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CLUSTERS, PROXIMITY INEQUALITIES AND
ZARISKI-LIPMAN COMPLETE IDEAL THEORY*

by Antonio CAMPILLO, Gérard GONZALEZ-SPRINBERG
et Monique LEJEUNE-JALABERT

introduction

The starting point of the topic is a result concerning linear systems of plane
algebraic curves with assigned base points which was published in 1915 in [E.C]. In
Chap. 2, book 4, E. Enriques and O. Chisini discuss the following problem : does there
exist plane algebraic curves which pass through an assigned set of infinitely near points
of the plane with assigned multiplicities ? They prove that some numerical inequalities,
the so called “proximity inequalities” are necessary and sufficient for the existence of
curves with the required property (at least if no condition is imposed on their degree).

Almost twenty years later, O. Zariski begins a systematic study of “complete
ideals”. In dimension two, these ideals adequately describe complete linear systems -
defined by infinitely near base conditions. One of the main results of the theory is that
any complete ideal in a regular two-dimensional local ring has a unique factorization
into simple complete ideals {Z.S]. It turns out that the expenents which appear in the
factorization are easily computed from the proximity inequalities for the corresponding
linear system (see [L3], [LJ]).

These results do not extend directly to higher dimensional case and actually no
substantial progress was achieved during fifty years. It is only recently that, by allowing
factors with negative exponents, J. Lipman was able to recover a unique factorization
statement [L.2]. The result holds for finitely supported complete ideals in a regular local
ring R of any dimension. This condition means that the ideal is supported at the closed
point and that there exists a finite succession of point blowing-ups o1,...,0, such
that its inverse image by o; o --- o 0, is locally principal. Roughly speaking the only
infinitely near fixed sub-varieties of the corresponding linear system are closed points.
As in dimension two, the special *-simple ideals admitted as factors are in one to one

* Preliminary version 1993.



corrcspbridcnce with finite chains of infinitely near points. This paper is also devoted to
the study of finitely supported complete ideals. It may be considered as an introduction
to Zariski-Lipman’s theory. Following the original view point of the italian school, we
put the emphasis on the geometrical side. In fact, we only consider ideals in the local ring
of a point O on a non singular algebraic variety X defined over an algebraically closed
field. This allows us to make use of intersection theory and makes appear connections
with more modern developments on the study of birational morphisms and the minimal
model program.

In § 1, first we introduce some terminology. The given set of assigned base points
(a “constellation”) with assigned multiplicities m is called a cluster. Now the question is
to characterize those clusters A for which the set of hypersurfaces which pass through
the given base points with the given multiplicities (for short, which pass effectively
through A) is not empty and has no other base points. In dimension greater than two,
imposing isolated base points may force the linear system to have fixed subvarieties
of positive dimension. Next we express some previous results given in [L1] and [L2]
as a dictionary between finitely supported complete ideals and clusters with the above
property. ‘

Actually, to each cluster A, we associate a proper birational morphism 7 : 7 — X
and a Cartier divisor D(A) on Z ; in proposition 1.2.7, we alternatively characterize
them by saying that —D(A) is w-generated 1.e. is generated by its global section on
a neighborhood of 7~!(0). As a consequence, we get some polynomial inequalities
on m which hold for these special clusters. By a theorem of Kleiman the linear ones
imply those of greater degree. An equivalent formulation is that —D(A) is 7-nef (i.e.
D(A) - V < 0 for any irreducible curve V contracted by ).

If the dimension of X is two, these inequalities are nothing but the proximity
inequalities of [E.C] and actually they provide the wanted characterization. If the
dimension of X is at least three, usually this is no longer true (example 1.3.9).
Nevertheless, it remains true if the cluster is provided with a toric action. This is applied
to discuss the factorization of finitely supported complete monomial ideals into special
x-simple factors in another paper. The cone of effective projective curves contracted
by n, NE(Z/X), appears to play an essential role in this discussion.

In §2, we fix a cluster coming from a finitely supported ideal and we analyze
further the geometry of the complete linear system s(.A) defined on the germ (X, O). For
each base point @, we get a linear system with assigned base points of hypersurfaces of
a given degree, bg(A), on the exceptional divisor of the blowing-up of Q. This linear
system of projective hypersurfaces may not be complete. From this construction, we
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derive some conditions on .4 which are strictly swonger than the proximity inequalities
when the dimension of X is at least three (2.4.1). We also derive various explicit
examples and counter-examples (2.4.2-2.4.4).

The main application of this analysis is given in § 3. If the characteristic of the
ground field is zero, we prove as a corollary of Bertini’s theorem, that the canonical
process of eliminating base points of s(A) by successive point blowing-ups is an
embedded resolution of any complete intersection defined by r, 1 < r < dim X, “general
enough” hypersurface germs in s(A) (1.e. at the last step, its total transform is a scheme
having only normal crossings). This is a partial generalization of the desingularization
process of a hypersurface singularity which is non-degenerate with respect to its Newton
polyhedron A (e.g. [V]). The complete ideal to consider here is the one generated by
all the monomials in A. It may noi be finitely supported. On the other hand, there exist
surface singularities in C* for which this process provides an embedded resolution but
which are degenerate with respect to their Newton polyhedron in any coordinate system.
A further study of these surface singularities seems attractive.

Acknowledgements. — We benefited from stimulating conversations with
Catherine Bouvier, Miles Reid and Orlando E. Villamayor U. We also want to
thank Rosa Campillo and Arlette Guttin-Lombard for their help and careful typing
of the manuscript.

This work was done at Grenoble (France), at Valladolid (Spain), and in
between, partially supported by the “Action Intégrée Franco-Espagnole” n® 92127.

1. Constellations, clusters, proximity inequalities and
finitely supported complete ideals

Throughout this paper, an algebraic variety will mean a reduced and irreducible
scheme of finite type over an algebraically closed field K. A point will mean a closed
point.

From now on, X will denote a non singular algebraic variety of dimension d > 2
and O will be a point on X. In the sequel, we consider various birational morphisms.
The subset of the source where the morphism is not an isomorphism will be called
its exceptional locus. An exceptional subvariety will be a subvariety of the exceptional
locus.

1.1.1. DEFINITION. — Any point ¢ on any variety Z, obtained from X by

9



a finite succession of peint blowing-ups, is called an infinitely near point of X. If O is
the image of @, we say that Q is infinitely near O.

1.1.2. DEFINITION. — A constellation (of infinitely near points of X ) with
origin at O consists of a finite set of points infinitely near O, C = {Q0,@1,--.,Qn},
where n > 0, Qo = O and each @y, ¢ = 1,...,n is a point on the variety Z; obtained
from Z;_; by blowing up Qi-1, (Zo = X).

We call the variety Z := Z,,; the sky of C.

Let 7 : Z — X be the composition o1 00;0...0 0,4 Where o; : Z; — Z;_;
denotes the blowing-up with center ;-1 and let m : Z — Z; = : X be the com-
poSition 02 0 ... 0 Opyt - The image by m; of its exceptional locus is a finite subset C;
of points of X;. Obviously @ € Cy. Let p, : X3 — X, denote the blowing-up with
center C;. By the universal property of blowing-ups, there exists a unique morphism
m, 1 Z — X, factoring . For each @ € C distinct from @), there exists a unique
i, 2 < i < n, such that @ is a point going to @ in the open set where 02 0...00; :
Z; — Zy is an isomorphism. By identifying @ and Q,, we may view C; as a subset
of C.

If C #Ciu{Qo}, let ;3 : X3 — X be the blowing-up with center the image
C, by m, of its exceptional locus. As above (7 is a finite non empty subset of X,.
Let Q € Ca, then po(Q) is a point of C; which is identified with some Q; € Z;.
The variedes X7 and Z; are locally canonically identified at these points, hence there -
exists a unique @; with 7 < j corresponding to @ such that Z; and X, are locally
canonically identified at these points ; thus the set C; may be viewed as a subset of C
disjoint from C; U {Qo}. Finally, by induction and with Cp = {Qo}, we get a partition
C=0LVGV.. UC,.

Xt+1




If Q; € C;, we call the integer [ = (Q;) the level of @;. Using classical
language, we also say that Q; belongs to the 1™ infinitesimal neighborhood of O. After
relabeling the Q; if necessary, one may assume that [(Q;) > I(Q;) implies that j > i.
(Note that by doing so, one may modify the o;, hence the factorization of 7).

If 4(Qn) = n, Le. if 0(Qs) = Qi—1, 1 < i< n, we say that C = {Qo,...,Qn}
is a chain.

For each Q@ = Q; € C, we denote by Bg (or B;) the exceptional divisor of
the blowing-up o1 of @, and by Eq {or E;) its strict transform on any of the Zj,
i+l <h<n+1 as well as Bg (or B;).

1.1.3. — We associate a tree I' (with ()¢ as the root) to the constellatdon C
in the following way : the vertices of I' are in one to one correspondence with the
points Qo, ..., Q» and the edges with the pairs (€5, @;) such that [(Q;) = I(Q;)+1 and
@Q; € B;. Clearly @; is infinitely near Q; if and only if either Q; = Q; or {(Q;) > I(Qy)
and the corresponding points on I" are connected by a going down sequence of edges.
If this is so, we write ¢; > Q;. :

1.1.4. — We say that Q; is proximate to Q;, and write Q; — @, {or j — %)
ifQ; € E;. fd=dimX >3,0onehas Q; — Q; ifand only if j > iand £;NE; # 0.
Furthermore, if J = {i; < --- < i} isasubset of {0,...,n} with 1 <k <d—1, the
following conditions are equivalent :

G) B, N -NE, #0
(i) i —ip 1<L<j< K
(i) i — g, 1 <L < k.

Indeed, if (iii) holds, then @;, € E;,N---NE;,_, (in Z;,), therefore E; N---NE;, #0
in Z;,+1 and in Z. If J satisfies any of these conditions, we say that {Qi,,...,Qs, } or
simply J Is completely self-proximate. We may extend this definition without change
to the case d = 2 since for & = 1, conditions (i), (i1) and (iii) hold trivially. In any case,
if 7 is completely self-proximate, the constellation {Q;,,..., @, } is a chain originated
at Q,-, of at most d — 1 points.

The proximity relations among points of C are conveniently represented by mean
of the (n +1) x (n+1) matrix M = (p;;) given by pi; = 1, p; = —1if ¢ — j and
pi; = 0 otherwise. We call it the proximity matrix of C. It was first introduced by Du
Val in [DV] and it appeared further in [D], [Ca], [LJ], [L3].
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1.1.5. — Let E := (QZEq be the free group of divisors with exceptional
support on Z and for each @ = @; € C, let £7 (or E7) be the total transform of Bg (or
Bi)in Z ; obviously Ef = E, mod (Z zzoEj), where Zso = {n €Z|n>0}.

i>9
Hence both E := (Fy,..., E,) and E* := (Ej,..., E}) are Z-basis of E. In fact, we
have

1.1.6. PROPOSITION. — Foreach Q€ C, Eq = E5— >, Ep inE. In
P=Q
other words, viewing formally E and E* as row matrices, £ = E*M.

Proof. — We proceed by induction on the number of points in C. Let @ = Q;,
0<i<nlfn=0o0rifi=n,iis obvious since in both cases £g = Ej and
no points in C are proximate to @. If 0 < i < n, let C = {Qo,...,Qn-1}. By the
inductive hypothesis, one has

Eq=Ey- Y, Ep
P—Q, P£Q.
in the free group of divisors with exceptional support on Z,. Here Eq, Ej, Ep mean
respectively the strict and total transform of Bg and the total transform of Bp on Z,.
Now the total transform of Eg on Z = Z,4 is Eg if Qn ¢ Eqg, or Eg + Bg,, if
Qn € Eg, ie., @, — Q, where now Ey means the strict transform of Bg on Z. This
completes the proof.

.1.7. DEFINITION. — A cluster of infinitely near points of X with origin
at O consists of a constellation C = {Qo,...,Q,} together with a “column vector”
of non-negative integers m = ‘(myo,..., my,). The integer m; is called the weight (or

virtual multiplicity) of @; in the cluster.

1.1.8. — We associate to each cluster 4 = (C, m) the divisor with exceptional
support on Z, D(A) = 5 m,E]. From 1.1.6, it follows that D(A) = Y d; E; with
d = Hdg,s 8o} = M,

- 1.2.1. DEFINITION. — Anideal [ in R := Ox o is finitely supported if [ is
primary for the maximal ideal M of R and if there exists a constellation C of infinitely
near points of X with origin at O such that /Oy is an invertible sheaf, where Z is the
sky of C.

Before giving the next definition, we need to introduce some additional notations.
For any point @ infinitely near O, let Rg be the local ring of @ on the space on which

12



@ lies and let Mg be its maximal ideal. For 0 # f € Rg, we set
ordg f =max{n|fe Mg}
Now if I is a non-zero ideal in Rg, we set

ordg I =min{ordg f|fe I\ ()} |

1.2.2. DEFINITION. -— To each finitely supported ideal [ in Ox o we asso-
ciate a cluster of infinitely near points with origin at O, Ay = (Cr,m) in the following
way :

(1) Cr ={Qo,-..,Qn} is the minimal constellation (i.e., with the minimal number
of points) such that /U7 is invertible ; (o,...,Q, are called the base points
of { and C7 is the constellation of base points of 1.

(2) The weights of Ay and the weak transforms Ig, = I; of Jat @Q;, 0 < i< n,
are defined simultaneously by induction on ¢ by setting :

G Ip=1 , my= Ox‘on Iy
(i) for Qi € X; goingto Q; € Xj—1 (1 1<),

Ii = (@)™ 1I; Ox, q,,» mi = ordg, I;, where = = 0 is a local equation of B;
at Q,‘.

(Recall that m : X; — X;_; coincides with the blowing-up with center (); on
a neighborhood of the exceptonal fiber of Q;). Clearly the weights in A; are strictly
positive integers and the weak transforms Iy,..., I, are finitely supported ideals. The
notion of finitely supported ideal was introduced by Lipman in [L2], def. 1.8, 1.20.

1.2.3. DEFINITION. — Let / be a finitely supported ideal, C; its associated
constellation and Z the sky of Cr. We associate to I an effective divisor with exceptional

support on Z :
Dy=) dgEq= ) diE
Q 0<i<n

by setting 10z = Oz(-Dy).

Recall that by definition of C; and Z, /Oz is an invertible sheaf. It follows
immediately from 1.1.8 and from definitions 1.2.2 and 1.2.3 that

1.2.4. LEMMA. — OQOne has D(Ay) = Dy.

Proof. — Indeed, 10z = Oz(- 3 mg E%) on the sky Z of Cy.

13



1.2.5. DEFINITION. — R being any commutative ring and / being an ideal
in R, an element f € R is integral over R if f satisfies a condition of the form

Praf 4. +g,=0 , giell , 1<j<s

The set of all such f, denoted 7, is called the integral closure or completion of I ; the
completion T is itself an ideal. An ideal I is integrally closed or complete if I = T
({Z.s], [L2D).

Recall that if d = dim X = 2, any product of complete ideals in Ox o is again
complete ({Z.5]). This is no longer true for d > 3. For any two ideals, [, J in Ox o,
the *-product of I and J, denoted [ + J, is defined to be the completion of 1.J ([L2],
Def.1.13). A complete ideal K in Ox o is said to be *-simple (simple if d = 2) if
whenever X = / % J with ideals / and J either 1 € Tor 1 € J.

1.2.6. DEFINITION. — Let m# : Z — X be a proper morphism onto a
variety X. A divisor D on Z is said to be w-generated if the natural homomorphism
7w, Oz(D) — Oz(D) is surjective.

For instance, if 7 is birational and D is exceptional, this condition means that
Oz(D) is generated by its global sections on a neighborhood of the support of D.

1.2.7. PROPOSITION. — Let o be the map of sets
finitely supported clusters of infinitely near
" complete ideals in Ox o points with crigin at O

which takes I to Aj
i) The map « is injective.
ii) The image of « consists of those clusters A = (C, m) for which m > 0

(ic. mg # 0, VQ € C) and —D(A) Is n-generated, where 7 : Z — X Is the
canonical map from the sky of C to X.

Proof. — The first assertion is proposition (1.10) of [L2]. Here is an alternative
proof. In fact, one can recover I from A;. Indeed, since the canonical map 7 : Z — X
from the sky of Cr to X is a proper birational map , X is non singular and 7 is complete,
then I is the stalk at O of #.(/Oz) [L1], prop 6.2. From definition 1.2.3, and lemma
1.2.4, we get that
10z = Oz(~Dr) = Oz (-D(Ap)

hence —D(Ay) is m-generated.

The proof of the second assertion follows [L1], §18. Let A = (C,m) be a
cluster and assume that —D := —D(A) is w-generated. This means that I being the

14



stalk of -w*(C)Z(—D)) at 0, 10z = Oz{(-D). Hence by 1.2.1, I is finitely supported
and by 1.2.2 the constellation of base points Cy of I is contained in C. The variety Z
dominates the sky of Cr and D = }:quZI 1s the total transform of Dy = D(Aj)
on Z. Therefore by 1.1.8, m is obtained from the weight vector m; of Ay by adding
0 for those @ € C \ Cy. Since my > 0, m > 0 implies that A = A;. Now, by [L1]
lemma 5.3, [ is complete. Indeed Z is non singular and Oz(— D) being invertible, is
complete. So A is in the image of a.

1.2.8. DEFINITION. — Given a constellation C with origin at O, the set of
clusters whose constellation is contained in C and belong to the image of « is called
the galaxy of C.

1.2.9. REMARK. — Note that given C, its galaxy G has a natural structure of
commutative monoid. Indeed A = «(7) belongs to G if and only if, Z being the sky of
C, IOz is invertible. Therefore, if A; = a(f;), ¢ = 1,2, are in G, a(l; * I3), stll belongs
to it, since 111,00z is invertible and by [L2], prop. 1.10, the inverse image on Z of I, I,
and of its completion [; * I; coincide and we may set A; +.A4; := a(l; * ). The weight
of @ in A, + .A; is the sum of its weights in .4, and A,. As a consequence, there exist .
clusters A = (C,m) € G for which mg > 0 for any ¢ € C. For each maximal point P
of C, consider the special »-simple ideal /p associated to the descending chain from P
to O ([L.2], prop. 2.1). and let 7 be the »-product of the I,,’s for all such maximal P. By
1.2.2, the weights in each a(l,) are strictly positive integers, hence for any @ € C, the
weight of ¢ in «([) is non zero. Finally observe that the map which takes A to D(A)
identifics the galaxy of C with the set E¥ of those effective exceptional divisors D # 0
on the sky Z of C such that —D is w-generated, where 7 : Z — X is the canonical
map. The structure of monoid is given by the addition of divisors.

We proceed now to generalize the proximity inequalities of [E.C] to higher
dimensional case. To do so, we make use of intersection theory.

1.3.1. — In this subsection, we fix a constellation C = {Qo,...,Q@n} with
origin at O ; using the same notations as in subsection 1.1, we denote by |D| the
exceptional fiber | J Eg of the canonical map = : Z — X from the sky of C to

Q

X. Note that the support of any exceptional divisor on Z is contained in |D|. For
each k, 0 < k < d~1, Ax(|D]) denotes the group of k-cycles on |D| modulo
rational equivalence. Since |D| is a projective variety, one can associate to any 0-cycle
a € Ag(|D]) a rational integer deg(c).

Recall that the intersection product VeW of two irreducible subvarieties of
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a non singular variety Z is defined in the Chow group A,,(V N W) where m =
dim V +dim W —dim Z ([F], chap 8). Here, if Dy,..., D,, (1 < s < d) are s effective
exceptional divisors on Z and if V is a k-cycle on Z, s < &k < d, we consider
Die---eD,eV asaclassin Ay _,{|D|). If ¥ = s, we write for simplicity Dje --- e DV
instead of deg(Djoe---eD,eV). If k =s =dand V = Z, we write Dye - - 0Dy in place
of Diyer--eDygeZ.

1.3.2. ProposITION. — Let I be a finitely supported complete ideal
whose constellation C; is contained in C and let D be the exceptional divisor
such that 10z = Oz(~D). For any k-dimensional irreducible subvariety V of Z
contained in |D| with 1 < k < d -1, the inequality

(=DYV >0

holds.

Proof. — LetY — X be the map obtained by blowing-up / andletg : Z — Y
be the morphism factoring = ; the morphism ¢ is proper. There exists a X-closed.
immersion ¢ : ¥ — X x P% such that /Oy = "(O(1)) where O(1) is the canonical -
twisting sheaf on X x P% . Hence, one has a commutative diagram

i

{0} x Pk

i

) <
9 i } n
3 X Py

N+— O

with f proper and such that Oz(=D) ® Ojp; = f*(Op-(1)). Since V C |D|,
(=D)keV = ¢ (Ox(-D)® 0|D|)".v in Ao(|D|) where ¢; denotes the first Chern
class. Now, applying the projection formula and taking degrees on both sides, one has
in Z
x k . k .
(=D)Y oV =deg fu(ci (f7Opn(1))"eV) =deg 1 (Opn(1)) o fu V.
If the dimension of f(V) is less than k, by definition f,V =0 in Ap(P%). Thus
(=D)*eV = 0.

If not, (=D)*«V > 0, since it is the product of the degree of the projective
variety f(V) in P7% by the ramification index of the induced morphism V — f(V) ;
i.e., one has

(=D)*aV = deg f(V) - [K(V) : K(f(V))}
where K (V) (resp. K(f(V)) is the function field on V (resp. f(V)).

16



1.3.3. — Now, we will reformulate the above inequalities in terms of the
weights m of the cluster Ay associated to the finitely supported complete ideal 7 and
geometrical invariants of V. Note that setting m; = 0 for @; € C \ Cy, one has

0<i<n

Before going further, we need to compute the intersection product of any two
exceptional divisors on Z respectively in the basis £* and E of E (1.1.5). First, we fix
some notations. For any Q = Q; € C, let 7¢ (or 1) : Eg — Bg be the morphism
induced by the canonical projection Z — Z;,1. The morphism 73 is a finite composition
of point blowing-ups. Indeed, the set of points (); — @ is the disjoint union of a finite
number of constellations of infinitely near points of Bg whose respective origins are
those @); in Bq. The space Eg patches the skies of these various constellations in an
obvious sense.

1.3.4. LEMMA. — If j — 1, the exceptional divisors E and E; intersect
properly. More precisely, ET+E; 1s the class of the total transform on E; C Z of

the exceptional divisor of the blowing-up of Q; in E; C Z;.

If j =1, the Intersection product E} e F; = —7(H;) where H; Is the class of
2 hyperplane in the projective (d — 1) space B;.

In all other cases EJT‘-E,- =

Proof. — By definition, Oz(E7) @ Og, is the Og,-invertible sheaf correspon-
ding to EZ«E;. In any case, Oz(E7) is the inverse image of Oz,,,(B;) by the canonical
map Z — Z;41.

41

If 7 > j, this morphism factors through Z;. Now, E; is contracted to ; in Z;.
Therefore there exists an affine neighborhood of £; on Z on which OZ(E;' ) is free ;
SO E;QE,' = ()

Ifi=j, 0z(E})® Op, = 77 [02.,(B:) ® Op,] = 77 0B, (-1).

Ifz<g,; (’)Z(Ej’-‘) ® O, is the inverse image on £; C Z of Ozj,l(Bj) ® O,
with now E; C Z;,;. The trace of B; on E; is nothing but the exceptional divisor of
the blowing-up of @; in E; understood as a subspace of Z;. It is not empty if and only
if § — 4.

1.3.4.1. COROLLARY. — One has

E;l..'..E:d (-—-l)d—1 i1 =---=1y
0 otherwise.
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Proof. — Tt follows immediately from 1.3.4 that £7«E} = 0 if ¢ # j. Indeed,
by the symmetry of the intersection product, it is enough to consider the case where

i> j. Now E} € @ZE4. In the same way, we get that :
£>i

ElE! = E}eE; = =1/ (H)) .
Hence by applying the projection formula, we get
(E;)? = (B)* B} = —(E:)* %er] (Hy)
= —(BY) 2 H; = ~cy(07,,(B:) ® Op )" 2o H;
= —c)(O(=1)F % H; = (=1L

Now, let us come back to the exceptional k-subvariety V. Let Jv 1= {Q € C |
V C Eg}. Since V is irreducible, Jy is not empty. If d = 2, there exists a unique Q
in Jv and V = Eq. If d > 3, Jv is completely self-proximate (1.1.4) and contains at
most d — k points. In any case Jv is a chain and there exists a maximum Qv for the
ordering > in Jy (Q if no confusion is likely). The point @ = Qvin Jv is alternatively
characterized by the following two facts :

() 7p : Ep — Bp contracts V to a point if P # Q.
(ii) W := 7¢(V) is a k-dimensional projective sub-variety of Byg.

in particular V is the strict transform of W in Eg. We are now able to state and
prove the avatar of 1.3.2 announced in 1.3.3.

1.3.5. THEOREM. — Let [ and V be as in 1.3.2 and let Q@ = Qv and
W C Bg = P4 be defined from V as above. Then one has
deg(W) m§ > > er(W) mj
R-Q
where deg(W) is the degree of W in Bg, egr(W) is the multiplicity of the strict
transform of W at R and m is the weight vector of the cluster Ay associated to I
completed by 0 for those R € C \ Cf.

Proof. — Set @ = Q. Since D = Y m;Ej and E}+E}, = 0if j # j, it

0<i<n
is enough to prove that
(—EJ'-‘)".V =—er(W) ifj—iand R=0Q;
=deg(W) ifj=1
=0 otherwise .

Now, if 7 > j, EfeV = 0 since V is a subvariety of E; and OZ(E'J'.‘) is free
on an affine neighborhood of £; (1.3.4). If 7 = j, applying the projection formula, we
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(=ED eV = (=B)* oW = 10z, (B ® Op,) s W
= ) (O(1)F W = deg(W)
Finally, assume i < j. Then by definition of @ = Q;, V is not contained in | E,.

£23
Consequently, its image in Z;, is not contained in B;. As it coincides with the strict

transform of W, we denote it by W;,,. As above by the projection formula, one has :

(—E})* oW = (=B;)* s Wjn = c1(0z,,,(=B;) ® 05,)° ' (= Bj s Wj.1)
= —c1 (O o(Bjs Wjn) = — deg(Bje Win) -
Now since j > i+ 1, B;eW;,, is the exceptional divisor of the blowing-up of @; in
the strict transform W; of W in Z;, namely the projective tangent cone Proj CrW; of
W; at B = ;. Its degree is nothing but the multiplicity er(W) since both coincide
with the degree of the Hilbert Samuel polynomial of the local ring Ow; g. Note that if
J /= i, then Q; ¢ W;. Indeed by definition, this means that Q; ¢ E;. But recall that
W C B, therefore the same inclusion holds for their respective strict transform W
and £; in Z;.

1.3.5.1. REMARK. — If eg(W) # 01in 1.3.5, then R — P for each P € Jv:
Indeed this is cobvious if d = 2. If not, set P = @Q¢. With R = Q; and Q = @ as
above, we have that V C E; N E;. Now, since j — 1, one has j > ¢ and by definition of
@, one has ¢ > £. So W; C E; N E; in Z;. Hence if er(W) # 0, then R = Q; € W,
so Re Fpand R — Qp = P.

Theorem 1.3.5 motivates the following definition :

1.3.6. DEFINITION. — Let A = (C,m) be a cluster and W a k-dimensional
subvariety of Bg for some @ € C with k& > 1. We say that A satisfies the proximity
inequality with respect to W if one has

deg(W) m§ > > er(W) mk.
R—Q
The integers £ and s = deg(W) are called, respectively, the degree and the class of the
proximity inequality.
In other words, this theorem expresses that the cluster associated to a finitely

suﬁported complete ideal I satisfies the proximity inequalities with respect to any
subvariety of Bg for each @ € C;.

1.3.7. — The following proximity inequalities are intrinsically associated to
the cluster : take a subset J = {i; < ... < i}, 1 <1 <d-1,0f {0,1,...,n}
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such that {Q,,..., @} is completely self-proximate and set @ = @y, and W =
Ey,N...NE;,_NBj C Bg.Here k =dimW =d—1{and s =degW =1, so one
has the following class one and degree d — [ proximity inequalities
mfl_l > Z mg‘l
i VieT

Note that these special (proximity) inequalities only depend on combinatorial
data associated to the cluster, namely the tree I' of the constellation (1.1.3), the proxi-
mity matrix and the weight vector m. For this reason, we call them combinatorial
proximity inequalities. The combinatorial proximity inequalities correspond intersec-
tion theoretically to the conditions

rg = (=D VeEe---oE;, > 0.
Finally note that although for d = 3, r7 has a meaning if J is not completely

self-proximate, the condition r7 > 0 is superfluous since E;, N...N E;, = ( obviously
implies ry = 0.

For d = 2, there is only one proximity inequality for each @ € C, namely that
corresponding to W = Bgq. It is a degree one and class one combinatorial inequality

mg 2> E mg.

R-Q

given by

It is known that the galaxy G of a given constellation C 1s the set of clusters A = (C,m)
for which the set of proximity inequalities on m for @ ranging in C hoid ([E.C], [Ca],
{LJL[L3]). As a consequence and the intersection matrix ((£geER)) being negative
definite with determinant —1 {1.6.6), one has :

1.3.8. THEOREM. — Ford = 2, G is a regular cone in the following sense :
the map D which takes A to D(A) identifies G with

EY = 3" Zy(-EY)
QecC
where ( '(\3) is the basis of E, identified with its dual EY = Homgz(E,Z) via the

bilinear form defined by the intersection matrix, dual to (Eqg)gec, Le. such that
(EZ;OER) =01ifQ # R and 1 otherwise.

Proof. — Indeed, any D € E such that (DsEg) < O for every @ € C
is effective (cf. [L1], §18) and it follows from 1.2.9 and the above remarks that
D) = E* ={D € E | (DsEg) < 0forevery Q € C}.

For d = 3, the example 1.3.9 shows that this is no longer true.
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1.3.9. ExampLE. — Consider a point O in a three-dimensional non singular
variety X and a non singular cubic curve W} in the exceptional divisor By obtained by
blowing-up Q. Consider the constellation C consisting of O and nine points A, ..., Py
in general position on W} (i.e. such that no other cubic curve in By goes through all of
them). Let A = (C,m) with mg =3 and mp, = 1,1 <1< 9.

Since W is the only cubic in By going through Pp,..., P, it follows that the
cluster A may not be associated to a finitely supported ideal /. In fact, if otherwise, M
being the maximal ideal of Ox o, I should be included in M 3 and the class mod M*
of any f € I should be a scalar multiple of an homogenecus polynomial defining Wp.
Consequently, W should be a base curve of 7 and / would not be finitely supported.

Nevertheless, .4 satisfies all the proximity inequalities. First, this is obvious for

those corresponding to W C Bp,, 1 <1< 9. If W = Bp, one has
my=3=9> Z mh =9.1.
R—O
Finally, if W is a curve in By distinct from W, then by Bézout’s theorem
3degW) > Y, er(W)> D ep(W).
REWNW 1<i<9
Ifw =W,
3degHo) =92 ) en (M) =9.
1<i<9 _

Further relationship between Bézout’s theorem and proximity inequalities will appear
in 2.4.1.

1.3.10. REMARK. — A cluster A = (C,m) which satisfies the proximity
inequalities of degree 1 (i.e. with respect to any curve of B for each @ € C) satisfies
the proximity inequalities of any degree.

This can be rephrased by saying that A satisfies the proximity inequalities if and
only if —D(A) is m-nef (numerically effective).

Indeed recall that a divisor D on the sky Z of C is said to be #-nef if DoV > 0
for any exceptional irreducible curve. Then apply Kleiman’s theorem ([K] p. 320) to
Oz(-D(A)) ® O, for each E;.
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2. Linear systems with infinitely near base conditions

2.1.1. — In this section, we fix a cluster A = (C, m) of infinitely near points
of X with origin at O. As in 1.1.8, D = 3 mqgEj = 3 dgEq denotes its
QecC QecC

associated exceptional divisor on the sky Z of C and 7 : Z — X is the canonical
map. We maintain the notation of § 1. The complete linear system on the germ of X at
O associated to A will be defined by valuative conditions.

For each @ € C, the valuation vq of the function field K(X) centered at By is
the valuation given by the order function ordg of the local ring Rq of ) on the variety
on which it lies (1.2).

For 0 # f € R := Ox,0, the strict transform fg (resp. the virtual transform
fQ'g) of f at @ is defined inductively as follows :

i) fo=Jfoa=1.
ii) for § € X, goingto P € Xy, 1 <€ < ¢, (see 1.1.2)

fb = @) PV fp0x,.q (tesp. fg,4 = ()™ fp.4Ox,,q) Where = = 0 is a local _
equation of the exceptional divisor Bp at @. Unlike fg, fg,4 may belong to K(X)\ Rq.

Seteq(f) = vq(fg) and eg 4(f) = vq(fq,4). Note that both eq(f) and eg, 4(f)
depend only on f and A.

For simplicity, here we call “hypersurface” an effective Cartier divisor on the
germ (X, 0) of X at O. In particular, it need not be reduced.

