proof of the 

proposition is now tha same as that of Corollary 2.4, (p.121) of 

EL]. 

Theorem 4.6 

There is a C”-residual set of Hom(M), such that if g e E 

has a connected attractor, C c QMA(g), diam C > 0, then there 

exists E E 0, such that if e < Er X € C, the connected component 

D¿ (Xx) containing x of U, (Xx) is a homeomorphic image of an 

interval. Furthermore, lin, dist(x,y) = 0 for y € D¿(x)- 

Proof Choose E, AS in the second paragraph of this section, 

and let £ < €, Since, by the previous proposition, De (A) is 

locally connected, any two points may be Joined by an arc within 

D¿ (x) > Assume that for some 7 > 0, dd < e there are three arcs 

a,b,c in D¿ (x) with origin x, joining x to 8B, (Xx) and such that a 

nb=bnc=anc= (41 x). 

Take f satisfying axiom A and strong tranversality, and 

semi-conjugate to gq through h, where dist(x,h(x)) < 3 for x € M; 

here 3 > 0 is chosen so small that the end points of each one of 

these arcs has a distance not less than 10 to the other two arcs. 

Then we can not have that the h-image of an end point of some arc 

lies on the h-image of the other arcs; but this is impossible. 

This argument proves that an interior point of an arc 
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like, say, a, can not be joined to another point of D¿ (Xx) through 
an arc that meets a only at that point. This proves the first 
assertion; on account of Corollary 4.4, this completes the proof. 
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Abstract 

We show that if M is a simply connected compact riemannian 

manifold whose geodesic flow is completely integrable with collective 

integrals, then the loop space homology of M with coefficients on any 

field grows sub-exponentially. 

1 Introduction and results 

The study of completely integrable geodesic flows (and Hamiltonian systems 
in general) has regained momentum in recent years, as new techniques have 
been discovered to construct examples. Let us recall that a geodesic flow is 
said to be completely integrable if it admits a maximal number of indepen- 

dent conservation laws (i.e. first integrals) that Poisson-commute. Classical 
examples are given by n-dimensional ellipsoids with different principal axes 

(Jacobi, 1838), left invariant metrics on SO(3) (Euler, 1765), surfaces of 
revolution (“Clairaut's first integral”), and flat tori. 

In part due to Poincaré's realization that complete integrability was a 

rare phenomenon, the subject went through a period in which very little 

development occured. In the past decades the study of Hamiltonian actions 

and the geometry of the moment map provided the necessary framework for 
a solid theory of symmetries. Ás a consequence, new examples appeared. 

In 1978, Mishchenko and Fomenko [10] constructed left invariant metrics 
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on semi-simple Lie groups with completely integrable geodesic flows. Then 

Thimm (13] devised a new method for constructing first integrals in invo- 
lution on homogeneous spaces. In particular he was able to show that the 

geodesic flow on real or complex Grassmannians is completely integrable. 
Guillemin and Sternberg [8] strengthened this method and obtained further 
examples. Very recently Spatzier and the author [11] constructed the first 

non-homogeneous examples using riemannian submersions. We were able to 

show that spaces like Eschenburg's strongly inhomogeneous 7-manifold (2), 
CP*"4CP*” for n odd and the exotic 7-sphere constructed by Gromoll and 
Meyer [3], have metrics with completely integrable geodesic fows. 

A natural question arises: What are the geometric and topological prop- 
erties of a compact riemannian manifold whose geodesic flow is completely 
integrable? Some topological features are shared by all the previous examples 
and we would like to draw attention to them. Following Grove and Halperin 
[6] we will say that a simply connected compact manifold M” is rationally 
elliptic if the sum of the Betti numbers of the loop space of M with rational: 
coefficients grows sub-exponentially or equivalentely, if the rational homo- 

topy of M, r.(M) 8 Q is finite dimensional. Homogeneous spaces are known 

to have this property, although is rather restrictive [6]. Rational ellipticity 
is shared by all the known examples of manifolds with completely integrable 
geodesic flows, but in fact they verify the stronger property that their loop 
space homology grows sub-exponentially even when the coefficient field has 
positive characteristic. 

Before we state our results let us set some terminology. 

Let G be a compact connected Lie group acting by Hamiltonian trans- 

formations on a symplectic manifold X with moment map 6: X —= g* (cf. 

[7] for defintion and properties of the moment map). We will say that the 
action has multiplicity k if for generic z € X, the symplectic reduction of 

Kerd 7 (i.e. the quotient of Ker dé, by its null subspace) has dimension k. 
Since the symplectic reduction of a subspace is naturally symplectic, k can 

only take even values. If k = 0, then Ker dé, is isotropic for generic € X 

and we obtain the notion of multiplicity free action introduced and studied 

by Guillemin and Sternberg in (8, 9]. 
Let H be a G-invariant Hamiltonian, £y its Hamiltonian vector field 

and H7*(a) = N a compact regular level surface. Let hsop(H) denote the 

topological entropy of the flow of €y restricted to N. In this note we want 

to announce: 
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Theorem 1.1 /f the action ofG has multiplicity zero or two, then hp (H) = 
0. 

