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CLUSTERS, PROXIMITY INEQUALITIES AND 
ZARISKI-LIPMAN COMPLETE IDEAL THEORY* 

by Antonio CAMPILLO, Gérard GONZALEZ-SPRINBERG 

et Monique LEJEUNE-JALABERT 

introduction 

The starting point of the topic is a resuli concerning linear systems of plane 

algebraic curves with assigned base points which was published in 1915 in [E.C]. In 

Chap. 2, book 4, FE. Enriques and O. Chisini discuss the following problem : does there 

exist plane algebraic curves which pass through an assigned set of infinitely near points 

of the plane with assigned multiplicities ? They prove that some numerical inequalities, 

the so called “proximity inequalities” are necessary and sufficient for the existence of 

curves with the required property (at least if no condition is imposed on their degree). 

Almost twenty years later, O. Zariski begins a systematic study of “complete 

ideals”. In dimension two, these ideals adequately describe complete linear systems * 

defined by infinitely near base conditions. One of the main results of the theory is that 

any complete ideal in a regular two-dimensional local ring has a unique factorization 

into simple complete ideals [Z.S]. lt turms out that the exponents which appear in the 

factorization are easily computed from the proximity inequalities for the corresponding 

linear system (see [L3], [LJ]. 

These results do not extend directly to higher dimensional case and actually no 

substantial progress was achieved during fifty years. lt is only recently that, by allowing 

factors with negative exponents, J. Lipman was able to recover a unique factorization 

statement [L2]. The result holds for finitely supported complete ideals in a regular local 

ring R of any dimension. This condition means that the ideal is supported at the closed 

point and that there exists a finite succession of point blowing-ups 0,,...,0 such 

that its inverse image by o; o --- o 0, is locally principal. Roughly speaking the only 

infinitely near fixed sub-varieties of the corresponding linear system are closed points. 

As in dimension two, the special *-simple ideals admitted as factors are in one to one 
  

* Preliminary version 1993.



correspondence with finite chains of infinitely near points. This paper is also devoted to 

the study of finitely supported complete ideals. It may be considered as an introduction 

to Zariski-Lipman's theory. Following the original view point of the italian school, we 

put the emphasis on the geometrical side. In fact, we only consider ideals in the local ring 

of a point O on a non singular algebraic variety X' defined over an algebraically closed 

field. This allows us to make use of intersection theory and makes appear connections 

with more modern developments on the study of birational morphisms and the minimal 

model program. 

In $ 1, first we introduce some terminology. The given set of assigned base points 

(a “constellation”) with assigned multiplicities m is called a cluster. Now the question is 

to characterize those clusters A for which the set of hypersurfaces which pass through 

the given base points with the given multiplicities (for short, which pass effectively 

through A) is not empty and has no other base points. In dimension greater than two, 

imposing isolated base points may force the linear system to have fixed subvarieties 

of positive dimension. Next we express some previous results given in [L1] and [L2] 

as a dictionary between finitely supported complete ideals and clusters with the above 

property. 

Actually, to each cluster 4, we associate a proper birational morphism 7: % —= X 

and a Cartier divisor D(4) on Z ; in proposition 1.2.7, we alternatively characterize 

them by saying that —D(A) is mr-generated ¡.e. is generated by its global section on 

a neighborhood of 1”*(O). As a consequence, we get some polynomial inequalities | 

on zm which hold for these special clusters. By a theorem of Kleiman the linear ones 

imply those of greater degree. An equivalent formulation is that — D(A) is r-nef (i.e. 

D(A) - V <O0 for any irreducible curve Y contracted by 7). 

If the dimension of X is two, these inequalities are nothing but the proximity 

inequalities of [E.C] and actually they provide the wanted characterization. If the 

dimension of X is at least three, usually this is no longer true (example 1.3.9). 

Nevertheless, it remains true if the cluster is provided with a toric action. This is applied 

to discuss the factorization of finitely supported complete monomial ideals into special 

*-simple factors in another paper. The cone of effective projective curves contracted 

by r, NE(Z/X), appears to play an essential role in this discussion. 

In $2, we fix a cluster coming from a finitely supported ideal and we analyze 

further the geometry of the complete linear system s(4) defined on the germ (X, O). For 

each base point (Q, we get a linear system with assigned base points of hypersurfaces of 

a given degree, b2(4), on the exceptional divisor of the blowing-up of Q. This linear 

system of projective hypersurfaces may not be complete. From this construction, we 
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derive some conditions on 4 which are strictly stronger than the proximity inequalities 

when the dimension of X is at least three (2.4.1). We also derive various explicit 

examples and counter-examples (2.4.2-2.4.4). 

The main application of this analysis is given in $3, If the characteristic of the 

ground field is zero, we prove as a corollary of Bertini's theorem, that the canonical 

process of eliminating base points of s(A) by successive point blowing-ups is an 

embedded resolution of any complete intersection defined by r, 1 < r < dim X, “general 

enough” hypersurface germs in s(A) (.e. at the last step, its total transform is a scheme 

having only normal crossings). This is a partial generalization of the desingularization 

process of a hypersurface singularity which is non-degenerate with respect to its Newton 

polyhedron N (e.g. [V]). The complete ideal to consider here is the one generated by 

all the monomials in N. It may not be finitely supported. On the other hand, there exist 

surface singularities in C? for which this process provides an embedded resolution but 

which are degenerate with respect to their Newton polyhedron in any coordinate system. 