2.1.2. DEFINITION. — Let A = (C, m) be a cluster as above. An hypersurface
H on (X, 0) is said to pass through C with virtual multiplicities m, or simply to pass
through A, (resp.-to pass effectively through A), if for each Q € C, one has

eq,A(f) > (resp. =)mqg
where f = 0 is any equation defining H.

Let s(A) be the complete linear system of hypersurfaces passing through A.
The following lemma characterizes the hypersurfaces in s(.A).
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2.1.3. LEMMA. — With the preceding notations, let I be the stalk of
7.Oz(=D) at O. For 0 # f € R, the following conditions are equivalent :

() The hypersurface H; defined by f in (X,0) passes through A, ie.
eQA(f) > mg, foreach Q€ C
) fel
(iii) vg(f) > dq, for each Q € C.

Proof. — The equivalences between (ii) and (iii) are obvious. Now, from the
definition of fg 4, one has in K(X)

Faa=§ F] =7
PIQ—P
where zp = 0 is a local equation for the exceptional divisor Bp on a neighborhood of
the image of Q.
On the other hand, by definition of EF? one has
Eé = EQ + Z 'Up(.’l?Q)Ep (*)
PlP—Q
where, as above, zg = 0 is a local equation of Bg on a neighborhood of the image
of P.

But by 1.1.6, 'E* = ‘M ~' . ‘E and by 1.1.8, d = M~'m. Using the explicit -
expression for M el provided by (%), it follows that
dQ —mqg = z ’UQ(:L‘p)mp .
Q—P
Hence :

eQ,A(f) = mqg = vg(fg,4) — mg = vo(f) —dq

and the inequalities (ii) and (iv) are equivalent.

2.1.4. REMARK — DEFINITION. — Let n*(H;) = div(f) be the total trans-
form of H; on Z ; H; passes through A if and only 7*(H;) — D is an effective
divisor. We call it the virtual transform of Hy on Z and denote it by 7(H ). It follows
immediately from the previous equality that 4, passes effectively through A if and
only if vo(f) = dg for each @ € C, i.e. if D is the exceptional part of 7*(H). Since
this last divisor is % eq( f)Ea, another equivalent condition is that eq(f) = mq for

each Q € C. -
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2.1.5. REMARK. — Recall that the ideal [ in 2.1.3 is complete. When d > 2,
it may not be finitely supported. If m > 0, I is finitely supported and its associated
cluster is A, if and only if — D is w-generated (1.2.7). Geometrically speaking, this last
condition means that s{A4) has no other base points than those in C, and that there
exist hypersurfaces which pass effectively through A. In example 1.3.9, I is not finitely
supported.

We derive from 2.1.3 the following characterizations of the elements in a finitely
supported complete ideal.

2.1.6. THEOREM. — Let [ be a finitely supported complete ideal in Ox o
and let A be its associated cluster (cf. 1.2.2). For 0 # f € Ox, o0, the following
conditions are equivalent :

@ fel

(ii) The hypersurface Hy defined by f passes through A
(ili) vo(f) > dg, foreach Q € C
@iv) vg(f) > dg, for each Q € C such that :

rg = (—D)‘“‘.EQ = mdQ'] - Z m‘;(—i >0.
R—Q

Proof. -~ We know that [ is the stalk of 7.0z(—~D(Ar)) at O {1.2.7) and, by
definition, 4 = Ay. Hence in view of 2.1.3, the only assertion which remains to prove
is that (iv) implies (i). Let 7 : Y — X denote the blowing-up with respect to / followed
by normalization and let 7 : Z — Y be the map factoring 7. By [L1], prop. 6.2, [ is the
stalk of 7. (/(O5) at O. Thus, it will be sufficient to show that the E¢g with rg # 0 are
in one to one correspondence with the prime divisors # on Y for which vp(I ) #0
and check that for F corresponding to Eq, one has vp,(I0y) = dg.

Now, the normalization being a finite morphism, it is clear from the proof of
1.3.2 that rg = O if and only if the dimension of q(Eg) is less than d — 1. On the
contrary, Fg := G(EgQ) is the center of the valuation vg on Y ; indeed 7 induces
an isomorphism from OV,FQ to the discrete valuation ring Oz g, of vq. Hence
vra(10%) = v Oy) = vo(I0z) = dg.

2.1.7. CorOLLARY. — The Rees valuations of a finitely supported com-
plete ideal (i.e. the valuations centered at the irreducible components of the ex-
ceptional divisor of the normalized blowing-up of I) are those vy for which the
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corresponding combinatorial (d — 1) proximity inequality is strict, i.e.

a—1 a-1
s T mit

R—~Q

2.2.1. — Finitely supported ideals behave well under restriction. As a co-
rollary, we get an interpretation of the class one proximity inequalities (1.3.6) which
generalizes 2.1.7.

Let A = (C,m) be a cluster of infinitely near points of X with origin at O
and let Y be a non singular algebraic subvariety of X passing through O of dimension
k +1 > 2. Then the points of C which lie on the strict ransform of ¥ may be viewed
as infiritely near points of Y. By attaching to each one of them its weight in A, one
gets a cluster Ay = (Cy,my ) of infinitely near points of ¥ with origin at O ; we call
it the cluster induced by Aon Y.

2.2.2. PROPOSITION. — Let I be a finitely supported ideal in Ox o and
let A = (C,m) be its associated cluster. For each Q € Cy, let lqyy,, be the image
of the weak transform Ig of I at @ in the local ring of Q) on the strict transform-
YQ of Y.

(i) For each @ € Cy, the ideal Iy, Is finitely supported and its associated
cluster is the cluster induced by Ay, on Yg.

(ii) For each pair of points P, @ in Cy with P > Q, Ipjy, is the weak
transform of Iqyy, at P.

Proof. -— First we prove that for any @ € Cy, one has ordg Ig = ordq Ig)y,-
In fact, if otherwise, the tangent directions to Yg at @ would determine a subvariety
of base points of I in Bg of dimension & > 1. This may not be, since I is finitely
supported. Note that if @ is an infinitely near point of ¥ above O and if @ ¢ Cy, the
same equality holds since both members vanish.

Now consider P € Cy such that £(P) = £(Q)+1. The exceptional divisor Bg(Y)
of the blowing-up of @ in Yy is, locally at P, the trace of By on Yp ; Le. if z =0 is
a lacal equation of Bg at P, then zjy, = 0 is a local equation of Bg(Y') at P where
Ty, is the image of z in Oy, p. The assertions (i) and (ii) follow directly from the
above observations and definitions 1.2.1 and 1.2.2.

2.2.3. COROLLARY. — With Y, I and A as above, the Rees valuations of
the image I)yr of I in Oy o are the order functions vg on the function field K(Y') of
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Y for which the class one proximity inequality for A with respect to the projective
tangent space ProjTgYq of Y at Q is strict Le.

mg> Yy my.

ReCy ,R—Q

2.2.4. REMARK. — Note that given @ € C and a k-dimensional linear
subvariety W of Bg, there exists a least P £ @ such that W is the projective tangent
space at (@ of the strict wransform of some non singular Y going through P. The
proximity inequality with respect to W is strict if and only if the order funcdon vg on
K(Y) is a Rees valuation of Ipyy.

2.3.1. — Various global linear systems are naturally attached to clusters and
finitely supported ideals (Basic definitions and properties of linear systems are given in
[H], chap. 11.7).

Let A = (C,m) be a cluster and let D = D(A). First observe that by 2.1.3 and
2.1.4, the complete linear system 3(A) on the germ (Z, | D|) of Z along the exceptional
fiber |D} of 7 : 2 — X corresponding to Oz(—D), is the set of virtual ransforms of”
those hypersurfaces in (X, O) passing through 4. Indeed the stalk I of 7.(ODz(—D))
at O is the set of global sections of the inverse image of Oz(—D) on (Z,|D|) and, by
definition, 2(A) = {div(f)- D | fe I}.

For each completely self-proximate set 7 = {#; < --- < g} with 1 <k <d-1,
we denote by 27(A) the trace of 0(A) on Er := E;, N---NE;, (1.1.4).

Recall that, by definition, 07(A) is the linear system on £y corresponding to
the image of / under the natural map

[ — HYE7,02(-D)® Og,) .

It consists of all divisors 7(H)e E7 with f € I such that the virtual transform 7(H ) of
the hypersurface H; defined by f intersects £ properly. Even if A is associated to a
finitely supported complete ideal 7, 3 7(A) may be a proper subsystem of the complete
linear system cz(A) on E7 associated to Oz(—~D)® Og,, (cf. example 2.4.3 below).

The following notations generalize those which have been introduced in 1.3.3
and 1.34. Let 7y : B4 — By 1= E;, N---NB;, C Z;, 4+ be the map induced by
Z — Zji, 41, let Ly := 77(H 7) be the total ransform of a general hyperplane A 7 in the
(d— k) projective space By and for i — J (ie. i — i, 1 <£< k) let BT 7 = EleEy
(this is also the total transform on £7 C Z of the exceptional divisor of the blowing-up
of Qi in Eg = E;; N---NE;, C Z;,1). Finally let mz :=m;,.

26



2.3.2. LEMMA. — With the preceding notation, there is a natural Og,, -
1somorphism

0z(~D)@ Op, ~ Og, (mJLJ -y miE;j) .
i—J

Proof. — Since D = m; E}, this is a straightforward consequence of 1.3.4.

This last computation suggests to extend the notions of constellations, clusters
and associated linear systems from local to projective context.

2.3.3. DEFINITIONS. — A constellation (resp. cluster) of points of B =~
P%., £ > 2, consists of finitely many constellations (resp. clusters) with distinct origins
in B.

The sky of such a constellation is the variety obtained by blowing-up its points.

Given such a cluster, its associated exceptional divisor is the sum of the
exceptional divisors of each one of the clusters originated at a point of B in it. (1.1.8).

Given an integer m > 1 and a cluster 2, the linear system sg(m) is the set of
those hypersurfaces of degree m in B passing through each one of the clusters originated |
at a point of B in 4 (2.1.2).

We extend these definitions to B ~ P} by identifying infinitely near and proper
points of PL.

2.3.4. PrOPOSITION. — Let D = D(®A) be the exceptional divisor of a
cluster A of points of B and let 7 : E — B be the canonical map from its sky £ to
B. For any projective hypersurface W in B, let 7 (W) denote its total transform
on F and set 7{(W) = (W)~ D.

The map T is a projective isomorphism from sg(m) to the complete linear
system cq(m) corresponding to Og(mL — D), where L := 7t*(H) is the total
transform of a general hyperplane H in B. We call 7(W) the virtual transform
of W on E (with respect to Q).

Proof. — 1t follows immediately from 2.1.3 that sg(m) cormresponds to the
subspace H%(J @ Op(m)) of H'(Op(m)) where J := 7.(Og(~D)). Therefore for
W € sy (m), there exists a unique F € H%(J ® Op(m)) such that W = div(F)+mH ;
since 7(W) = div(F) + mL — D, it is enough to verify that the natural isomorphism
K(B) ~ K(F) of function fields respectively of B and £ induces an isomorphism from
HYJ @ Op(m)) with HY(@g(mL — D)). It is a direct consequence of the definitions
of J, L and of the projection formula.
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2.3.5. — Note that, J = {i; < --- < 7} being a completely self-proximate
set of indices as in 2.3.1, &) := {Q,- eCli— J} is a constellation of points of
B4 whose sky is E7. By restricting to €(7) the weights in A, we get a cluster 2A(7)
whose associated exceptional divisor is 3 my E} 7. Lemma 2.3.2 expresses that the
complete linear system cz{(A) on £z i; ngming but cg(n{my). Similarly, we write
a 7(A) instead of sg(zy(mn ) ; the linear system a7(A) is the set of those hypersurfaces
of degree m 7 in B 7 passing through each one of the constellations originated at a point
of By contained in {@; € C | i — J} with virtual multiplicities induced by m. By
2.3.4, the operation of taking virtual transform 77 is an isomorphism from a;(A) to
c7(A). We denote by b(A) the linear subsystem of a7(A) corresponding to ? 7(A).

More generally, if 7 is a finitely supported ideal with associated cluster A4, we
consider the linear subsystem 9(I) of 2(A) defined by ?(J) := {div(f) - D | f € I}
and its trace 9 7(I) on E 7. We denote by b 7(J) the corresponding subsystem of a 7(A4).

If I is complete, then 2 7(/) = d7(A) and b 7(I) = bs(A). The linear system
b7(I) can also be described directly from the weak transform of I at Q7 := @Q;, as
follows :

2.3.6. THEOREM. — Let I be a finitely supported ideal and let b7(I) be
the linear system of hypersurfaces of degree my in By just defined.

(i) The image I;7 of the weak transform Ig of I at Q = Q;, In the local
ring Sy of @ on E; O---NE;, _, C Z;, has order mg(= mg) with respect to
Mj 1= Max SJ

(ii) Let In [;7 be the image of 1) 7 under the canonical map

M:T"J —— M;lJ/M;LJ#-l - HO(OB:, (m:])) .
Then b7(!) is the linear system corresponding toInl|z.

In particular, for each base point @ = Q; of I, bg(I) = by;}({) is the linear
system given by Inlg.

Proof. — First, we observe that by definition, 9() coincides with ?(Ig)
on a neighborhood of Eg = Ej,. Now, it follows from 2.2.2 applied to Ig and
Y =F;,N---NE;,_, CZ;, and from the definition of the trace of a linear system
that ordg(1|7) = ordg /g = mg and that 2 7(I) = ¥g(| 7). Indeed, 2.2.2 ii) expresses
that the operations of taking virtual transforms and intersecting properly commute.
Consequently, replacing (E;, N---N E;,_,,Q) by (Z,0) and 1,7 by I, we are reduced
to prove (ii) in the case where £ = 1 and J = {#;} = {0}. So consider f € I. The
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virtual transform #(H 7) of H; intersects Ey properly if and only if ordp f = mg and
if this is so by 2.1.4, 1.3.4, 2.34, 2.3.5

:’F(Hj)°E0 = W*(HI)QEO - Z miE:'EO

75 (Hing) = > miEf g = o(Hiy)
1—0
where 1y : Eg — By is the canonical map and 7(Hy, ) is the virtual transform on Ey
of the hypersurface of degree mg in By defined by In f = f mod M5"°+] (with respect
to 2(0)). This completes the proof.

The following diagrams gather all linear systems previously introduced and
bijections between them are represented by |

27(NCA7(A)Ceg(A) 3(A)
E 1 50
1 g .
l / (z,|DD
d %
b5 (DCe7(A)Caz(A) —
By
A
T = 3(A) @
i (X,0)
sa(m)
B:Pi\-
2.3.7. REMARK. — Let A be the set of completely self-proximate sets. If [

is a finitely supported ideal, then

(1) for each J € A, 07(J) is base-point free

(ii) for each pair J', J of sets in A with 7 C J’, 07(I)5+ = 07+(I), where
07(1) 7 is the trace of d7(I) on E ..
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Proof. — Indeed, it follows from 1.2.3 and 1.2.4 that, I being finitely supported,
10z = Oz(—D) where D is the exceptional divisor of A = Ay ; this implies that
9(J) is base-point free hence (i). Condition (ii) follows immediately from the definition
of trace since both linear systems correspond to the image of I under the natural map
1 — HYE;7,0z(-D)® Og,.). .

This motivates the following definition :

2.3.8. DEFINITION. — Let A be as above and for each J € A, let 07 be a
linear subsystem of c¢7(A) (see 2.3.1) ; we say that 2 = (D7) 7ea is an A-exceptional
system if conditions {i) and (ii) of 2.3.7 hold for 2.

Note that, if C = {Qo,...,@n}, an A-exceptional system is uniquely determined
by (%:)o<i<n with the properties :

(i’) 0y is base-point free, 0 < i< n
(ii’) for each pair i,j with 0 < i< j < nand j — i, Dj}E.nEj = D,-iE.nEj.

The following technical reformulation of (ii’) helps constructing A-exceptional systems
step by step.

2.3.9. ProposITION. — With the preceding notation, let b; be the linear
system on B; corresponding to 0; by the isomorphism 7 : a;(A) — ¢ (A)
(2.3.5). For each j — i, let Qi{ — (C{,m{) be the cluster of points of B; with
& = {Qn|Q; > Qn and Qu — Q;} and such that m! is induced by m.

Let D{ = ?;’-(b,-) where ?;7 denotes the natural isomorphism from s4;(m;) to
¢qi (my) (2.3.4). :

(Note that b; C a;(A) = sg,(m;) C $4i(mi) and that Ef i= B; C Zsy I8
the sky of , hence v} is a linear system on Ei and Bijy = EiNB; (23.1).)
Then, (11’) holds if and only if for each i,j with j — 1,

b; =il .
J1B 5y Dz!B(x,n

Proof. — Set J = {i<j} and consider the isomorphism 77:a.7(A) — c7(A)
(2.3.5). Then it is enough to prove that :

77(bj18,) = ¥%g, and Tz (%5 ) =%us, .

If H is an hypersurface in b;, H contains By if and only if its virtual transform
7;(H) on Ej; contains Ey and by 1.3.4, T;(H)eEy = Ty(HeBgz). Similarly, if H
is an hypersurface in b;, 7~{(H) contains By if and only if 7(H) contains E s and
Fi(H)Ez = 77 (¥ (H)eB7). This completes the proof.
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From the above geometric discussion, we derive a series of examples and counter-
examples. We begin by a remark.

2.4.1. REMARK. — Let A be a cluster. For any d > 2, we have the following
implications between the following five conditions : '

(i) There exists a finitely supported complete ideal I such that 4 = Aj.
(it) —D(A) is m-generated and no weight in A is equal to zero.
(1ii) There exists an A-exceptional systermn (2.3.8).
(iv) For each 7, 0 <7 < n, ¢;{(A) is base-point free (2.3.1).

(PI) For each 7, 0 < i < n, A satisfies the proximity inequalities with respect
to any projective subvariety (resp. curvejof B; (1.3.6, 1.3.10).

(NEF) —D(A) is m-nef
(i) ¢ (1) = (i) = (iv) = (PI) & (NEF)

If d = 2, all conditions are equivalent (1.3.7).

Proof. — The equivalence (i) < (ii) has been proved in 1.2.7. According to
2.3.8, (i) = (iii) is remark 2.3.7. Since d; C ¢;(A), (ili) = (iv). Now, with D = D(A),
(iv) is equivalent to saying that Oz(—D) ® O, is generated by its global sections.
Hence, by [F], th. 12.1, if V' is the strict transform on £; of a k-dimensional subvariety
W of B;,

deg(W) mf — " eq,(W) m§ = (=D)*sV = (=DsE)*sV > 0.
J—3
A geometric proof of this inequality can also be derived from Bézout’s theorem applied
to W and the intersection of & general hypersurfaces in a;(A4).

2.4.2. REMARK. — If d > 2, then (PI) # (iv). In example 1.3.9, (PI) holds
but Wp is the only cubic in By passing through P, ..., P, hence ag(A) = {Wo} and
the strict transform of Wy on Ep is a base curve in ¢o(A).

(iv) # (iit). Assume d = 3 and let C be the constellation consisting of a point
O € X, six points @ = Qo, &1,...,Qs in general position in Bp and four points
Py,..., Pyin general position in Bg. Condition (iv) holds for A = (C, m) with mp = 3,
mg =2, mg, =mp, = 1,1 <:<5,1 <5 <4 Indeed, ap(A) is the pencil of
cubics in Bp having a double point at () and passing through @;, 1 < 7 < 5 and ¢o(A)
is the set of their strict transform by blowing-up @;, 0 < 7 < 5. By Bézout’s theorem,
Qo, - .., Qs are the only proper or infinitely near points of By in the intersection of any
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two curves in ap(A). Hence ¢o(A) is base-point free. The linear system ag(A) is the
pencil of conics passing through P;, 1 < j < 4, and as above by Bézout’s theorem,
¢g(A) is base-point free.

Now ag(A) and ag(A) being pencils, fof' any exceptional system 3, one has
%0 = ¢o(A) and ?g = ¢cg(A) hence bo = ap(A) and by = ag(A). By 2.3.9, this
is a contradiction, since P;, 1 < j < 4, being in general position, the trace of Og on
EFoNBg ~ P! which coincides with that of ¢o(A) and the trace of cg(A) are distinct
pencils in the complete linear system |Opi(2)].

In example 2.4.3 (resp 2.4.4) below, [ is a finitely supported complete ideal and
there exists a point ¢J in the constellation of base points of I such that the linear system
0q(I) (resp. the weak transform /g) is not complete.

2.4.3. ExaMPLE. — Here again d = 3. Let C be the constellation consisting
of a point O € X, a point @) in Bp and four points Pp,..., Py in general position in
Bgy. Let A = (C,m) with mp = mg =2 and mp, = 1, 1 < i< 4. As usual, let Z
be the sky of C and let 7 : Z — X be the canonical map. Set U = D(A). One can’
check that the stalk [ of 7.(Qz(—D)) at O is a finitely supported ideal and that A4 is
its associated cluster.

Now by 2.3.5, ap(A) is the net (two dimensional linear system) of conics in B¢
having a double point at @ and ag(A) is the pencil of conics in Bg passing through
Py, ..., Pi. Therefore, its linear subsystem bg(J) coincides with ag(A) ; this implies
that the trace of bo(/) on Eg N Bg is a one-dimensional subsystem of |Op:(2)|.

On the other hand, assume ¥p(/) is complete (1.e. = co(A)) ; then bpo(J) =
ao(A) and DQ(I ) is the set of the strict transforms on Eo of conics in ap(A). Its trace
on Eo NBg ~ P! is |Op1(2)|. This is a contradiction by 2.3.7 and 2.3.9. Hence 3o(J)
is not complete.

2.4.4. ExaMPLE. — The ideal J := (z%z — 3°,3%2z — z%,27) is finitely
supported. The tree of its constellation of base points is
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The weights in its associated cluster A are equal to one except mg = 3 and
mg = mp = 2. Its completion I has the same associated cluster ([L2], prop. 1.10).
We will show that the weak transform /g of { is not complete. First, we observe
that is enough to check that bg(I) # bg(Ig) where Iy is the completion of Iq.
Indeed by 2.3.6, one has bg(l) = bg(lg). We proceed now to compute bg(Tg) and
its trace on Eo N Bg. The cluster of points of X; with origin at @ associated to Ig
is Ag := ({Q, P},mg = mp = 2) and by lemma 2.1.3 and remark 2.1.5, f € E if
and only if the hypersurface defined by f in (X, Q) passes through Ag. Here, with the
notation of 1.2.1, p; : X; — X is the blowing-up with center O and p; : X; — X, is
the blowing-up with center Qo, ..., Qs. In the chartof X givenby ¢’ = z/2,y = y/=z,
z' = z, the point @ is (0,0,0). In the chart of X, given by z” = 2'/2, ¥’ = ¢//7,
2" = Z’, the point P is (0,0,0). Therefore 75 is the ideal in Oy, g generated by
'y’ 2" with 2(a + ) +v > 4 and, by 2.3.6, bg(Tg) is the linear sysiem of conics in
Bg identified with the projective tangent space of B at { given by the vector space
generated by =%, 2’y y'%. So, Eo N Bg being the projective line given by 2’ = 0,
bq(z)! EonBg is identified with the complete linear system |Opi(2)| ; its dimension
is 2.

To complete the proof, it is enough to check that bg()g,np, has dimension 1..
Since Q — O, it coincides with Dg(f)monaq where 03(1) is the set of virtual
transforms on Eo (with respect 1o the cluster of points of Bo({@},2)) of curves on
Bo in bo([).

From 2.3.6, it is obvious that bp(J) is the linear system of cubics in Bg
(identified with the projective tangent space of X at O) given by the vector space
generated by z%z — 3%, y?z — z°. But, by definiton, ap(A) consists of the cubics in
Bo going through @,...,Qs and having multiplicity at least 2 at Q. Hence ap(A)
is a pencil. Since bp(J) C bo({) C ap(A) the inclusions are equality, DS(I ) consists
of the strict transforms of curves in bo(J) and its trace on Eo N By is the pencil in
|©Op1(2)] defined by the vector space generated by z2, 3.

3. Some embedded resolutions

In this last section, we will be concerned with embedded resolutions of complete
intersections defined by general enough elements in a finitely supported ideal I of Ox o.

First we recall what an embedded resolution is.
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3.1.1. DEFINITION. — Let V be a reduced subscheme of a non singular
algebraic variety X with an isolated singular point at O. A projective and birational
morphism 7 : Z — X is called an embedded resolution of V if :

a) Z is non singular and 7 induces an isomorphism of Z 7~1(O) on X \ O.
b) the inverse image 7~ (V) of V on Z is a normal crossings subscheme.

Condition b) means that each irreducible component of 7~!(V) is non singular
and that for any Q € 7~'(0), there exists a regular system of parameters (uy,...,u,)
of Oz and non negative integers r, Oy41,...,@qa such that (up,...,u,) (resp.
(u1,.. ., u)ullt - ug?) is the ideal of Uz g defining the strict transform V'’ (resp. the

total transform) of ¥ at (). Note that r, &,,1,..., &g depend on @ and that a,q,..., 4
may not all vanish. The restriction mjy. : V' — V is a desingularization of V.

Now we make precise what we mean by saying that some property holds for a
general r-uple of elements of /. We maintain the notation of §1 and §2.

3.1.2. DEFINITION. — Let [ be a finitely supported ideal of Ox o and let
A = {C,m) be its associated cluster. We say that f € I is proper if for any
J ={n < - <i}withl <k<d=dim(X,0)suchthat £y := E;,N---NE;, # g
(in the sky Z of C), the image f7 of the virtual transform fg 4 of f at Q@ = @Q;, in
the locai ring Sy of @ on £; N---NE;,_, C Z;, has order mg with respect to the
maximal ideal My of S7.

k-1

Recall that in view of definitions 1.2.2 and 2.1.1, the order of fg 4 at @ is at least
mq. Moreover, observe that for any J as above, the image [} 7 of the weak transform
Ig of I at @ in S has order mq with respect to M 7. Indeed, according to 2.3.6, this
is so if k < d, 1.e. if J is completely self-proximate. Now if k = d, @ = @, is a point
on the line &; N---NE;, | C Z;, and by 1.2.2, ordg /g = mg ; hence it is equivalent
to say that Ij 7 has order mq and that By := E; N---N &, N By, C Zi,4 isnot a
base point of I (i.e. By ¢ C), where, following 1.1.2, By, is the exceptional divisor of
the blowing-up of Q);,. But since the line E;, N---N £;,_, and the divisor B;, intersect
transversally at Bz, and their respective strict transforms on the sky Z of C intersect
transversally at some point, this implies that the canonical map Z — Z;,,; does not
factor through the blowing-up of By, therefore By ¢ C. It follows immediately from
the above remark, that if 7 = (fo,..., fn), there exists a non empty Zariski open set (7

in P% such thatif (Mg :---: X,) € £, then f = X, f; is proper. Therefore
3.1.3. LEMMA. — Any finitely supported ideal can be generated by proper
elements.
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The following proposition expresses the geometrical significance of defini-
tion 3.1.2.

3.1.4. PrROPOSITION. — Let f € I be proper. Then,
i) the hypersurface H; defined by f in (X, O) passes eH’ectiveI_y through A.

ii) for any completely self-proximate set J = {44 < --- < 4} with
1<k<d-1 (resp. k = d— 1) the hypersurface W4 (f) of degree mz := m;, in
the linear system b 7(I), defined by the homogeneous polynomial In f; mod M;"H
passes effectively (resp. passes) through the cluster A(J) of points of By :=

E;, N---NB;, C Z; obtained by restrictingm to &(J) ={Q; € C|i— J}

The strict transform H;. of Hy on the sky Z of C intersects E s properly and
HjeE gy is the strict transform of Wz (f) (resp. its virtual transform with respect

to A(T)).

iii) for any J = {i1 < --- < ig} such that Ez # 0, H} does not contain the
point Ez.

Proof. — Using 2.2.2, the assertions i) and ii) are essentially a reformulation of _
2.1.2,2.3.6, 2.3.4 and 2.3.5. The assertion iii) follows from the fact that f being proper,
the tangent line to E£;, N---N E;,_1 C Z;, at @y, is not contained in the tangent cone
of the strict transform of H;.

Now consider r < d proper elements fi,..., fr € [ and let J be any completely
self-proximate set. Extending the notation of 2.3.6, we denote by In[fy,..., fr];7 the
K-subvector space of Inlj; generated by Inf; 7, 1 < ¢ < r. Our assumption on
fi,--., fr implies that each one of these r forms is different from zero but they need
not be linearly independent.

3.1.5. DEFINITION. — With [/ and r as above, we say that a property
holds for a general r-uple of elements of I, if for any completely self-proximate
J = {i1 < -+ < i} with 1 < k < d, there exists a non empty Zariski open set 27
in the Grassmann variety, G,(In Il 7), of vector-subspaces of rank 7 of In I| 7 such that
the property holds for those proper fi,..., f; in { such that In[fi,..., f;]|7 € £27.

3.1.6. THEOREM. — Assume that the characteristic of the ground field K
is zero. Then, for a general r-uple of element (fi,..., f,) In a finitely supported
ideal I of Ox,0 with 1 <r < dim(X, 0),

i) the subscheme Hy, . ; of (X,0) defined by fi,...,fr is a reduced
complete Intersection.

35



ii) the canonical map w : Z — X from the sky Z of the constellation of base
points of I to X Is an embedded resolution of Hy, . .

Proof. — For any subvariety V of X, the exceptional part of 7~ (V) is a2 normal
crossing divisor. Let V’ denote the strict transform of V on Z. If V' is the intersection
of r hypersurfaces Hi,..., H, in (X, 0), then V is a reduced complete intersection and
7 is an embedded resolution of V if and only if for any set J = {71 < --- < #x} with
1 < k < d such that £ # 0 as in 3.1.2, either V’ does not intersect Ey or V' N E 7
is a non singular variety of codimension r in E s : in particular, this last condition
implies that for k£ > d —r, V' N E7 = 0. Here V' N E 7 denotes the scheme theoretic
intersection.

In addition assume that H; is defined by a proper f; € 1 and let H/ be its strict
transform on Z.

First consider J as above with & = d. Then f;,..., f, being proper, by 3.1.4,
iii), for any z, 1 <1 < r, the hypersurface H; does not contain the point ¥ 7. Hence a
fortiori H{N---NH! NEs = 0.

Now assume that J is completely self-proximate. Then there exists a morphism
w7 : E7 — P% and a linear subspace L of codimension r in P% such that the
scheme-theoretic intersection H{ N --- N H] N E; coincides with the inverse image
Lp}l(L) of L on Ez. The construction is standard (cf. 1.3.2). Choose a system of
generators go, ..., g of / consisting of proper elements. Let ¥ C X ; P be the

closure (in the sense of schemes) of the graph of the morphism X \ {O} — P’ given
by = — (go() : -+ : gn(z)) ; recall that I is primary for the maximal ideal of Ox o.
The map ¥ — X induced by the projection on X is the blowing-up of I, the map
G : Y — P% is the so-called Gauss map. Now /7 being invertible, Z dominates Y.
Set p7 := G ogqg, where ¢ : Z — Y is the morphism factoring #. Finally let L be

the linear subvariety of P% defined by the r linear equations (X, ..., X,)A = 0 where
A is the image in K, canonically identified with the residue field of O on X, of the
n X r matrix A with entries in Ox o such that (fi,..., fr) = (g0,...,9n)A. Because

fiy-o-s fr '3 90, -+, 9n are proper one has H{ N ---NH. N Ez = ¢ (L).

By applying Bertini’s theorem to ¢ 7 ([J], cor. 6.11), one gets a non empty Zariski
open set §2% in the Grassmann variety, G(r, n}, of linear subvarieties of codimension r
in P% such that for L € 27, <p}1(L) is empty if the dimension of ¢ 7(E 7) is less than
r (in particular if & > d— ) and is a smooth equidimensional subvariety of codimension
r of E s otherwise.

Therefore if, for any completely self-proximate set J, the r-uple of proper
elements fi,..., f, of I gives rise to a linear subspace L € 2%, then H{N--- N H]

36



is a non singular subvariety of codimension » of Z ; hence it coincides with the strict
transform of A; N---N H, in Z and by the above criterion 3 N---N H, is a reduced
complete intersection having = as an embedded resolution.

Finally the open set 27 in G,(In ]} ) is obtained from §2% by identifying the
one dimensional space generated by Ing; 7, 0 < ¢ < n, with the coordinate hyperplane
Xi =0in P%.

3.1.7. REMARK. — The above genericity condition on a r-uple fi,..., fr of
proper elements in I amounts to requiring that for any completely self-proximate set J
and for any proper point Q of By in W (fi)N---NW(f,) which is not a base point
of I, the hypersurfaces Wz (f;), 1 < ¢ < r are non singular and intersect transversally

at Q).

By analogy with the notion of non degeneracy of a polynomial or a formal series

(resp. r Laurent polynomials) with respect to its Newton polyhedron given in [V] (resp.

[Kh]), we will say that such an r-uple is. non-degenerate with respect to the cluster
Ar associated to I. The cluster extends the role played by the Newton polyhedron, the

condition of properness of f &€ I replaces that of having a given polyhedron as Newton’
polyhedron, finally the previous transversality condition is the adaptation to this context
of that of [Kh]. We could reformulate 3.1.6 by saying that the non-degeneracy condition

is open.