Examples of homogeneous spaces G/H such that action of G on T*(G/H) 
_has multiplicity two are the Stiefel manifold SO(n + 1)/SO(n — 1) and the 
Wallach manifold SU(3)/T?. 

Let us now describe some of the interesting consequences that Theorem 
1.1 has in the case of geodesic flows. Let M be a simply connected compact 
riemannian manifold. If the topological entropy of the geodesic flow is zero 
then the Morse Theory of the loop space implies that the loop space homology 
of M with coefficients on any field grows sub-exponentially, via results of 
Yomdin and Gromov [4, 5, 14, 12]. Thus from Theorem 1.1 we obtain: 

Theorem 1.2 Let M be a simply connected compact manifold whose cotan- 

gent bundle admits a compact Hamiltonian G-action with multiplicity k < 2. 

Assume the set of G-invariant functions on T*M contains the Hamiltonian 

associated with some riemannian metric. Then the loop space homology of 

M with coefficients on any field grows sub-ezxponentially. 

Observe that Theorem 1.2 and thus Theorem 1.1 are false for k > 4. For 
example M = 8? x S2H45? x S? is a non-elliptic manifold, which admits a 

2-torus action . The lift of this action to the cotangent bundle of M has 
mutiplicity k = 4. Any riemannian metric invariant under the torus action, 

gives rise to a geodesic flow with positive topological entropy. 
The idea behind Theorem 1.2 is very simple. If the geodesic low ad- 

mits a sufficiently large group of symmetries (k = 0,2), then M has severe 
topological restrictions (ellipticity). 

Let us now describe briefly why actions with multiplicity < 2 are relevant 

to complete integrability. A function of the form f op, for f : g" — R is 

called collective (cf. [7]). We can prove the following lemma. 

Lemma 1.3 /f there exist f,,..., f, in C*(g*) such that f, 0 f,..., f, o $ are 
s-independent functions that Poisson-commute on X””, then the multiplicity 

of the action is < 2(n— 3) . 

Observe that if s = n, that is, if we can find a full set of commutative 

collective Hamiltonians, then the action is multiplicity free. This was proved 
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in [8]. Note also that a G-invariant Hamiltonian H is also completely inte- 
grable if it admits n — 1 independent commuting collective integrals besides 

H. In this case the action has multiplicity < 2. 
Most of the known examples of completely integrable geodesic flows arise 

by considering.collective integrals as above. The Thimm method (cf. [8, 13)) 
fits into this framework. 

Let (M”,g) be a compact riemannian manifold whose geodesic flow is 

completely integrable with first integrals Fi, =|| . [|,, F2,..., Fh. We will say 
that the geodesic flow is completely integrable with collective integrals if 
the functions F;, 2 < ¿ < n are collective with respect to the action of 

some compact Lie group G that leaves the Hamiltonian associated with the 

riemannian metric invariant. Combining Theorem 1.2 with Lemma 1.3 we 

obtain: 

Theorem 1.4 Let M” be a simply connected compact riemannian mani- 

fold whose geodesic flow is completely integrable with collective integrals. 

Then the loop space homology of M with coefficients on any field grows sub- 
ezponentially. . 

It is a pleasure to thank my advisor Detlef Gromoll for his permanent 
encouragement. His suggestions have been a constant source of ideas. l also 
would like to thank Ralf Spatzier and Steve Halperin for several stimulating 
discussions. 

2 Sketch of the proof of Theorem 1.1 

Let H be a G-invariant Hamiltonian, £y its Hamiltonian vector field and 

Ha) = N a compact regular level surface. If y; denotes the flow of Ey, 

then G and q; leave N invariant. Set p = p/N, where $ is the moment map 

associated with the action of G. 

We say that r € X defines a stationary motion if there exists a 1- 

parameter subgroup Y, of G such that px = g¿z. We denote by St(G) 
the set of all z € X that define stationary motions. 

Lemma 2.1 If g? denotes the annihilator of g, in gx*, then 

Ini dp. = gí 

if x is not in St(G). 
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Now let H C G be a closed subgroup and let Xy = [x€ X: G, =H). 
It is known that Xy is a symplectic submanifold of X. Moreover 4 maps 
each connected component of Xy into an affine subspace of g” of the form 
p + h?*, where h” denotes the annihilator of h in g* [7]. Let Ny denote the 
normalizer of H in G. The following is a crucial lemma. 

Lemma 2.2 Suppose the action of G on X has multiplicity k. Then the 
action of Ny on Xy has multiplicity < k. 

Let us now start with the proof of the theorem. Let Y = N/G, call r the 
canonical projection and let y, be the induced family of homeomorphisms on 
Y. According to (1, Theorem 19] we only need to show that h:op(9) = 0. 
Suppose first that the action is multiplicity free. Then it is easy to see that 
St(G) = X and the result follows. 