A further study of these surface singularities seems attractive. 

Acknowledgements. — Ve benefited from stimulating conversations with 

Catherine Bouvier, Miles Reid and Orlando E. Villamayor U. Ve also want to 

thank Rosa Campillo and Arlette Guttin-Lombard for their help and careful typing 

of the manuscript. 

This work was done at Grenoble (France), at Valladolid (Spain), and in 

between, partially supported by the “Action Intégrée Franco-Espagnole” n* 92127. 

1. Constellations, clusters, proximity inequalities and 
finitely supported complete ideals 

Throughout this paper, an algebraic variety will mean a reduced and irreducible 

scheme of finite type over an algebraically closed field XX. A point will mean a closed 

point. 

From now on, X will denote a non singular algebraic variety of dimension d > 2 

and O will be a point on X. In the sequel, we consider various birational morphisms. 

The subset of the source where the morphism is not an isomorphism will be called 

its exceptional locus. An exceptional subvariety will be a subvariety of the exceptional 

locus. 

1.1.1. DEFINITION. — Any point Q on any variety Z, obtained from X by 
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a finite succession of point blowing-ups, is called an infinitely near point of X. 1£ O is 

the image of Q, we say that Q is infinitely near O. 

1.1.2. DEFINITION. — A constellation (of infinitely near points of X) with 

origin at O consists of a finite set of points infinitely near O, C= (Go, Q1)---Qn), 

where n > 0, Qo = O and each Q;, ¿=1,...,n isa point on the variety Z; obtained 

from Z;-1 by blowing up Q;-1, (Lo = X). 

We call the variety Z := Zp+1 the sky of C, 

Let 1: Z — X be the composition 01 0020...0 Op] Where 0; : Zi — Li-1 

denotes the blowing-up with center Q;_1 and let rm, : Z —= Z1 =: X] be the com- 

positiono,0...0 On+] - The image by my of its exceptional locus is a finite subset C; 

of points of Xy. Obviously Qi E C¡. Let pz : XQ — Xy denote the blowing-up with 

center C¡. By the universal property of blowing-ups, there exists a unique morphism 

m : 2 — X) factoring 1. For each (QQ) € Ci distinct from Q;, there exists a unique 

1, 2< ¿< nm, such that QQ, is a point going to (QQ in the open set where 070...00;: 

Zí — Z1 is an isomorphism. By identifying Q and Q,, we may view Cy as a subset 

of C. 

CA C¡U(Qo), let p : X3 — X2 be the blowing-up with center the image 

C2 by m2 of its exceptional locus. As above C2 is a finite non empty subset of X>. 

Let Q € Ca, then pa(Q) is a point of C¡ which is identified with some Q; € Z;. 

The varieties Xi and Z; are locally canonically identified at these points, hence there - 

exists a unique (2; with ¿ < j corresponding to Q such that Z, and X2 are locally 

canonically identified at these points ; thus the set C2 may be viewed as a subset of C 

disjoint from C, U (Qo). Finally, by induction and with Co = (Qo), we get a partition 

C=CUCU...UC,. 

Xt+1 K————— Lon = 2 

/ 

 



1 Q;, € C;, we call the integer l = 1(();) the level of Q;. Using classical 

language, we also say that Q; belongs to the IA infinitesimal neighborhood of O. After 

relabeling the Q; if necessary, one may assume that ((Q;) > I(Q;) implies that j > 1. 

(Note that by doing so, one may modify the d;, hence the factorization of m). 

If (Qu) = 1, Le. £ (Qi) = Qi-í, 1 << n, we say that C = (Qo,...,Qn) 

is a chain. 

For each Q = Q; € C, we denote by Bg (or B;) the exceptional divisor of 

the blowing-up 0;+1 Of Q;, and by £q (or E;) its strict transform on any of the Zha, 

i+1<h<n+l as well as Bg (or B;). 

1.1.3. — We associate a tree [' (with Qp as the root) to the constellation € 

in the following way : the vertices Of I' are in one to one correspondence with the 

points Qo,..-, Qn and the edges with the pairs (Q;, Q;) such that 1(Q¿) = (Q;)+1 and 

Qj € Bi. Clearly (2; is infinitely near Q; if and only if either (Y; = Q; or (Qy) > 1(Q;) 

and the corresponding points on f' are connected by a going down sequence of edges. 

If this is so, we write (); > Q;. 

1.1.4. — We say that (9; is proximate to Q;, and write Q; — (Q;, (or j — 1) 

if Qy € Ej. 1d = dim X > 3, one has (9; — (QQ; if and only if j > ¿and ENE; H 0. 

Furthermore, if J = (1; <--+< is) is a subset of (0,...,n) with 1<k<d-—l, the 

following conditions are equivalent : 

0 E,0--NE, $0 

GD) ij—i 1<l<j<é 

id =>, 1<£<k. 