3.1.8 COROLLARY. — For each base point @ of I, the multiplicity
eq(Hy,,. 7,) at @ of the strict transform of the complete intersection Hy, . ;.
defined by a general r-uple of elements as in 3.1.6 is m{ where mq is the weight
of @ in the clusier associated to [.

Proof. — By definition 3.1.2, for any proper f € I, the virtual transform fg 4
of f at @ coincides with its strict ransform fj and it is a proper element of the
weak transform g of [ at Q. In particular the assertion holds for » = 1. Moreover,
if fi,...,fr is a general r-uple of elements of /, by remark 3.1.7, f| g,..., f; o is
a general r-uple of elements of Ig. Hence the subscheme defined by these elements
is a reduced complete intersection ; therefore it coincides with the strict transform
of Hy .5 at Q. Now eg(Hy, . s ) is the degree of the exceptional divisor of the
blowing-up of @ in this last scheme. By the above remarks, this divisor is noting but
Wq(fi)N--- N Wq(f:). Each one of these hypersurfaces of Bg has degree mg. This
completes the proof.

3.1.9. CorROLLARY. — Let Y be a non singular subvariety of X passing
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through O of dimension at least two. Then, under the assumptions of 3.1.6, for a
general r-uple (fy,..., fr) of elements in I with 1 < r < dim(Y, 0),

i) the subscheme Hy, s NY Is areduced complete intersection of (Y, 0).

ii) the canonical map ny : Zy — Y from the sirict transform ZyofY in Z
to Y induced by = is an embedded resolution of Hy . : NY.

Proof. — We maintain the notation 0f2.3.6, 3.1.2 and 3.1.5. Let Iy be the
image of [ in the local ring of O on Y. By 2.2.2, Iy is a finitely supported ideal ; its
associated cluster is the cluster Ay = (Cy,my ) induced by A on Y, hence Zy is the
sky of its constellation of base points Cy and 7y is the canonical map Zy — Y.

In addition, the restriction fy of a proper f € [ is a proper element of Iy
it and only if for any completely seif-proximate set J = {i1 < --- < 7} with
1 <k < dim(Y,0) such that Zy N E;, N---NE;, # 0 (le. Qi, € Cy), Infs
does not belong to the kemel Ky of the canonical surjection Infjy; — Inly|z7. In
particular, if fi,..., f, is a r-uple of proper elements in / and if for any such 7,
In[f1,..., frljzNKy = {0} then f1y,..., fr v is a r-uple of proper elements in Iy and.
the K -vector spaces In[fl,...,fr}u and In[fyv,.... fry]j7, which is nothing but its -
image in In ]| 7, have the same rank. Now let £y = {V € G.(Inl}5) | VA K7 # {0}}
and let f?_;r be the non empty Zariski open set of G(In Iy 7) provided by theorem 3.1.6
applied to Iy for k& < dim{Y, O). Its inverse {27 under the canonical map :

G,(In I!J) NYgy — G,(In ]},-lj)

which sends V' to its image in In Iy 7 is a non empty Zariski open set in G.(In [} 7).
The properties stated in 3.1.9 hold for those proper fi,...,f. in [ such that
In[fy,..., frlj7 € §2v (resp. ¢ X7) for any completely self-proximate set J such
that @;, € Cy with k < dim(Y, O) (resp. & = dim(Y, O)).

From these results, we derive another geometric interpretation of the combina-
torial proximity inequalities ry = (=D)* %o Ej e ---oE;, > 0 (see 1.3.7).

3.1.10. COROLLARY. — Let C = (Qo,...,Q@n) be the constellation of base
points of I and let J = {i; < --- < i}, 1 < k < d -1, be a completely self-
proﬁdmate set. Then under the assumptions of 3.1.6, for a general (d — k)-uple
f1,--., fa—x of elements of I,

i) the intersection of the strict transformof Hy, s, ., at @i, with E; N---N
E;,_, (in the ambient space Z;, containing Q;, ) Is a reduced complete intersection
curve.
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ii) the non negative integer r g is the number of its branches, i.e. analytically
irreducible components, whose tangent direction at @Q;, (identified with a point of
By) is not a base point of I. These branches are non singular and have distinct
tangents.

In particular, Hy, . ,_, has 5 r; branches and it can be formally
0<i<n

U U &

Qi€C 1)<

decomposed as :

where

i') foreach i,j,0<i<n, 1 <j <y the only points of C on I';; (i.e. on
its convenient strict transforms) are those in the chain ending at @;.

i) Zin being the blowing-up of Q;, Zis1 — X 1s an embedded resolution of

U ;-

1<

Proof. — The assertions i) and ii) are immediate consequences of 3.1.9 applied
with Y = E;; N---NE;,_, in the ambient space Z;, containing @i, I = Ig, the.
weak transform of 7 at @);, and » = d — k. Then we consider the special case & = 1.

The following picture represents the possible behavior of the various branches
of Hy, . .., after blowing-up Q; :

E"\//\Qi. oy £ A2
e TV,

When d = 2, any primary ideal I for the maximal ideal M of Ox o is finitely
supported. If I is complete, its factorization into a product of simple complete ideals is
given by the decomposition into branches of the curve in (X, O) defined by a general
f €I (see [Z2], th. 11.2).

3.1.11. THEOREM (Zariski). — Suppose d = 2. Let I be a M-primary

complete ideal of Ox o and let D = 3> m;E} be the exceptional divisor on
0<i<n
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the sky of the constellation of base points Cr = {Qg,...,@Qn} of I associated to [
(1.2.3).
The following conditions are equivalent :
i) { is simple.
ii) For a general f € I, the curve H; defined by f is analytically irreducible.
i) r; = (=D)eE; =m; — 3, mj =1 if i =n and 0 otherwise.
i—i
The map which takes I to Cy is a one to one correspondence between simple
complete ideals and finite chains of infinitely near points originated at O.

One has the following factorization of 1 :
r=-I1 &
0<i<n
where I; Is the simple complete ideal whose constellation of base points Is the
descending chain from Q; to O ; this 1s the unique factorization of I into simple

complete ideals.

The exceptional divisor of the (normalized) blowing-up of I is irreducible if .
and only if I = I}~

Proof. — Since r, = m, > 0, the equivalence between ii) and iii) follows
immediately from 3.1.10.

Now for any M primary complete ideal /, consider the galaxy G of Cy. By
1.2.9 and 1.3.8, there exists a unique complete ideal [; whose associated cluster Ay,
is in G and such that D(Ay,) = —E) where (E} Jo<i<n is the Z-basis of E such that
(EY+FE;) = 0 for j # 4, 1 otherwise. Since (DsE;) = —r;, 0 < i < n, one has
D =35 ri(—EY), hence A =3 ri Ay, and since [ is complete and d = 2, / =[] I]".

For any 7, 0 < ¢ < n, the ideal Z; is simple. Indeed the base points of I; are
contained in Cr. Assume [; = J; - J, with ideals J;, J; in Ox . One also may assume
J1 and J; to be complete. The base points of J; and J, are among those of I;, hence
they are contained in C;. Therefore there exist Dy € D(G) such that D(A4;,) = Da,
h = 1,2 and D(A;,) = —E} = Dy + D,. From the characterization of D(G) given in
1.3.8, it follows that either D; or D, is 0. Hence either J; or J; is Ox 0.

Note also that Iy,..., I, are the only simple complete ideals whose base points
are contained in Cy ; indeed, if J is such an ideal, then A; € G, hence there exists
si € 30, 0 < 7 < m, such that D(Ay) = }: si(=EY), J = H I} and J being simple,

1 1
is one of the I;’s. Therefore the above factorization of [ is the unique one.
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Finally, since r, > 0, I itself is simple if and only if r, = 1 and r; = 0,
0 < i < nie. i) 4 iii). Moreover, if this is so, for any general, hence proper f € I,
the curve H; defined by f is a branch which passes effectively through the cluster
Ar = (Cr,m) associated to [ (3.1.4) ; in other words, for any z, 0 < i < n, @;
is a point on the strict transform of H,. This forces Cy = {Qp,...,Qn} to be the
descending chain from @, to O.

Now one can recover the weights m from Cr ; m is the only solution of the

tiangular system m, =1, m; — 5 m; =0, 0 < i < n and this system depends only
j—i

on the proximity relations in Cy. Note that EY =5 m, E}.

On the other hand, if C = {Qo,...,@n} is a chain, this same systcm'produccs
a cluster for which the proximity inequalities hold trivially . Since d = 2, this cluster is
associated to a complete ideal which is simple by the equivalence of iii) and 1). Hence
any chain originated at O is the constellation of one and only one simple complete
ideal.

Finally, from 2.1.7, the exceptional divisor of the normalized blowing-up of [ is
irreducible if and only if 7; =0,0< i< n, ie if [ = [},

The above results are used as an essential tool to understand the isolated "
singularities of surfaces obtained by blowing-up complete ideals in dimension 2. These
singularities are the so-called “sandwiched singularities” ; cf. [S], (GS].

None of the previous assertions extends in higher dimension. In particular / may
be simple and C; may not be a chain. In {L2], §2, Lipman recovers a one to one
correspondence between the set of finite chains of infinitely near points with origin at O
and a class of special *-simple ideals in Ox o. However, the exceptional divisor of the
normalized blowing-up of such ideals may still be reducible. Monomial examples are
easily obtained from the combinatorial formula computing the weights in the associated
cluster from the chain of points given in [C.G.L], th. 10.

We end this section by some more remarks on the singularities of hypersurfaces
or more generally of complete intersections defined by a general r-uple of elements in
a finitely supported ideal.

3.2.1. REMARK. — Let (V,O) be a reduced curve singularity given by f =0
in a non singular surface X. Then there exists a complete ideal I in Ox o such that
f € I and is non-degenerate with respect to the cluster Ay (3.1.7). Such an I is not
uniquely determined.

Proof. — Consider any embedded resolution 7 : Z — X of V ; 7 is a finite
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composition of point blowing-ups and we get a cluster A by giving for weight to
each blown-up point @, the multiplicity eqg(V) of the strict transform of V at Q. The
proximity inequalities hold trivially for A since its associated exceptional divisor D(A)
is the exceptional part of the total transform 7*V of V, hence for any irreducible
component E; of 7~ 10), r; = (~D)s E; is the number of branches of V whose sirict
transforms on Z meet E; and »; > 0. Let [ be the stalk of #.0z(—~D) at O ; I is
complete and since d = 2, A = Ay (1.2.8, 1.3.7, 2.1.5). By definition, V passes through
A, so f € I; finally f is non-degenerated with respect to A because 7 is an embedded
resolutionof V = H,;. B

Following the comparison between clusters and Newton polygons introduced in
3.1.7 recall that, on the contrary, in general there does not exist any coordinate system
for which f is non degenerate with respect to its Newton pelygon. If the characteristic
of K is zero and if (V, O) is analytically irreducible, this is so if and only if (V, O) has
only one Puiseux characteristic exponent. In higher dimension, these singularities are
quite special, since they admit an embedded resolution and hence a desingularization
which is a finite composition of point blowing-ups (*). As for curves, one may find
among them, hypersurface singularities which are defined by degenerate functions with
respect to their Newton polyhedron in any coordinate system.

3.2.2. EXaMPLE. — Let (S, 0) be the surface in C? defined by :

f= Aty zxsy — (y2 — x3)2 + y16 .

The ideal 7 = (2%, 2222, z23y, (v — 2°)% yz®) is finitely supported and f is non-
degenerate with respect to Aj.

There does not exist any coordinate system in which f becomes non-degenerate
with respect to its Newton polyhedron.

Proof. — Let I' be the intersection of S with the plane z = 0 ; I' has two
Puiseux characteristic pairs 3/2 and 9/2. One can check that Ay = (Cp, m) where
Cr={Qo = 0,...,Qs} is the chain of infinitely near points of O of level at most 5
lying onI'and m = {4,2,2,2, 1, 1} = {eQx(F)}OfiSS'

The Newton polyhedron A of f with respect to (z,y,2) has four vertices
ny .= (0,0,4), n, = (0,4,0), n3 = (2,0,2), nq = (6,0,0), five edges and two 2-
dimensional faces 7y = (n1,ny,n3) and 7 = (ng, n3, ng) respectively normal io (1,1,1)

(*) Nevertheless, this property is not enough to characterize them. For example, an embedded
resolution of the singularity of type Ts 55 at the origin O of the surface defined by f =
zyz+z> +y° + 2% in C3, is obtained by successively blowing-up O and the three double-points of
its strict transform ; but there exists no finitely supported ideal I such that f is non-degenerate
with respect to Aj.
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and (2,3,4).

N
——
N

n

%L G

n3 n3

T2 Ny ¥ = :,7

; -
ng N T4 N
z I &
The polynomial f is degenerate with respect to A because the sum of its
monomials f, on its edge v = (ny, ng) is (y* — )%, hence the scheme defined by
f, has singular points in C** = {(z,y,2) € C*, zyz # 0}.

Now we discuss the effect of a coordinate change on V.

First we observe that, up to permutation and scalar multiplication, a change of
coordinates which would make f non-degenerate with respect to its Newton polygon-
should be of the form :

TN 1 * x T
(3.2.2.1) (y)=(0 1 *) (u)
\ z \0 0 1 z

where * denotes any complex number. (This is also equivalent to saying that Qg, @1, &2
remain O-orbits of the natural action of C*3 = {(z,%,2) € C? | #7% # 0} on C3.) Indeed
the singular locus of the tangent cone of S at O is the line y = z = 0 and it should
remain the intersection of two coordinate hyperplanes, say § = Z = 0, hence the first
column of the matrix. Now the coefficient A of § in z must vanish, otherwise in addition
to n3, the point ns = (2,2,0) should be a vertex of the Newton polyhedron N of f
with respect to (£, §, 7). The sum of its monomials on (n3, ns), namely (Z + Aj)*z?
would define a scheme having singular points in Z§Z # 0, contradicting the fact that f
is non-degenerate with respect to N.

This computation implies in particular that (ny, n3) remains the intersection of
the faces 7 and % of A respectively normal to (1,1,1) and (2,3,4). Now let f,, (resp.
f5,) denote the sum of monomials of f in (z,y,z) on 7, (resp. (Z,,2) on 7). One

has :

2 2

sz =z 1'2*'(1/2 —23)
and it follows from 3.2.2.1 that there exists p € C such that

ffz = sz(i) :‘7) Z— l“i'z)
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Indeed, the homogeneous polynemial of lowest degree for the weights (2,3,4) in
(z,9, ) appearing respectively in z,y,2,1s £,7,Z — ui* for some p € C. If p # 0,
the singular locus of the surface defined by f» is the curve given by & = 2, § = 3,
7 = ut*. Since this curve has points in 2§z # 0, f is degenerate with respect to N.

If g =0, then f, = fr,, 72 = T2, v remains an edge of & and f remains
degenerate for N. This completes the proof. B

Note that f being proper in I, (@5 is a double point of the intersection of the
strict transform of S with the exceptional divisor of the blowing-up of (2. The last
computation implies that Q; lies on a 1 or 2-dimensional orbit of any C*3-action on C?
leaving Qyo, - - ., @, fixed. The points Qo, ..., Q3 are intrinsicaily characterized from S,
since they are its infinitely near singular points.

Finally we observe that :

3.2.3. PROPOSITION. — The minimal desingularization of a complete
intersection surface defined by general elements in a finitely supported 1deal I
is a composition of point blowing-ups, namely those Q € Cr such that mg # 1,
where Ar = (Cr,m) Is the cluster associated to I.

Proof. — We have already noticed in proving 3.1.8 that if f1,..., f» is non-
degenerate with respect to A; and if fig,..., f;o and.Ig denote respectively the strict
and the weak transform of f;,...,f, and I at @ € Cy, then f{Q,...,fr’Q is non-
degenerate with respect to A;,. Therefore if 7 = dim(X,0) — 2 and S denotes the
complete intersection Hy, . ; , it is enough to prove that the minimal desingularization
7 : ¥V — S factors through the blowing-up o; : S; — S with center O, provided O is
a singular point of S, 1.e. mo # 1 by 3.1.8.

Let m : Vi — S; be the minimal desingularization of S;. Because of the
minimality property of =, there exists a commutative diagram

W == F
7(;1 lw
S5 — S

91
and since the morphism 7 is birational and V; and V are non singular surfaces, rj is
a cbmposition of point blowing-ups. Actually, M being the maximal ideal of Ox o, 7y
is the minimal sequence of point blowing-ups which makes the inverse image of M
invertible.

If 7, is not an isomorphism, 7y contracts an exceptional curve of the first kind £
of V) on a point P € V such that MOy is not invertible locally at P, while, m; being
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the minimal desingularization of S;, o; may not contract £ on a point of S;. Hence
there exists an irreducible component ¥ of o~ !(0) such that 7(E) = F

We will now get a contradiction by analyzing the geometric behavior of a general
hyperplane section A of S. Here general means that A is the schematic intersection of
S and of a non singular hypersurface Y in (X, O) whose projective tangent hyperplane
H = ProjTy,o at O does not contain any Q € Cy of level 1 and intersects o} o)
identified with the projective tangent cone of S at O transversally.

Recall that fi,..., f- being non-degenerate and Wo(f;) denoting the exceptional
divisor of the blowing-up of O in the hypersurface H;,, 1 < i < r, one has
o7 0) = Wolfi) n--- N Wo(f,) and that any @ on o5 '(0), which is not in C;
is a non singular point of oy ~1(0) and S, (3.1.7-3.1.8). This implies in particular that
the exceptional divisor o7 ' (0) is reduced and that A is a reduced complete intersection
curve.

Now since FH # 0, on the one hand A has a branch I" whose strict transform
on Sy (resp. V;) meets F (resp. £). Therefore the exceptional point of the strict transform
of I"'on Vis P.

On the other hand, one gets an embedded resolution of S by blowing-up the -
points @ € Cr and the conditions imposed on Y imply that the blowing-up with center
O in X is an embedded resolution of A. Therefore the branches of A are non singular
and intersect transversally ; in particular I is non singular.

If O is a singular point of S, we have got our contradiction. Indeed .S is normal
at O because S is a complete intersection and O is an isolated singular point. The
exceptional fiber of 7(O) has no isolated points. An easy computation shows that M Oy
1 invertible on a neighborhood of the exceptional peint of the strict transform of any
non singular curve on S.

Références

[C.G. L] CAMPILLG A., GONZALEZ-SPRINBERG G., LEJEUNE-JALABERT M.
Aimnas, xdeaux a support fini et chaines Lonquw C. R. Acad. Sci. Paris Sér. IMath
315 (1992), 987-990.

[Ca] CasAas E. — Infinitely near impased singularities and singularities of polar curves,
Math. Ann. 287 (1990), 429-454.
[D] DEMAZURE M. — Surfaces de Del Pezzo I, Séminaire sur les singularités des

surfaces, Lecture Notes 777, Springer-Verlag.

[DV]  Du VAL P. — Reducible exceptional curves, Amer. J. Math. 58 (1936), 285-289.

45



(s]
[v]

(z1]

(22]

[2.5]

ENRIQUES F., CHISINI O. — Lezioni sulla teoria geometrica delle equazioni e
delle funzioni algebriche,1915 (CMS Zanichelli 1985) Libro IV. '

FULTON W. — Intersection theory, Ergebnisse der Mathematik und ihrer Grenz-
gebiete, Springer-Verlag, 1984.

(GONZALEZ-SPRINBERG G. — Désingularisation des surfaces par des modifica-
tions de Nash normalisées, Séminaire Bourbaki, 661, 1986.

HARTSHORNE R. — Algebraic geometry, (11, § 7 et V, §4), Springer-Verlag, 1977.

JOUANOLOU J.P. — Théorémes de Bertini et applications, Progress in Mathema-
tics, Birkhaliser, 1983.

KLEIMAN S. — Toward a numerical theory of ampleness, Ann. of Math. 84 (19686),
293-344.

KuovaNnskil A.G. — Newton polyhedra and toral varieties, Funct. Anal. and its
appl. 11, n® 4 (1977), 56-67.

LIPMAN J. -—— Rational singularities with applications to algebraic sucfaces and
unique factorization, Publ. IHES 36 (196g), 195-279.

LIPMAN J. — On complete ideals in regular local rings, Algebraic geometry and
commutative algebra in honor of M. Nagata, (1987), 203-231.

LIPMAN J. — Proximity inequalities for complete ideals in two-dimensional regular
local rings, (to appear).

LEJEUNE-JALABERT M. — Linear systems with infinitely near base conditions
and complete ideal in dimension two, College on Singularity ICTP Trieste, 1991 (to
appear). .

SPIVAKOVSKY M. — Valuations in function fields of surfaces, Amer. J. Math. 112
(1990), 107-156.

VARCHENKO A.N. —— Zeta-function of monodromy and Newton's diagram, Inv.
Math. 37 (1376), 253-262.

ZARISKI O. — Algebraic surfaces, (1934), Second supplemented edition (1971)
Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Chapter II and
Appendix to chapter [I by J. Lipman.

ZARISKI O. — Polynomial ideals defined by infinitely near base points, Amer. J.
Math. 60 (1938), 151--204.
ZARISKI O SAMUEL P. — Commutative Algebrall, Appendix 5, Van Nostrand,
1960.
= <> =

Antonio CAMPILLO, Dpto de Algebra y Geometria, Facultad de Ciencias, E-47005
VALLADOLID (Espagne)

e-mail : campillo@cpd.uva.es

Gérard GONZALEZ-SPRINBERG and Monique LEJEUNE-JALABERT, Institut Fourier,
Université de Grenoble I, URA 188, B.P. 74, 38402 ST MARTIN D’HERES Cedex (France)
e-mail : gonsprin@grenet.fr, lejeune@grenet.fr

46



Publicaciones Matemiticas del Uruguay
6 (1595) 47 - 84

Geometry of Zd and when does the
Central Limit Theorem hold for weakly
dependent random fields. *

Gonzalo Perera
Centro de Matematica
Facultad de Ciencias -Universidad de la Republica
Montevideo, Uruguay.

ABSTRACT.
We study the asymptotic distribution of the

sequence SN(A.X)T- (2N+l)'d ( E Xn ), where A is a subset

neAN

of 24, A~ ANI-NNID, v(A)= lim N card(A ) (2N+1)d € (0. 1)

N
and X is a stationary weakly dependent random field. We show
that the geometry of A has a relevant influence on the problem.

More specifically, SN(A,X) is asymptotically normal for each X
that satisfies certain mixing hipotheses if and only if A verifies

that FN(n;A)Vw card{A%ﬁ(mAN)i(ZNH)'d has a limit F(n;A) as

h

N-co, for each neZd. We also study the class of sets A that
satisfy this condition. As an application, we develop an
asymptotic test for the comparison of the mean of two weakly
dependent spatial samples.
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1. Introduction, Notation and Statement of the Main
Result.

A problem common to many disciplines is that of comparing
samples of dependent spatial data. Spatial Statistics arise naturally in
environmental science, geostatical analysis, epidemiological studies and
other areas (for an expert account see [13], [27]). A probabilistic model that
takes into account dependence is reasonable in many cases, in particular
when there are transference phenomena that "mix" the information of the
different sample points. We will consider here a very simple model (the
sample corresponds to a stationary mixing random field with finite second
moment) and a very simple problem: a test for the homogeneity of the mean
against the assumption that there is a difference in the mean in two given
subsets of the sample space.We will consider the case of both discrere and
continuous data and develop asymptotic methods to solve it. Since the basic
ideas of the method are the same in both cases, we will concentrate our
presentation in the discrete case, that is when the random field is indexed
by the lattice z4,

If we consider an iid sample, then, via the Central Limit
Theorem (CLT, for short), we can construct an statistic whose asymptotic
distribution is an F of Fischer, with excentricity O under the hypothesis of
homogeneity, and with an excentricity that goes to infinity under the
alternative. This give us an asymptotic F-test with a given level of
significance and consistent for each fixed alternative (we will call it F-test,
for short). if the sample is dependent, we show that the viability of an F-test
depends strongly on the geometry of the subsets that we are compairing. if
the sample has a mixing property (even if it is m-dependent) and if the
border between this subsets is "regular", we have a suitable CLT and hence,
an F-test; but, if thar border is "very irregular", CLT can fail to hold, and
thus., we do not have an F-test anymore. Therefore, we will discuss results
related to the CLT, showing the influence of the geometrical factor, and as an
application, we will give an F-test when it is possible. In what follows, we
will precise the problem and the notations.

Consider a real valued random field X= § Xn: nezd { . Given a

subset A of Zd denote: AN'— Aﬂ[—N;T\J]d . Denote G(Zd ) the class of subsets
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for wich the limit :

v(A)= lim N card(AN) (2N+l)‘d exists and 0 < v(A) < 1. (1.1)

In Z9 we will take the distance d induced by the restriction
of the norm: [|nfl=max{in(i)l:1<i <d},and use the following notations for
Aczd, Bczd 3

d(A,B)= min{d (n,m): n €A, m€ B} ,3A={ne A:d (n,A®)=1].

Define:

My (AsX)= VeN+1)d ¢ E A 2 X, )

neA N ne(AC) N

and

S\ (AX)= (2N+1)"9 }: X, )
nEAN

Definition 1.1.: We will say that a subset A of zd belongs to the class M

(Zd ) if it belongs to G (Zd ) and satisfies the following condition:

The sequence FN(n;A)--- card{A(;\Jﬁ (n+AN)}(ZN+l)'d has a

limit F(n;A) as N = o, for each nezd, (1.2)
(We will say that F(.;A) is the border function of the set A and that A
has an asymptotically measurable border ).

In the case d=1, for the construction of invariant means via
Nonstandard Analysis, a definition than can be considered related to
Definition 1.1 appears(cf. {28], page 86). We will also extend our definition
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to the continuous case.

We will deal with mixing random fields. Under the
assumption of stationarity and mixing it is possible to extend most of the
asymptotic results for iid sequences (for a detailed study, see [8], [19], [21]
and [22]; for examples of statistical models satisfying mixing conditions see
{16)). Given a probability space (2,4,P) and F, & sub o- fields of &, the «
and p - mixing coefficients between ¥ and & are defined by :

*(F, G )=sup § IP(ANB)-P(A)P(B)l: Ac F, BeG {.
(1.3)

0(F, 6 )=sup | ICorr(X,Y)l: Xe L2(F), Ye L2(G ) L.
(1.4)

If we have a real valued random field X= § X_: tT} with T-24

t
or B and A=T, we will denote by aX(A) the o - field generated by | ‘(t teA }.

We have several alternatives for the definition of the o - mixing coefficients
of the field X: ( here me N )

oX(@,m) = supfa(o X(A), X(B) ): AT, BT, d (A,B) = m }
oX(Z,m) =supia(rX(A), X(B)): A=T, B=T, A,BeZ.d (A,B) = m]
oX(TLm)=supi« (0X(A),0X(B)):AT, BT, A€II, d (A,B) = m} (1.5),

where Z stands for the half-spaces of T and TI for the rectangles of T with
sides paralel to the coordinated axes . It follows from the definitions that

O(X(fb,m) > (:(X(E‘m) > C(X(H,m). In a similar way, we can define the p- mixing
coefficients of X . If 'g'x(X,m) goes to zero as m goes to infinity (where €= or
gand X=9&, Z or TI) , we will say that X is £X(x) mixing . In general QX(X)
mixing implies (xX(X) mixing (cf. [8], [16]).

Bradley has given an extension of Kolmogorov-Rozanov
inequality that implies the following result (cf. [11]):
If X is strictly stationary then:

oX(%) and px(dJ) mixing are equivalent : If d> 1 «X(XZ) and
@X(Z) mixing are equivalent. (1.6)
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This result, based on a nice application of the CLT for mixing
sequences, gives the idea that O(X(fb) (and O(X(Z) for d> 1) mixing is a strong
assumption. The coefficient oX(T;m) was introduced by Bulinskii, who has

given examples showing that aX(1I) mixing is actually weaker than oX(z)
mixing (cf. 4], [5], [6]).

In this paper we will also consider the coefficients
O(X(H;m;a,b), with a, b, meM. They are defined as in (1.5), but with the
additional restriction:

card(A) < a, card(B) < b. (1.7)

We will use the following well-known covariance inequalities
(cf. {8], [16], [21]).

If X is ¥ - measurable random variable, Y is & - measurable
and they are both a.s. bounded by 1, then [Cov (X,Y)ls 4 «(F, G ). (1.8)

1
More in general, if p,q, r =21, =+ —+ r—=1, Xe LP(F ),Ye L4(G ),

q

L]
p

1
then: ICov (X,Y)l= 8 (a(F, 6 )) 7 NIx] B fivil g (1.9)

We will consider two sets of assumptions for our
field X, we will list in what follows all the hypotheses we will
use.

(H1) E(X_)=0, for each nezd .

(H2) X is strictly stationary
(H3) E(IXg12 ) <.
(H4) lim oX(Thm; o0, o0 )=0.
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(HS) 2 il e X o e b) @ daiton a+bs 4
m=1

(H6) lim _ mdeX(Thm;1,00)-0.

(H7) 3 IrX (n)i< oo, where X (n)= E(XjX ).
nezd
(H8) 3 X (n)= ¢2(X)>0
nezd
(H9) For each A =29, lim | lim supy Ef(S\(A, x-xJ))21-0,

where XJ is the truncation by J of the random field X, defined by:

‘CJXI -Ef{ X 1

1
(X |<J} n X, =3 o
(H10) There is a real number C(J)>0 , depending only on

4 card(AN) 5
X and J such that sup Ac[-N,N]d Ef (S (A, X)) 1<C) [ W ;
Definition 1.2.: We will call B to the class of real valued

random fields X= § Xn: nezd } that satisfy (H1), (H2), (H3), (H4), (H7),

(H8), (H9) and (H10). We will call § to the class of random fields that satisfy
(H1), (H2), (H3), (HS),(H6), (H8) and (H9). Finally, let us call F to the union
of Band S.

Remarks 1.1.

a) The basic idea is that the class B allow us to derive a CLT using
Bernshtein's "big blocks" method (cf. [1]), while for the class S we can obtain
a CLT by using Stein's methods (cf. [31]}). [t should be noticed that in (H4) no
rate is assumed, but since "big blocks" are involved, it is sometimes
difficult to verify this kind of conditions. In certain applications, like
Gibbs fields , conditions of asymptotic independence between very big
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blocks are quite useless (cf. [15]). Stein's method requires conditions on
"small blocks", like (H5), and asymptotic independence between one-point
sets and arbitrary sets, like (H6). On the other hand, in (H5) and (H6) rates
are required. This is the reason why we prefer to include both classes as
alternatives.

b) We will see later that we can replace (HS) and (H10) by the condition:

(M) pX(TT; 1500, 0 )< 1, that is if X satisfies (H1), (H2), (H3),
(H4), (H7), (H8) and (M), X belongs to B.
¢) We will also see that we can replace (H9) by the condition:
1

(R) f oa'"l(u) (QﬁZu))2 du< e ; where Q is the quantile
0

function defined by Q(u)= inf { ©0: P( IXOI>t)s u} and ol depends on the
mixing coefficients between one-paoint sets:

o l(u)= card { neZ9 :x (oX({01),0X({n}))> u}.

As an example, if X satisty (H1), (H2), (H3), (HS), (H6),
(H8) and (R), then X belongs to S.

We can present now our main result.

Theorem 1.1: Let Ac G(24 ). Then the following statements are equivalent:

(i) For each X¢ F, the random variable: SN(A,X) has a weak limit S(A,X).
(ii) For each Xe F, the random vector MN(A,X) has a weak limit M(A,X).

(iii) For each Xe F, the random vector MN(A,X) has a weak limit M(A,X),

whose distribution is gaussian, centered and with variance matrix C(X) given

by: C(X) | 1= VIAT2(X)-¥ (X), C(X)1 5= C(X) 51=¥(X), C(X)y,= (1-v(A))T2(X)-
v(X), where
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v(X)= 3 X (nF(mA), with F(;A): 295 (0,1]. (1.10)
nezd
(iv) Ae M (24).

Remarks 1.2.:

a) The funcion F(.;A) that appears in (1.10) is the border function of A.
b) In fact, we are going to show that if A¢ M (ZC1 ) there is a stationary,

centered and m-dependent gaussian field X such that SN(A,X) has no weak

limit .
¢) From (H7) It follows that v (X) is well-defined.

The paper is organized as follows: in section 2 we pesent
the proof of Theorem 1.1, together with some preliminary resuits. In section

3 we study the class M (zd ), giving examples of sets that are not included
in this class. We also include in this section an extension of Theorem 1.1,
called Proposition 3.1: we consider there a k-valued random vector,
corresponding to the normalized mean of X over k disjoint subsets whose

union is 29 (Theorem 1.1 corresponds to the case k=2). As an application of
Proposition 3.1, we develop in section 4 an asymptotic F-test for the
comparison of means. The result of the application of this test to some
simulated samples is shown in the appendix.

2. Central Limit Theorems.

Theorem 1.1 follows as an inmediate consequence of
Propositions 2.1, 2.3 and 2.4. The proofs that we will present use standard
methods for mixing processes (cf. {7], [14], [19], [22]).
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Proposition 2.1:

a)let A be a subset ofZd. Then: E{(S (AX) 2= 3 X (m)H(n:A), with
nezd

Hy(n;A)= cardfA N (n+AN)}(2N+1)'d.

b) If X satisfies (H7) then there is a constant C depending only on X such

- (‘ard(/\N)
that, for any A subset of 29, (S \(AX)Hs C——— .
; (2N+1)d

c) If Ae G(Zd ), then: lim N (HN(n;A) + FN(n:A))= v{A).

d) if Ae G(Zd) and A¢ M (Zd ) there is a stationary, centered, m-dependent

gaussian field X such that S N(A,X) has no weak limit.