Next, let us prove the theorem in the multiplicity two case. We will 
actually prove more: J: has only trivial recurrence. 

Let Y denote an orbit of j; i.e. J(t) = 92 for some £ € Y. Take 
x € r*(%) and consider the orbit of g: through x. Thus r o y(t) = 4(t). 
Let H = G,. Then since g; commutes with the G-action, we deduce that 
y C Xy. Let ón, : Xy — ny denote the moment map corresponding to 

the action of Ny on Xy. In fact fm, takes values on a subspace of nj, of 
the form p + h” where h” is the annihilator of h in n;,. Set c = óy,¿ (y) and 

P= Na / X4NN. 

Observe now that Lemma 2.1 says that cis a regular value of p if p”*(c)n 
St(Np) is empty. Set Q. = p”*(c) — (pc) N St(Npy)). We have now two 
possible cases: 

(a) z € St(Ny). If this happens, then clearly y is a fixed point and hence 
trivially recurrent. 

(b) z £ St(Ny). In this case Q. is a non-empty submanifold of Xy N N 
and y C Q.. From now on we will work with the connected component of 
Q. containing y. Let K, denote the identity component of the stabilizer at 

c of the coadjoint action of Ny on ny. Since the action of G on X' has 
multiplicity two by Lemma 2.2, the action of Ny on Xy has multiplicity at 

most two. But it cannot be zero if z £ St(Ny) . Thus dim Q./K. = 1. Now 

we also have two possible cases: 
(b1) Q./ K. is a circle. In this case it follows inmediately that Y is a closed 

orbit and hence trivially recurrent. 
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(b2) Q¿/K. is an open interval /. Then Q. is diffeomorphic to O x Í, 

where O denotes a principal orbit for the action of K. on Q.. Also y intersects 

every orbit of K, once and only once. Thus if we assume that y is not a closed 

orbit it follows that every G-orbit in X that intersects (Q., does it in a single 

K.-orbit. Hence we can find a G-invariant neighborhood W of zx in X so 

that there exists T > 0 with the property that y(t) £ W for t > T. But this 
implies that $(t) £ T(W) for t > T and thus £ € w(+), proving that 4 is not 
recurrent. 

o 
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Expansivity and Length Expansivity 

for Geodesic Flows on Surfaces 

Miguel Paternain 

TI. INTRODUCTION 

A continuous flow $ on a metric space K is said to be expansive 

if for every £ >0 there is 3 >0 with the property that if 

dist(9, (Xx) ,4 (y)) <8 for every t e R,x,y e K and a 
Dt) 

continuous map C:R>=R with (0) = 0,then y = $, (x) ¡where |t|<e. 

Related to expansivity we have the concept of length expansive 

flow.A flow f,:M>M of diffeomorphisms of a riemannian manifold M 

is said to be length expansive if every rectifiable curve £ 

not contained in an orbit of the flow satisfies 

sup length f,(€) =w . 
tel 

+ 

Expansivity implies length expansivity.We show this in section 

IV of this paper. The converse property is false by the example of | 

Remark 1.4 of [8].However it holds for certain geodesic flows.This 

is one of the properties contained in the following theorem 
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THEOREM 1 

Slam a closed riemannian surface M:and denoting Py: UM>UM its 

geodesic flow,where UM is the unit tangent bundle of M,the 

foliowing properties are equivalent 

a) 4 is expansive 

b) ¿ is length expansive and M has no conjugate 

points 

c) M has no conjugate points and for any two 

disjoint geodesics y, and Ya of the universal covering of M 
1 

sup dist( Y, (t),7,(8)) =00. 
telR 

Problem. Does any one of the implications above hold if dim M >2 ? 

Our second result requires to recall certain basic concepts of the 

geometry of a riemannian manifold M without conjugate points. 

Given pe Manda ve UM, consider a point p e M, where T:M>M is 

the universal covering,and take v € us M satisfying TT” (p)v = v. 

Denote B, (Xx) the Be1L of radius r and centre x e M .Its eN 

9B, (Xx) is,by the absence of conjugate points,a submanifold 
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diffeomorphic to a sphere.Let y be the geodesic with y(0) = P and 

7(0) =vV. 
Denote u'(p,v,r) and u (p,v,r) the scalar curvatures at Pp in the 

direction of y of the  submanifolds 9B, (vr (-r)) 

9B, (7 (1)) -Clearly u*(p,v,r) = w (p,v,r) and u*(p,v,r) 

decreases (and u (p,v,r) increases ) when r increases. Define 

u'(p,v) = lim u'(p,v,r) and u (p,v) = lim u (p,v,r).Then 
Y>+o T>+o 

u*(p,v) = u7 (p,v)- 

These curvatures play a central róle in the study of manifolds 

without conjugate points.For instance u* (p, v) > u (p,v) for all 

(p,V) € UM if and only if the geodesic flow is Anosov 

(Eberlein [2]).The continuity of u+ and u was an open problem 

until Ballmann,Brin and Burns([1]) gave the first example of a 

closed surface for which u'and uw are discontinuous.When the 

manifold has no focal points,then ut and u are continuous 

(see (3] and [10]). 