Indeed, if (iii) holds, then Q;, € E¡,N-+*NE;,_, (in Z;,), therefore E; N-- NE, 40 
in Z;,+1 and in Z. If J satisfies any of these conditions, we say that (Q;,,..., Qi, ) or 

simply J Is complete!y self-proximate. We may extend this definition without change 

to the case d = 2 since for k = 1, conditions (1), (11) and (11) hold trivially. In any case, 

if J is completely self-proximate, the constellation (Q;,,..., Q;, ) is a chain originated 

at a of at most d— 1 points. 

The proximity relations among points of C are conveniently represented by mean 

of the (n+1) x (n +1) matrix M = (155) given by pu = 1, pig = —1 if ¿=> ¿and 

pz = O otherwise. We call it the proximity matrix of C. It was first introduced by Du 

Val in [DV] and it appeared further in [DJ], [Ca], [LJ], [13]. 
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1.1.5. — Let E := ()ZEg be the free group of divisors with exceptional 

support on Z and for each (Y = (2; € C, let Eg (or Ef) be the total transform of Bg (or 

Bi) in Z ; obviously Ef = E, mod (E Z>0E;), where Z>0 =(n.€Z|n>0). 
j>i 

Hence both E :=(Eo,..., En) and E” :=(Ej,..., Ex) are Z-basis of E. In fact, we 

have 

1.1.6. PROPOSITION. — For each Q € C, Eq =£¿5- »_ Ep mE. In 
P=Q 

other words, viewing formally E and E” as row matrices, E = E* M. 

Proof. — We proceed by induction on the number of points in C. Let Q = Q;, 

0<i<n. If n=00r if ¿ = nm, it is obvious since in both cases Eq = Ef and 

no points in € are proximate to Q. ff 0<i¿<mn, let C = (Qo,...,Qn-1). By the 

inductive hypothesis, one has 

Eg=E5- Y Ep 
PQ, P£Qn 

in the free group of divisors with exceptional support on Z,. Here £q, Eg, Ep mean 

respectively the strict and total transform of Bg and the total transform of Bp on Zp.' 

Now the total transform of Eg on Z = Zas is Eq if Qn É Eq, or Eq + Bq, 

Qn € Eq» 1.8., Qn — Q, where now Eq means the strict transform of Bg on Z. This 

completes the proof. 

1.1.7. DEFINITION. — A cluster of infinitely near points of X with origin 

at O consists of a constellation € = (Qo,...,Qn) together with a “column vector” 

of non-negative integers m = '(mo,...,mMn). The integer m; is called the weight (or 

virtual multiplicity) of (2, in the cluster. 

1.1.8. — We associate to each cluster A = (C, m) the divisor with exceptional 

support on Z, D(A) = > m¡E¡. From 1.1.6, it follows that D(A) = Y dE, with 

d=*dey 8d) = Mem, 

1.2.1. DEFINITION. — An ideal / in R := Ox o is finitely supported if 1 is 

primary for the maximal ideal M of R and if there exists a constellation C of infinitely 

near points of X with origin at O such that 1/Oz is an invertible sheaf, where Z is the 

sky of C. 

Before giving the next definition, we need to introduce some additional notations. 

For any point (2 infinitely near O, let Ry be the local ring of Q on the space on which 
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Q lies and let 4g be its maximal ideal. For 0 4 f € Rq, we set 

ordg f =maxin|fe MZ) 

Now if 7 is a non-zero ideal in Ro, we set 

ordy I =min[ordg f|fE IX (0)). | 

1.2.2. DEFINITION, -— To each finitely supported ideal I in Ox y we asso- 

ciate a cluster of infinitely near points with origin at O, Ar = (Cr,m) in the following 

way : 

(D Cr = (Qo,-..,Qn) is the minimal constellation (i.e., with the minimal number 

of points) such that 1Oz is invertible ; (Qo,..., Q, are called the base points 

of / and Cy is the constellation of base points of /. 

(2) The weights of .47 and the weak transforms ly, = f/; of 1 atQ¡, 0<1i<n, 

are defined simultaneously by induction on 1 by setting : 

MD le=il , my= orda, Lo 

(Gi) for Q¡ € X; going to Q¿ € Xi-1 (1<1<t), 

li = (2 "1;0Ox, q, mi = ordg, Í;, where x =0 is a local equation of Bj 

at Qi. 

(Recall that m, : X¡ — X¡_ coincides with the blowing-up with center (Q, on 

a neighborhood of the exceprional fiber of (2;). Clearly the weights in Aj are strictly 

positive integers and the weak transforms lo,...,/. are finitely supported ideals. The 

notion of finitely supported ideal was introduced by Lipman in [L2], def. 1.8, 1.20. 

1.2.3. DEFINITION. — Let / be a finitely supported ideal, C, its associated 

constellation and Z the sky of C7. We associate to / an effective divisor with exceptional 

support on Z : 

Di =Y dgEq= Y dEs 
Q 0<i<n 

by setting JOz = Oz(-Dp). 

Recall that by definition of Cy and Z, /Oz is an invertible sheaf. lt follows 

immediately from 1.1.8 and from definitions 1.2.2 and 1.2.3 that 

1.2.4. Lemma. — One has  D(Ar)= Dr. 

Proof. — Indeed, 107 = Oz(- Y mg Eg) on the sky Z of C;. 
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1.2.5. DEFINITION. — R being any commutative ring and / being an ideal 

in R, an element f € R is integral over R if f satisñes a condition of the form 

Prnfli+..+9=0 , gel , 1<j<s 

The set of all such f, denoted 7, is called the integral closure or completion of 7 ; the 

completion 7 is itself an ideal. An ideal 7 is integrally closed or complete if 1 = E 

([Z.S], [L2). 