W haves EHQ TA YY) 21 +1)-d - »
Proof: We have: L{(SN\A,X)) b= (2N+1)™9 ¢ E h(Xk Xm Y=
k,meAN
S X (n)Cy(mA), with Cy(n;A)=cardf (k,m)eA  x Ayck-m=n}(2N+1)d =
nezd
HN(n;A) , and a) follows.

To prove b), note that HN{n;A) is bounded by card(AN) and

use (H7).
Consider A¢ G(Zd }; we have that:

Hy(mA) + FN(n;A)=card{{—N,N]d)ﬂ (n+AN)}(2N+1)'d (2.1);

_4r d ) se s & .
If meA Nl then m+ne[-N,N]j ﬂ(n+AN) and it is obvious that
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: : = 5 -d_(: f i . S,
llmN(card(AN) card(/\N_“ n“))(ZN 1)"9=0; from this and {2.1), ¢) follows

Consider Ag M (29); pick n*eZd such that the sequence:

{F.(n";A): NeMN} < [0:1] has no limit (it is obvious that we can take n'z0) .

e

Then there are two subsequences FN (n*:A) and F (n*;A) that

(m,1) Nim,2)
converges to ¢$(1) and ¢ (2), respectively. Let us consider a centered,

1
stationary, gaussian field X with covariances:rX(O)r-l, rX(n)=pe(O ) for

P
n=n",-n* and rX (n)=0 for nz0, n”,- n". It follows that X is || |- dependent.

From a) and ¢) we have that for i=1,2, E{(S (A;X) )2} converges to

N(m,i)
v(A)(1+p)-d (i)p; since X is gaussian, it follows that SN (A;X) converges
“(m,1)
to a N(O,v(A)(1+p)-¢ (1)p) distribution and that S (A;X) converges to a
{m,2)

N(O,v(A){1+p) -9 {2)p ) distribution. Hence, SN(A;X) has no weak limit ¢

The following result, whose proof is elementary,
CMcterize the possible limits under some of the hypotheses considered
above.

Proposition 2.2: Let X be a random field that satisfy (H1), (H2),

(H3), (H4), (H7) and A a subset of zd . if SN(A,X) converges weakly to a

random variable Z, then Z is gaussian.

Proof: Take O<s<1 and N(s) the integer part of sN. Then we get:

2N(s)+1

Ly d
SN(A,X)-- SN(S}(A’X)[ ( N1 ) ]+SN(A-AN(S),X) (2:2)s
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The first term on the right side of (2.2) converges weakly to \]s‘d Z; by

Proposition 2.1., part b), SN(A - AN(s)‘X) is uniformly integrable and hence,

tight. Choose a convergent subsequence of SN(A - AN(S)'X) and call Y(s) to its

limit. Both Z and Y(s) are centered and with finite second moment.

0 B

Take q{N) increasing to infinity such that limN N

Applying again Proposition 2.1., part b), it follows that we can replace

! . / ZN(s)i]_‘d , / 2N(s)+1. Tu,.

without changing asymptotic distributions.

[t follows that if LY stands for the characteristic function of SN(A,X) and VN

stands for the characteristic function of SN(A - AN(Q),X), then, by (1.9):

i 2N(s)+l g o | < 8aX(q(N)) and then, by
NCERT q(N(S))( (a7 )¢ U vn(D s 8 (g(N)) and then, by

{H4), we deduce that if y is the characteristic function of Z and v(S) the
characteristic function of Y(s), then:

(t)= \V(Ns’d] t)V(S)(t) , for each real t, O<s<1. (2.3)

This implies that Z belongs to the class L of Kintchine (see
{18], page 553); what follows is just the proof that the only distribution with
finite second moment that belongs to this class is the gaussian.

[terating (2.3) we obtain that Z is the weak limit of a
triangular array of independent random variables (centered and with
bounded second moment); therefore Z is infinitely divisible and its
characteristic never vanishes.

From (2.3), we obtain:
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- v(Ns9) v
VI[N dovis) =4 . LY o) -
Wi[s™] o

— WO (D). (2.4)
w([s9] o

[terating (2.4} we deduce that for each O<s<l, Y(s) is
infinitely divisible.

Then, we can use the following representation (see [2],
pages 384-388 )

co
. exp(itx)-1-itx .
w(t)=expi f ( 2) dE(x)},
X
-50

v(8)(1)= expf J M%)"Lﬂ da(s) (x)t,
X

-C0

where E,B(S), are positive finite measures that characterize » and (s), (2.5)
from (2.3) and {2.5) it follows that:

dE(x)=] \/sd]di([\js"d]x) 4 dB(S)(x) for all real x,0<s<1. {2.6)
it follows from (2.6) that if:

. 1 ]
M(8)(a) = — d&(x) + — d&(x) for a>0, M(S) is an increasing
x2 x2

a a
[a,;l I= e al

function of a for each O<s<1.

If £ is not concentrated in the origin, then there is an O<s O<] and an ag >0,

such that M(SO)(aO)>(); but for a = aq we have that:

ﬁ([a,%lU[— i:‘,— al) zazM(So)(a) zazM(So)(aO), that goes to infinity with a, what

contradicts the finitess of £%

In what follows, we give the proof of the CLT using
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Bernshtein”s method.

Proposition 2.3.: Let X be a real valued random field such that

Xe B, and consider Ae M (ZCl ); then the random vector MN(A,X) has a weak

limit M(A,X), whose distribution is gaussian, centered and with variance
matrix C(X) given by:

C(X)  =V(AT2(X)-y (X), C(X); 5= C(X) 51 = ¥ (X), C(X)y, = (1-v(A))a2(X)-

v(X), (where v (X) is defined as in (1.10) taking as F(.;A) the border function
of the set A ).

Proof: Since (H9) holds, it is enough to prove the result for X
bounded.
Take A, two real numbers such that:

T(AW)=AIVA)T2(X) -y (X)] + 25 uy (X) + RZ2[(1-v(A) o2 (X)-¥ (X)] >0 (2.7),
where v (X) is defined as in (1.10) taking as F(.;A) the border function of the
set A.

Itis enough to prove that :

WN(}\,u)= (ZN+1)"d >y X“ SO, }: Xn ) converges weakly to a

neA ne(AC) N

N(O,T (A 1)) distribution, where AN= Aﬂ[—N;N]d (A1 will be assumed fixed).
Consider the real valued random field:
_ ; d ' B : y _h X :
X(A W)= {Xn()\,u).nez {, where Xn(?\,u)—}\Xn if neA, and Xn(}s,u)—u Xn in

other case.

Set: sN(m)(C)=\/(2N+1)-d S X (). (2.8)
neCN

Consider two non-decreasing sequences of natural
numbers p(N), g(N) such that:
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limNp(N)=liqu(N)= o3;

o AN L PN oK TN 00,00 1O
th p(N) th e lim NL(MO{ (TL;q(N); 20,0 j=0;

"

where k(N)= int{ d and "int" stands for the integer part (the

2N :
p{N)+g(N) ’
existence of such sequences fllows from (H4)).

2N
A bit of notation: for i—-Ozl;...;im(m )-1, call JN (i)
to the interval [-N+ip(N)+ig(N),-N+{i+1)p(N)+ig(N)] ; consider their union,

2N
L J)d
-1} and Ay (Jy )9

U i): i=C k=
jN U "JN (i): i ),1,...,mt(p(N)+q(N)

AN is the union of k{N) disjoints d-cubes of side p(N):
= U f 8y ) 1=1,2,..., K(N)}; hence card(& )= K(N)(p(N)+1)9. Even more,

if i=h,d (!_\sN () 8y (i) )= q(N). (2.9)

Using the computations made in Proposition 2.1 parts a)
and ¢) we get:

EL (Sy(Mi)(€)2) =(2N+1y9 (a2 3 card{ (CyNA)N (n+C
nezd

Nl’]A) X (n)

+2x1 Y cardf (CyNAS)N (n+C (NA)} X (n)
nezd
+u2 ¥ cardf (CYNAS)N (n+C (NAS} X (n)} (2.10);
nezd
lim  E{ (Sy(A (2D 2= T(An) (2.11), and
Sy(M1) ( 8y )2 converges in L2 to 0. (2.12)

Therefore, it will be be enough to prove that SN(A,LI.) (A
converges weakly to a N(O,T (A, ) ) distribution.

N
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We have that:
i=k(N)
S N“”“)(&N): 2 SN(}a,u)(&N(i)) t2: 130 thien,
i=1
using(1.9), we obtain:
m=Kk(N)
IEfexp(itSy () (a1 [T Elexp(itS(Au)(ay(m)iis
m=1 )

AK(N)aR(G(N))(2.14);

hence, SN(}\.,J.'[ )(&N ) has the same asymptotic distribution than:
i=k(N) ;
= ol 7 o 2 : z
Zy(Ap)= 2 1LN(?\,M): where { Zy(AH): i=1,..,K(N)} is
=
a triangular array of independent copies of { SN()\,u )(&.N (1)) : i=1,...,K(N)3}.
Using (2.10) we have:
i=k(N)
EHZy (M 1)))= 2 ES (A (8 ())2)=
i=1
i=k(N)

(2N+1)4 {22 3 Ecard{ (BDNAIN (n+8y()NA) rX (n)
nezd =1
i=k(N)

2 3 Ecard{ (L (DNAS A (n+as (HNA)} X (n)
nezd i=1
i=k(N)

w23 zcard{ (AGDHNASN (n+d ()NAC)] X (n)}. (2.15)
nezd il

Fix neZ9 and pick N(n) large enough such that q(N)= ||nfl for
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N = N(n). It follows that for N = N(n), A‘N (i) and n+z‘_‘sN (h) are disjoint sets

if fzh. Using this and the fact that Tim  card([-N;NJ9-& ) (2N+1)d -0, we
have that:
lim, card(Ay N (n+A ) (2N+1) 4=
i=k(N)
limN Ecard{ (&N(i)r”lA)f'I(zwéN(i)ﬁA)}(2N+1)"d ; using the same
i=1
idea in the other terms of (2.15) it follows from (2.11) that:
lim  Ef (Zyg(Au)3= T(Au) > 0. (2.16)

To conclude the proof it is enough to prove that the
triangular array { Z;\](é\,u): i=1,...,K({N)} satisfies Lyapunov s condition; i.e.,

that LN(J\,u) goes to O with N ; where:
i=k(N)

LN(,\,u): S‘ Ef (ZN }.(2.17)
1 1

From (H10) we have:
. el i
LA a)= k(N) max | oy E{(ZN(}\,u))4}5

oo IS 5 oy AN yq (RONIELC
' (2N+l) p(N)+q(N) (2N+1)d

, that goes to O with

Therefore, LN(/\,u) goes to O with N ¢

The following proposition give sufficient conditions to have
asymptotic normality, based on the g - mixing coefficient.

Proposition 2.4.: Let X be a random field that satisfies (H1),
(H2), (H3), (H4), (H7), (L{S) and:

(M) p (T 100, 00 )< 1.
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Then X belongs to B, and therefore, MN(A,X) has a weak

limit M(A,X), whose distribution is gaussian, centered and with variance
matrix C(X) given by:

C(X) 1 = VIAT2(X)-y (X), C(X) 5= CX) 5 = ¥ (X), CX)o=(1-V(ANT2(X)-y (X) .

Proof: It is enough to prove that {H9) and (H10) hold.
The basic arguments are the following inequaliities:

Consider F a finite set, and a set of centered random
variables X teF | with moments of order q= 2 finite and:

p=max {p (U‘X(A) UX(B) ): AcF, BcF, A and B disjoint},

R = sup { ICorr (V,W)l : Ve SX(A), We SX(F-A): A=F} and
SX(A) stands for the set of linear combinations of § X teA } .

Then we have that:

= . - E ﬁﬁz:v %
if =2, R<l.(1+R)E hi\X < Ef ( }5 " R) [.{(At) i s

ref teF teF

(2.18)
If g=4, p < 1, there is a constant C depending only on p such that:

Ef (E X, )4}sCi(E E“Xt)Z*)Z*E E{(X,)2}3.(2.19)

teF teF tefF
( For the proof of (2.18) see cf. [9], Lemma 1; for the proof of (2.19) cf. [12],
Lemma 3 )

Applying (2.18) and the trivial observation that R<p, we
get:

. ; 1+pX(I 1500, 0 ) . ! g J
E{(S\ (A, X-X)))2} < 2N+1)d E(X_ - X°)21=
(S e DD E (X, - X2

neA N
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LepX(I; 1500, o0)
fl,—gX(TI;l;oo, o)
1rerX(H;J,;c<>, oo)
l—pX(TI;l;oo, 00)

) (ZI\H-I)‘d card(AN) E{(XO - Xé)z}s

(X(\ XO) i, and (H9) follows.

In order to prove (H10), we apply (2.19) to XJ and obtain:
Ef (Sy(A, X)) < c(2Ne1)2d 2 E( xl’qz) 12+ E E( x‘nZu . (2.20)
neAN neAN

Using the fact that IX?]I < 2} we obtain:

E{(SN(A,XJ))4}5 c<2N+1)-Zd(16_14card(AN)2 + 4J2card(AN)]s

CU 2N+1)'2dcard(AN)2, where C(]) is a constant depending only on X and J,
and (H10) followse

Remark 2.1.:

a) Using Bradley s results, condition (M) can be restated in
the following way:

1
ozx(ﬂb;l;oo, 00)< Fy {cf. [11], Theorem 1).
b) It should be noticed that condition (M) is weaker than

oX(®)- mixing (cf. [10], Theorem | or {12}, Remark 2 ).
We can also get the CLT using Stein”s method.

Proposition 2.4.: [et X be a real valued random field such that

Xe S, and consider Ae M (Zd ); then the random Qector MN(A,X) has a weak

limit M(A,X), whose distribution is gaussian, centered and with variance
matrix C (X) given by:
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C(X) 11° V(A')UZ(X)-‘J (X), C(X)lf C(X)21 =y (X), C(X)22=( 1-V(A))'J'2(X)-";' (X) .
Proof: Since (H9) holds, it is again enough to prove the result for
X bounded.

In that case, one can follow very closely the arguments given by Bolthausen
in [3]. Details are left to the reader &

In what follows we give another sufficient condition to have
asymptotic normality, under adittional assumptions on the quantile function
and on the mixing coefficients. The basic tool is the following covariance
inequallity, due to Rio (cf. [26], Theorem 1.2 ), wich has been used to obtain
functional CLT s {cf. [17]): '

{f X is a random field that satisfies (H2) and (H3), then:

1
2 ICov(XO, Xn)ls f 0(‘1(u) (Q_(Zu))2 du ;where Q is the quantile
nezd 0

function.Q(u)-—-inf§t>0:P(IXO|>t)su} and o1 depends on the mixing

coefficients between one-pont sets and is defined by:

o l-(1,1)=ca1rd{n€2d:0( (@X(§01):0%(in}))> ul.(2.21)

Proposition _ 2.6.: Let X be a random field that satisfies (H1),
(H2), (H3) and the following condition:
1
R [ o«lw) (Q2u)? du< .
0

Then X satisfies (H7) and (H9).
In particular, if X satisfies (H1), (H2), (H3), (H5), (H6), (R)
and (H8), then X belongs to S.

Proof: (H7) follows inmediately from (2.21).
Applying (2.21) to X-XJ it is clear that is enough to show
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that:

1
lim ] f (x"l(u) (Q_J(Zu))2 du =0, where Qj,stands for the
120

quantile function of the random variable XOI A2:.22)

1Xg>J3

But it is easy to see that QJ(11)= Q(u)1 and

{usP(IXOI‘;J)l

(2.22) follows from (R) and Dominated Convergence Theorem#

Remarks 2.2.:

a) It is important to study under what kind of conditions
(H8) holds. If we assume:

(U)E{ (SN(Zd, X)2)}(2N+1)4 is unbounded ;

and that one of the following conditions holds:

(i) lim . Rx(m)=0. where:

RX(m) = supt ICorr (V,W)! : Ve H((A), We R((B): ACZd, BCZd, d(A,B) 2m }
and HX(A) stands for the L2 -closure of the set of linear combinations of

§ X :neAl;

n

(i) 3 IolldiX ()< oo;
nezd
then (H8) holds.

The proof that (U) and (ii) imply (H8) is elementary; the
fact that (U) and (i) imply (H8) follows from Bradley (cf. [9], Theorem 3).

In addition, if we have that:
) R¥(1)< 1,
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then, by (2.18), (U) holds. In particular, (M) implies (U).

If the random field is positively associated (rX {n)=0 for
all n), then it is obvious that (H8) is satisfied if X is non-null (For CLT s for
associated random fields, cf. [30]).

b) Consider a linear field X given by X = 3 W e Wiy

me.

where the random field W={ Wn: nezd } € F, and the kernel { L% nezd 1

belongs to Ll(Zd ), i.e., 2 l\ynl < o0, This kind of fields appear in many
mezd
applications, even in the case W iid. Assume that (H7) and (H8) are satisfied.
It is very easy to see that Theorem 1.1 holds in this case, using standard
argument (for recent results for linear fields, cf. [23]). It is well known that
X is not necessarily mixing. More precisely, if d=1 and X is the solution of
1
ae ity Wn , where W= { Wn: ne £ } are iid such

1
the AR (1) equation Xn:T)‘ X

1 1
that P(W = 7 )= Pt AL BN
eventhough it is a linear field as above. But X can be suitable approximated
by moving averages on W (truncating the sumimation), and it is easy to verify
that we can apply theorem 2.1 to these approximations; consequently, we get
the Central Limit Theorem for X itself .

), then X fails to be mixing (cf. [29]),

N |-

¢) We can consider an increasing sequence of finite subsets of

Zd, {A N:NelN}, and say that it is M-convergent if:

HN(n)=card{ANn (n+AN)}(2N+1)~d has alimit H(n) as N- oo,

for each neZd, and O< H(0) < 1. Following the ideas that we have used, it can
be proved that if X satisfies(H1), (H2), (H3), (H4), (H7), (H8) and (M), then

CLT holds for SN(A;X)= ‘\/(2N+1)‘d ( 2 Xrl ). This extends the notion of

neA N
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convergence in the sense of Van”t Hove (cf.[6], [21]), that has been used in the
development of CLT s for random fields.

d) Condition (R) includes as a particular case hypotheses
of the Davydov s type:
(i) There is a §>0 such that E( XOZ+8)< 00,

oo
8
(ii) 2 m9d-1(oX(@:m;1,1))7, g< o0
m=1

3. Examples.

We will study in this section examples of sets that belong

to M (24 ), and examples of sets that do not belong to this class. All the
proofs are elementary, and we will frequently set d=1 for the sake of
simplicity; the extension of the examples to greater dimensions is trivial.

We will begin showing that the class M (Zd ) contains all
the sets with "regular" border, in the sense of the following definition.

Definition 3.1: Let A be an element of G (Zd ) . If v(dA)=0, we will say

that A has null border. We will cal NB (Zd ) to the class of sets that have
null border.

Lemma 3.1: Let A be a subset of 24 . Then for each n e 24 , N eN, we
have that: F(nmiA)= (dlInll+1) card(3Ay (2N+1)d (3.1).

In particular, NB (24 )= M (29) .

Proof: If n=0, (3.1.) is trivial, because FN(O:A)=().
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. - 2 = (l ¢ i \ 2 “
If n20; we have (drd,.’\Nﬁ n .\N)E = ) (‘l {m—nEAN}'
mEAN

id
. (\ . ™~ - - - .
If m GAN and m-n eAN , consider the p(n) )’ In(i)l+1 points with integer
1]
coordinates included in the oriented poligonal C{(m,n) that joins m and m-n ;

it is obvious that at least one of this points must belong to 8.-\N. Ifpe ElAN :

c
there are no more than gin) points m f:AN such that mn er];\N and peC(m,n);
from this we have that:
cardf/\;ﬂ (n+A.\.H < g(n) (‘ard(aA\. s (dnfl + 1) card(aA,\, ), and (3.1)

follows.

if Ae NB (Zd ), then, applying (3.1) we get:
lim  Fy(mA)=0¥ne 2, Ae M(Z) and F(:A)=0 ¢

Remark 3.1.:

a) If A belongs to NB (Zd ) and X is a random field that
satisfies (H1), (H2), (H4), (H7) , (H8) and such that SN(Zd, X) is

asymptotically normal, then MN(A, X) converges weakly to a gaussian with
independent coordinates.

This can be proved as follows: (H7) implies tighness of

MN(A,X). Pick any weakly convergent subsequence. Let us call (V,W) to a
random variable with the distribution of the limit. (H4) implies that V and
W are independent. Since SN(Zd, X) is asymptotically normal, then V+W is

gaussian; then, from the well-known theorem of Cramer (cf. [18], page 498), V
and W are gaussian.
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Therefore, it is easy to develop an F-test for the comparison of
the means [f the set A has null border {cf. [24]).

b) The inclusion is strict: take A =2Z, d=1. We have that

1
F(n:A)=0 if n is even and F{m;A)= Tz‘if n is cdd. Then, for each Xe F, M N(A;X)

has a weak limit M(A;X),distributed as a centered gaussian random

. ! .
vectorwhose coordinates have variance —2‘ 2 X (n) and covariance
nel2 £

2 rX (n) . In particular we can obtain, for particular processes X, a
ne2Z+1
degenerate limit. [t is very easy to extend this example to d>1.

N | —

The following result shows that there is an uncountable family

of sets that do not belong to M (Zd )(in fact this family has the cardinal of
the continuum).

Lemma 3.2: Define A(0)= [0,100), A(n)-= a2 R 1602 for set,
Take: A(n,0)= A(n)N(S5Z ), A(n,1)= A(MN{{10Z2 )U(10£+1)}, nelN . Given

oQ »
i=n-1

xe[0,1], write x= ' (x(n)21), where x(n)= int(2"x - 3 x(1)2071)ef0,1]
n=0 i=0
for each n, and define ¢ (x)= U { A(n,x(n)) : neMN}.
Then, if D stands for the set of diadic numbers (countable),
¢(x) belongs to G{(£) - M (&) for each x¢ [0,1] - D.

Proof: Let x € {0,1] - D. Then there is pair of subsequences n(k) and
m(k) such that x(n(k))=1 for each k and x(m(k))=0 for each k.
Consider N(k)= 10022097 piio1002™0L, e
1 10022K) _q1g20(0-1 -y pp2n(k)-]
FN(k)(l;A)sT(‘)‘{ }+§{ }

2 1002™K) 4 2 10020K,
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p 1ot g gp2REL g . 1ge2™HEH]

{1z A)>—{ +7 i
() 2 1002™0) 4 1072 1002™M ¢
Hence:
. (1.A)e —L0:001 19.999 e
im sup . Fngk) 200.000 < ~200.000 = 17 SUP  Fiyy(k)(1:A), and 4

does not belong to M (&), while it is cbvious that A belongs to G (£ ) and

1
\m_
V(A) 10 4

Remarks 3.2.:

a) The following example is very illustrative. It follows

2
from the previous Lemma that if we consider A= ¢\(‘%') and the centered,

stationary, gaussian and 1-dependent process X:ﬁ{Xn: neL}, with ~ (O)=1,
o (l)—»rx(—l)=g€(0;1/2) , then SN(A:X) has no weak limit . However it is

obvious that SN(B;X) has a gaussian weak limit for any B of NB(Z). The same

random field, with a very simple structure (gaussain and 1-dependent) has
essentially different asymptotic behaviours for different sets.

b) M(Zd is not an algebra. In fact, if d=1, using the
notation of Lemma 3.2, define B(n,0)=A(n)N(5Z-10&); B(n,1)=A(n)N{10&+1)
and n(x)= U { B(n,x(n)) : neM}. It is easy to see that n(x) belongs to M(£€ ) and
it is obvious that 10 & belcngs to M{(Z ) , while ®&(x)=n(x)U(10&€) does not
belong to M(£) .

Taking into account this last remark, we will introduce an
additional definition that allow us to extend Theorem 1.1 to the case in wich
we consider a k-valued random vector, correponding to the normalized mean

of X over the k sets of a partition of 24,
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Definition 3.2: Let A and B be elements of G (Zd ), we will say that the
pair {A,B} has asymptotically measurable relative border . if:

For each nezd; FN(n;A,B))-- card{ANﬂ(m-BN}(ZNH)‘d
has a limit F(n:A;B) as N = co; F(.;A:B) is the relative border function
of the sets A and B. (3.2)

Definition 3.3: We will say that the subsets A(l),“.,A(k)of Zd define

an asymptotically measurable partition of Zzd if.

Al U,...,A(k) is a partition of zd (3.3)

Alde G (29), i=0,1,...k . (3.4)

Each one of the pairs §A(i),A(h)§; Lh=l 1.k . has
asymptotically measurable relative border. (3.5)

(Observe that (3.3), (3.4) and (3.5} imply that A(i)eM(‘Zd Y
i=0,1,...,k .

Given A(l),...,A(k) subsets of Zd such that (3.3) and (3.4)
hold, we are going to consider:

MyAD A= VeNend e 3 X 3 X ).(3.6)
ne(A(”)N ne(A(k))N
Then we have:

Proposition 3.1: Let A(l),...,A(k) be subsets of 29 such that (3.3) and
(3.4) hold. Then the following statements are equivalent:

(i) For each Xe F, the random vector MN(A(l),...,A(k);X) has a weak limit
M(AlD), .. a(K):x)
(ii) For each Xe F, the random vector MN(A(”,...,A(k);X) has a weak limit

M(A(l),...,A(k);X); whose distribution is gaussian, centered and with
covariance matrix C(X) given by:
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CX) = 3 X F(mAlD, Al with Pl Al):zdo 01
nezd
for i,h=1,..,k. (3.7)

(iii) A(”,...,A(k) define an asymptotically mesurable partition of zd

Remarks 3.3: a) The funcion F(.;A(i),A(h)) that appears in (iii) is the

relative border function of the sets All) and A(h),
b) As before, if (iii) does not hold there is a stationary,

centered, m-dependent gaussian field X such that M N(/3‘“),...,A(k);)() has

no weak limit .
¢) An important question for the statistical applications

we will consider later is the following: given Ae M (24), isit possible to
divide A€ in two pieces, B and C, such that A, B,C define an asymptotically
mesurable partition of zd?

We will see now that we can generate a random set and
obtain almost surely an asymptotically mesurable border. In addition, we
will answer to the last question .

Consider a random set A(w) constructed as follows:

U= § Un: nezd tisa aX(TI)- mixing strictly stationary random field and
such that each coordinate Url has a Bernoulli(p) distribution, where O<p<l;

set A(w)= { neZd : U_(w)=1.

Lemma 3.3: Let A be defined as above, then:
(i) Ae M (29) as.

(ii) F(O0;A)=0; F(n;A)= p- E(UOUn) , for each 5#0; a.s.
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n
Proof: Given neZ9 let us consider the random field YD =1 Ym: mezd !

defined by Y!:n= Umm(l - Um) , then YM is stationary, ergodic, bounded

{indeed, each coordinate is Bernoulli) and from the Strong Law of Large
Numbers it follows that:

FN(n.A)= (2N+1)‘d E Yn converges almost surely to
mel-N,Nj

F(n:A)é
Lemma 3.4: Given A €M (Zd ) , let us take the stationary random field
U:%Un: nezdf as before. If we define B{w)={ne A€:U n(u}:l} and

C{w)=A"-B(w), then:

(i) A,B,C define a.s. an asymptoticaly measurable partition of zd,

{ii) v{B)=p(-v{A)}; v(C)=(1-p)(1-v(A)); F(n;B,C)=(p~E(UOUn) 7(1- V(A)} if nz0
{0 if n=0); F(m;A,B})= p F(nm;A) if nz0 (O if n=0); F(n;A,C)= (1 - p) F(n;A) if
120 (0 if n=0), a.s.

Proof: Completely similar to Lemma 3.3

Remark 3.4: The continuous case. The definition of M (iRd ) is

completely similar to that of M (zd), replacing "cardinal" by "Lebesgue

measure". We can give results similar to the previous for M (Iﬂd ). We can
also derive a "continuous" version of Theorem 1.1, replacing "sum" by
"integral with respect to Lebesgue measure", but the ideas involved are the

same. It is interesting to observe some connections that the class M(tF%d ) has
with some ideas of Harmonic Analysis.

Consider d=1. Wiener called "regular" to a pair of real
valued medsurable functions f,g such that the correlation:
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T
1

T [ f(t+s)g(s)ds exists for each t real (cf. [32]).
s

C(f,g;t)= lim Tesc0 '2—

It is well known that the class of regular functions in the
sense of Wiener is not a vector space and that it includes strictly the class
of quasiperiodic functions, i.e., the clausure of the linear space generated by
{ exp(iat ): AeR } with respect to the Marcinkiewicz”s norm:

T

1
Il= ttim sup 1, 5= fo f(s)12ds 172 (cf. [20]).

[t should be noticed that the class of quasiperiodic
functions is an algebra. it is obvious that A ¢ M (R ) iff the indicators of A

and A€ are regular in the sense of Wiener. We will call quasiperiodic to a set
a such that its indicator is a quasiperiodic function. Thus, quasiperiodic
sets are asymptotically measurable. But inclusion is strict: there are sets
AeM (R ) that are not quasiperiodic. Indeed, the class of quasiperiodic sets
is an algebra, while M (R ) is not.

4. A test for the comparison of the means.

Let us consider a random field X= { Xn: nezd } such that
X(c) € F, where X(c¢)= Xn(c): nezd } is given by Xn(c)=Xn- E(Xn). Assume

that there exists A €M (Z9) such that E(X J=wifne Aand E(X )= p+8 if

ne AS(y and J +8 are unknown but A is known).

Consider the following test:

{Hy: 8=0; Hy: $=8"20 (8 unknown)}.

Take B, C known such that A,B,C define an asymptotically
measurable partition of 294 (there are such sets by Lemma 3.4.

75



If V, W are random variables with finite second moment
' . . Corr(V,W)
such that Var (W)> 0, denote K(V,W) =V- (__-Var(W) YW (4.1)
[t is obvious that if (V,W) is gaussian, then (K(V,W},W) is
gaussian and its coordinates are independent.

If N, Q, Y are random variables with finite second moment
such that E(N)= apn, E(Q)=b{(u+8), E(Y)=c(p+8) with a, b, & 0, we will denocte
VINQYiabo)=N- (¢ ¥) and WNQY:abo=Y - (£ Q) . (4.2)

Obviously, E( W(N,Q,Y;a,b,c))=0 and E( V(N,Q,Y;a,b,c))=- as.

If C, (N,Q.Ysa,b,c)=Var(Y) - (FCov(Y,Q)+[(£12Var(Q)]»0,

(32(N.Q,Y:a,b,c)=Var(N)— (%Cov(N,Y))+[(§'}2Var(Y)]>O, the distribution of the
random vector (N,Q,Y) is gaussian and we denote:

C‘l ( NyQY;a,b’c)
T(N,Q,Y;a,b,c)={ 12 then:
CZ( NvQyY;a’b’c)

K(V(N5QY;a’b7C))W( NyQY;a’b)C)) 2 -
W(N,Q.Y:a,b.c) F4 T (N,Q,Y;a,b,c) follows a

Fischer’s F distribution F(1,1;e(N,Q,Y;a,b,c)), with 1 and 1 degrees of
freedom, where:

Z(N,Q,Y;a,b,c)={

e(N,Q,Y;a,b,c)= lad IV t(N,Q,Y;a,b,c) is the excentricity. {4.3)

As in proposition (3.3), we will use the following notation:

CX)= 3 CoviXpX ) F(mAD, AR where Al1)=A, A(2)=B, AB3)=C. (4.4)
nezd

We will make the following assumptions:
(A1) X(c)eF
v(C) v(C)

)2 C(X)33 >0, and
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. A (A
<A3>c(xhj>—(-f5%><xx> (i&C;>Z<KX)33 £

Given the significance level &, we are going to consider the
critical region:

RN(’X)-“-{ N(A BiCX)>F | (1, 1)} : where:
N ABGK) =M (ABiC:X);v(A IV (2N+1) ydy \/ 2N+ DA vic, )V (2N+ 1))

and Fl_o((m,n) stands for the 1-o percentile of a Fischer's F distribution

with m, n degrees of freedom. (4.5)

Finally, we denote oy and ﬁN(S‘k) the probabilities of errcr

of first and second kind, respectively, corresponding to the critical region
(4.5).Then, we have:

Theorem 4.1: Under the assumptions (Al), (A2), (A3):

lim o=, lim  By(89)= 0, for each 8= 0.

Proof: We have that

lim N C](MN(A;B;C;X); v(AN)V(2N+'l)d v(B V(ZN:l_)-d,v(CN)V(ZNH)d) =

ax) s § ] ()

22 =gy €€ ")

(X) 33 (4.6),

and that: lim  C,(My(A;B;C;X); v( AI\.)‘\/(ZNH)CI, v(BN)\/(Zde) -

v{A) V(A)

CX)p - () O g3+ (g )2 CX) 33 (4.7).