+ 
In the example of (1], u and u coincide only at one orbit of 

the geodesic flow.Compare this with the following result 
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THEOREM 2 

If Mis a closed surface without conjugate points and its geodesic 

flow is not expansive,then there exists a curve £€:(a,b]-UM ,not 

contained in an orbit for which 

ut(£(t)) = u (€£(t)) for almost every t e [a,b] . 

Hence,the example cof (1] is expansive,and then through the 

techniques of Ghys [4] we get 

COROLLARY 

The example of Ballmann,Brin and Burns is topologically equivalent 

to the geodesic flow of the constant negative curvature riemannian 

structure. 

I am grateful to Jorge Lewowicz for helpful comments on these 

problems. 
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11. PRELIMINARIES 

For the sequel, assume that M is a compact oriented 

riemannian surface with no conjugate points. Let M stand for its 

universal riemannian covering and UM for the unit bundle of M 

endowed with its standard metric and the canonical projection 

MN :; UM > M. 

The geodesic flow $,: UM > UM is defined as 

$(2,t) = $, (0) .. rat), 7¿(t)) where [ = (p,v) and Te is the 

geodesic with initial conditions 7¿(0)= P, 7.(0) = V. 

Denote by $: UM > UM the geodesic flow of the universal. covering. 

Since M is oriented it is possible to define Pe = (p, ey) 

(ely is the rotation of v by an angle 09) for real 6. 

For [ = (p,v) define 

S(t) = (u € T¿(UM) / <mE(W),v> = o) 

It is well known (see (2]) that S(() is invariant in the 

following sense: 

$1 (S(1)) = S(9,(0)) 

The vertical subspace is defined as V(([) = Ker ("E/scz») and the 

horizontal subspace is the ortogonal complement of V(CT) in S(C€). 

Put Y(7) = ( Ww € UM / <u,v> = o) 

It is also well known (see [2]) that S(() can be 

identified with  Y(C) Xx Y(L[) and that, with such. an 

identification, we can write 

$ (V,W) = (I(t), Í(t)), where J is the solution of the Jacobi 

equation 
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0 + K(7¿(t))3 

with initial conditions J(0) = V, J(0) = €W 

(here, K is the gaussian curvature of M). 

Recall that u = J/J satisfies the Riccati equation 

ú+u + K(7¿(t)) = 0. 

We say that u is the slope of 15,5. 

As in [7] we define: 

1 (P-TU/2) ad 2 (m,0,9) = é  (ip((,m),n) 

for (n,n,p) close to 0 € R?; moreover it can be shown (see [7]) 

that $. is a local diffeomorphism at 0 e Rand that if 
t 

F (n,p) = ELO PE, then 2Ec (0,0) and 2Ez (0,0) are vectors of 
€ án ap 

H(€) and V(C) respectively. 

Let B¿ (0) be the open ball of centre 0 and radius e£ on 

R. Then, we can choose € such that Fe (B, (0)) = N, (€) is 

transversal to the orbits of b for every [ € UM. 

Define m: C - (0) > Ss! as m(z) = z and 

g(t) = m(I(t)+iJ(t)), where J is a solution of the Jacobi 

equation. 
.2 2 

Then, EM 2 ZE. his implies that there is R > 0 
3d A A 

such that i£ |J(t)| > R|I(t) |, then e > 1. This yields 

Remark 1 

There is t, = t,(R) such that if |J(0)| > R|I(0)|, then 

J(t) = 0 for some t, |t| s to: O



For suitable 5 > 0 and Q € N5 (3) we define 

Pe e ' N5 (€) > N¿ (0) as the projection along the geodesic flow, 
E -1 

and set Sy = Fo o Peg” Fp- (Mharrve that the map (0,n,p) > 

G¿(N,p) is differentiable and that Se = id). 

Remark 2 

There is 3 > O such that (Gg) (1,8) has slope > R if 

lp|< 3 and ja| > 2R. o 

Take Y € ÚM. For |n| < 3 and t »= 0, define [¿(n) = 

and c¿(m) = Sá as the unit vectors for which 

7(0)=n$(12,n) 
t 

Y (1)=1 (t)., 
t 

for some T = T(n,t) 

(1) 

and 

7_¿+(0)=$(ic,n) 
t 
Pa (-€) for some t = T'(n,t) l 

Notice that, for fixed n, — (n,t) > .. as t > .w. Define 

a.(n) = (n, £,(n)) in such a way that 
Pa + 

E Hg E; 

Remark 3 

3, (t) = 0 for the Jacobi field q, with initial 

conditions 

0 
án   

e (m)=(3, (0) ,3, (0) ) 
n=0 
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Analogously, for t = T (n,,t) as in (1) we have J¿(T) =0 

for the Jacobi field T. with initial conditions 

  

2 oo A (25,0), 35,009) = ¿5 (5: , (2, (2) ) a 
a”, t 0 

E - _ 3 (s) ] 
Now define u, ((,s) = "t /3,(S), for J, as in the 

preceeding remark. It is well known (see (2]) that u, ((,s) 

converges as t > w toa function u(í,s) which is also a solution 

of the Riccati equation. We will write u (7,0) = u (CT). Reversing 

time it is easy to find another limit solution u'such that 

(1) = ul (t). 