Recall that if d = dim X = 2, any product of complete ideals in O x o is again 

complete ([Z.S]). This is no longer true for d > 3. For any two ideals, [, J in Ox o, 

the *-product of 1 and J, denoted / + J, is defined to be the completion of 1.J ([L2], 

Def.1,13). A complete ideal [ in Ox o is said to be *-simple (simple if d = 2) if 

whenever lí = ] x J with ideals Y and J either 1€ JorleJ. 

1.2.6. DEFINITION. — Let Tr : Z2 — X be a proper morphism onto a 

variety X. A divisor D on Z is said to be r-generated if the natural homomorphism 

ar. Oz(D) — Oz(D) is surjective. 

For instance, if 7 is birational and D is exceptional, this condition means that 

Oz(D) is generated by its global sections on a neighborhood of the support of D. 

1.2.7. PROPOSITION. — Let a; be the map of sets 

a: finitely supported clusters of infinitely near 
: complete ideals in Ox o points with origin at O 

which takes ] to Ar 

1) The map a is injective. 

1i) The image of a consists of those clusters A = (C, 1) for which m > 0 

(e. mo 40, VQ € C) and —D(A) is r-generated, where 1 : Z — X is the 

canonical map from the sky of C to X. 

Proof. — The first assertion is proposition (1.10) of [L2]. Here is an alternative 

proof. In fact, one can recover 1 from Ar. Indeed, since the canonical map r :Z => X 

from the sky of Cr to X is a proper birational map , X is non singular and / is complete, 

then / is the stalk at O of 7,(10z) [L1], prop 6.2. From definition 1.2.3, and lemma 

1.2.4, we get that 

107 = Oz(-Dr) = Oz (-D(A1) 

hence — D(Ar) is r-generated. 

The proof of the second assertion follows [L1], $18. Let 4 = (Cm) be a 

cluster and assume that —D := —D(A) is r-generated. This means that f being the 
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stalk of T.(Oz(-D) at O, IOz = Ozí(—D). Hence by 1.2,1, 7 is finitely supported 

and by 1.2.2 the constellation of base points Cy of Í is contained in C. The variety Z 

dominates the sky of C; and D = 2 mQg£g is the total transform of D, = D(Ar) 

on Z. Therefore by 1.1.8, m is obtained from the weight vector my, of Ar by adding 

O for those Q € C's Cr. Since my > 0, m > 0 implies that A = Ay. Now, by [L1] 

lemma 5.3, / is complete. Indeed Z is non singular and Oz(—.D) being invertible, is 

complete. So A is in the image of a. 

1.2.8. DEFINITION. — Given a constellation C with origin at O, the set of 

clusters whose constellation is contained in C and belong to the image of « is called 

the galaxy of C. 

1.2.9. REMARK. — Note that given C, its galaxy G has a natural structure of 

commutative monoid. Indeed A = a(1) belongs to G if and only if, Z being the sky of 

C, IOz is invertible. Therefore, if A; = a(1;), 1 = 1,2, are in G, a(11 +12), still belongs 

to it, since 11120 z is invertible and by [L2], prop. 1.10, the inverse image on Z of 1,1, 

and of its completion 1; * l, coincide and we may set Aj +.42 := (1, + 12). The weight. 

of Q in A] +42 is the sum of its weights in 41 and 4A2. As a consequence, there exist . 

clusters A = (C, m) € € for which mg > 0 for any (¿ € C. For each maximal point P 

of C, consider the special *-simple ideal /p associated to the descending chain from P 

to O ([L2], prop. 2.1). and let / be the *-product of the 1/”s for all such maximal P. By 

1.2.2, the weights in each a(1,) are strictly positive integers, hence for any (2 € C, the 

weight of Q in a(1) is non zero. Finally observe that the map which takes A to D(A) 

identifies the galaxy of C with the set E* of those effective exceptional divisors D + 0 

on the sky Z of C such that —D is r-generated, where rm : Z — X is the canonical 

map. The structure of monoid is given by the addition of divisors. 

We proceed now to generalize the proximity inequalities of [E.C] to higher 

dimensional case. To do so, we make use of intersection theory. 

1.3.1. — In this subsection, we fix a constellation C = [Qo,...,Qn) with 

origin at O ; using the same notations as in subsection 1.1, we denote by |D| the 

exceptional fiber |] Eg of the canonical map Tr : Z — X from the sky of Cto 
Q 

X. Note that the support of any exceptional divisor on Z is contained in |D|. For 

each k, 0 < k < d-— 1, Ax((D]) denotes the group of k-cycles on |D| modulo 

rational equivalence. Since |D]| is a projective variety, one can associate to any 0-cycle 

a E Agí(|D|) a rational integer deg(a). 

Recall that the intersection product V.W of two irreducible subvarieties of 
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a non singular variety Z is defined in the Chow group 4m(V MN W) where m = 

dim V + dim W — dim Z ((F], chap 8). Here, if D;,,...,Ds, (1<s< d) are s effective 

exceptional divisors on Z and if V is a k-cycle on Z, s < £ < d, we consider 

Di» ---»DyeV asaclass in A¿-,(1D]). 1f k = s, we write for simplicity Djo ---.Dy¿V 

instead of deg(Dj¡+---*D,0V). f k =s =dand V = Z, we write Djs - - «Dg in place 

of Djo--:«D¿eZ. 