Applying Theorem 3.3 to the random field X(c) , using (4.7)
and the basic poperties of weak convergence, we conclude that the
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distribution of iN(A;B:C;X) approaches a F(l,l;eN(S) ); where eN(S) is the

excentricity :

CX) el O 5 + O 2 oy
59 B " V(B A 2

) VN DA 81 V( A\)) ‘j(i) )
2 ) X I — — 2

(8

Since oy = P(Ry():8=0) and Bp(8") = P(Ry(x);8=8"), it follows

inmediately that lim Oy = O, lim N BN 5=0 ¢

Remarks 4.1:
a) This is an F-test. in a similar way, we can present another

kind of tests (x4, for instance), but there is no essential difference between
these proposals. The number of degrees of freedom is (1,1) just to present the
result as clear as posible. It is obvious that it could be modified to get (k1)
dehgrees of freedom.

b) This test invoives parameters like C(X).l 1 that in general,

are unknown. However, it is easy to show that they can be consistently
estimated under some aditional assumptions. For instance, if we assume that
the coordinates of X have bounded momenzts of order 4+8, we assume stronger
mixing conditions (of the Davydov’'s type), we replace in the formulae of the
parameters the covariances of X by its standard estimates, and the series by

a sum of my terms, it is easy to show that my; can be choosen properly in
i

order to obtain consistent estimates of the parameters (cf. [25]).

c) It is natural to ask how different is the behaviour of this F-
test with respect to the behaviour of another F-test. For instance, the
classical F -test assume an iid sample, and the F-test presented in [24]
assume dependent samples but "thin" border (in the sense of Definition
3.1).Roughly speaking, the comparison of these three F-tests could be taken
as an evaluation of the relevance of the dependence and the geometry on the
statistical problem. More precisely, take dependent data and an
asymptotically measurable geometry, but with "thick"” border. The
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performance of the classical F-test will show what happens if you ignore
completely the dependence, the performance of the F-test given previously in
[24] will show what happens if you take into account the dependence of the
data but ignore the complexity of the geometry, and, at last, our F-test will
show what happens if you take both problems into account. This comparison
is presented in the appendix, using simulations.

d) if we consider a sequence of alternatives

Hl(N): 8= m‘d &* (8*: 0; unknown), then following the arguments of
the proof of Theorem 4.1, it can be shown that:

lim By (V(2N+1)4 8% )= F(1,1;e(8%)) (F1_(1,1)), where
v((,) v(C) 2

CX) 54 - ) CX) 3 + )4 CX) 5
i . 22 B B 33 .
e(8")- V(A8 § v((; \f(ri) - .
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Appendix.

The aim of this appendix is to show the behaviour of the
method given in Theorem 4.1 and to enphasize that the geometry is reievant
in the comparison of dependent data. We are not trying to make an exhaustive
study , taking into account any other alternative method, or a variety of
different specific problems, but only consider some simple cases.

At first,we are going to take d=1 and compare the method
given in Theorem 4.1 (we will call it M) with the classical F- test for the
comparison of two iid samples (CM, in what follows) and the F-test given in
[21], wich assumes weakly dependent data but "null border" geometry ( we
will call it NBGM). This test has as critical region the following set:

CN(O() ={wJ N(AB CX)>F l ,1)}, where:

*r v(A)
v, SN G (A)’SN‘A ks o
)= ( (A)’{ (B) 14 , and B, C are disjoint
SN(B:X) = (C))SN(C ;X)

sets with null border whose union is AC.

wN(/\.B, C;X

We will take A=2Z. Cur process will be a stationary and m-
dependent gaussian process {indeed, a moving average of a gaussian white
noise). We consider different values of m (5, 10, 20) in order to evaluate the
reponse to different dependence structures, «= 5%, N=100 and we give

estimates for AN and BN (8*) for moderate values of §° (0.25, 0.1). Each

estimate will be based on1000 simulations. The results are the following (in
percentages):

*.
9N, By (3)
S §*=0.25
m ™ NBGM M ™M NBGM M o™ NBGM M
5 0 22 - S8 _ 99 9209 84 99.8 95.9 91.7
10 0 Qi o i T ggig vHg 3 bugyi3 . 4007 1 96.27989]8
20 0 0.1 58 97.4 956 79.8 100 987 88.6

We can observe that there is no relevant difference between
CM and NBGM; although NBGM seems to behave better. It seems to be a
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significant difference between M and the others. To study this more deeply;
we are going to compare NBGM and M for big, moderate and small values of §*
(1, 0.1, 0.01), and taking m= S, 10, 20, 40, 60, 80 and 100. All the
characteristics of the simulations are the same as above.Then, we obtain:

XN BN

g 1 0.1 0.01

m NBGM M NBGM M NBGM M NBGM M

5 2.2 5.9 60.2 42.8 959 91.7 96.6 92.8
10 0.1 4.5 71.8  28.4  96.2 89.8 99.1 958
20 0.1 5.8 81.6 29 98.7 88.6  99.7  92.7
40 0.4 11.1 852 31.8 989 87.6 999  86.8
60 0.1 147 883 33.6 981 793 998  84.4
80 0.2 169 89.8 344 987 746 999  83.1
100 0.2 19.5 90 37.8 984 68.6 99.9 81.4

We can observe that M behaves in a more powerful way. In

the sequel; we are going to consider only 8 =1, and observe the reponse of
NBGM and M to changes in N:

AN BN

. N NBGM M NBGM M
10 50 0.4 4 80.6  40.1
10 100 0.1 4.5 71.8 284
10 200 0.2 % 614  12.8
20 50 0.3 6 83.8  46.2
20 100 0.1 5.8 81.6 29
20 200 0.1 4 713 128
20 2500 0 2 225 0
40 50 0.1 11.7 88 50.2
40 100 0.4 11.1 852  31.8
40 200 0.3 10.8  77.4  14.1
40 1000 0 4.5 62 i.5
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we take d=2 and generate a random

field using analogous methods to those used before for d=1. We indicate the

sample size S= (2N+1)9 and the order of dependence D=m9 to show that the
behaviour of M in both dimensions is similar.
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Abstract

This paper survey some know results in the theory of Moral Hazard, when from asymme-
tries of information the agent effort cannot be monitored perfectly. We show sorne sufficient
condition for the existence of the second best solution, we prove that it is not a Pareto optimal
solution, and show some sufficient condition for the validity of the first order approach. Most
of this results are well know, the main thing of ihis paper is that it show these results as a
unity in a particular but expressive case.

Intreduccioén

La Economia de la Informacién se propone estudiar situaciones en la que una parte de los agentes
econdémicos no disponen de toda la informacidu, ya sea referido a lo que los demas estin haciendo, o
saben, o en relacidn a las oportunidades de transacciones dptimas. Entre las dreas de investiga,;:ién
que tratan del problema de la asimetria de la informacién se destacan: la teoria del Perjuicio Moral,
de la Seleccién Adversa, Bisqueda Optima, y la teoria de Expectativas Racionales.

En el caso de la Teoria del Prejuicio Moral, el problema consiste en que una parte de los
agentes toman decisiones que afectan a los retornos de los demds sin que estos sean capaces de
monitorear totalmente estas decisiones en provecho propio. La solucidn para este problema consiste
en elaborar un programa de incentivos, pautado en un contrato, en el que serd establecido el pago
del agente por el principal, una vez que sean observados determinados resultados, dependientes
del esfuerzo del primero.

El problema central de ja teoria sera entonces el de establecer un contrato 6ptimo en el sentido
de que beneficios y riesgos sean distribuidos de forma tal que el agente tenga incentivos para elegir

aquellas acciones que maximicen las utilidades de uno y otro.

*This paper is in final form and no version of it will be submitted for publication elsewhere.
'Facultad de Ingenieria, IMERL CC 30. Montevideo, Urugauy
{IMPA, CEP 22461, Rio de Janeiro, RJ, Brasil.
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Existe abundante literatura referido al tema, son referencias clasicas, {G-H], [H]. El presente
trabajo pretende dar una visién sintética de algunos resultados conocidos pero publicados en
lugares diférentes, probando la existencia de solucién en un caso particular pero esclarecedor de
las técnicas utilizadas. Se muestra también que como resultado de la informacién incompleta se
llega a un resultado que no es un Optimo de Pareto.

En el presente trabajo, en la primera seccién presentamos el modelo, en la seccién dos, a
través de la llamada aproximacién de primer orden, veremos que bajo determinadas hipétesis es
posible hallar un programa éptimo de incentivos; en la seccién tercera veremos que este 6ptimo
no es Optimo de Pareto, lo que es debido precisamente a la asimetria de la informacién, pues
el agente estarda mejor informado que el principal respecto a la eleccion del tipo de esfuerzo
que sera desarrollado para alcanzar determinados resultados. El costo de la desinformacion es
precisamente la desviacién de la regla socialmente éptima en el sentido de Pareto. Ean la seccién
cuarta, presentaremos algunos aplicaciores del modelo y finalmente en la dltima seccién haremos

la demostracion de la existencia de la solucion del lamado problema débil.

1 El Modelo

Un individuo, el agente, tiene que tomar decisiones que afectan a su propio bienestar vy al de
otro(s) individuo(s), el principal, a cambio de cierto pago, la forma del cual serd establecida en
un contrato. El conjunto de los contratos posibles sera indicado como S. '_

El agente eligira una accién a dentro de un cierto conjunto A de acciones posibles. Supon-
dremos que la accion elegida corresponde a un determinado tipo de esfuerzo a cuya intensidad a
corresponde un determinado nimero real positivo. Asi entonces A C Ry.

A cada eleccidn de a esta asociada una determinada distribucién de probabilidad £(z/a) sobre
los posibles retornos monetarios brutos los que seran representados por z. Dichos retornos s;ra'.n
funcién de los estados de la naturaleza asi como de la accién elegida por el agente. Los estados
de la naturaleza forman un espacio de probabilidad el que serd representado por (2, B, iz). Luego
r:xA—R;.

El contrato establecido entre las dos partes puede representarse por una funcién s € S;s :
X — R;, siendo X el conjunto de retornos monetarios brutos posibles, el que supondremos real
positivo y compacito. Es decir s(z),z € X representara el pago que recibird el agente, una vez
conocido z.

En nuestro modelo z € X, tendrd para el principal el valor de un sedal para el esfuerzo

desplegado por el agente, al que el principal no puede medir directamente. Combinaremos en que
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a un mayor z corresponde un mayor a, esto es, mayores z corresponden a elecciones més eficientes
de a por parte del agente.

Definicién 1 Decimos que una senial z es mds favorable que otra y, {o que escribiremos como
T > y si para toda distribucion a priori G pare a, la distribucion a posteriori G(-/z) domina
estocasticamente en el sentido de primer orden a G(-/y).

Recordemos que una distribucién F, para la variable aleatoria 6 domina estocasticamente a otra
G, para la referida variable cuando para toda funcién U creciente se tiene que: f, U(8)dF(6) >
J4 U(8)dG(8), siendo A el dominio de definicién de la funcién U. Ver [R].

Sea f(z/a) la densidad condicional de z cuando a toma un valor particular y sea g(a/z) la
funcion de densidad a priori para G.

Por el teorema de Bayes tenemos que:

g(d’/z) _ g(a’)f(z/a’)
gla/z) — gla)f(z/a)

Se tiene la siguiente proposicién:

Proposicion 1 Una sena! z es mas favorable que otra y, si y solo si para toda @’ > a se tiene
que f(z/d')f(y/a) - f(z/a)f(y/a") > 0.

La demostracién puede verse en [M].

El principal posee una funcién de utilidad v : S x R — R,
u(s,a) = E{U(z — s(2))] = /U(a: — s(z))dF(z/a),

siendo U creciente en z — s(z), con Uze < 0.

El agente tiene una funcidn de utilidad v: S x A — R,
g

v(s,a) = /V(s(z))dF(z/a),

siendo V, > 0 y V4, < 0, esto es el agente es adverso al riesgo.

Una vez que el agente elige un determinado a € A, concomitantemente elige una cierta funcién

de distribucién F(z/a) comin para el agente y el principal, tal que el principal resolverd el siguiente
programa:

Maz(yq [ U - s(z)f(z/a)dz (1)

sujeto a las condiciones:

[ V(s@)ra/a)de — (o) 2 K @

87



a € argmaz /X V{s(z))f(z/a)dz — c(a), (3)

siendo c(a) el costo del agente para implementar a € A, que supondremos real y convexa con
dominio en A, f(z/a) es la densidad correspondiente a la distribucién F(z/a).

En el apéndice 1, discutiremos condiciones que garantizan la existencia de la solucién, en las
condiciones de nuestro modelo alcanza con la existencia de un § y de un & para los que v(3,a) > K

En el programa es el principal quien decide la accién que va a ser implementada y elige un
programa de incentivos acorde con esa finalidad, el principal conoce las preferencias del agente.

La primera de las restricciones que figuran en el programa, tiene por objetivo asegurar al
agente un minimo en la utilidad csperada de forma de garantizar su participcién en el programa,
la dltima asegura que dado un contrato, s € &, la accién elegida por el principal maximiza la
utilidad del agente.

Si el principal tiene como observar directamente la accién elegida por el agente entonces la
Gltima restriccidn es superflua, basta en este caso poner en el contrato una clausula que obligue
al agente a implementar una determinada accién. En este caso el contrato solucién del problema
es conocido como la “solucién de primera vez”. En el caso en que el principal no pueda observar
ditrectamente la accidn elegida por el agente, la segunda restriccidn tiene sentido, la solucién

obtenida se llamar4 entonces Ja “solucién de segunda vez”.

2 La Aproximacion De Primer Orden
En el caso en que la condicién 3) pueda ser reemplazada por la condicién mas débil

valz,0) = fv(s(z))fa(z/a)dr ~d(a)=0, (4)

el programa que se obtiene sustituyendo 3) por 4) es llamado problema débil, o aproximacién de
primer orden.

El problema débil (P.D.), queda caracterizado entonces por:

Maz, /X Uiz — s{e)fle e, (5)
sujeto a las condiciones:

/X Visl2)) Fa/a)dz — e(a) > &, 6)

| V@)ie/a)ds - @) =o. (7)

Mirrlees [Mi], fue quien primero observé que las soluciones obtenidas para el problema débil

no son necesariamente soluciones para el problema original, obsérvese que el hecho de que a € A
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verifique la ecuacion (7), no implica que deba verificar (3). Mirrless, prueba que para que una
solucién del P.D. sea solucion del problema original, o no relajado, las siguientes dos condiciones
son suficientes:

1) Condicién de monotonia en la razén de verosimilitud. CMRV.
2) Condicién de convexidad en la funcién de distribucion. CCFD

Definicidén 2 Una familia de densidades {f(z/a)}aca satisface la propiedad de monotonia es-
iricta en la razon de verosimaliiud, CMRYV, si para todo z > y y para todo a' > a vale:

[a/a) | (/e

flz/a) = f(y/a)
Definiciéon 3 Una familia de distribuciones { F(z [a)}aea satisface la condicion de converidad en
la funcion de distribucion, CCFD, si para todo a,b € A y A € [0,1] vale:

F(z/Aa+ (1= A)b) < AF(z/a)+ (1 = A)F(z/b).

Proposicién 2 Si CMRV y CDFC son satisfechas se tiene que para que s*(z) y «® sean solucién
para 1) con las restricciones 2)y 3) es necesario y suficiente que satisfagan las siguientes dos

ecuaciones: U'( *(z)) fa(z/a®)
z—s*(z)) L z/a*
= X4 Tala ®

/U(l‘ - 8" () fa(z/a®)dz + v {/V(S'(I))fm(z/a')dﬂ: = C"(a)} =0, 9)

siendo A y v multiplicadores de Lagrange.

Prueba Se demuestra considerando el método de Lagrange para el problema de maximizacién”
sujeto a restricciones y que bajo CMRV y CCFD toda solucidén del problema débil, es solucién
para el problema original. Ver apéndice 2.

Nota 1 De la proposicion 1 y de la propia definicion de CMRYV se tiene que si ¢ > y entonces x
es mds favorable que y.

Lema 1 La densidad f(z/a) satisface CMRV Si y solamente si para todo a € A, %‘-((-/;‘-‘)l es cre-

ciente.

Prueba: Obsérvese que: L5+ = &%(f@ de donde se sigue que: % = e.rp{f:' %da}.

Luego por el hecho de ser f;:: funcion creciente con la sefal obtenemos el resultado.
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Lema 2 Con las hipdtesis CMRV y CCFD tenemos que s'(z) > 0, esto es el pago del agente

aumenta con el crecimiento de la senal.

i viid . U'(z—s*(
Prueba A partir de la ecuacién (8) obtenemos que si $a(z/3) crece con z entonces “‘;’I-_‘éﬂn

z/a
es creciente, derivando obtenemos que s’(z) > 0.

Nota 2 En la medida en que una sefial mayor, supone la realizacion de un mayor esfuerzo por
parte del agente, el lema dice que, el contrato optimo establecerd un mecanismo gue asegure que la
retribucion del agente aumentard con el esfuerzo por €l desplegado lo que serd monitoreado através

de la senal .

3 Optimalidad

Serd mostrado en esta seccién que la regla 3(-) no es 6ptimo de Pareto en casos en que como el
presentado en la seccidn anterior se buscan incentivos para que el agente realice un determinado
esfuerzo, con asimetria en la informacién. El costo de la desinformacién sers precisamente el
alejamiento de la regla éptima en el sentido de Pareto.

Recordamos que una distribucion de recursos es 6ptimo de Pareto cuando no es posible obtener
una redistribucién de los mismos sin perjudicar a por lo menos uno de los agentes econémicos.

Lo anteriormente dicho, sera corolario de los siguientes dos lemas.

Lema 3 Scan U y V funciones de utilidad estrictamente cuasi-concavas, derivables y esiricta-

mente crecwentes, entonces la solucion del sigutente problema eziste, es unica y es un dptimo de

Parcto,
Maz[,] U(z),
sugeto a las condiciones:
v(y) 2 c
z2+y=r

Prueba: Sea C = {(z,y) € R2 : 24+ y = r; V(y) > c}, suponemos que es no vacio. Sea
{#',4'} € C y consideremos el siguiente problema equivalente:

Maa:[,]U(z),

Sujeto a las condiciones:
Vy) 2 c

V(y) 2 V(y)
zZ+y=r

90



Sea C’ = {(z,y) € RZ : satisfacen las nuevas restricciones.}, C’ es compacto, comc V es
continua existe la solucién, la unicidad proviene de la estricta cuasi-concavidad. El hecho de que
la solucién es un 6ptimo de Pareto se verifica facilmente.

Veremos que nuestra afirmacién resulta de considerar la equivalencia entre el problema original
y el presentado anteriormente. Para esto considere: z = z — s(z),y = s(z), y suponga que la regla
s(+) es un Optimo de Pareto. En este caso, bajo las hipétesis U’ > 0,U" < 0,V/ >0, y V' < 0
tenemos por el lema anterior que %’SP = K, donde K es el multiplicador de Lagrange, para
el problema de primera vez. De acuerdo con esto y con la ecuacién (8) tenemos la siguiente

identidad: A + V = K.
(z/a)d:

Com _.Lf___ = [ fa(z/a)dz = 0, se sigue que A = K y que u{;gxr/_u) —o.
El siguiente lema probard que entonces f4(z/a) = 0.

Lema 4 Sila regla s*(-) es un éptimo de Pareto con /(a) > 0 y Fy(2/a) < 0 entonces v > 0.

Nota 3 Observe que la hipotesis Fy(a/z) es coherente con el hecho de que a una senal mejor

corresponde un esfuerzo mayor, esto es: Py(z < h) < Py(z < h) cond’ > q; d',a € A.

Prueba: Del lema anterior resulta que A = K > 0, se obtiene entonces que:
U'lz — 4
G-o@) _, ,, Jule/o
Vi(s(2)) f(z/a)
donde s*(z) es una solucion de primera vez.
Sea Xt ={z€X: folz/a) >0}y X~ ={z € X : fa(z/a) <0}.
Definamos r(z) = z — s(z) consecuentemente, r*(z) = z — s*(z).
U'(r(z . . 7 < A +
Como W;L’(:&Sj es decreciente con respecto a r(z) tenemos, r(z) > r*z)Vz € X' y que
r(z) < r*(z) Yz € X~. En cualquiera de los dos casos valen las siguientes desigualdades:

/ U(r(2))fa(z/a)dz 2/ U @) fa(z/a)dz > 0, (10)
X X

U'(z — $X(2))
Vi(s}(z))

< X=

la dltima desigualdad sale de la dominancia estocdstica de primer orden y de la hipétesis Fo(z/a) <
0.

En la ecuacién (9) tenemos que el factor que multiplica a v es negativo, (Mirrless [Mi], prueba
Que bajo CCFd, la utilidad del agente es concava en la accién). Considerando (10) resulta que v
debe ser positivo.

Ahora bien, si » > 0 tenemos que L‘-é%/—")l debe ser igual a cero, esto es fy(z/a) = 0. Pero por
hipétesis tenemos que Fg(z/a) < 0 lo que supone f fy(z/a)dz < 0lo que contradice a fo(z/a) = 0.

Resulta entonces que H‘_,(%_('_(SI))) debe ser diferente de A y por lo tanto no es 6ptimo de Pareto.
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4 Algunas Aplicaciones

1) Bajo las hipétesis del modelo se observa que la regla s(-) se desvia de la siguiente forma con
respecto a la regla s*(-) éptimo de Pareto:
s(z) > s*z) en X
s(z) € *z) en X~
U'(z—a(z

l.a prueba se desprende del hecho de ser la funcién S(z) = = creciente en s(z). La

Eit
prueba puede verse en [H].

2) Suponga ahora que A = {[,h}, esto es el agente puede elegir entre una de dos posibles
opciones: trabajar debilmente {, o trabajar fuertemente h. Supongamos ademas que U(w) = w

representa la utilidad del principal. La ecuacién (8) tendra la siguiente forma:
1 L f(=/ 1)]
gy S
7(s(2) F(/h)
Sea ¢ la probabilidad apriori para A y ¢’ la probabilidad a posteriori, esto es ¢ = P(h) y

h
¢’ = P(h/z), entonces ¢/ = mm%%é%f_(ﬂﬁ'

Luego: m =@+ ba%q;—__%,%.

Se desprende de aqui que el agente recibird una penalizacion si los resultados obtenidos, esto

es el valor del producto z, revisa las creencias en sentido negativo, mientras que sera premiado en
caso contrario.

3) Puede considerarse la siguiente extensién para el caso de dos acciones, el agente puede elegir
en A ={a:a= A+ (1-X)I X€J0,1]}, suponiendo que f(z/a) = Af(z/l)+ (1= A)f(z/h).

La condicién (3) quedara asi : [ V(s(z))(f(z/h) — f(z/1))dz > i‘Z—L:fLa,"Il

Por mas aplicaciones ver [H] o [L].

5 Apéndices

En esta seccién discutiremos brevemente algunas condiciones para la existencia de la solucién de
segunda vez.

5.1 Apéndice 1. Prueba de la Existencia de La Solucién.

Llamamos F'(s) al conjunto de las a € A que verifican la condicién (2). Supondremos que dicho
conjunto es no va.cfo, de lo contrario el problema no tiene sentido, pues el agente preferiria quedar
al margen de la actividad. En las condiciones del modelo, como se verifica facilmente, F(s) es una
aplicacién semicontinua superiormente.
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Sea ahora G(s) el conjunto de las a € A que verifican la ecuacién (3), por el hecho de ser A
compacto, las condiciones impuestas sobre las funciones en el integrando aseguran que G(s) es
no vacio. Considerada. G(s) como aplicacién del espacio de los contratos S en el conjunto de las
acciones cal A resulta ser semicontinua superiormente.

Luego I'(s) = F(s) N G(3) es una aplicacién semicontinua superiormente de S en A. Entonces
siendo M(s) = Maz,ep(,) [ U(z ~ s(z))f(2/a)dz obtenemos por el teorema del maximo, ver [B],
que M(s) es una funcidén semicontinua superiormente. Si elegimos el espacio de los contratos S
como un conjunto compacto el problema tiene solucién.

Admitiendo que X es compacto, un posible conjunto con esta propiedad es § = {s : X —
R Holder- continuas}. El teorema de Arzeld Ascoli permite concluir que este conjunto es relati-
vamente compacto. Ver [K].

Condiciones mas generales para la existencia de la solucién pueden encontrarse en [Y]. Por
ejemplo, para modelos con propiedades andlogas a las del nuestro, alcanza con que el conjunto §

sea debilmente compacto.

5.2 Apéndice 2. Validez de la Aproximacién de Primer Orden.

Las ecuaciones (8) y (9) pueden obtenerse también a partir de la regla de Euler para el cilculo
variacional, e] hecho de que caracterizan a un maximo provienen de la concavidad de las funciones
del programa. Ver por ejemplo [C]. Obsérvese que el conjunto B de los pares (s,a) que satisfacen
las restricciones del problema original, estd contenido en C, este es el conjunto de los pares (s,a)
que satisfacen las condiciones del P.D.. Mirrless en [Mi], prueba que CMRV y CCFD aseguran
la concavidad en la accidn, para la funcién de utilidad del agente. Esto permite afirmar que si

(s*,a*) maximiza u sobre C, entonces (s*,a*) es un elemento de B.

6 Referencias

1. [B] Berg, C. “Topoligical Vector Spaces” Edit: Oliver and Boyd Ltd (1963).

(3]

. [Y] Bolder,E.J. and Yanelis, N.C. “On the Continuity Expectated Utility” Economic
Theory 3, (1993) 625- 643

3. [C] Cleg, J.C. “Calculus of Variations” (1968) Interscience Publishers Inc.

4. [G-H] Grossman,S.J. and Hart, O.D. “An Analysis of the Principal- Agent Problem”
Econométrica 51, No. 1, (1993) 7 -45.

5. [H] Holmstron, B. “Moral Hazard and Observability” Bell Journal of Economics 10,
(1979) 74 - 92.

93



. [K] Kolmogorov, A.N and Fomin, S.V. “Elementos de la Teoria de Funciones y del
Analisis Funcional” Edit. Mir, Mosci, (1972).

. [M] Milgron, P.R. “Good News and Bad News Representations Theorems” The Bell
Journal of Economics 10, (1979) 380 - 391.

. [Mi] Mirrless, J.A. “ The Optimal Structure of Incentives and Authority within an
Organization” The Bell Journal of Economics 7, (1976) 105-131." '

. [R] Rothschield, M. and Stiglits, J.E. “Increasing Risk: A Definition” Journal of Eco-
nomic Theory 2, (1970) 225 - 243.

94



Publicaciones Matemiticas del Uruguay
6 (1995) 95 - 120

ON THE LIKELIHOOD RATIO
AND THE KULLBACK-LEIBLER DISTANCE

Gonzalo Pérez-lribarren
Centro de Matematica. Facultad de Ciencias.Universidad de la
Republica. Montevideo, Uruguay
Abstract
In this note the LR is seen in the perspective of the generalized Kullback-
Leibler distance. The generalized K-L distance permits to obtain a unified vision of
the Maximum Likelihood Estimate, mainly in the case of Models, i.e. when the
underlying distribution in the sampling does not correspond to any parameter
value. This is specially interesting when dealing with dependent observations, and
shows some robustness of the ML method. Likewise the generalized K-L distance
leads to extend to the dependent case several well-known properties of the

likelihood ratio in the independent case.

1. Iintroduction.

There is an extensive literature about consistency and other
properties of the ML Estimates. This is also the case of several
connected concepts as the likelihood ratio test. However the results

AMS subject classification: primary 62 F12, 62 A10.
This paper is in final form and no version of it will be submitted for

publication elsewhere.
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following the Wald's classical proof of consistency of MLE are often
established only in the independent case.

Nevertheless the concept of generalized K-L distance
permits precisely a unified approach without discriminating
between the independent and the dependent case.

The next section contains some notations and summarizes
well-known facts about the K-L distance. Secticn 3 deals with the
independent case and shows some related examples of the
"robustness" of the method. Section 4 examines discrete time
stochastic processes, generalizes the K-L distance and establishes
some results for the MLE. Finally Section 5 provides some
applications and examples of estimation of parameters and testing
hypotheses.

Though the principal purpose of this note is to show a unified
vision of some statistical applications through the generalized K-L
distance, we point out that Propositions 3.1 and 4.1 and Theorems
4.1 and 5.1 apparently are not in the literature. Theorem 5.2 is well
known since Pinsker ([14]) but here is used in applications.
Theorems 5.3 and 5.4 are versions of theorems in Basawa and
Scott (51).

2. Definition, notations.

We will use very often along this paper the K-L "distance", also
called K-L divergence or relative entropy, which is however a
distance only in broad sense, (see Kullback ([12])).
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DEFINITION 1.

It P, Q are probability measures on a measurable space
(W,A) the (classical) K-L distance is :

(P.Q) = pk(P,Q)= | p log(p/q) dv= Ep(log (p/q)) (2.1)
if P«Quv,

p(P,Q) =00 if P is not absolutely continuous with respect to Q,
where Vv is a o -finite measure on ( W,-A) and p=dP/dv, g=dQ/dv
are the corresponding Radon-Nikodym derivatives.

in general p(P,Q)#p(Q,P), i.e. the K-L distance privileges the
first argument, which will be always, in this paper, the "true
probability”, the "true density function”, etc.

We remind now some elementary results about the K-L
distance:

PROPERTIES

(i) o(P, Q) >0 and p(P, Q)=0if and only if P=Q (V).

If the Hellinger distance between P and Q is defined by:
PH(P, Q)= [(p*% -g* ?dv=1-[(pq)*4dV .
then, it is known that

(ii) 0< 2pn(P, Q) < p(P, Q) .

(It is obvious that the Hellinger distance is a distance in the proper
sense).

If we denote PN, QN the respective product measures, then

(iii) p{PR, QM= n p(P, Q).

(Cf. for instance, Borovkov ([8]) ).
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3. Some results and comments in the independent case.

Let X4, X2, X3, - Xp,... be independently distributed random
variables with a common density p(x) with respect to a o -finite
measure Vv, and let q(x,8) =q8(x), 8€® be a family of densities for
some parametric space ©.

Assume that P«Q® for all 8€®. In this situation, if P=Q8° for
some B8,€® and some regularity conditions are verified it is known
that the MLE én, (or any approximate MLE in the sense of A.Wald,
([17])), converges a.s. (P) to the true parameter value. It is also
known that, under similar conditions, if there exists a 83 such that for
every Be®, 6 = g,

Ep(log(a® /g80)) < 0 (3.1)

{and this last condition implies uniqueness of 8o ), then
88, as. (P).

(Vid.Huber ([10])). Note that the condition (3.1) may be fullfilled
even though Pz Q8 for all 8¢®.

When dealing with the MLE along this paper we impose the
following conditions:
3.1. Assumptions.
a) ("ldentifiability") For all 8€®, 8’€®, P(f (x') =@ (x)>0if 826"
b) The parametric space ® is a compact topological space with a
countable basis for the topology.

The simple form of b) is assumed only for the sake of
simplicity.

Condition (3.1) is easily derived from the following one:
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0(P,Q%) < p(P,Q8), Be®, B = 85 (3.2)
i.e. Bo minimizes strictly the Kullback-Leibler distance p(P,Q¥) .

It is necessary however some care about finiteness of
involved integrals. In fact it is possible that 8o satisfies 3.1 and
Q(P,Qea) = co. (Cf. example 4.1, case (3)).

We point out that L. Kullback in his book "Information Theory
and Statistics", (Kullback ([12]) ), minimizes this distance, but the

optimization is performed in the first argument, i.e. in the measure P.
A simple example will be illustrative.

Example 3.1.

Suppose we have a uniform density, (the true density), in the
rectangle
[-cr2,cr2] x [-dr2, dre] ,withc>d
and we consider the family of centered bivariate Gaussian densities
with covariance matrix 2. :

Z =0A0
where the matrices A and O are, respectively :
“vak 0 _(cos & -sind
A‘(O b2) O"(sin¢> cos¢)

The parameter space is taken, for simplicity, as
® = {(a,b,$)) a=b >0, $e [-5,1-8]}.
Straightforward calculations show that the best fitting is
obtained when
a/b=c/d, $=0.
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On the other hand, it is possibie to check directly that the MLE
actually converges with P=1. (See also Examples 4.1, 2 and 5.1, 2
in fine).

In fact

Bo= (c/(12)"2, d/(12)"%,0).
The following proposition will also be illustrative.

PROPOSITION 3.1.

Let P,Q be probability measures on (R9,Bd), P«Qe«A, with A
the Lebesgue measure, (for instance). Suppose that g= dQ/dA is a
symmetric density and that -log(g(x)) is a convex function.

Let p=dP/dA be another symmetric density and consider the
family q(x-8), 8€RX which verifies Ep(llog(p(x)/g(x-8)|)< oo at least
for some value 6.

Then, the best fitting of q(.-8) to p(.) is obtained at 8,=0.
PROOF:

It is a simple application of convexity of - log(q) which implies
that
[ (log(p(x)/q(x-8)+log(p(x)/q(x+8)) p(x) dx =
| 5 (log(p2(x)/q(x)2) p(x)dx
Examples 3.2

q(x-8)= 2 exp(-| x-8 | ) verifies the assumption of convexity
for the -log(q) function. Let p(x)= 1/(21)"2x2exp(-x2/2) be the true
density. The fitting occurs at 8,=0, as expected.