Remark 4 

(See proposition 2.12 of [2]). 

Let 0 >= (V,W) e S(T). Then 

lín |p¿(V,W)| = if W = u (()v o 
t>+0 e 

On account of remarks 1,2 and 3 we can obtain t, = 

= t, (R,8) such that 

(7) (m) | < 2R for [n| < 5 and t>t,. 

Then E are uniformly lipschitz. This and Arzela-Ascoli 

theorem permit to find in), limit functions of c(m) for t > +, 

that are uniformly lipschitz. | 

Define n, (n) = 9(c0m. 7 (n,t)]) for T as in (1). As 

(n,)"(n,) € S(n,(n,)) we get ((,)'(n,) + $(Z,(n,), 0) E (n,,t) € 

S(í,(n,)) - 
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Therefore, T(n,t) is uniformly lipschitz in n and 

E 
is uniformly lipschitz in n, Therefore, for suitable 3, we obtain 

consequently there is 1,(n), a limit function of t (n,t) - t, which 

small Te (nm). 

Set C,((,n) = H(£ (n), T (n,t) - t) 

and Cc (€,n) = $(C (n), T¿(n)). 

(Obviously a similar construction holds for the past). 

ema 5 

Assume that 

e,(n) = $(T (n), T,(t)) «€ N¿(B,(2)), for t = 0 and smooth 

increasing surjective functions 

Tr. * Ref 

As the foliation C (C,-) is $ -invariant (i.e.$,C ((,n) 

= Cc (9, (() ,m) for suitable m), we get, for small 5, 

T.(t) = T, (n) + t where T, are uniformly lipschitz. O 

Now, we need the following lemma due to Green (see [5]) 

Lemma 1 

Assume that Y. and 7, are geodesics of M, the 

universal covering of M, such that Y, (0) = Y,(0) and 7, (0)x 7,(0), 

then 

and Il 8 sup dist (7,(t), 7,(R”)) 
tzo 

ll 8 sup dist (y ,(t), v,(R')) 
t30 
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Let 7, and 7, be two different geodesics of M (ií.e. Ya is not a 

reparametrization of 7,)- 

We say that they are asymptotic for the future if 

sup dist (7,(t), 7,(R")) < o 
to 

and that they are asymptotic for the past if 

sup dist (7,(t), r,(R)) < wm 
tx0 

and that they are bi-asymptotic if they are asymptotic both for 

the future and for the past. 

It is easy to see that fp is expansive if there is a > 0 
£ 

such that 

if there is a smooth surjective increasing function Tt : R > R, 

with T(O0) = O for which 4 (n) € No (9, (03) for every t e R then 
Tit) 

LT ”=N... 

III. PROOF OF THE THEOREMS 

Proof of theorem 2: 

If the geodesic flow is not expansive on the manifold 

the same holds for the universal covering Á and then we can find 7» 

€ N5¿(T) + C «* y vectors of UM, and a smooth increasing surjective 

function t with T(0) = 0, such that 

Paga) (1) E NS(Ó, (8), Tor teR (2) 
this means that the geodesics Te and a bound a strip, because 

they cannot cross on account of lemma 1. 

Define I = (n/rmé(iZ,n) is between Ye and 7) and fix 

some n, € Le



The geodesic segments le, (0) 0x3 us Y (m,t)) (tí 
to 

is the same as in the definition of En) stay between y_ and Te 
) 

again, according to lemma 1. Therefore Vta) is asymptotic to 
0 

both Te and Ta for the future. 

Analogously Veín is asymptotic to both Ye and Ta for 
o 

the past. 

But then, C(n,) = C(n), because if this is false 

lemma 1 again implies 

sup dist (7, (t), Te (t)) =u 
tzo (m,? (a) 

and then for some t > 0, Y,r (t ) belongs to y (or y,_), and 
Co) > € A" 

o 

then sup —dist (y t), 7,(R )) =0 
eso 3, cta, e 

wich is a contradiction. Then we get that ('= (” on 1. 

Notice that (2) can be written as 

9,(m) = 3(T (n), T,(n) + t) e N¿(0, (€) 
for ne I and t e R, where T are as in remark 5. Then we can 

obtain positive numbers A, B and L for which 

B=R1(0,)=A f |91(0)<m) [an - L. 
1 

We claim that the slope of [P. Cu] (00m) equals 

u (C((n)) for a.e. ne l. 