1.3.2. PROPOSITION. —- Let I be a finitely supported complete ideal 

whose constellation C¡ is contained in € and let D be the exceptional divisor 

such that 10z = Oz(-D). For any k-dimensional irreducible subvariety V of £ 

contained in |D| with 1<k<d-— 1, the inequality 

(=DFV>0 

holds. 

Proof. — Let Y —= X be the map obtained by blowing-up / and letg : Z — Y 

be the morphism factoring T ; the morphism q is proper. There exists a X-closed. 

immersion ¿ : Y —= X x Pr such that /Oy = 1"(O(1)) where O(1) is the canonical - 

iwisting sheaf on X x P%,. Hence, one has a commutative diagram 

7 

  

| 10): Pi 

| 
: sl 

9 me 3 n — Y — Xx Pr Nh
 
—
 
y
 

with f proper and such that Oz(-D) 8 Ojp, = f” (Op»(1). Since Y C |DI, 

(DFV =c (Ox(-D)8 On) «V in Ao(|D|) where c; denotes the first Chern 

class. Now, applying the projection formula and taking degrees on both sides, one has 

in Z 

.” k , k , 
ED Y = deg f.(c; (fOprx(1D))".V) = deg es (Opr(D) ef. V. 

If the dimension of f(V) is less than k, by definition f, Y =0 in Az (P%). Thus 

(-DY.Y =0. 

If not, (2D). V > 0, since it is the product of the degree of the projective 

variety f(V) in PR by the ramification index of the induced morphism V = f(V) ; 

1.e., one has 

(=D. V = deg f(V) - [K(V) oK ( EW) 

where K(V) (resp. K(F(V)) is the function field on V (resp. f(V)). 
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1.3.3. — Now, we will reformulate the above inequalities in terms of the 

weights mm of the cluster A7 associated to the finitely supported complete ideal Y and 

geometrical invariants of V. Note that setting m; = O for Q; € C'x Cr, one has 

D= Y m;E!. 
0<3<n 

Before going further, we need to compute the intersection product of any two 

exceptional divisors on Z respectively in the basis E* and E of E (1.1.5). First, we fix 

some notations. For any Q = Q; € C, let 7g (or 7) : Eq — Bg be the morphism 

induced by the canonical projection Z — Z;+1. The morphism Tg is a finite composition 

of point blowing-ups. indeed, the set of points (); — Q is the disjoint union of a finite 

number of constellations of infinitely near points of Bg whose respective origins are 

those (2; in Bg. The space Eg patches the skies of these various constellations in an 

obvious sense. 

1.3.4. LemMA. — If] — i, the exceptional divisors Ej and E; intersect . 

properly. More precisely, Ej+E; Is the class of the total transform on E; C Z of 

the exceptional divisor of the blowing-up of Q; in E; C Z;. 

If j =1, the intersection product Ej + E; = —T¡(H¡) where H; Is the class of 

a hyperplane in the projective (d — 1) space B;. 

In all other cases EjoLi =0, 

Proof. — By definition, Oz(E;) 9 Og, is the Oz, -invertible sheaf correspon- 

ding to Ej +E;. In any case, Oz(£7) is the inverse image of Oz,,, (B;) by the canonical 

map Z — £j41. 
qa 

1f 2 > y, this morphism factors through Z;. Now, E, is contracted to (2; in Z;. 

Therefore there exists an affine neighborhood of E, on Z on which Oz(£;) is free ; 

so Ej»E; = 0, 

lfi=j,OZ(E)9 0, = 7; [Oz,.,(B,)8908,] = 708,1). 

fis y, Oz(E;) 8 Oe, is the inverse image on E; C Z of Oz, (Bj) 9 Op, 

with now E; C Z;41. The trace of Bj on £; is nothing but the exceptional divisor of 

the blowing-up of Q; in £; understood as a subspace of Z;. It is not empty if and only 

fj=i 

1.3.4.1. COROLLARY. — One has 

EjscsEl, =(-D*! fi=--=4%4 

=0 otherwise. 
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Proof. — It follows immediately from 1.3,4 that £j+.Ef =0 if 1 F j. Indeed, 

by the symmetnry of the intersection product, it is enough to consider the case where 

1>j. Now Ef € SH Z2E.. In the same way, we get that : 
£>i 

ENEj = Ej E¡ =-—T¡(H)). 

Hence by applying the projection formula, we get 

(Eni=(EJNE] = AE) 

= (BIE, = —c1(Oz,.(B)0 Op, 2H, 
= a (0 ID)EAH, = (0%. 

Now, let us come back to the exceptional k-subvariety V. Let Jy :=(QeC!| 

V C Eq). Since V is irreducible, Jy is not empty. If d = 2, there exists a unique Q 

in Jy and V = Eq. If d > 3, Jv is completely self-proximate (1.1.4) and contains at 

most d — k points. In any case Jy is a chain and there exists a maximum Qy for the 

ordering > in Jy (Q if no confusion is likely). The point Q = Qyin Jvy is alternatively 

characterized by the following two facts : 

(1) 7P : Ep — Bp contracts V to a pointif P HQ. 