A slight change in the latter example gives rise to
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P(x)=1/(21 )(x2+y2) exp(-(x2+y?)/2),
and the Model
q(x)=1/(2 a2) exp(-((x-K, )2+(y-K, )?)/(202)), 8=(1,0)e R2xR+.
In this case the model fits at the value 85=(lg, 05 = (0,372 ).

REMARK 3.1. In both cases clearly the MLE converges a.s.
(P) to 8.

4. Discrete time stochastic processes.
4.1 Some previous ideas.

in paragraph 1 we pointed out some properties of the K-L
distance in the independent case.

However there is another important property to be
considered.

(iv) Let (W ,A) be a measurable space and B C A a o-algebra.
If P and Q, (P«Q) are probability measures on { W,A) then

o(P/B,Q/B ) <p(P,Q) (4.1)
with equality if and only if dP/dQ is B-measurable (a.e. Q). (Here
P/B,Q/B, denote the restrictions to B of the probability measures
P,Q).

This fact is obvious if p(P,Q)=ce-
On the other hand, when P « Q it is an easy consequence of the
convexity of the function
®(x) = x log x+1-x

with x=dP/dQ. In fact Jensen's inequality yieids

Eq(¢(X)/B) = $(Eq(X/B))
which implies (4.1).
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Hence, if there is a filtration, F1C FoC..C F,C..C Foo=A

we will have that
On=p(P/FnQ/Fp) ~a< oo

In particular, if we consider ¥, the g-algebra generated by

X1, X2, X3, ..., Xn we will have
lim pp < oo.

Suppose now that Q8 is a family of distributions as a model
for a process {Xn}, n=1, which has true distribution P, and P « Q « v,
where v is a g -finite measure on (W ,A).

We consider

on(8)=p(Pn, QF )

If Ph« Q% «v and we denote by pn. g the
corresponding Radon-Nikodym derivatives, we have that p, (8) is
increasing for every B€®.

Then we summarize the possibilities for the behavior of p,(8)
in the following.

PROPOSITION 4.1.

There are only three possibilities as n— +oo:
(1) 0<p h(8) n(B), finite for some B€®.

(2) 0<pp(B)” +oo for all B€®, but there is a sequence {bp}n>1,
bp- +e0 such as bpt. P n(B) converges to a strictly positive value

g(B) for all 8e®, which at least is finite for some value of the
parameter.

(3) There is not such a sequence by, ( for instance, for all 8,
P n(B)=+0c0 for some value of n, which can be dependent of 8).
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Therefore, the wvalue ¢g(8) , (or h(8)) may be
interpreted as a 'generalized" K-L distance.

We will see for instance, that if some additional conditions
are satisfied, the MLE converges to the value 8, which strictly
minimizes g(8). Also, by using the "generalized" K-L distance, we
will prove some propositions which extend known statements for
tests of hypotheses in the independent case. These theorems are
exposed in paragraph 5.2.

Examples 4.1.

For (1):

if Q% =P for some value of 8€®, say 8o, p,(80)=0 for all n.
Then, if the outcomes are i.i.d., the MLE converges a.s. to the true
value when well-kown conditions are fulifilled.

A different example:

Consider a random variable which is the same for all values
of the index n: Xp=Xj.

Suppose that X1 has unknown density p(.), and consider the
density p(.-8), 8€R, as a model and add some condition for
integrability.

In this example the information remains the same forn > 1,
and the MLE is not consistent except for trivial situations.

The following is another example. Assume a process of
independent random variables with density

o0
pi(x)= 1/(21) % exp(-(x+ai)2/2), i=1,2,...0,..., with ¥ a2<co,
i=1
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and a model
a(x,8)=1/(2) 2 exp(-(x+8)2/2).
Then h(8 ) = for 80 and h{0)<oo.

Observe that in this example én -»>0c.s. (P) ie. the MLE
converges to the parameter value that minimizes h(8), (it is a
"consistent " estimate).

For (2):

it suffices to consider any independent and identically
distributed sequence of r.v. with density p(.) and a model q® (.) with
p1(8)<oo for some 8. In this case, bp= 1/n.

Theorems 4.1 and 5.1 establish imporiant examples for the
dependent case.

The case (3) in Proposition 2 is illustrated by taking a

process of i.i.d. r. v. with
1..13
PR =TT
and the model
q%(x)="sexp(-|x-8|), 8€R
We obtain p,, (8)=p(Pn, ()=co for all 8¢R. However, 8y is
the sample median, a consistent estimate of the median of the
distribution. Actually this example shows that it can happen that
(3.2) has not sense but (3.1) is verified.
In what foilows we consider mainly the case (2) and by = n.
In paragraph 5.1 below, the example 3 shows that 1/n cannot be
the "unique” usual sequence in case (2). For stationary sequences
however, it seems that the "canonical" sequence is 1/by = 1/n.
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Actually, under mild assumptions it is easy to prove the following
proposition:
" In the stationary case there exists (in general)

lim — pn (4.2)

If the restrictions P Q,, of the probability measures P, Q to
Fn= 0(Xq, X2, X3, .., Xp) verify P, « Q, for each n, and both are

invariant for the shift, let us denote:
dPp

Pn="4q, and  p1 n=pn (X1, X2 X3, ... Xn) ,

Ph, k= Phk { X Xnt1, o Xk) = Prehet { Xno Xngt, - Xk).
Assume that

{ llog py, n| dP <co for every n.
Then, we have

flog p1,n dP = [log p1. k- Pks12k: - - P(r-1)k. rk - Prk, ndP,
provided that
Pin«P1k® Pyt 2k ®. .. @ Prrogy, ik ®Pri (4.3)
for every n, where n=r.k+s with 0 <s <k, (K fixed).
Therefore by stationarity we have:

L fiog p1.ndP > T2 f10g by i aPT [ log py, s dP

and then, again by stationarity if
[ log p1, m dP< +c0 for o < m <Kk,
(4.4)

1 1
m — flog p1,ndP 2| log p1, K dP (4.5)

Now, if (4.3) and (4.4) are verified for all k, we can take
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Fﬁw_%[ log p1, x dP

and the limit in (4.2) exists. .

4.2 Applications of generalized K-L distance: consistency of MLE.
We denote q°, f, the densities corresponding to Q8
QY for 8=8,.
The remaining notations are the ones established above.

THEOREM 4.1.

Suppose that the assumptions a) and b) of paragraph 2.1 are
satisfied, that P, « (P, for each 8¢® and all n, that P, Q8 «

v where Vv is a g-finite measure in the underlying space, (v.g. the
canonical ( R®, B)), and that:

(i) Iim% Ep(log(pn/ o%)) = g(8o), where 8 is the point where the
function g(8) attains its strict minimum. .

(i) lim S log(pn(X1,X2,X,...Xn)/ o (X1.X2,Xa,....Xn))=g(8) with
P=1 for each 8€®,

(ii)Denoting Q= dn (X1.X2.X3....Xn)= $UR  dn(X1.X2.X3,..-Xn)),

we suppose that, for each 8€®

lim limlog ( gy / a3 ) < g(86)-g(8) with P=1.
Vi{8}

The limits are taken in the indicated order: first in n, then when V
shrinks to 8.
Then, if @n is an approximate ML estimator,
8h- 65 as. (P).
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REMARKS 4.1.The most important assumption is (iii), that can
weakened as follows

lim T L log (gn /o) < 1(8) <0
Vi{8])

for each Be®, B = B85 a.s. (P). It is possible to prove the Theorem
4.1 with this assumption only. Anyway (i) and (ii) are often verified
(Cf. Barron ([3 1), Theorem 1)).
in Leroux ([13 ]) is proved the consistency of MLE for hidden
Markov Chains following the scheme of Theorem 4.1. We point out
that B.G. Leroux arrives in his paper at the same concept of
generalized K-L distance for hidden Markov models (p.136).
Obviously if P =Q° for some 8, the assumption (i) is fulfilled
with 85 =84 In this case, g(8,)=0 .
In general, there is a B, which minimizes the
generalized K-L distance. This happens when ® is compact and
lim ~ Ep(log pn/ a8 )= g(8)
is a continuous function of 6.
Theorem 4.1. generalizes the independent case, where (i)
appears in the form of the expression (3.1) and (ii) is a
consequence of the Law of Large Numbers:

limn = log(p1 (X1)p1(X2)...p1(Xn)a; 3(X1) G48(Xe). .G (Xn)=
Ep(log(p(X1)/a,8(X1)) = g(8),
where the convergence is a.s.(P).

There are some hypotheses that can be weakened in
Theorem 4.1. For example, it is possible that the limits in (ii) and
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(iii) should be verified only in probability. The proof is easily
meodified to cover this situation. {Cf. Theorem 5.2. and related
examples).

PROOF OF THEOREM 4.1:
We omit the proof because it is very easy and can be
performed following the method of Wald ([17]). .

5. Applications and exampies.

With the same notations that we have been using up to here,
iet {Xn}n=0 be a Markov process defined on ( W,A,P). We
assume that the measurable space is the canonical (R*® B« ), and
{Xn}n=0 the coordinate process.

Let us suppose that the true probability P is absolutely
continuous with respect to a o-finite measure v, and that under P
the process has a stationary transition probability p(.,.) with a unique
invariant density p(.). Under P the process is stationary and p(x, .) «
p(.). (Cf. condition 2.1 {i) in Billinsley ([6])). These conditions assure
the ergodicity of the process .

We consider a model Q, 8e®, with stationary density q®(.)
and (stationary) transition probability q8(.,.), P«Q8«v for every 8€®,
and we assume the hypotheses a) and b) of paragraph 3.1.

Then,we have
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THEOREM 5.1.
If Ep(log (p(x1,x2)/q8(x1,x2)))< +oo for some 8€® (1)
and there is a 85 such that
Ep(log (p(x1)/a%(
Ep(log (q° <x1 x2)/ qBo(x1,x2)))< 0 for all 8280; (2)
Denote g Y(x1,x2) =sup o (x1,x2) where V=Vgis a

X1)))<+eo

neighborhood of 8 and suppose that

Ep(log*( g Y(x1)/q8o(x1)))<eo

Ep(log*( gV (x1,x2)/q85(x1,x2)))<c0
(3)
for some V for each 8. (It is assumed measurability of the involved
functions). Suppose also that when 8p - 8,

Mg (x1,%2) <q° (x1.x2) as.(P), ()
i. e. %(x1,x2) is upper semicontinuous in 8 a.s.(P).

Finally if 85y verifies
A

H qen(xl’ XI+1)

>c>0forall 8Be®, then
qe X|) Xl+1

8n-85 as. (P).
PROOF:
We omit details. The keys of the proof are ergodicity and
Theorem 4.1.
REMARK 5.1.
We observe that G. Roussas, ([16]) , and B.L.S
Prakasa Rao, ([15]), state theorems close to ours in the case
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Q8=P.The former reference also provides a proof of asymptotic
normality.

The observation of P.Billingsiey, ([7]), that the initial density
is negligeable for Markov Chains has a complete justification
through the generalized K-L distance: in our hypotheses the
function g(8) does not depend on this first term.

Clearly, it is possible (and straightforward) to generalize the
precedent result for p-steps backward. ( Cf. the foliowing example ).
Examples 5.1.

1.Consider an AR (1) stationary process xn=po Xn-1+Un
with
| po | < 1 and up independent from the past with a centered and
symmietric distribution with variance Ug. (For instance, a density with
compact support and Ep(jlog(p)|)<w ).

For the model we take also an AR (1) process with up -density

q(x)= 1/(2m a2)2exp(-x2/ 202 ).

We take the parameter space ® = {(02, p)/ 02> 0, |p|<1}.

It is a simple matter to solve the equation (3.1) and to
determine BS:(U% , Po) -

The conditions of Theorem 5.1 are easily verified. The ML
estimators are, in this case:

n

n n n n
A Ao 1 . ’
Pn= XiXit/ 205, Of= nIXE(3 xxia)2 2 x4 ]

i=1
which are clearly consistent, (See, for instance, Anderson ([2]) ).

2. To show a situation in which Theorem 5.1 is not applicable
but the same conclusion is obtained, consider a random walk.
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Let pp(X1,X2,....Xp) = P(X1).p(X2-X1)...p(Xn-Xp.1) be the
underlying distribution and consider the model:
An(X1,X2,....xn)=0%(x1) q8(xo-%4)...q8(Xp-Xn.1) With 8e® CRK,
p« q. Also suppose:
(a) g(8)=[p(x)log(p(x)/q 6 (x))dx<oo for some parameter value 86
where g(8) attains its strict minimum.
(b) Sup g (x) ¢ ¢ (x) when Vi{8}, V neighborhood of 8,

a.s. (P), (i.e, the function qﬁ (x) is - at least - upper semiconti-
nuous in 8).

in fact, we may take the true distribution and the same modei
as in example 3.1 and we will obtain the same estimate and limit
a.s.(P). (In this case X is a bidimensional random vector).

3. A slight modification of the underlying distribution provides
an example of a sequence {1/by} different from {1/n}.
(See paragraph 4.1).

Suppose that p(.) changes in each step. For instance, let pp

be
= (x _Cn
pn(x) ] (DAE T3 with
1 i 1
Cs = — =
A 5 N+ 0o(n) and g e,

2
e arctan(n)
where 1A(.) denotes the indicator function of A, AC symbolizes the
compiementary set of A, and 0O(n)/n - o.
Then,

J(log(pn(x)/a(x))pn(x)dx = 2] 5 cnlog{cn) ~2log(cn)

Lt L
TT(1+X2)



and for the generalized K-L distance we obtain:
n
on=> 2log(ci) = 2n log(1/2)+2log(n!)+ O(log(n!)).
i=1
But
’ log(n!) 5%109(211) + nlogn-n +—12—Iogn.

1
Therefore, in this case, b, can be chosen as niogn - (The model

can be taken as - , but it has very limited interest).

1
(1+(x-8)2)

5.2.Stationary Gaussian process.

Let X4,Xo,...,Xp,... De a discrete time stationary Gaussian
process with spectral density f© and f8ea stationary Gaussian
model for the process.

Suppose that 0<m<f©, 8 <M< Then, if P,Q8 are the true
distribution and the model distribution and P, QY the respective
finite dimensional distributions, we have:

THEOREM 5.2
PSR

lima s 0P, Q%) = 7- | Tr(f°/ -1-1og(1°/ 18))dA

being A the Lebesgue measure.

This limit is strictly positive (a.e. (A)) unless that = % a.e. (A).
Moreover
1 8 B B L P e YR
n 109 Pn(X1X2,-.. Xn) /an (X4,Xz,....Xn) = 7 ]'ﬂ(f / 19-1-log(f%/ 1%))dA
the convergence being in L2(P).
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For a proof, see for example Dacunha Castelle - Duflo ([9]),
Vol. II, pp. 70-72 .

REMARK 5.2.

Theorem 5.2 assures the applicability of Theorem 4.1
to Gaussian stationary process with spectral densities satisfying the
convenient hypotheses.

in fact, if there exists a parameter value 8o such that
1

9(8)=7- [ (17 -1-log(1% © ))dA
-1
attains a strict minimum, assumption (i) of Theorem 4.1 is verified.
On the other hand, the second statement of Theorem 5.2 assures
that assumption (i) of Theorem 4.1 is fulfilled in probability, so that it
is only necessary the verification of (iii) in probability, in order to
apply Theorem 4.1.

The hypothesis 0<m<f®, {8 <M<oo can be weakened to the
following one 9/ 18 < M <e0 and still the convergence in probability
to a positive constant stated in the Theorem 5.2. is true.

Examples 5.3.
1.Assume a moving average process
X=Zi+8Z; 4
with Z; a Gaussian white noise with variance 1 and |8|<1. Let the
model be an AR(1) process
Xt-pXy.1=Vi
with |p|<1-8 and V; a Gaussian white noise independent of the past
with variance 2.



For the respective spectral densities, we have:
O(A)= (1+482+28C08A)/2T, f(A)=;— 02.(1+p2-2pcosA)”
Then, as
()
(A)
we have for the generalized K-L distance:
a(p,8)=[(1+ p2)(1+ 82-28p))/202 -1/2+ 1/2l0g(02)
and for 8 we obtain the value:
o= B/(1482), 0oP= 1+62-82/(1+62)2

0
(| "log((1+82+28cosA)dA=0, by Poisson-Jensen formula. Cf. for
-1

= (1+82+28c0osA)(1+p2-2pcosA)/a 2

instance, L. Ahlfors ([1])).
it is quite elementary to verify the hypothesis (iii) of Theorem
4.1. Therefore, the conclusion of T.1 follows.
2. Suppose now the same model, but the true process is a
Gaussian ARMA(1,1):
Xi-8Xi.1=Z1+87Z;4, |8 |< 1.

in this case,
f2(A) (1+82+2BcosA) (1+p2-2pcosA) i
() 02 " (1+82-28c0sA) O
oy _ 10(148%)(14p%)  8p 82(1+p2)- 8p(1+62)
90,09 = 12" 501782 52189t o2(1-82)

(-1/2)+1/2log(0 2)
(2+82)8  +» 1+282+504-86
(1+362) ~ °7 (1+382)(1-82)

We obtain po=



We point out that the variance of the X; of the Model is exactly

the variance of X; for the true process, and the true correlation
ant e 204828
coefficient is: (1+382)

3. Consider a p-moving average and a mode! AR(1).

p
: 1 : .
For instance, we have X, 52 En-ie1 Where {€i}iso.p is @
i=1

Gaussian white noise with variance d% , and for the model we have
o0

Yn=D, 0" 1¢nir1 Where {(}>.c0 is also a Gaussian white noise with
i=1

(unknown) variance g2,

For the quotient of densities we have :
PPA)_ g2 1 (1-cosph).(1-2pcosA +0?)
Boy  © p? 02(1-CosA) :
A few computations show that:

* '1 * 3
0o= PF and g 02= G% - 5%7 and it is easy to see that the MLE

converges a.s.(P) to these values.

Observe that Theorem 5.2 is not applicable because the true
density vanishes for instancein A =§p£ (

% < M<oo is verified .

p>1), but the condition

Observe also that Y,, has the same variance that the moving
average.

4. Finally, let Xi{=(Z{+Zi.1)/2 be the true process with Z; a
Gaussian white noise  with variance 1 and a Model Y=V+8V_4
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with 8 >0, fixed, and V;a Gaussian white noise with unknown
variance 72,

The quotient of densities is:

£ _ 4 (1-cos2)) 1

fo2 (1-cosA)a? (1+82+28cosA)

and we obtain for the

variance of the model the estimate - ! :
2(1+48)

We observe that the Model is non-Markovian. (Compare with
Barron ([3])).

As an example of application of the generalized Kullback-
Leibler distance in a different direction we have, in the context of the
previous paragraphs, the following statements (Cf. Basawa & Scoit
(15 )): (

THEOREM 5.3. (Probability ratio test ).

(i) If for a sequence {bn}nz1, bn = +o0 we have 1/b, log(pn/an)
- ¢ > 0 a.s. (P) and we consider a sequence of Neyman-Pearson
tests with size - «€(0,1), then Tim 1/bp log( Bp) < -c, where B, is
the error of second kind probability.

(i) A similar result is verified if 1/bp log(pn/an) = 2, where Z is
(a.s. (P)) a positive random variable .The convergence being a.s.
(P). In this case however

Tim 1/bp log( Bp) < -t where t is definedby P(Z <t
PROOF OF THEOREM 5.3:

(i) Let Ap={an/pn=kn} be the critical region. Since
1/bn log( Bp) = 1/bn log (f , dQn )= 1/ brlog ([ ,;(an/ pn) dPp) <
n n

«) =t
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< 1/bn log(kn.P(AS)) = 1/bn log( kp) + 1/bp log (1- & n),
by using that 1/bp log(pn/an) » ¢ a.s.(P), that bn =+~ and that
&~ x€(0,1), we will have that

Tim 1/bnlog( Bp) £ Tim 1/ bplog (kp) <-cC.
For (i) , we start with the inequality
Tim 1/bpiog( Bn) £ Tim 1/ bplog (Ky) -

Now
P({1/bplog( an/ pn) < -ty + €}) 2
P{{1/bnlog(anpn) +Z< e} N {-Z<-1,}) - P({ Z2t })=1-«,
and if we choose &' such as P({ Z>1t,.}) = 1- «'>1- «, we will have
simultaneously that
P({ 1/bnlog(kn) })<1/bnlog( an/pn) }) » «  and
P{ 1/bnlog( qn/pn) < -t + €}) » 1- x>1-«, as. (P)
Hence

Tim 1/bnleg(Bp) € -t + € forall € >0 and all «' < «, that is

Tim 1/bpiog( Bp) € -ty
THEOREM 5.4.
For all test ¢, with size «; < « € (0,1),
lim 1/bplog( Bn®") > -t
PROOF :
Without loss of generality we can choose kp=exp(- bnty ).
Let BS be a critical region with P(B) = yn <y < « and



A, = {Qn/Pn > K*€} . We have :

1+¢
Bn%_-_Qn(Bn)ZIBnm;ndanIBnn;n kin dPp =
1+¢

- KT PB,~AY> KIF(PB,) -PAY
Since
P(Rﬁ) = P({1/bn log(gn/ pn) < (1+ €)1/bn log K, }) = P( {1/bn log(an/ pn)

<1+ e)(-td)» PUZ 2t (1+E)) S1-
and
P(B)=1-yYn21-v >1-«,
we find that
lim 1/bplog( Bn®) 2 -t..(1+€), forall € > 0.

REMARK 5.3.

(Asymptotic optimality of the Neyman-Pearson test).

If ¢, stands for the Neyman-Pearson test, we obtain as an
immediate consequence of the iast Theorem that

lim 1/bnlog( Ba%7) 2 -ty > Tm 1/bnlog( By%h), ie. there is
equality .
Examples 5.4.

As a source of examples for the Theorems 5.3 and 5.4 we
mention only the case of exchangeable variables. Concretely we
may consider the following distributions:

Pn= [ /(M) exp(- Z H)2/2). exp(-u2/2) du=



o0
1/(2m)YV2 1/(n+1)"? exp( - z x-X)2/2). exp(-X2/2(n+1))
b

and for the model g, the multivariate density function corresponding
to n independent standard Gaussian variables. In this case we have
clearly

1/nlog(gnpn)» Z>0as (P).
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Abstract

In this paper delay equations Zn4r = f(Zn, ..., Lntk-1) are considered, where the function
f is supposed to be convex, having a unique point of maximum. It is proved that if there
are no stationary solutions then ail solutions must diverge. Considering the one parameter
family fu = g+ f and essociating to it a family of two dimensional maps F), it is shown that
the set of points having bounded orbit under ¥, is homemorphic to the product of a Cantor
set and a circle, and is hyperbolic and stable.

1 Introduction

Any delay equation of order &:

Tntk = f(zn) -»-:In+k—l) (1)
can be associated with a transformation of R* given by
Flzy,nzk) = (22, 2k f(21, 2k) (2)

Any orbit of the map F' is in one to one correspondence with a solution of the delay equation (1).
Here we will deal with delay equations where the function f is convez, in the sense that f isa C?
function such that the quadratic form associated with the second derivative is definite at every
point. In this case equation (1) is called a convex delay equation and the map F defined in (2)
is called a convex delay endomorphism. In the rest of this work, we will take this quadratic form
negatively definite, so that f could have at most one critical point that should be a maximum.
A stationary solution of the delay equation (1) is a constant solution z, = z for every n; the
existence of such an z is equivalent to have a solution of the equation f(z,...,z) = z; Moreover,
the fixed points of ' are the points (z,...,z), where z is a solution of f(z,...,z) = z. So when f
is convex the delay equation associated would have at most two stationary solutions, or, wich is
the same, the endomorphism F would have at most two fixed points. We will prove the following

result:

Theorem 1.1 Let f be convez and suppose that F has no fized points. Then the w limit set
under F of any point in RF is empty.

*The final version of this paper will be submitted for publication elsewhere
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In terms of delay equations this says that if f is convex and there are no stationary solutions,
then all the solutions must diverge.

Consider a convex first order equation given by f : R — R, and suppose that f is not only
convex but there is a negative constant such that f” is less than this constant. If we push
up the graph of f vertically, we will obtain a one parameter family f, = p + f; for this one
dimensional map it is easy to see that for every large parameters the function f, will have two
fixed repelling points and that the set of preimages of any one of these points accumulates in a
Cantor hyperbolic set which is the complement in the line of the basin of attraction of oo {or,
what is the same, the set of points with empty w limit set). Under some new conditions on the
function f that will be defined in section 3, this result remains true for second order equations;

these are open conditions, define a set &, and imply that F' is convex.

Theorem 1.2 There ezisis an open set U in C*(R?) such that for any f € U the family of
endomorphisms Fu(z,y) = (v, 4 + f(2,y)) has the following properties, for every u sufficiently
large:

a) Fy has two fized saddle poinis

b) The closure of the stable manifold of one of these points 1s diffeomorphic lo the product of a
Cantor set K wsth a circle S*

¢) The bassn of co is the complementary set in R? of the closure of the stable manifold.

As a corollary of the proof of this theorem it can also be obtained a description of the dy-
namics of /), restricted to the closure of the stable manifold (= K x S1). Each circle of K x S!
is mapped into a not closed curve contained in other circle, so this defines a one dimensional

map on K, that becomes equivalent to a shift:

Theorem 1.3 Let W be the stable manifold of one of the fized points of F,, and VVE its
closure. Consider the set: A = ﬂnZOF:(W:). Then A 1s compact, F,, — invariant, hyperbolic
and coincides with the closure of the persodic points of F. Two different cases can occur: Either
A is a horseshoe and F/A is a homeomorphism, or il 3s contained in the unstable manifold of

each one of the fizred points, which in this case are equal.

The second alternative of the last theorem it is not generic: the usual case is the first. Now the
dynamics of the maps F, are completely described for every large parameter values.
For a particular family of quadratic delay endomorphisms, the first theorem was proved by
Whitley, in [W], where it is also described the maximal invariant set, however these proofs
cannot be extended to this general case, and the stable manifolds are not studied.

A very interesting reference on the subject of delay equations is the book of P. Montel, [Mon],

where the theory of delay maps is treated from a general viewpoint.

We aknowledge R. Maié and P. Duarte for useful suggesiions. We are also indebted with

IMPA, Rio de Janeiro, where we find the hospitality that encourage us to carry out this work.
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2 Abscence of fixed points

As was explained in the introduction the hypthesis of theorem one is equivalent to the non
existence of solutions of the equation f(z,...,z) = z or, which is the same, the graph of f does
not intersects the diagonal of R Let f"(z) be the Hessian matrix of f at the point z. By
hypothesis, f is convex, which means that if Q is the quadratic form associated with F2(2);

then Qz(v) = vf”(z)v! < 0 for each vector v not zero.

PROOF OF THEOREM 1.1

As the graph of f doesn’t intersects the diagonal of R*1 there is 2 positive number « and a
unique point zo € R" such that the graph of f + « intersects the diagonal of RF+1 4 (zo, ..., 20)-
Without loss of generality it can be assumed that zg = 0; then, using Taylor’s expansion around
0, it 1s obtained:

f(z) = ~a+vz+zHz+ Rz (3)
where v = f/(0), H = f”(0) and R : ¥ — R is a C? function such that limz_oR(z)/]z|* = 0

Denoting v = (vy, ..., vg) observe that the vector (vy, ..., vk, —1) is orthogonal to the tangent space
of the graph of f at 0, which by assumption contains the diagonal of R¥t! so that Z:;l v; = 1.

Now define the following Lyapunov function:
L(zi,..nzk) = n1z1 + (v1+v2)ze+ ...+ (v1 + ... + vk—1)Th—1 + 2% (4)

As it is weil known, to prove the theorem it is sufficient to show that for every z € R?, L(F(z))-
L(z) < 0. Then, using (3), (4) and that } v; = 1, it is cbtained:

L(F(z)) - L(=)

V1T + (U} + ‘02)$3+ B I T v;,_l):ck + f(J:) - L(.r)
= —a+zHz+ R(z) (3

Now define the function ¢ : R¥ — R by p(z) = zHz+ R(z) and observe that »(0) =0, ’(0) =0
and ¢”(z) = f"(z). So ¢” is negative definite from which it follows that p(z) < 0 for every
z € R*, £ not zero. This implies that L(F(z)) — L(z) < —a < 0 ia (3), and the theorem is

proved.

3 Dynamics for large parameter values

We will begin by describing the C%-open set i for which the theorems are valid;
Let

B = —sup{822f(z,y) : (z,4) € R*}

A= —inf{duf(z,y) : (z,y) € R?)
A' = —sup{011f(z,y) : (z,y) € R?}

Definition 3.1 Let U be the set of C? functions f : R? — R such that the following conditions
hold:
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(P1) B> KA ;
where K 15 a positive number to be defined later

(P2) i allf(xxy) .>.. |al2f(z’y)l V(T‘)y) € R2

(P3) A" >0

Remarks:

1. (P1) and (P2) together imply that fis convex. Using also (P3) it follows that

“’nl(r,y)l—ooof(x! y) = =00
2. It s clear that this set &/ is open in the c* topology.

3. The theorems 1.2 and 1.3 are not valid in general if B < A: take for example f(z,y) =
—Az? - By? with A > B, calculate the eigenvalues of the fixed points of F, and observe

that it are not saddles.
4. The number K is an absolute constant independent also of f € U.

Now define the one parameter family to be considered: take f € i, and define: fu(z,y) =
# + f('rly) and __,"“ : R2 = R2 by Fﬁl(zly) = (y)fp(z)y))'

Now let’s introduce some elementary curves that will play an important role. The critical

curves of f, are:

li = {(z,y) : 01fu(=,y) = 0}
Ip= {(a{,y) 2 O2fu(z,y) = 0}

These curves are in fact independent of u; I} is the graph of a function of y, so that I; =

{(2(¥),y) : y € R} , with

#(y) = _012f(3(¥), v)
011/ (2(v), v)

i is the graph of a function of z, so that Iz = {(z,§(z)) : z € R}, with

_ 012/ (=,9(2))
aZ?f(zr 37('5))

By properties (P1) and (P2) we have that:

7(z)=

#(y)| < 1/K Vy and |§'(z)] < 1/K? Vz

So K > 1 implies that Iy and /3 have one and only one point of intersection th'at will be
supposed to be (0,0) by making a translation. From this it follows that f, takes its maximum
at (0,0).
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Also observe that I is the set of critical points of F),.
The image P, of {; under F, is the graph of a function Z,(z) = fu(Z(z),z), that has negative
second derivative as it is easy to check using (P1) and (P2). So the complementary set of P,
contains two connected components, one of which, I-.’,, , 18 convex; actually, Fu(Rz) = P, U }3,‘.
Any point outside P“UF—‘,, has no preimages under Fy; a point in P, has only one preimage lying
on l1; and points in 15“ have two preimages, having the same second coordinate and located one
at each side of .

Denote by £4(p) the a-level curve of f,, that is, £o(p) = {(z,¥) : fu(z,y) = a}

Lemima 3.1 For every p sufficiently large 1t 1s defined a funclion s of y such that:

a) (s(p),s(p)) 1s a fized saddle point of f,

b) s(p) = —0 as p — +

s'(p) — 0 as i — +oo

c) A local stable manifold of (s(u),s(u)) is transversal to {(p), the family of level curves of
fo

Proof: As was explained before, the fixed points of F, are the points (z,z) for which
fu(z,z) = z. Let g(z) = f(z,z). Using (P1), (P2) and (P3) it is easy to see that g has
negative second derivative bounded below from zero which implies that the graph of g intérsects
any line y = z — p for pu large enough. As g has its maximum at zero, one of this points will
have negative coordinates; let’s denote this point by (s(u),s(u)). It is clear that s(p) — —oc0 as
u — +oo and that s'(u) = (1 — ¢’(s,))~", which implies part b. Let’s prove that (s,,s,) is a
saddle point. The eigenvalues are given by

At = 1/2(E £ VE? +4D)
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where £ = E, = 82f(su,s,) and D = D, = 01f(su,5,)

Now observe that:

0 0 a ,
Du=/s —61zf(x“r)~3nf($,r)dt=fa _Buf(z.e) (\1+a—1-j§§z—'—3

where (P2) was used. Similarly, using (P1) and (P2) it can be obtained that

o . Onf(z,z)
= / —Omf(#.=) (1  Pni(z,2)

> dz < A(1+ K M) (=s,)

Ydz 2 B - 1/KY (-5

Therefore E,/D, > 1 which implies that A_ € (—~1,0). In addition it follows from the facts
above that Ay — +o0 when g — +o0o. This proves part a) of the lemma. To prove part c) it
is enough to observe that an eigenvector associated to A is (1,A_), while a tangent vector to

Sy (1) at (s{u),s(p)) is (1,=D/E) being easy to check that A_ > —D/E.

The proof of theorems 2 and 3 is based on the study of the behavior of the stable manifold
of S, = (s,4,5,) (that is defined locally as for a diffeomorphism and then taking preimages).
Denote by W the stable manifold of S,. We will prove that W} has infinitely many connected

components, each one diffeomorphic to a circle. We begin with the following simple fact:

Remark:
Let v be a C1 1-1 curve such that intersects P, transversally at two points Then F‘;'l('/) is a
C?! Jordan curve. The proof of this fact is easy using that any point in P, has double preimage.