If this were not true we could find a positive measure 

set Ec I, so that 

lím 18," (2)*(m) | = wm, for n e E, according to remark 4. 
t>+0 
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We may assume, via Egorov theorem, that the limit is 

uniform in E and then 

1ím $13, (0) (m) Jan = , which is absurd. 
t>+0 

An analogous argument shows that the slope of 

[P. ca] (00m) equals u (2 "(n)) for a.e.nel.Define £:I-UM as 

£(n) = (nm) = (mn) 

Then u' (£(n)) = u (£(n)) for a.e.n e Il and this proves theorem 2. 

Proposition 1. 

Let $ be the geodesic flow of a compact surface without conjugate 

points.Then if f is length expansive it is expansive. 

Proof : 

If $ is not expansive,the arguments of the proof of theorem 2 

show the existence of a curve £ such that 

sup length PLE y ¿e 
teR 

actualy 

sup length PLE ) < A 

teR 

for A B and L as in the proof of thorem 2. 

Now we need the following lemmas



Lenmma 2 

Assume that e is expansive and a is as in the 

preliminaries. 

For every 0 < e < a there is T > O such that if 

for some t > 2T we have that 

Pri E € No [9 a (0) for  Osust and some smooth 

increasing function t with T(0)=0 

then Per E E Neo [$ 3 (2) for Ts us it-T 

Proof 

If the lemma is false, for every K > O there are points 

de and LM numbers K =u = t- K and functions T,(u)= TU En) + 

such that 

$(n,,7,(4)) e N¿[6, (_,)] for osust, 
and dist Per (nm) » A (5,2) z B, for suitable B > O 

Let Y and n be limit points of the sequences $, (2) and 
K 

e y y 0) respectively. Then dist (n,C) = B > 0. We also have 
K K 

that 

PE tura (mn, , Ne | ht] E0L ou? 9 Se EU: 

As t,(>0 and E >0was Ko>o0o, we get 

(nm € Ne (0, (2) for every t e R and some smooth increasing $ 

and surjective function Tt : R > R, T(0) = 0, which is absurd. 

T(t) 
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Lemma 3. 
  

Assume that Q, and « are as in lemma 2. 

Given 0 < e < a, there is 3 > 0 such that if |n| < 3, 

then ás Cm») € No (3, (23) for u = 0. 

Proof 

The lemma is an immediate consequence of the following 

claim: there is 3 > 0 such that if |[n| < 3, then 

Bu (E (m)) € No (3, (0) for Osust and some smooth increasing 

function t such that T(0)=0. 

If this were not true we could find sequences n/ ts ú 
E K 

such that t, =Tsx u * to n, ? 0, t. > w (where T is as in the 

previous lemma) and 

E (5 ap ] e No (a, (0) forósust, 

and dist [Bo ELA $ SS )- € 

If x and y are limit points of the projections (onto UM) 

of Pb. (2) and be E (2) respectively, then x * y, TMxX = Ty 
K K K XK 

and Me (y) € No (9, (x)) for t = 0 and some smooth increasing, 

surjective function T:R > R,T(0) = 0, which contradicts lemma 1. 

Proposition 2 

Let $ be the geodesic flow of a surface with no 

conjugate points.Then $ is expansive if and only if there are no 

bi-asymptotic geodesics on the universal covering of M. 
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Proof 

Assume that Pb is expansive. If there are two 

bi-asymptotic geodesics on the universal covering we can find, as 

in theorem 2, a point € for which (' = [' on some interval, 

but this and lemma 3 contradict expansivity. The converse is 

obviously true. 

Proof of theorem 1: 

We showed in (9] that if the geodesic flow of a compact surface is 

expansive then the surface has no conjugate points;this and lemma 

5 of section IV prove that a) implies b).On the other hand 

proposition 1 says that b) implies a) and proposition 2 gives the 

equivalence of a) and c).This completes the proof of theorem 1. 

Corollary 

The geodesic flow of the example in (1] is topologically 

equivalent to an Anosov flow. 

Proof 

In [4], Ghys proves that a geodesic flow on a manifold 

with no conjugate points and no bi-asymptotic geodesics on the 

universal covering is topologically equivalent to a geodesic flow 

on a surface of constant negative curvature. Then the corollary 

follows from this and proposition 2. 
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IV. EXPANSIVITY IMPLIES LENGTH EXPANSIVITY 

Let $ :Mx R > M be a non - singular flow on a compact riemannian 

manifold M.For suitable € > 0 define 

H, (q) = 4 expyv such that 4 = 0 and lv|< e) 

Define 

N(e) = 4(x,y) e MM such that y e H,(x) + and 

B(e) = /(x,y) e MxM such that dist (x,y) < € | 

Choose 3 > 0 and c > 0 small numbers such that there is a unique 

smooth function TOI:EB(S8) x [-c,c] > R such that 

P(y ,T(X,Y,t)) € H,¿ (9 (x,t) for te ([-c,c] and (x,y)e B(8). 