(11) W := 7g(V) is a k-dimensional projective sub-variety of Bg. 

Ín particular V is the strict transform of W in Eq. We are now able to state and 

prove the avatar of 1.3.2 announced in 1.3.3. 

1.3.5. THEOREM. — Let í and V be as in 1.3.2 and let Q = Qy and 

WC Bqg =PR! be defined from V as above. Then one has 

deg(W) má > Y en(W) mx 
R>Q 

where deg(W) is the degree of W in Bq, er(W) is the multiplicity of the strict 

transform of W at R and m is the weight vector of the cluster Ay associated to 1 

completed by 0 for those RE CxC;. 

Proof. — Set Q =Q; Since D= Y] mjEj and EP+E=0ij4 75,1 
0<j<n 

is enough to prove that 

CEN V =-er(W) 116 j—iand R=Q; 
= deg(W) fj=1 

=0 otherwise . 

Now, if 1 > 3 , EjeV =0 since V is a subvariety of E; and Oz(E;) is free 

on an affine neighborhood of E, (1.3.4). If ¿ = j, applying the projection formula, we 
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CEDRV = (BW =ca(0z,, (-B)9 OB) W 

=aíO() + W = deg(W) 

Finally, assume ¿ < j. Then by definition of Q = Q;, V is not contained in |) E. 

22) 
Consequently, its image in Z;,1 is not contained in B;. As it coincides with the strict 

transform of Y, we denote it by W;.,1. As above by the projection formula, one has : 

CEN W = (BY Wa = 0102, (-B,) 9 Op —BjoWja1) 
= (OMA Bj Wj») =-—deg(BjoWw) 

Now since j > 1 +1, BjoW;,, is the exceptional divisor of the blowing-up of (Q; in 

the strict transform W; of W in Z;, namely the projective tangent cone Proj C'rW; of 

W; at R = (2;. Its degree is nothing but the multiplicity er(W) since both coincide 

with the degree of the Hilbert Samuel polynomial of the local ring Oy, r. Note that if 

j Hi, then Q; € W;. Indeed by definition, this means that (2; 4 £;. But recall that 

W C Bi, therefore the same inclusion hoids for their respective strict transform W,; 

and £; in Z;. 

1.3.5.1. REMARK. — Hen(W) F 0 in 1.3.5, then R — P for each P € Jv: 

Indeed this is obvious if d = 2. If not, set P = Q¿. With R = Q; and Q = Q; as 

above, we have that Y € E¿N£;,. Now, since j — 1, one has j > 2 and by definition of 

Q, one has 2 > £. So W; C E¿N £, in Z;. Hence if er(W) 4 0, then R = Q; € W), 

so RE Eg and R— Q2 =P. 

Theorem 1.3.5 motivates the following definition : 

1.3.6. DEFINITION. — Let A = (C,m) be a cluster and W a k-dimensional 

subvariety of Bg for some Q € C with k > 1. We say that A satisfies the proximity 

inequality with respect to W if one has 

deg(W) mo > $ er(W) má. 

R=Q 

The integers £ and s = deg(W) are called, respectively, the degree and the class of the 

proximity inequality. 

In other words, this theorem expresses that the cluster associated to a finitely 

supported complete ideal / satisfies the proximity inequalities with respect to any 

subvariety Of Bg for each Q € C7. 

1.3.7. — The following proximity inequalities are intrinsically associated to 

the cluster : take a subset J = [iy <...< uy], 1<1<d-—1, of [0,1,...,n) 
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such that (Q;,,...,Q;, ) is completely self-proximate and set Q = Q;, and W = 

Es, N...N£;_,NBi, C Bq. Here k = dim W =d-— land s = deg W = 1, so one 

has the following class one and degree d — | proximity inequalities 

mi! > S mé-! 

j=iMiET 

Note that these special (proximity) inequalites only depend on combinatorial 

data associated to the cluster, namely the tree I” of the constellation (1.1.3), the proxi- 

mity matrix and the weight vector mm. For this reason, we call them combinatorial 

proximity inequalities. The combinatorial proximity inequalities correspond intersec- 

tion theoretically to the conditions 

rg := (DI) Ej0-- «Es, >0. 

Finally note that although for d = 3, ry has a meaning if J is not completely 

self-proximate, the condition 77 > 0 is superfluous since E;,, M...N £;, = Y obviously 

implies ry =0. 

For d = 2, there is only one proximity inequality for each Q € C, namely that 

corresponding to W = Bg. It is a degree one and class one combinatorial inequality. 

maz > MR. 

R=Q 

given by 

Itis known that the galaxy G of a given consteilation C 1s the set of clusters 4 = (C,m) 

for which the set of proximity inequalities on m for Q ranging in C hold ([E.C], [Caj, 

[LJ],[L3]). As a consequence and the intersection matrix ((Eq+Ex)) being negative 

definite with determinan: —1 (1.6.6), one has : 

1.3.8. THEOR£M. — For d =2, € ¡is a regular cone in the following sense : 

the map D which takes A to D(A) identifies G with 

El = Y 22 EL) 
QEec 

where (ES) is the basis of E, identifñied with its dual EY = Homz(E,Z) via the 

bilinear form defined by the intersection matrix, dual to (Eg)qec, ¡.e. such that 

(EQ Er) =01fQ AR and 1 otherwise. 