The transversality is used to obtain that F;l(“y) is C1 at the points of intersection with Iq.

This is the procedure that makes W contain a closed curve: it is enough to prove that the
local stable manifold of S, intersects P, in a pair of points to imply that W“: contains a C1
simple closed curve. It will be shown that this curve has, in fact, four poiuts of intersection with
P,; taking the preimage under F, of this curve it will be obtained another closed simple curve,
which will also intersect P, at four points. Automatically, the following preimages under Fj,
give a sequence of closed curves each one having four points of intersection with P,. To prove
these facts we will first show that W] is transversal to {(u) before its intersection whith Ij or Iy,
this, as we will see, implies that these intersections actually occur. And secondly, a technique
will be developed permitting us to study the set W as it was a level curve of f,.

As f is convex, every level curve &4(u) is a Jordan C? curve that enclose a convex region.
In general, if £ is a Jordan curve then i({) will denote the bounded component and e(§) the
unbounded component of R?\ £. As the maximum of each fu is taken at (0,0) we have that
€a(p) = ¢ for @ > p+ £(0,0), and that (0,0) € i(€a(p)) for a < p+ £(0,0) ; in this case, &o{p)
intersects both I} and {y, the intersections with {; correspond to the horizontal tangents of £4{u)
and those with I3 to the vertical tangents of £,(p). For any fixed u, the level curves £4(u) form
a foliation of R2\ (0,0), that we have denote by £(u).Let v be any C! curve that is transversal
to the family £(u); then we will say that v is entering £(u) at ¢ if (f o v)'(¢t) > 0 and that is
leaving £(p) at tif (fov),(t) <O.

Let’s denote by @; the connected component of R? \ {1 U {3 wich contains S,. Let o = a, bea
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curve parametrizing the connected component of W2 N @, wich contains the point S, and with
P g u p )

the following properties, where we take y large and drop the subindex:
e a(0)=S,.
o aft) = (ay(t),az(t)) with a1(t) >0 fort small.

It follows from lemama 3.1 that « is entering &(u) at ¢t = 0.
Lemma 3.2 « is transversal to &(p)

Proof: .Observe first that if at a point £, & 1s tangent to £, then f oy has a critical point at ¢,
so that F o+ has horizontal tangent at {, and this implies that F? 0« has vertical tangent at t.
Reasoning by contradiction, suppose that at a point s < 0, a is tangent to some curve of §; let
so = maez{s < 0 :ais tangent to € at s}. Then, at 59, F o « has horizental tangent and F2o
has vertical tangent. Now, as « is part of W?* wich is invariant, it follows that there exists
51 € (s0,0), such that « has a vertical tangent at sy (that is, a(s3) = 0). Redefine, if necessary
51 as maximum with this property. Obviously sp < s1 < 0, and we have to distinguish between
LwWo cases:

i) af(s1) <0 and i) ah(sy) >0 ah(t") > ¢

Iy

& K
Sspll ) l
/ ¢

a(sy)
a(t’)

case 1i)
case 1)

/
a(t') < ¢
In case i), observe that « is leaving £ at s, because a is contained in Q1; as it was entering

£ at zero there must occur a tangency between o and £ in the interval (s;,0), which is a contra-
diction with the definition of sg.

In case ii), there must exist a point s, s1 < s2 < 0, such that 0’2(32) = 0. Take s9 maximum
with this property. If aj(s2) < 0, we conclude that a is leaving € at sz, s0 as in case 1 a
contradiction appears. If aj(s2) > 0 define t’ > 0 such that F{a(sz2)) = a(t’) (so aj(t') = 0).
Now ah(t’) > 0 implies that there exists t” € (0,2’) such that af(t”) = 0; thus, taking the
image of a(t’) we find a point of vertical tangency between a and ¢ which corresponds to an

s € (s1,0), in contradiction with the definition of s;. Therefore aj(t’) < 0, so there exists
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" ¢ (0,t") such that £ and o are tangent at t"”; it follows that o has horizontal tangent at a

point in (s2,0), which contradicts the definition of s2.

The following two lemmas, that will be used often later, imply that the level curve of f,
passing throught the fixed point S, must intersect the set P,; this, together with the previous
result will imply that also W intersects Py; then, using the remark above lemma 1 forces Wj

to contain a C! Jordan curve.

Lemma 3.3 Let 7 be a C' funciion of p such that 7/(u) — 0 as p — oo. then for all p
sufficiently large £-(,)(p) has four points of intersection with P,.

Proof: Let’s first calculate y, = maz{y : (z,y) € &-(,)(#)}. As it is easy to see, this maximum
must be taken at a point of intersection of £,(,)(p) with Iy so that y, satisfies: Ll Bly)s up) =
r(u). This implies that y, — 0o as p — co because f(Z(yu),yu) = 7{p) — # which tends to —oco
as p — 00 by hypothesis. Therefore, as 01 fu(Z(yu), yu) = 0, it follows that:

’ Tl(/‘) =

A e s

% OZJr(I(yu);!/p)
From this it can be obtained that y:‘ — 0 as g — co because 02 f(Z(yu), yu) — +oo. In addition,
the maximum second coordinate of points in Py is g + f(0,0), which results to be greater than

yu for every p large, because y:‘ — 0. This shows that P, crosses {(,)(p) vertically.

L 4

Now let z, be the first coordinate of the left point of intersection of I3 with £,(,)(x) and z,
the first coordinate of the left point of intersection of I with P,. We claim that |z, |> |z, |.
Observe that z, satisfies the equation:

Jfu(zu, 9(zp)) = 14

so that z, — —oo as g —— +co,which can be proved as above.
Using (P3) it follows that:
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F(2 01 58,)) = ]0 ™ uf(t, §(2))dt + £(0,0)

(912f(s, 4(s)))” L el
0221 (s, 9(5)) fs & ~ALL-HE Y

similarly, but now using (P2), it follows that:

t
Bt §()) = /0 Br1 (s, §(s)) -

01 f (L B(1)) > —A(1+ 1/K%)
and this implies that:
A’ A
SU-1/KNzf < p-r(s) € S0+ /KD

and therefore:

[ Zu

Aty

|
v
-

liminf, e

(6)
where Ag = %(1 +1/K3).

Now let’s estimate the point #,. It is easy to see that z,(z) < —-Boz®+ u, where By =
g(l — 1/K3) from which it follows that P, can be substituted by the parabola y = —Bgz?+ p.
This, together with the fact that Iy is contained in the cone |y | < z/K?, imply that:

1/K?+ /1/K2+ 4Bgp

fzul< 26,
&

from wich it follows that:

i .
Iimsupu_.,.;oo#;l—— <1 {
VBo #

As By > Ay, (6) and (7) imply the claim. Observe that this should be repeated for right

~3
~

intersections. So this shows that P, crosses £;(,)(s) also horizontally. This finishes the proof of

the lemma.

Let 7 be a C! function of y such that 7/(u) — 0 as g — co. Then the lemma just proved
implies that for any point in P\ i(§r(u)(#)) the partial derivative with respect to the second
variable is not zero. We will need now to find a lower bound for this derivative and , more than
this, we will show that a relation between the partial derivative with respect to the first and

second variables exists. This will be used later to obtain stable foliations in }5# \ i(&r(u)())-

Lemma 3.4 There ezists A (for ezample, A = 10) such that, if (z,y) € e(&-(u)(1)) N 13,_. and p
is sufficiently large then:
) azf“(.’t, y)

A
By =
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Proof: . Firstly observe that:
|al(e) 1=l 0t 50 + [ omf(e,ods 12 B 1y~ 3t |
And in the same manner:
lo1f(z, )< Al2(y) -y
From this it is obtained that:

O2f(z,y) Bly— (=) | @)
O1f(z,y)l = AlZ(y) ~=z|

Now suppose that a constant A independent of s was found such that:

¥z)—y AX
ey = (9)
I(y) - = B
for any point (z,y) of intersection of P, with 5.,(“)(#). It follows that the same estimate is

valid for any other point in Py N &.(,)(4) (this can easily be seen using that the tangent vector

to P, is almost vertical at points not approaching /y, see the figure). In fact, what we will show
is that (9) is valid for (z,y) = (84, Zu(Bu), the point of intersection of Py with §;(,)(u) located
at Q1. For the other points in Py N &, (,)(#) the reasoning is similar.

(I“, l;(-l'u))

(Bus Zu(Bu))
Eruy(u)
4
Let’s begin estimating the numerator of (9): The level curve &;(,)(4) is given by the equation

fulz,y) = 7(p) wich defines a function X (y) in a neighborhood of the point (zu, ¥(z,)) such
that: X (9(z,)) = 24, fu(X(¥),y) = 7(p) and therefore:

62f(X(y)) y)

X0 = =5 5& w9 (103
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Derivating once more it can easily be obtained that X”{y) < 0 ; thus, we can assume that:
g {

2 f (X (v), ) <A (11)
0 f(X(v),v)

because the contrary assumption trivially implies the lemma. As X”(y) > 0 equations (10)
and (11) imply that X'(y) < X, for every | y — #(z,) | € X7}&,), where for X ~}(z,) we
denote that preimage of £, contained in Q1. Now this implies that for y € (§(z,), X —l(”u))3

[X(y) —zul < My —9(z,)l (12)

Let I be the line z—z, = —A(y—3(z,)). It follows that the vertical distance from (&, §(Z,))
to [ is:
2p—2y

9@ -y = (13)

Now, if (8,,%,4(8,)) is the point of intersection of P, with /, then it follows from (12) that:

3(Bu) — 2u(Bu) = 9(Bu) ~ Zu(Bu) (14)

But ,é“ can be estimated easily, because P, can be substituted by the line y~§(£,) = —2Bo,(z—

z,) (this follows from the fact that | Z,(z) |> —2Boz, for z < #,), and this gives, just inter-
secting this line with [:

v = 9(3) _ 9(@) = (@) = UMBL = 7)

B, — &, <
Pu—iy 3 —2Bot, —2Bot,

and following:

9(z) = 9(&4) + A2y = 3,) ] L U+ 1KY |2, -3, | -
: 2Boz,(1+ 1/X) | = | 2Boz (1 + 1/A) |

IB#“iul=

Finally, using (13) and (15) it can be obtained that:

2w g3 = 2 e (1/K% + 1/2)? R
W(Bu)=2.(Bu) 2 UMEp—zu)— (/K +1/A)(2u—Bu) 2 (1/1\ " 2B, 0T /0] (Zu—z4)
Therefore we can take u large in such a way that:

Tp— 2Ty
22

g(Bu) i Eu(Bu) >

This provides, using also (14), an estimative for §(B8,) — Z(By)-
Now join this with (8) and the fact that the horizontal distance from (8, Z,(8,) to {1 is less

than |z,| to obtain that:

025 (Bu, 2u(By)
01 (By» 2u(Bu)

B &,-z, B i
T 24X -z, 2AA 2y

Thus, using the estimatives for z, and %, obtained in the previous lemma it follows that, V

for p sufficiently large,

131



|82£ (B, Zu(Bu)

B B
—-+/B — > kK VK
e ( o/Ao) > > K/4x > VK /4

T 24) 4AX

To do the last step works, we make A < VK, so for any A satisfying this, the lemma is
proved (recall (9)). In particular, we can take A = 10 if K is large enough.

This provides the necessary techniques to obtain stable foliations.

Lemma 3.5 Let v be a C! function of p such that 7'(p) — 0 at infinity. Let R, = 15,_‘ n:
e(é,(“)(/.t)) and define G, = ﬂnZOF;"(R“).Then, if p is sufficiently large,there ezists a C!

stable foliation of G, invariant under F,,.

Proof: . Fix any p large enough and drop the index p. Observe first that F(G) C G. Define,
for each z € G a cone Cz = {(u,v) :|v/u |< €} where ¢ is a positive number to be chosen.

Now, for (u,v) € Cp(z) we have:
o -1
DFjy(u,9) = 5 (ubaf = v,—udsf) = (w1, m) (16)

where the derivatives are calculated at F{z). Furthermore:

ud f
udaf — v

01 f
O2f —v/u

o f
02f/2

if e < |02f | /2. But F(z) € G C e(§r(u)(#)) so that the previous lemma can be applied to

vy

Uy

obtain:

V1

U1

< 2/A < ¢

if € = 3/A. This ¢ satisfies also ¢ < | 02f | /2 if p is sufficiently large, because A(= 10) is
independent of , while | 82f |— co for points in e(§;(,)(#))- This proves that (u1,v1) € Cy if
(u,v) € Cr(z). In addition, using (16):

_ludaf —v |+ |udif|

[(u,v1)| = lwml+]unl= 517 | >
s 1ulU8f|—tu/vl+]0:f])  |ul|d2f
& | 011 | = -2 Joufie
A Mul+lvl A
> 2!“!2 e ~2(1+€)|(u,v)l> 2| (u,v) |

This proves that DF ! leaves the family of cones invariant and expands length. As it is known
this implies the existence of the foliation (see [HPS]), thus proving the lemma.
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PROOF OF THEOREM 1.2

STEP 1: W has infinitely many connected components.
It is known, by lemma 3.2, that the connected component of W;NQ1 containing S, (parametrized
by the curve «), is transversal to the family of level curves €. This means that «(t) € e(§,,(4))
for t < 0, because f(@(0)) = s,. In addition, by lemma 3.1, it follows that lim 08}, = 0, and
thus lemma 3.3 (with s, in place of 7), can be applied to obtain that &s,(p) intersects P, in Q.
Joining these facts it follows that a also intersects P, unless it doesn’t reach I nor P,. But in
this latter case we will find a contradiction: firstly, this implies that there is a two periodic orbit
{p1,p2} such that p; and p2 are the extreme points of «. Now it follows that the direction given

by the tangent to « at py, is non contracting. Also observe that:

‘[afz(ti) lalf =4
|
fei(t) O2f
where t; is such that a({;) = p; and the last inequality follows from lemma 3.4. Now the

equation above implies that the tangent direction to a at py is contained iz the stable cones as
defined in the previous lemma: thus we have found a contradiction because this direction must
be an invariant non coutracting direction.

Until now we have thus proved that o (and so also W) intersect P, at one point. Let’s denote
by @1 the curve F7!(a) \ a and let’s show that it also intersects P, : in fact, let S, be the
preimage of S, which is not S,. The image of that part of &) that lies between {; and S;‘,
is located above S, and this implies that o; is outside &,,(p) between /; and b: At §!

u
intersects {,,(p), 2nd after this, oy is contained in e(€s,(p)), so that lemmas 3.3 and 3.4 can be

a

used as before to obtain that a also intersects P,,. Thecefore, we have proved that W containg
a C! curve intersecting P, transversally at a pair of points, which implies that W, contains a

closed simple C! curve that contains the point S,, and that will be denoted by W;.

("yl)l

Syo(u )
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Let yg be the second coordinate of the intersection of £;,(p) with I;. It is clear by lemma 3.2
that W is contained in {(z,y) : y > yo}. As the image of Wy is contained in W7y, it follows that
Wi C i(&ye(p)). Now let’s calculate the dependence of yo on u: yo must satisfy the equation
fu(2(y0), v0) = s,, hence it follows that:

_
" 92£u(%(y0), ¥o)’

This implies, as in the proof of lemma 4.2, that yo(p) — 0 as g — oo. Therefore lemma 4.2 can

vo(u) =

be applied to yo in place of 7 to obtain that {y,(p) intersects P, at four points and so Wy also
intersects P, in four points. This means that the preimage F~Y(W;) contains another closed
simple C! curve that will be denoted by W,. Now we will prove that also W3 intersects P, at
four points. To do this apply the same idea as before: first observe that Wy C {(z,y) : y < 1},
where y; is the maximum of the second coordinates of points in £,4(s), then it follows that Wy
has to be contained in e(€y, (1)), so it suffices to show that y} — 0 and use lemma 3.3. [n fact
y; satisfies the equation f.(%(y1),y1) = yo so that 1 + 92f{Z(y1),y1)¥} = g, which implies that
yi(p) — 0 as p — oo, thus lemma 3.3 says that {,;(p) (and so also W3) intersects Py at four
points. Thus the preimage of W, has also two simple closed C! curves as preimages, which,
by simple inspection of the location of preimages must be both contained in e(W3) and i(Wy).
Furthermore each one of these new curves must intersect P, at four points, and so each one has
a pair of curves as preimage, and so on. This implies that W has infinitely many components,

sach one of which is a closed C! curve.

STEP 2: The complementary set of the closure of W] is the basin of oo, that is, the set of
points with empty w limit set.
If we prove that e(W1) is contained in the basin of co then it will follow that i(W2) = F~1(e(W1))
15 also contained in the basin of co. Now the preimage of this open disc is an ananulus whose
boundary is the preimage of Wy.It follows that W7 accumulates on the complementary set of
the basin of oo, as this i1s an open set, the step 2 it is proved; so what we must show, is that
e(W1) is contained in the basin of cc. Every point in e(W1) must also lie in e(£,,(y)) so that
letnma 3.5 can be applied to obtain a stable foliation each of which leaves intersect P,. This
induces a one dimensional map from P, into itself, that has a fixed point corresponding to Sy,
and either carries every point to co or has another fixed point. But the latter case is impos-

sible because it would imply the existence of another fixed point of F, with negative coordinates.

To finish the proof of theorem 1.2 it remains to show that the closure of W is a Cantor set

of closed curves. To do this we will need an unstable foliation defined outside the curve W.

Lemma 3.6 Let u be sufficiently large and define H = ﬂn>0F‘:'(}5,,) \ Un>o FT (W 2)).
Then there ezists an unstable, almost vertical, C* foliation defined on H and invariant under
F.

Proof: : First observe that if € H then a preimage of z is contained in K. For each point in #
define a cone C = {(u,v) : u/v < €}, where ¢ is a small number to be defined. Take (u,v) € C
and r € H; then, calculating DFz(u,v) = (uy, v1), it can be obtained that:
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v | 1 1

fu /v > < ; < <
il = | vas | S s el S 1= o Na ]
1
— < ¢ 17
Gtz S o
where it was used the lemma 3.4, and € = 3/B This proves that (uy,vy) € Cp(y) for (u,v) € Cs.
Furthermore:
[(u,v0)f = (ual+ lor] = jv] + [w01f + v02f] > [v[ {1 + [02f - {01 flu/v}])
[v}102f| [92f] .
x ML il (1)

It follows that DF ecxpands lenght of vectors in the cones and the lemma follows by the
results of [HPS].

Define I; = T(Fl)ﬁ P, and Ip = F(1Iy) ﬂi-(W_l), (A denotes the closure of A). I; is the union of
two curves and Ip is the union of at most four curves. What we must show is that W_;ﬂ Iy isa
Cantor set.

Observe that the stable foliation obtained in lemma 3.5 can be extended to ﬁu\UnZO FoM(i(W2)) =
ﬁ#r‘,VV_; because i(W3) D i(£y,(p)) and yj(u) — 0 as p — co which was shown in step one. This
defines 2 map 7 which carries points in W3 N Iy to I; along the leaves of the stable foliation.
Now the proof will be completed by observing the three following facts:

1. The map F restricted to I} N F"'I(Iz) is an expansive map because Iy and I; are aimost
vertical lines and lemma 3.6 can be applied. This implies that this restriction of F' satisfies
bounded distortion properties and so it preserves cross ratios of intervals (this is a well known
fact, for the definitions see [M]).

2. The map = has been defined as induced by a stable foliation of a C? map, F,. This implies
that = also has to satisfy bounded distortion properties (this is an observation of Newhouse that
can be found in [PT]). Now, as above, the map = also preserves cross ratios.

3. Maps which preserves cross ratios of intervals define Cantor sets (this is a simple fact).

The proof of the theorem 1.2 is complete.
PROOF OF THEOREM 1.3

Fix any large value of u. Suppose firsi that there exists some integer n > ( such that
F restricted to F™(R?) is one to one. Then obviously F/A is 2 homeomorphism, (recall that
A= {Nw>o F"(W‘f)). To prove that F//A is a shift we proceed as for a horseshoe: first give an
itinerary j(z) € 2% to each z in A and then prove that j conjugates F/A with the shift. To
obtain the hyperbolicity just use the foliations shown to exist in lemmas 3.5 and 3.6.
If there is no n > 0 such that #/F”(R?) is one to one then it follows that the unstable manifolds
of the fixed points must coincide because there is a contraction in the horizontal direction.

Now A is contained in the unstable manifold of S, (and of the other fixed point). Finally, the
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hyperbolicity follows from lemma 3.6 and the fact that these unstable manifolds have to be

contained in the unstable foliaticn.
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UNITARY EXTENSIONS OF ISOMETRIES AND INTEXPOLATION
' PROBLEMS: DILATION AND LIFTING THEOREMS

Rodrigo Arocena

Qur aim is to give a rapid introduction to the use of operator
theoretic methods in interpolation and extension problems. Here, the
fundamental dilation and lifting theorems are established. Only basic
notions concerning Hilbert spaces, measure theory and complex
functions are assumed. The emphasis is on the unifying and geometric
features of the method of unitary extensions c¢f isometries.
Nevertheless, some proofs and even some statements are perhaps

new.’

Index

I. Basic constructions

if. An extension of Sarason’s interpolation theorem

1. Applications to classic probiems

IV. Unitary dilations of contractions and the Nagy-Foias theorem
V. On Parrott's extension of the commutant lifting thearem

Vi. The Cotlar-Sadosky lifting thecrem

V!i.On the band extension problem

References

| BASIC _CONSTRUCTIONS

Naimark's dilation theorem

Unitary operators in Hilbert spaces are very nice otjects. Suitable
constructions of unitary operators give fundamental resuits
concerning interpoiation problems. One of those constructions is the
unitary dilation of a function of positive type. Roughly speaking, such
functions are the Fourier transforms of positive measures. We start
giving a basic example and the definition of that notion.

Let H be a Hilbert space, [{H) the-set of bounded operators in H, U €-
L(H) a unitary operator and E a closed subspace of H. If ?E denotes the

orthbgonal projection of H onto E, let the function ki Z - L(E) be given

This paper is in final form and no version of it will be submitted for publication elsewhere.



by k(n) = PEUnlE‘ The support of any funcdon h is the set supp h =
{h = 0}. Then:

M Yi<k(m-n)h(m),h(n)>:mneZ} 20

holds for every function of finite support h: Z - E.
Whenever (1) is verified, k is said a funcdon of positive type.

The content of the following Naimark’s dilation theorem is that
the converse of the previous exampie is always essentially true.

For any Hilbert spaces E and F, L.E.,F) is the set of bounded
operators from E to F; if E is a closed subspace of F, iE = (PE)* is the
inclusion of E in F; | is the identity in the space under consideration; if
{G¢} is a family of subsets of E, V{G} denotes the smallest closed
subspace of E that contains every set G;. Then:

(2) THEOREM Let E be a Hilbert space and k: Z - L(E) a
function of positive type. There exists a Hilbert space H, a
unitary operator U € L(H) and an operator g € L(E,H) such that

k(n) = p " g, ¥ ne Z It may be assumed that

= V{Uan: n € Z}, and then H, U and ¢ are unique up to
unitary isomorphisms. If k(0) = I, £ may be considered as a
closed subspace of H and p = iE.
Sketch of the proof

Set H' = {h: Z - E, supp his finite} ang <h,h'> =

I{<k(m-n)h(m),h'(n)>: m,n € Z} for any h,a* ¢ H'. Then H'y :=
{h € H: <h,h’> = 0} is a subspace of the vector space H'; let m be the
projection of H' onto the quotient H'/H'y; setting <mh,th'> = <h,h'>,
we obtain a scalar product in H'/H',;, so me corresponding completion H

is a Hilbert space and 1 can be considered as a map from H' onto a
dense subspace of H.

Let S be the shift in H', i.e., the operator given by Sh(n) =h(n-1);
an isometry V with domain and range mh' is defined by Vm = nS, so V
can be uniquely extended to a unitary operator U ¢ L(H). If any v € E is
|dent|f|ed with h € H' such that supp 1 = {0} and h(0) = v, and p

denotes the restriction ofmt to E, then Ilgwl = <k(0)v,v>, so p € L(E,H).

From <k(n)v,w> = <ns" v,tw> and ns" E B & p, it follows that k(n) =
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Q*Ungf Since any h € H' is the sum of vectors like SV, H=
V{Uan: ne .
If Hy, Uy and py are as H, U and p, by setting A(Ungv) = U1n91v a

unitary operator A € L(H,Hq) is defined in such a way that AU = UjA
and Ap = pq; that is the unicity statement.

(3) Exercise Naimark’s dilation theorem holds when Z is replaced by
any group I'. State and prove it.

Unitary extensions of an _isometry

The above proof produces the fundamental operator U as the
unitary extension of an isometry V. In order to extend the scope of
Naimark s method, we shall see that any isometry V acting in a Hilbert
space H (i.e., such that its domain D and its range R are subspaces of H)
can be extended tc a unitary operator U in a Hilbert space F containing
H (as a closed subspace).

We may assume that D and R are closed subspaces; let N and M be
their orthogonal complements in H, respectively (the so-called defect
subspaces of V): N=HB8D,M=HBR. Set F=H®H=DBNBRSM
and define U by U(d,n,r,m) = (V'1r,n,Vd,m); the assertion foliows.

In several problems the following notations will be usefui:

(U,F) € U if U is a unitary extension of V to a Hilbert space F 2 H such

that F = V{U™H: n € ZI; (UF) and (U',F") define the same element in U if

there exists a unitary operator A € L(F,F') such that AU = U'A and the
restriction of A to H equals the identity in H, in which case we write

(U,F) = (U',F"). Each (U,F) € UL will be called a minimal unitary extension
of V.

(4) Exercise Prove that #(U) =1 if N = {0} or M = {0} and that #(U}) = =
in any other case.

Extending a function of positive type
Let a be a positive integer and E a Hilbert space. Call H'; the space

of functions h: Z > E such that supph Ci{neZ:0<n<a}. Then
k: {ne Z Inl £ a} - L(E)
is said of positive type if Z{<k(m-n)h(m),h(n)>: mne Z} 2 0 holds
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for every h € H';.

Set D' = {h € H';: Sh € H';} and R' = SD'. Applying Naimark’s dilation
method we obtain a Hilbert space Hy, an operator m from H'; onto a
dense subspace of H;, an isometry V with domain and range equal to

(the closure of) D' and mR', respectively, and an operator p € L(E,H;)

such that k(n) = p " pif0 <n < a Forany (UF) e U set K(n) =
p*P U |Ep,VneZ.Thus

(S) PROPOSITION Any function of positive type
k: {n € Z: inl £a} » L(E) can be extended to a function of
positive type K: Z - L(E).
Call X the set of all positive extensions K of k te Z. Then:
(6) Exercise There exists a bijection between X and U.

Complements: Some_ remarks on Fourier transforms

if C is the field of compiex numbers and T = {z € C: |2l = 1}, C(T)
is the Banach space of compiex continuous functions on T with the
il norm and M(T) is its dual, i.e., the space of complex Borel

measures on T. Set en(z) = 2" for everyze Tandne 2 fveM(T)

its Fourier transform 9: Z -» C is given by ¥(n) = dv .

| pen
(7) Exercise ¥: Z » C is of positive type iff v > 0.

(8) Exercise Naimark's dilation theorem and the spectral theorem for a
unitary operator give a proof of the Herglotz-Bochner theorem: a
function k: Z - € is of positive type iff there exists a positive
measure v € M(T) such that k = .

o A fundamental reference for dilation theory is [NF]. References
concerning unitary extensions of isometries and functions of positive
type can be found in [AF].

‘11, AN_EXTENSION OF SARASON'S INTERPOLATION THEOREM

In the previous chapter some results were established by using the
data of a given problem, stated in a Hilbert space, to construct a new
Hilbert space.and an .isometry acting in it, in such a way that the
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unitary extensions of that isometry give the solutions of the problem.
This method can be applied to several interpolation problems. An
economic way of doing it is to prove by that method the following
abstract interpolation theorem, by means of which such problems can
be solved.

(1) THEOREM Let Uy € L(Gy) and Uy € £(G,) be unitary
operators in Hilbert spaces, By € G, and B, € G, closed

subspaces such that U;B, € B4 and U2'182 C By,

V{U]nB']Z n =< O} = Gj, V{UZnBZ nz 0} = Gz. if Ae L(B],Bz) is
such that AUHB1 = PBZUZA then there exists & € L£(G;,G5)
such that: AUq = UyA, A= PBZZ'B’I and Al = lIAIL

A proof can be based in the following fact.
(2) Representation of contractions Let A € L(B4,B>) be a contraction
between two Hilbert spaces (i.e., llAll £ 1). There exists a Hilbert space
H and two isometries uj € L(BJ-,H),j = 1,2, such that H =

(11B7) V (upBp) and A =us'uy.
In the vector space E := By X B, we set <(b1,b2),(b’1,b’2)> =
<bq 'b'1>81 + <b2,Ab’1>B2 + <Ab1,b‘>B2 + <b2,b'2>82, thus obtaining

"nearly” a scaiar product, because <(b? ,bz),(b1 ,b2)>= 0 does not imply
(by,bs) = 0. As before, a quotient and a completion give a Hilbert space

H and a natural operator i from E onto a dense subspace of H. Setting
uybq =11(by,0) and upby =1(0,by) , the result follows.

Sketch of the proof of theorem (1)
a) If A = 0, the result is obvious; thus, we may assume that lIAll = 1.

b) With notation as in (2), set D = (uqBq) V (UZUZ']BZ) and R =
(uq1UqB4) V (upBy); since AU”B1 = PBZUZA , an isometry V with

domain D and range R is defined by V(uqbq +usUs™by) =
u1U1b1 + Uzbz.
c) Let (U,F) € U. An isometric extension 0'1 € L(G1,F) of uyp is

defined by U, (Uﬂb) =-_U"u1b, for every n € & and b € By. In fact, let
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NqyeeesNf € 2 and b1,...,b;< €Bq; if s € Z is such that s+nq....,s+ny 2 0
S+, . i
then U316y + ... + Uy Mbyllg, = 1U;° by + . Uy Ko lg =

v

Analogously, an isometric extension {5 € L(G3,F) of up = defined by

S by + e+ VI KUyl = 110w by + e+ CRug byl

UZ(Uznb) = Unuzb, for every n € £ and b € B,. Clearly, G.—-j = qu,j =
1,2. )
d) Set A= [12*61 € L(Gq,G,). Then IAll <1 and AUy = L=A . For any

by € By and by € B <(P523181)b1,b2>82 = <liqby Ipbp>p =
<Aby.by>g., SO P825l51 =A and Al = llAlL
(3) Exercise With notation as in theorem (1) and its proof set:
A = {Ael(Gy,65): AUy =Uph, A= 9825181’ NAI = 53
Prove that there exists a bijection between -4 and U.
In order to obtain a concrete version of the above theorsm, set LP =
Lp(’!l",m), with 1 < p £ «» and m the normalized Lebesgue mzasure in T, .-

and let HP be the closed linear spah in LP of {en: n = 0O} The Fourier

transform f of f € L1‘ is the Fourier transform of the meas.re
(f dm) e M(T). if f e H1, an analytic function in D = {z = L: izl < 1}
which we also call f is given by f(z) = ¥{f(n)z™: n € Z}.
The shift is the operator S ¢ L(LZ) given by (8f)(z) = zT2).
(4) Exercise Let X € £(L%) be such that XS = SX and h = Xe;. Set M, f =

hf, i.e., M, is the multiplication by h. Then X = M, h ¢ L™ znd lIhll_ =

XL
Sarason's generalized interpolation theorem says that

(5) THEOREM Let K be a closed subspace of H2 such «at

S(H?8 K) € H2B K. If T = P, S, and A" € L(K) commzes with T

then there exists h € H” such that A'g = PK(hg) , ¥ 3€K, and
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A" = b .

Sketch of the proof

Set H2. = L2 8 H. Set Gy =G, = L%, Uy = Uy = S, By = H?,

B, =K® HZ_ , and consider A := A'PK as an operator from H2 to

2

K ® H. . Thus AUyjg, = A'TTP = TAP, = Pg_UpA. Let & e L(L%) se

K K

given by theorem (1). Let h ¢ L™ be such that & is the multiplicaton
by h, Il | = HAN = A" From A = Pazﬂigl it follows that <A'PKu,v> =

<hu,v> for every u ¢ HZ and v € K ® HZ. . Since AK C K H2, her™

and A'g= PK(hg) , ¥gek.

Complementary remarks on_Toeplitz and Hankel operators,
their _symbols and Nehari's theorem

Let E be the linear span of {e,: n 2 0}; a linear operator T: E » HZ is
called a Toeplitz operator if <Tv,w> = {TSv,Sw> for every v,w € £ A
finite or infinite square matriz {tij]i,j?.o is called a Toeplitz matrix if
there exists {aj} such that tij s aj.j. Thus, T is a Toeplitz operator iff
[<Tepel; ;50 is a Toeplitz matrix.