For U:N(3) > R define U:N(3)>R ,the derivative of U, as 

U(x,y) = ll U($(x,t)) ,P(Y-T(X,Y,t))) f- 

Let U stand for the derivative of U. 

The following lemma,which is based on techniques of (6],is 

proved in [9]. 
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Lemma 4- 

If Y is expansive there is 0>0 and a continuous function U:N(0) -£ 

such that 

U(x,y) = 0 and U(x,y) = 0 iff x= y 

“U(x, y) z 0 and u (XxX, y) = 0 iff£ x=y. 

With this lemma we can prove 

Lemma 3. 

If $ is expansive it is length expansive. 

Proof: 

Take 0 < r < X, such that if U(x,y) 3 r and U(x,z) = r, then 

U(Y,P(Z2,T(Y,2,0))) = Y . 

Choose r, <r such that if U(x,y) <= L, and U(x,z) <= r, then 

U(y,$(Z,T(Yy,Z7,0))) < r. Take p >0 such that dist(x,y) = p if 

U(x,y) = T,- 

The expansivity of $ and the condition U >0 permit to find T*>0 

such that if r, = U(x,y) sr and U(x,y) > 0 (U(x,y) x= 0 ),then 

U(P(x,t) ¿(Y ,T(X,Y,8))) > X, 

+ 
for some t,0xts —”, (resp.,-T =s ts 0). 
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Set 

T=supyjY | rt] such that U($(x,t) ,¿(y,T))= r, and |t]s +. 

Consider a curve a :(0,1]+ M not contained in an orbit of gq. 

We may assume, without loss of generality, that the image of a 

lies in B(0) in such a way that we can define a, as 

a, (s) = 6 (a(s),t(A(0),a(s),0)) for s e [0,1]. 

We may also assume that U(a,(0),a, (s)) tE, for s «€ [0,1] 

and U(a,(0),%, (1)) = T,- 

Tf U(a, (0) e, (1) z 0 we next show how the length of o, 

duplicates for the future j.e. when it is 

positively translated by the flow. 

If vía, (0) 2, (1)) s0 a similar procedure holds for the past . 

Set E¿(s) = p(a, (s),t(a, (0),a, (s),t)) . 

Take 0 < Ss, <S, such that for some t, 0= tax P”, we have 

U(EL(0),E,(5,)) = Y and U(E,(0),E,(s)) =r,.



Then 

U(E¿ (8,) -$(E¿(5,) ,T(EL(5,) ¿E (8,),0))) = Y 

and therefore 

U(E¿ (0) ,€, (8,3) > 0 and 

o U(E, (8), $(E¿ (8) ,T(E¿(5,) E, (8,),0))) > 

on account of this we can find numbers 0 ta, 3 q” 

E < 1 such that we can and 0 < s,< u' s s,< u 

define functions a,: ( Ss, d P ]> M, i=1,2 

with the following properties 

-  a'(s) =$ ( a,(s),v(a,'(s,'),a,(s),t,)) 

. Ue, (8,1) ñ a (u,') )= 0 

. U(a,'(s,') > a (A) )=.r- 

. U(a,' (s,' ),a,' (8) sí, for s € (s,', u' J. 

This procedure of duplication can be carried out inductively in 

the following way: 
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Suppose that for some k > 1 we have defined curves 

1 1 1 1 1+1 ¡ 
z > 3 = is a [s, ra, ] M, " Ss. » 15 1 2 

with the following properties: 

(a) a, (s) =$ (a,(s),7, (s) ) with | 7, (s) | s (k-1)7. 

(1) Ue (s) 90) )=0. 

(e) U(a'(s)) , 9 (u'))=r,. 

ba, (a) U(at(s!),a (s)) sr, for sels! ,u 

Using the same procedure that we used to construct A, We can 

find numbers - 

1 21- 21-1 21 s sat*t << y ss <u* s u! 
k k+1 k+1 k+1 k+1 k 

and curves 

21-1 21-1 21-1 
= - 

et [ Su 1 "pri ] M 

21 21 21 
: s > 

A! l k+1 , A ] M 

such that conditions (a) , (b), (c) and (d) hold for k+1 

instead of k. 

98



Now define 

B,(s) =$ (a, (s) ,(k-1)T ) . 

on account of the previous arguments there is P, >0,close to p, 

such that 

k-1 

dist ( B,(s,) , B,(u,)) ) =p, forisis2 o. 

k-1 
Then length B, FP, 2 and hence there is R >0 

ke 
such that length $4 (a) =R 2 for k = 0. 

kr 

This completes the proof of the lemma. 

99



Re ences 

(1] Ballmann, W.-Brin, M.-Burns, K. On Surfaces with no Conjugate 

Points. J. Diff. Geom. 25(1987) (249-273). 

(2] Eberlein, P. When a Geodesic Flow is of Anosov type? I. J. 

Diff. Geom. 8, (1973), 437-463. 

(3] Eschenburg,J.H..Horospheres and the Stable part of the Geodesic 

Flow.Mat.Zeitschrift.153(1977), 237-251. 