Proof. — Indeed, any D € E such that (DeEg) < O for every Q € C 

is effective (cf. [L1], $18) and it follows from 1.2.9 and the above remarks that 

D(G)=E*=(DEE]| (DeEq) < 0 for every Q € C). 

For d = 3, the example 1.3.9 shows that this is no longer true. 
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1.3.9. EXAMPLE. — Consider a point O in a three-dimensional non singular 

variety X and a non singular cubic curve W¿ in the exceptional divisor By obtained by 

blowing-up O. Consider the constellation C consisting of O and nine points Py,..., Pa 

in general position on Y (1.e. such that no other cubic curve in Bpg goes through all of 

them). Let A = (C, m) with mo =3 and mp, =1,1<:1<09, 

Since Wh is the only cubic in Bo going through P,,..., Po, it follows that the 

cluster A may not be associated to a finitely supported ideal /. In fact, if otherwise, AM 

being the maximal ideal of Ox o, Í should be included in M? and the class mod M* 

of any f € Í should be a scalar multiple of an homogenecus polynomial defining W. 

Consequently, Uh should be a base curve of / and / would not be finitely supported. 

Nevertheless, .4 satisfñies all the proximity inequalities. First, this is obvious for 

those corresponding to W C Bp,1<1<9. If W = Bo, one has 

m)=39=9> E má =9.1. 
R=0 

Finally, 1£ W is a curve in Boy distinct from Wo, then by Bézout's theorem 

3de(W)> Y ernW)> Der, (W). 
REWNW 1Si<9 

KW = Vo, 

3deg(W6) =9> Y ep. (WM) =9. 
1<i<9 

Further relationship between Bézout's theorem and proximity inequalities will appear 

in 2,4.1. 

1.3.10. REMARK. — A cluster A = (C,m) which satisfies the proximity 

inequalities of degree 1 (1.e. with respect to any curve of Bg for each Q € C) satisfies 

the proximity inequalities of any degree. 

This can be rephrased by saying that Á satisñes the proximity inequalities if and 

only if — D(A) is r-nef (numerically effective). 

Indeed recall that a divisor D on the sky Z of C is said to be r-nef if DY > 0 

for any exceptional irreducible curve. Then apply Kleiman's theorem ([K] p. 320) to 

Oz(—D(A) 9 Og, for each E,. 

21



2. Linear systems with infinitely near base conditions 

2.1.1. — In this section, we fix a cluster A = (C, m) of infinitely near points 

of X with origin at O. As in 11.8, D = Y] mgEjg = ) dq£Eg denotes its 
QEC QEcl 

associated exceptional divisor on the sky Z of C and r : Z — X is the canonical 

map. We maintain the notation of $ 1. The complete linear system on the germ of X at 

O associated to A will be defined by valuative conditions. 

For each Q E C, the valuation vg of the function field K(X) centered at Bq is 

the valuation given by the order function ordg of the local ring Rig of (Q on the variety 

on which it lies (1.2). 

For0 4 f € R:= Ox,o, the strict transform fQ (resp. the virtual transform 

12,4) of -f at Q is defined inductively as follows : 

Dio=foaA=f. 

1i) for Q € X¿ going to PE X¿-1,1<2£<t, (see 1.1.2) 

fo = (2) PUNO x, q (resp. fq,a =(2)7"* fp,10x,,q) where z =0is a local 
equation of the exceptional divisor Bp at (Q. Unlike fQ, fq, 4 may belong to K(X)xRQg. 

Seteg(f) = va (Sy) and eq,a(f) = vg(fq, a). Note that both eg(f) and eq,a(f) 
depend only on f and A. 

For simplicity, here we call “hypersurface” an effective Cartier divisor on the 

germ (X,O) of X at O. In particular, it need not be reduced. 

2.1.2. DEFINITION. — Let.A = (C, m) be a cluster as above. An hypersurface 

H on (X, O) is. said to pass through C with virtual multiplicities ,m, or simply to pass 

through A, (resp..to pass effectively through A), if for each Q E C, one has 

eq, A(f) > (resp. =)mg 

where f =0 is any equation defining H. 

Let s(4) be the complete linear system of hypersurfaces passing through A. 

The following lemma characterizes the hypersurfaces in s(A). 
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2.1.3. Lemma. — With the preceding notations, let 1 be the stalk of 
TOz(-D) at O. For0 £ f E R, the following conditions are equivalent : 

(i) The hypersurface H; defined by f in (X,O) passes through A, i.e. 

eq AP) > mg, for each Q € C 

GD fell 

(id) va) > dq, for each Q EC. 

Proof. — The equivalences between (11) and (iii) are obvious. Now, from the 

definition of fg,4, one has in K(X) 

Hia=)4: Ll pe 
PIQ=P 

where tp = 0is a local equation for the exceptional divisor Bp on a neighborhood of 

the image of Q. 

On the other hand, by definition of Eb» one has 

Eo = Eq + y” vp(tg)Ep (+) 

PIP=Q 

where, as above, zg = 0 is a local equation of Bg on a neighborhood of the image 

of P. 