{6) Exercise A Toeplitz operator T defines a bounded operator in HE iff

there exists g € Lm(T) such that T = PHZM in such case, IITli = ligll,

g )
q(i-j) = O’e;,ej> and g is cailed the symbol of T.
(Show that the sesquilinear form B: E X E - T given by B{v,w) = <Tv.&>

can be extended to a bounded sesquilinear form B': L2 X L2 - [ such

that B'(v,w) = B'(Sv,Sw) and consider the operator T' associated to B".

A linear operator H: E - HZ_ such that PHZ SH = HSIHZ is callez a

Hankel operator. A finite or infinite square matriz [hij]i 20 is callec a
Hankel matrix if there exists {aj} such that hjj = aj,;. Thus, His a
Hankel .operator iff [<Hei,e_j_1>]i,j_>_o is a Hankel matrix.

Nehari's theorem says that
(7) THEOREM A Hankel operator H defines a bounded operator
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2 2

from ‘H™ to H™_ iff there exists g € Lm(T) such that

H="p

HZ_Mg ; in such case {Hll = dlsth(g,H ) and g(-i-j-1)
<Hei,e_j_1> for every i,j = 0 .
When the above conditions hold, g is cailed the symbol of H.

Exercise: prove (7) by applying theorem (1) with Gy = Gp = LZ, Uy

Up =S, By = HZ and B, = HZ_ .

» Sarason's general interpolation method is presented in ([S].
Fundamental references concerning this subject are [FF] and [N].

[11. APPLICATIONS TO CLASSIC PROBLEMS

On the Nevanlinna-Pick problem
Given any set J, a function k: J X J - £ is positive definite (p.d.) if
for every n 2 1, tyssty € J and Cq.eesCpy € C it is true that

n
z{k(tiytj,)cigj: 1<i,j<n} > 0. Then: ,
(1) THEQREM tLet J be any set, {zt: t € J} a set of different

points in D and {w,:t € J} € €. Set # = {h € H”: h(zy) = wy,’
¥ ted ilhllw < 1}. Define k: J X J -» @€ by k(s,t) =
{T-WSWt]/[l-stt]. Then # is non empty iff k is positive
definite.

Sketch of the proof

For any u € D set v, (2) = (1-52)-1; then f(u) = <f,y > for every
fe HZ. The set {\yzt: t € J} is linearly indecendent; in its linear span K'
define a linear operator X by X(wzt) = wtht, ¥t eJ;it can be seen
that lIXll < 1 is the same as k being p.d. Cail K the closed linear span in
L2 of K'. I there exists h € H, X = (PKMhIK)" so k is p.d.
Conversely, assume the last; thus X = L(K) and IIXll < 1. Apply

theorem (IL.1) with Uy = Up =S, By = HZ, B, =K ® H2_ and
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A e L(B1 ,Bo) such that Af= X*PKf. Forany n 2 0 and t € J we have
<Asen""z a4 —<Sen,waz Z = W<Cny1pV¥g, > = Wt(zt)m‘I o
tht<en"“zt = zt<en,X\pzt> = z,(Ae,)(zy) = <SAen,\pZt>, since ABj
is orthogonal to HZ_ it follows that AS|B1 = PBZSA._Consequently A
is non empty. For any A € -4 set h = Aey, 50 A = M. Then lihil = llAlf < 1.
ifge HZ,, <h,g> = <PBZEeo,g> = <Ae,,g> =0, sohe H”. For any
t €J, h(zt) = <h"’*’zt> = <P82Aeo,w2t> = <Aeo,\;;zt> = <eo,xwzt> =
Wy. Summing up, h € H.

Note that a bijection from A onto H is given by A -+ h = e,

On the Carathéodory-Féjer probiem
(2) THEOREM Let ¢ c € €. Set 3’ = {ge H®: §0) = ¢ ,j =

0’
0,...,n , ligll_ < 1}. Define T € £(c"* 1y by the matrix

[tijlo<i,jsn such that tj = ¢ if i 2 j and t;; =

Then 3 is non empty iff Tl <
Exercise Let K be the span of e, §=

O0isi < j.-

i
1
0. and §(2) =

Co + C1Z + . cnzn. Note that [tij] is the matrix of (PKMﬂK). Prove the

above theorem by means of (il.1) as before.

Complements: On the Nudelmann and Rosenblum-Rovnyak
interpolation_ theorem

This theorem has several applications. It says that:
(3) THEOREM Let E be a complex vector space, E' its algebraic
dual, p a linear operator in E, p' its dual, b,c € E. Let F be a

. subspace of E' such that p'F C F and Z{I(pjc,x')lz: j 20} < oo, .
¥ x' € F. The following conditions are equivalent:

i) 3fe H*(T) such that lifll, < 1 and

(bX) Z{f(l)(OCX)J 0},Ux € F;
i) T{(pb,x )% 2 0} < $il(ple,x')1%: j 2 O}, ¥ X' € E.
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Note that the equality in (i) can be seen as an extension of b =
f(p)c, which makes sense for example when f is a polynomial.
Exercise

Set Gy = Gp =12, Uy = Up =S, By = H° <

,BZ=K®H -, with K the

closure in H2 of {Y. (ch,x’)ej: x' € F}. Show that SJBZ C Bo.

j=0

Assume (ii). Show that the contraction X ¢ L(K,HZ) given by

X i i ek -1
X[ZjZO(gjc,x )ej1=zj20(db,x Jej is such that “XP,_>S | =P oS X.

By applying theorem with A ¢ L(B1 ,82) such that A" = XPK obtain

g € L¥(T) such that:
(iii) <gb1,b2> = <Ab1 ,b2> , ¥ b1 € By, b2 € Bo.

Show that g ¢ H®(T) and complete the proof of (i) by setting f(z) =
4(2).
Conversely, assume (i). Show that (iii) defines a contraction
* T - | - .
A ¢ L(Bq,B5) such that A [ZJ.ZO(Q C,X )ej] = Zj?_o(g b,x )ej, so (i) |

holds.
o Concerning this chapter see [FF], [N] and [RR].

IV. UNITARY DILATIONS OF CONTRACTIONS AND THE NAGY-
FOIAS THEOREM

A _special unitary extension of an isometry

Consider an isometry V acting in a Hilbert space H with domain D,
range R, and defect subspaces N=H 8D, M = H 8 R. Let G be the Hilbert
space of sequences f = {fj:j € 2} such that fj eMifj<0, fo € H, fj €N

if j > 0 and Z{IIfjHZ:j € &2} < =, with the scalar product <f,g> =
Z{<fj,gj>:j € Z}. Identify H with {f ¢ G: fj = 0 if j = O} and define g =

j>1.

(1) Exercise (U,G) is a minimal unitary extension of V and (VPD)n =
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n
PHU H holds for every n = O.

Isometric_and unitary dilations of contractions

An operator T € L(E) in a Hilbert space is a contraction if iITll < 1.
It is said that W € L(M) is a minimal isometric_dilation of Tif M is a
Hilbert space that contains E as a closed subspace and W is an

Yn>0, and M= V{W"E: n > 0}.

isometry such that T o PEWHXE’

Analogously, U € L(G) is a minimal _unitary dilation of T if G is a
Hilbert space that contains E as a closed subspace and U is a unitary

operator such that Tn = PEUnIE’ ¥n>0,and G = \/{UnE: ne Z}. The

following fundamenta! resuit is due to Nagy.
(2) THEOREM Every contraction in a Hilbert space T € L(E) has
a minimal isometric dilation W € £ (M) and a minimal unitary

dilation U € L (G) which are wunique up to unitary
isomorphisms.
Sketch of the proof

Given a contraction T ¢ L(E) set Dy = (- T*T)"/2 and let DT be the

closure of the range of DT‘ Let V be the isometry actingin H:=E® DT’
with domain D = E, given by Vh = (Th,DTh). Then U € L{(G) asin(1)is a

minimal unitary dilation of T. Set M = = V{UnEz nz0tand W = UIM; then

W ¢ L(M) is a minimai isometric dilation of T. Uniqueness is proved as
in Naimark's dilation theorem. Thus, we may speak of "the" minimal
{(isometric or unitary) dilation of T and assume always that M C G.

An alternative proof can be based directly in Naimark's theorem as

foliows. Let T(.): Z -» L(E) be given by T(n) = ™ ifn> 0 and T(n) = ik
if n <0.If h: 2 - E is such that supp h C [0,k], it may be considered as

. k+1 n+1 . .
avectorinE  ;letR= [rijlosi,jsk e L(E ) be given by i1 g Tif
OSi<kandrij=0ifi-j=1;then (I-R)-1 =l+R+...+Rk.va=
(1-R) Th, then T{<T(m-n)h(m),h(n)>: m,n ¢ Z} =

[R5 £ - 857 - 1ahs = IMIT - [RVIE; consequently, TC) Is of
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positive type and Nagy's theorem foilows.
(3) Exercise Let T € L(E), W € L(M) and U € L(G) be as in (2). Then

PW=TP,, W' =T and W(MBE) C (MBE). SetM' = v{U"E: n < 0} and
W' = U*IM'; then W' e L(M') is the minimal isometric dilation of T" and

G=M& (M BE).

The commutant lifting theorem
The famous abstract extension of Sarason's interpolation theorem
due to Nagy and Foias can be stated as follows.

(4) THEOREM For j = 1,2 let Tj € L(Ej) be a contraction in a

: Hilbert space with minimal isometric dilation Wj € L(Mj) and

minimal unitary dilation Uj € L(Gj). Let X € L(Eq,E5) be such
that XTy = To>X. Then:

i) 3 v € L(M,,MZ) such that yW,; = Wov, PEzy = XPE and

1
Hyll = XU,
ii) 3 T € L(Gq,G5) such that TUq = Up T, TMy C M5, PEZT1M1 =
XPE and llTll = HXi.

1
Proof
We apply theorem (I1.1) with By = My, By = \/{UanZ: n £ 0} and
A€ L(81 ,Bz) such that A = XPE1 A ThUS, AU1|B1 = XPE’W-] = XT] PE«] =
TZXPE] = PEZWZA = PBZUZA' So there exists T € L(Gq,G5) such that
Uy =UsT, A= PBZT181 and liAll = litll. Consequently litl = Xl and
XPE] = PEZ'T.'lB1 . Since PBZTIE_‘ = X and GZ = M2 &b (BZ 8 Ez), TE! < MZ

so also ™™ C M,. '
Note that PBZTIM1 = XPE1 implies that T(My 8 Eq) is orthogonal to

B, so T V{U,"Ex: n < 0} @ viu;"Eq:n < 0}
Now let v ¢ L(M1 ,MZ) be such that ¥ = T|M1. The result follows.

e A complete study of the Nagy and Nagy-Foias theorems is given in
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[NF] and [FF]. The approach to generaized interpolation presented in
this paper extends the proof of the commutant lifting theorem given in
[A] ;

V. ON_PARROTT'S EXTENSION OF THE COMMUTANT LIFTING
THEOREM

In this section {T1,T2,X} denotes a g.en commutant, so,
for j = 1,2 , Tj € L(Ej) is a contractior with. minimal unitary dilation
Uj € L(Fj) minimal isometric dilation W; = L(Mj), and X € L(Eq,Ep) is
such that XTq = T>X. When T € L(E) is = zontraction, the function
T(.): Z - L(E) is defined by T(m) =T #fn20and T(m) = T "

m=<0.
(1) PROPOSITION If HIXIl £ 1 ths following conditions are

equivalent: (a) 3 %e L(Fl»FZ) that axtends X and is such that
ZU; = Up& and RN < 7; (b) 1 - T77™7 - X'X + (ToX)*ToX 2 0
(c) Z{LT5(m-n)Xh(m),Xh(n)>: m,neZ’ < ‘
Y{{T{(m-n)h(m),h(n)>: mneZ  holds for every finitely .
supported function h: Z - E.
Sketch of the proof

We must have Q(U1ne) = UZnXe, +ne Z eckE so (a) holds iff

if

l!ZmUZth(m)HFZZ < IIXmU]mh(m)I!;2 is always true, i.e., iff (c)

holds.
If v is a positive integer such that s.pp h C [-v,v] we may assume

2v+1 2v+1

be given by Tjk = T1 (k-), Rj,j+1 = T‘I ara Rjk =0 ifk-j = 1. Then

2v+1

2v+1 ); foru = (l-R)'1 hek.™ we have

(R e L(E,
$<T1 (m=n)h(m),h(n)> = ull® - IRlI® = Sliu(m)ii® - ST u(m)I® and

5T p(m-n)Xh(m), Xh(n)> = TIXu(m)IIZ - ST, Xu(m)lI%; thus, () and (b)

are equivalent.
Condition (b) above holds in the fmilowing particular cases: i) X is
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i
an isometry; ii) TZ is an isometry; iii) ll'!'1ell2 + [Xell™ < l!xllz, ¥ ec€ky;
iv) X*T, = T;X". In fact, the last implies that X'XT; = T;X"X, so

=
DxTq = T Dx and (b) follows from 1T, Dxell2 < lDyell” for every e € E;.

Consequently, if T € L(E) is a contraction with minimal unitary
dilation U € L(F), every A € L(E) that bicommutes with T (i.e., such
that A commutes with T and T) has a (unique) extension A € L(F) that

commutes with U and is such that llAll = IIAIL
Let L(X) be the set of liftings of X, i.e.,

L(X) = {T € L(FyFp): Wy = UpT, P T, = X, et = IXIIL.

Let T € L(X); then PEZTIM1 = XPE1 IM1; consequently. r*EZ is orthogonal

to M1 8 E1; duality considerations show that '\:E1 C M5, so T™; C MZ'

From now on we assume that lIXll = 1. Thus, ccnditions (1.b) and
(1.c) are equivalent to the existence of an extension % of X that
belongs to L(X).

(2) Exercise X'T, = T1 X" iff 3% € L(X) such that Pg_2=XP.
The Nagy-Foias commutant lifting theorem states that L(X) is
never empty. An extension due to Parrott of thzt resuit is closely

connected with the following.
(3) THEOREM Let the commutant {T1,T,,X] be given. Set

(A1,Ap) €A f A; € L(Ej) bicommutes with j,) = 1,2, and

* * -~ -
XAq = AoX, XA = Ay X; let AJ- € L(Fj) be the extension of Aj

that commutes with U; and is such that HA it = AL = 1,2,

There exists T € L(X) such that TAq; = AoT, ¥ (A1,A5) €A

Our proof is based on the following
(4) LEMMA Let V be an isometry with domain D and range R,
both closed subspaces of the Hiibert space H, and A the set

of operators 8 € L(H) such that D and R are invariant under &
and 8*, and VSID = 8V. Then the minimal unitary dilation

U e L(F) of VPp € L(H) is.a unitary extension of V to F D H
such that every 8 € A has a (unique) extensicn 3 € L(F). that
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commutes with U; moreover, N8I = 8N and 8" extends &~.
et N and M be the orthogonal complements of D and R in H,

respectively; then F = (8 _qU'M) 8 H® (8, oUN) and 8 ¢ L(F) is
defined by §(Unv) = Un(Sv) forveM, n <0 andforveN, n>0. The

assertion follows.
(5) Exercise Prove theorem (3) in the following way.

a) Set My = \/{U1nE7: n 2 0} and M'> = ‘V{U?_”EZ: n £ 0}. Let H be a

] [ H LI M
M] V MZENd P M'Z!MT = X' = XP 1E1

Hilbert space such that H

Prove that every (Ag,A5) € A defines an operator A € L(H) by
A(g'5+G1) = Axg'p + A197, ¥ g'p € M'3 and g € My, :

b) Set D =U,™M'z V Mq; let V be the isometry given by V(U>*g'5+g7)
= g'>+Uq 04 and U € L(F) as in (4). It may be assumed that F = F; VV Fp
and that Ule = U};. Since A € A it extends to A € L(F) such that AU =

UA ; thus '&IFJ = ﬁj.

c) SettT= PFFZIF-!; then T € L(X) and 13.1 = 321.

From theorem (3) we obtain the following resuit of Parrott.
(6) THEOREM Let T € L(E) be a contraction, W € L(M) its
minimal isometric dilation and X € L (E) such that TX = XT.
Let W& be the algebra of all the operators in L (E) that

bicommute with T and X; let A’ € L (M) be the unique
extension of A € W8 that commutes with W. There exists

X' € L(M) such that: X'A" = A'X', ¥ AeW; PEA'WTX' e =
AT™XM for every myn > 0 and A e U; IX'll = IIXIL.

Proof. Assume IIXIl = 1 and let T ¢ L(X) be given by theorem (3), with Ty
=Ty =T,M; =Mand Uy = W.If A € U, (A,A) € A and A’ = Ay, Since M
is invariant by T, the operator X' := Ty € L(M) commutes with W = Uy
and A', and is such that PgX' = XPg. The result follows.

o Parrott's extension of the commutant lifting theorem was
established in [P].
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VI.THE COTLAR-SADOSKY LIFTING THEOREM

Let P be the space of trigonometric polynomials, i.e., the linear
span of {eqn € Z};set P, ={Japen€Prap=0ifn<0}landP_=
{Zapen €Prap=0ifn 2 0L IfV = [v, k]J kel 2 is a matrix with entries
in M(T) and F = (f] fz) € C(T) X C(T), we set (VF,F) =

z{[TfJfkd - bko= 1,2} it is said that V is a positive matrix measure

if [v. k(z:».)]J k=1,2 defines a positive operator in IEZ for every Borel set

ACT.
(1) Exercise V = [v; k]J k=1,2 is a positive matrix measure iff (VF,F) >

0 for every F € C(T) X C(’n‘)
The Cotlar-Sadosky lifting theorem can be stated as follows.
(2) THEOREM Let the matrix measure V = [v-k}j ke, 2 be such

that (VF,F) 2 O for every F = (f] ,fz) € P_ x P_. There exists a

function h € H! such that, setting w.. = v = 1,2, Wyg =

ji = Vijr ]
Vip + h dm, and Woq = (w12)', then W = {w 'k]j k=1,2 is 2
positive matrix measure and (VF,F) = (WF F) hoids for every F
= (f1.f5) € P .xP..

Proof

In order to apply theorem (il.1) note that Vij

and let Uj be the shift in Gj = L (T,ij),j = 1,2. Call 81(82) the
closure of P (P.) in G;(Gp) and let A ¢ L(B¢,B>) be defined by
<Afyfp> = | fiTpdvy, 9 () € Py X P Since (VFF) 2 O for

is a positive measure

every F = (f,,f5) e P, X P_, llAll < 1. There exists A € L(G1,G5) such
that AU1 = UZA A= PBZ“\’IB1 and Al = IAll. Thus, A is given by the

multiplication by the function g = Aey and <Afy,fo> = [ 1 59 dvss

Y (f1 ,fZ) € C(T) x C(T); since I Tendv1 5 = ITeng dv22 for every
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n > 0, the F. and M. Riesz theorem shows that 3 h ¢ H such that w1 > =
v1 5+ hdm=g dv22, since IAll < 1, (WF,F) > O for every
= (fy,f5) € C(T) X C(T). The proof is over.

Remarks on Fourier series and the Helson-Szegd theorem

The Fourier series of f ¢ LT is given by Si(f) = Z{?(n)en: ini<k}; the
functional in i_1 given by f - f(n) is continuous. for every ne 2. If
fe L2 = LZ(’H“,m) then lim b HSK(f) - fll = 0. Helson and Szego
characterized - as stated in theorem (5) below - the positive

measures U € M{T) such that the same happens in LZ(’H‘,u), a
characterization that also answers a question concerning the
"prediction theory" of stochastic processes.

Let P,, P, Py (k€ &) and Px yy (k,m 2 O) be the operators in P
defined by P, [5f(n)e,] = Zif(n)en: n20}, P[EF(n)e,] = Tif(n)ey: n<0},
PrEf(n)en] = T(Kk), and Py [ZF(n)en] = LT (n)en: -ksn<m}. We keep the
same names for continuous eextensions of these operators to spaces
where P is dense. Thus, Py(f) = fk),9keZandfe L (T, m).

(3) PROPOSITION Let u € M(T) be positive. If Py is bounded in

LZ(T,u) then so is Py for every k € Z, LZ(T,u) C L1(T,m)
and P(f) = T(k), ¥ ke Zand f e L°(T,n). The following

conditions are equivalent: (i) P, is bounded in LZ(T,u);
(i) the operators Py m, km 2 O, are uniformly bounded in

LZ(T,u); (Aiii) Pk is bounded for every k € Z and
im | o MSK(P) - fil = O for every f € LZ(T,u); (iv) the

operators Pm,m’ m = 0, are uniformly bounded in LZ(‘I‘,u).
Sketch of the proof

P = PoSK, Wk e Z; if Py is bounded ey ¢ Vien: n = 0} in L5(T, )

so there exists g € LZ(T,u) such that g dp = dm and
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2
J.ﬂ dm =< Ilﬁle(,Ir )iigll z(,r 0y ¢ fel™(T,u).

(i) = (ii): P m = gk+1p g-k-m-1 P+Sk.
(i) = (ii): lim | HSE(f) - fil = O holds for every fin P which is

dense in L° (T,1) and Py 1 (f) = Sy(f), ¥ f ¢ % (T,u).
(iii) => (iv): follows from the uniform boundedness pnncnple
(iv) = (): Pof=lim  SkP SKf, v feP.
Let the operator H be defined in P by H =i[P_ - (P, - Py)]; then
f + iHf = 2P_f - P5f is analytic, so Hf is the harmonic conjugate of f

that verifies Hf(0) = 0. Since | + HZ = Py, H is bounded in L2(T,p) it
the same holds for P,. it can be seen that, for example when

fe LZ(T,m), Hf is given by a "singular integral”, Hf(elX) =

lim flei(x-¥)] cotg(y/2) dy , which is called the Hilbert

g-0% 4 e<lylzm
transform of f.

(4) Exercise H € L[LZ(T,u)] iff 3 M > 1 such that, setting V =
[ij]j,k=1 5 with Viq = Voo = (M-1)u and Vip Vo = (M+1)u,

(VF,F) 2 0 holds for every F = (f; ,fz) eP,.xXP.

(5) THEOQREM Let u € M(T ) be positive. The following
conditions are equivalent: (i) H € L[LZ(T )]s (i) Py is
bounded for every k € Z and lim - IS (f) - fll = 0 for every
f e LZ(T,n); Gii) dp = e¥+HY dm, with u,v € L™(T,m) and
lvil, < n/2.

Sketch of the proof

Assume (i); by (4) and the Cotlar-Sadosky theorem 3 h ¢ H1 such
that, setting w = (M-1)u, j = 1,2, Wy = (M+1)p + h dm, and Woq =

(w; )7, then W = [w; k]; k=12 is @ Positive matrix measure. It follows

that p(A) = O for any set A such that m(A) =0, sodyu =fdm. Forr =
(M-1)/(M+1)

[#] 2 (2-1)-2(Reh)f-h2>0
holds a.e. Set hq = Re h and hy = Im h; since f 2 0, hy <0 and

154



lh]/hl2 >1- rZ, so lho/hl < r. Then the theory of Hardy spaces HP shows

. . . Hv - i(v+m 3 o
that h is an "outer function”, soc h=ce ( ) , with ¢ a positive

constant and v+t = arg h; thus, livil, < /2. Now, [#] shows that (f/lhi)

is bounded from below and from above by positive constants, so

35 & 1* snoh Bt Fe o Y,

s The Cotlar-Sadosky lifting theorem was estabiished in [CS].

Vi.ON THE BAND EXTENSION PROBLEM

The Naimark type approach can be developed in order to handle
socme of the problems that Gohberg, Kaashoek and Woerdman have
solved by the "band method".

We are given the integers N and p such that 0<p<N-1, the Hilbert

spaces H;, 1<j<N, and the operators Aij € L-(Hj,Hi). 120,j2N, li-j!<p. The
"band" A(P) := {[Aij]: li-jl < p} is positive if the operators
[Akjlisk,jgnp € L{@(Hj: i<j<i+p)] are positive for 1<5i<N-p; AP) is
positive definite (p.d.) if [Akj]isk,j5i+p is positive definite for '
1%isN-p. Recall that an operater in a Hilbert space is positive definite .
if it is positive and boundedly invertible. A pcsitive operator F =
[ijh <k,j<N € L[(B(Hj: 1£j2N)] such that Fij &= Aij whenever

li-jl < p is called a positive extension of the given band. We shall prove
that

(1) THEOREM Every positive band Alp) = {[Aij]: li-jl<p} has
positive extensions. |If A(P) s positive definite, it has
positive definite extensions and there exists one of them A
such that [A lrs = 0 if Is-rl > p.
Proof

if rAs denotes the minimum of r and s, set L =
{(ij) € 2% 1sisN, isjs(i+p)AN}, H;

B {H;;: (i,j) € C}. Every f € H is naturally given by [fij](i,j) <o fij € Hy

its support is the set supp f := {(i,j) € C: fij = 0}. Let the sesquilinear

= H; for every (ij) €C and H =

hermitian positive semidefinite form [.,.] in H be given by [f '] =
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z{<Ajkfik’f'ij>Hj: (i), (i,k) € C}. The vector space H and [.,.] generate

a Hilbért space G and an operator £ ¢ L(H,G) onto a dense subspace of G
such that <sf,zf'>G = [f,f].

Set D' = {f € H: ;= 0, 1<i<N} and, for fe D', let g = tf € A be given
by gjj =fi.y; if (i), (-1.j) eC and g; =0 if (i,j) € C but

(i-1,j) € C. Setting Wef = ¢tf for every f € D' an isometry W is
defined in the closure D of ¢D' in G with range R = WD C G.

For 1st=N let A, € L(H,G) be given, for any v € H, by Av=cev',
where v' € H is such that supp v' = {(t,t)} and V';; = V. It follows that

G=®, SiSNV{w"JAjHj: i<j<(i+p)AN} ,

D = @ N1 VIW IAH;: i<js(i+p)AN} and
R = @5 VIW A iSj<(i+p-1)ANY.
If (ij) € C, u e Hjand v ¢ H;, supp <y = {(i,j)} and supp V' =
(i)} so <WHIAUANVD ;= <WHewevd g = Cetuevdg =
0T /AL .
("' v'] "<AUU’V>Hi‘ Thus:

If U e L(X) is a unitary operator such that X 2 G and Up =W, a
positive extension A of the band A(P) is given by Ajj = hU'i*U"JAU,j '
1%i,j<N, with "U,j = iG }\j, 15j<N, and iG the injection of G in X. {In
fact, it can be shown that every positive extension of the positive:
band A(P) is obtained in this way).

Now let U € L(X) be the minimai unitary dilation of the contraction

WP € L(G). Then, with obvious notation A := [Xi*U"JXj}mJSN is a
positive extension of A(P).

For 1<isN-p set J; = V{W'InjH;: isj<iep} 8 VIW'IAjH;: isj<ivpl..
Then, if 1<i<N-p and p < k < N-i,
(a) VIU7RH;: isjsivk) =

VW InH;: issivp} @ T 10 @ e TPy o
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In-fact, since G L UM[G8R], ¥ n 2 1, and the subspaces J; are
contained in [G 8 R], the orthogonality relations in (a) hold; thus,

VITIRH;: isjsivk) = _.

(VITTRH;: isjsivke1}) V (VITTRH;: ivkepsjsivk)) =

(VTR isisivk1)) v TP WK PIn s vepsjsiek) =

(viT J)\-H-'|<j<i+k-1 DV kP (v WPy i kep <ok} By o)
= (ViU J}\JHJ iSj<ivk-11) v U (k'p)JH_k -p -

Now assume that A(P) is p.d. Let [+] denote the a!gebralc direct
sum. There exists a positive constant ¢ such that clifily < llaﬂlG if f e H,

so the operator £ € L(H,G) is boundedly invertible. Then the operators
Aj are one to one, 1<j<N, and V{WH,\J-HJ-: i<j<i+p} =

[+1{wW ”AJH i<i<i+p}, 1<i<N-p. Thus

(b) V{UJAjH isj<i+s} = [+1{TTAH AjHj: iSjSies), 15iSN-s,

holds for s = p; we shall prove it by induction for s > p. By (a) we may
assume that V{U’jinj: i<j<i+s+1} = [+]{UJAH i<j<i+s} @ Gjpge1 » -
i+s+1<N, with §t+p = [+]{U'j-):j j© t<jst+p} 8 [+]{U'JIJ-HJ-: t<j<t+p},
1<t<N-p. Then, any f € V{U'ijHj: i<j<i+s+1} can be written as f =
S{UTRh;: isjsies+1} with by € Hy; if f = O, then

g ]}‘i+s+1hn+s+1 € [-+-]{UJ;\JHJ i+s+1-psj<i+s+1},sohj=0and 0 =

f=y{U) hjhj. i+1<j<i+s+1}, i+s+12N; the induction hypothesis shows
that hj = 0, igj<i+s+1. So (b) holds for any s < N, and so does
(o) VIUTRH;: isjsies+1} = [+H{TTRH;: isjsies} ® Biygpy, its+1sN.

Set E = V{U‘JIJ-HJ-; 1<j<N}; thenE = [+]{V{U‘JXJ-HJ~: 1<j<N}. Set H =
B(Hj: 15j<N) and let B ¢ L(H,E) be given by B = Z{U’jijPHj: 1<j<N}; then

A =B"Band B is a bijection, so A is p.d.
Set A'= A1 and B'=B"! so A' = B'B". Assume r+p < s; we must
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show that A'rg = 0, i.e., that B"Hg 1 B"'H,. Now, B™Hy =
3 ([+]{E“J'§:J-Hj: 1<j2N, j=k}) : (c) shows that E =

[+1{OTRH;: 15214t} © Byt @ ... @ B. fkep >,

By © [+]{U‘ijHj: r<jsN} CE 8B H;, 50 B"H CEB {Grype @ ... ® BN}

= [+H{TIXH;: 1sj<r+p} © E 8 B™Hg. The proof is over.
e Concerning the band method see [GKW].
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On some extensions of the commutant lifting theorem:
corrections

Rodrigo Arocena

In our paper [A] some mistakes concerning theorem (VIil.1) were included. We hope to
correct them in the following, where we keep notations and numerations.

in fact, the mistakes appeared in the derivation of formulas (V1.2) and (VI.3), which should
be corrected as follows. .

From formula (i.2) we obtain Ey V (W"1Mq) =E1 @ A(0,1) & W"1(M18E-),

with /A(0,1) = {(W"1-T"1)b: beEq}.
Assume that Mq = Eq V (W"1M1); it follows that
(M1BE7) = /A(0,1) B W"1(M1BE7),

so W'y(Mjy BEq) = W'iW"1(Mq BEq) @B {W'1(W"1-T"1)b: b € Eq }", and consequently
(R'BR) = [{(I— XPM‘l B YW'qa: a€Eq } B{W' 1 (W"1-T"1)b: beE, }_]

M

8 {(- XP 151)w'1w"1c: c€Eq}.

Now, the correspondence given, for any a € Eq and b € E4, by

(- XPM1E])W'1a @ W' (W"y-T")b = Dyr,a @ Dye,b s an isometry of

[1- XPM1E1 YW'ia: a€Eq} BI{W'1(W"1-T"1)b: bEEy 1] onto D)(r'~, B DT"1 that, for every
c € Eq, takes (I- XPMTE1)W'7,W"1c = (- XPM1E1)W'1T"1C B W (W"-T")c to

Dxt'1T"1¢ @ Dyvyc. Thus:

(VL2) If My = E7 V (W"1M7),
(R'8R) = [Dxyry © Dy, ] 8 {Dxr, ¢ B Dy c € Eqt

From formula (1.3) we obtain E» V (W'5i) = A(0,1) & W“zﬁz,
with AA«(0,1) = {(- W"5T"p)a: agEp} .

Assume that Mp = Ep V' (W">[%); it follows that
Mp = {(1- WpT"p)a: aeEpi @ WroMy, so
WolMp = WioWoM, @ { Wio(- WraT"))a: a€E), and consequently
(D'8D) = [{ Wa(l- WoT")a: acEo} B{(-W'HXT'1)b: beeq} ]
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8 {(- W'Zﬁ"zn']T"])C: ceEy Ve
The correspondence W'o(l- W"oT"2)a @ (FW'HXT' )b = Dr,a & D,xb shows that:

(VL3) If ﬁz =BV (W"zﬁz),
(©'8D) = [Dy, ® D] 8 {Dpw,T'2Xe B Dy ¢ € Ey

Now, the same proof as in [A] shows that:

(VII.L1) THEOREM For j = 1,2 let T'j and T"j be commuting contracticns in a
Hilbert space Ej, U’j and U"j commuting unitary operators in a Hilbert space
Fj such that {U‘jm U"jn:m,n € £} is a unitary dilation of the semigroup {T'jm
7" mn = 0} Let X € L(E7,E2) be such that X T = T2 X and X Ty =
T''2 X. Assume that one of the following condrons hold:

i) My = E7 V [Vviu,a™ U"1n+1E1: m,n20}] and (XT'1)T''q is a regular
factorization of XT'{T"'7 = T'2T"2X;

i) ﬁz =E V [V{U'zm U"zn'1E2: m,n<0!] and T"(T'2X) is a regular
factorization of XT'1T"q = T'2T"2X.

Then there exists T € L (Fq,F3) such that <TU'1 = U'2T, TU"y = U"2T,

F2 - =
p e, Tigy = X and HITH = HXIL.

Note that (i) holds if Ty is a unitary operator anc that (ii) holds when 7", is a unitary
cperator.
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