(4] Ghys, E. Flots d'Anosov sur les 3-varietés Fibrées en Cercles. 

Ergod. Th. and Dynam, Sys. (1984), 4, 67-80. 

(5] Green, L. Surfaces without Conjugate Points. Trans. Amer. 

Math. Soc. 76, (1954), 529, 546. 

[6] Lewowicz,J. Lyapunov Functions and Topological 

Stability. J.Diff.Equations (2) 38 (1980), 192-209. 

(7] Lewowicz, J. Lyapunov Functions and Stability of Geodesic 

Flows. Lecture Notes in Math. 1007 (1981), 463-479. 

[8] Lewowicz, J. and Lima de Sá, E. Analitic Models of 

Pseudo-Anosov Maps. Ergod. Th. and Dynam.  Sys. (1986), 6, 

385-392. 

(9] Paternain,M. Expansive Flows on 3- Manifolds.Thesis IMPA,1990. 

(10] Pesin, Ja.B. Geodesic Flows on Closed Riemannian Manifolds 

without Focal  Points.Izv.Aka d .Nauk  SSSR Ser. Mat.Tom 

41(1977), ,No.6, (1195,1228). 

FACULTAD DE INGENIERIA FACULTAD DE CIENCIAS 

IMERL CENTRO DE MATEMATICA 

Av. J. HERRERA Y REISSIG S565,CC30 EDUARDO ACEVEDO 1139 

MONTEVIDEO 

URUGUAY 

100



INDICE 

Discurso de J. L. Massera 

Discurso de J. Palis 

Integral and Invariant Theory 
WALTER FERRER 

Nonparametric conservatives bands tor the trend of Gaussian AR(p) Models 
FRAIMAN - PEREZ IRIBARREN 

On stable and unstable sets 
LEWOWICZ - TOLOSA 

Collective complete integrability and loop space homology 
GABRIEL PATERNAIN 

Expansivity and Lenght Expansivity for Geodesic Flows on Surfaces 
MIGUEL PATERNAIN 

37 

55 

E 

79





INSTRUCCIONES PARA LA 
PRE-SENTACION DE 
TRABAJOS EN LAS PMU. 

Dado que los articulos 

serán fotocopiados 

directamente del original, se 

agradece tener en cuenta las 
recomendaciones que siguen: 

Jamaño de página: Tamaño 
del texto escrito: ancho, 

13cm. y largo, 16.5 cm. 

Datos gel autor: A 

continuación del título 
conviene anotar, además del 

nombre del autor, su lugar de 

trabajo, asi como consignar al 
final del trabajo su dirección 
de contacto. 

Abstract: Se debe incluir un 

resumen, en inglés y en el 

idiorna del trabajo. 

Numeración de las 

páginas: Se numerará a 
lapiz, para que luego se 

numere en tunción de la 
ubicación en el volumen. 

REFERENCIAS Se sugiere 
presentar-las como a 

continuación se indica: 

INSTRUCTIONS FOR THE 
PRESEN-TATION OF 
ARTICLES FOR THE PMU 

Due to the fact that the 
articies will be photocopied 

directly from the originals, 
we will appreciate the 
consideration of the following 
recommendations: 

Page size, The size of the 

written text is: 13cm. width, 

and 16,5Scm:. length. 

Authors information: 
After the title it is convenient 

to write the authors name, 

his place of work, as well as 
at the end of the article, his 

contact address. 
Abstract: A resumée in 

English as well as in the 
arucle's language should be 
included. 

Pages  —_numbering: Pages 

should be numbered in pencil. 

They will be renumbered 
according to their place in 

the volume. 

BEFERENCES: The following 

presen-tation is suggested: 

[9] PARANJAPE, S. RA. and PARK, C. Distribution of the supremum 
of ihe two parameter Yeh-Wiener process on the boungary. y. 
App!. Probability 10 (1973), 875-88. 

10] PYKE, AR. Multidimensional Empirical Processes: Some 
Comments, in Statistical Inference and Related Topics, JM. L. 
Pur, ed., New York, Academic Press (1975), 45-48. 

[11] WIDDER, D. V. The Heat Equation., New York, Academic Press, 
1975. 

TEXTO: En cuanto a la 

presentacion del texto, el 

siguiente modelo es recomen- 

dable: 

TEXT The followng model is 

re-commended for the 

presentation of the text: 

1 Introduction, The amm of this paper is to give upper and 

lower estimates for the probability density. 

3 Two "Kolmogorov forward imegquations” for p. In what 

follows. D genotes the differential heal operator 

THEOREM 2. The density p satisties the ¡nequalities 

(1)  0p20 
and 

For the proof, we shall 

PROOF OF THEOREM 2. Given any



Se terminó de Imprimir 
en el Departamento de Publicaciones 

de la Universidad de la República 
Montevideo, Uruguay 

en el mes de marzo de 1992 

Depósito legal 254.466