But by 1.1.6, E" ='M”? .*E and by 1.1.8, d = Mm. Using the explicit - 
expression for M 5d provided by (+), it follows that 

de == Mo = Ss vog(Tp)Mp s 

Q-P 

Hence : 

eq A(Í) — Mg = ValLq,a) — Mg = VQ(Í) — de 

and the inequalities (ii) and (iv) are equivalent. 

2.1.4. REMARK — DEFINITION. — Let r*(Hy) = div(f) be the total trans- 

form of H¿ on Z ; Hy passes through A if and only r*(H;) — D is an effective 

divisor. We call it the virtual transform of H¿ on Z and denote it by 7(H¿). It follows 

immediately from the previous equality that Ay passes effectively through A if and 

only if vag(f) = dy for each Q E C, ¡.e. if D is the exceptional part of r*(H¿). Since 

this last divisor is z eql DE2» another equivalent condition is that eg(f) = mg for 

each Q E C. pS 
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2.1.5. RemAarK. — Recall that the ideal / in 2.1.3 is complete. When d > 2, 

it may not be finitely supported. If mm > 0, 1 is finitely supported and its associated 

cluster is 4, if and only if —.D is r-generated (1.2.7). Geometrically speaking, this last 

condition means that s(4A) has no other base points than those in C, and that there 

exist hypersurfaces which pass effectively through A. In example 1.3.9, 1 is not finitely 

supported. 

We derive from 2.1.3 the following characterizations of the elements in a finitely 

supported complete ideal. 

2.1.6. THeorem. — Let] be a finitely supported complete ideal in Ox o 

and let A be its associated cluster (cf. 1.2.2). For 0 Y f € Ox o, the following 

conditions are equivalent : 

(0 fe! 

(11) The hypersurface Hy defined by f passes through A 

(iii) va(f) > dq, for each Q EC 

(iv) valf) > dq, for each Q € C such that : 

TQ = (DE == mo” - $ mo >0. 

R=Q 

Proof. -— We know that 7 is the stalk of r,Oz(-D(A») at O (1.2.7) and, by 

definition, A = Ay. Hence in view of 2.1.3, the only assertion which remains to prove 

is that (iv) implies (1). Let T : Y — X denote the blowing-up with respect to / followed 

by normalization and let 7 : Z — Y be the map factoring r. By [L1], prop. 6.2, / is the 

stalk of 7, (107) at O. Thus, it will be sufficient to show that the Eq with rg 40 are 

in One to One correspondence with the prime divisors F' on Y for which vf(107) 40 

and check that for Fg corresponding to £q, one has vr (1Oy) = do. 

Now, the normalization being a finite morphism, it is clear from the proof of 

1.3.2 that rg = O if and only if the dimension of q(Eg) is less than d — 1. On the 

contrary, Fg := ¡(Eq) is the center of the valuation vg on Y ; indeed 1 induces 

an isomorphism from O ro to the discrete valuation ring Oz z¿ Of vq. Hence 

“y (107) = rg UL Of) = vrqUO<z) = dq. 

2.1.7. COROLLARY. — The Rees valuations of a finitely supported com- 

plete ideal (1.e. the valuations centered at the irreducible components of the ex- 

ceptional divisor of the normalized blowing-up of I) are those vg for which the 
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corresponding combinatorial (d — 1) proximity inequality is strict, ¡.e. 

d—1 a-1 ma > Y mer. 
R=Q 

2.2.1. — Finitely supported ideals behave well under restriction. As a co- 

rollary, we get an interpretation of the class one proximity inequalities (1.3.6) which 

generalizes 2.1.7. 

Let A = (C,m) be a cluster of infinitely near points of X with origin at O 

and let Y be a non singular algebraic subvariety of X passing through O of dimension 

k +1 > 2, Then the points of C' which lie on the strict transform of Y may be viewed 

as infinitely near points of Y. By attaching to each one of them its weight in 4, one 

gets a cluster Ay = (Cy, my) of infinitely near points of Y with origin at O ; we call 

it the cluster induced by AÁ on Y. 

2.2.2. PROPOSITION. — Let Í be a finitely supported idea! in Ox y and 

let A = (C,m) be its associated cluster. For each Q € Cry, let Iqyy, be the image 

of the weak transform lg of I at Q in the local ring of Q on the strict trausform- 

Ya of Y. 

(1) For each Q € Cy, the ideal Igyy, is finitely supported and its associated 

cluster is the cluster induced by Aj¿ on Yq. 

(ii) For each pair of points P, Q in Cy with P > Q, Ipjy, is the weak 

transform of Igyy, at P. 

Proof. -— First we prove that for any (Q € Cy, one has ordg [q = ordg lgjyo- 

In fact, if otherwise, the tangent directions to Yg at (QQ would determine a subvariety 

of base points of I in Bg of dimension £ > 1. This may not be, since Í is finitely 

supported. Note that if Q is an infinitely near point of Y above O and if Q £ Cy, the 

same equality holds since both members vanish. 

Now consider P € Cy such that £(P) = £(Q)+1. The exceptional divisor By(Y) 

of the blowing-up of Q in Y is, locally at P, the trace of Bg on Yp ; ¡.e. if z =0is 

a local equation of Bg at P, then zjy, = 0 is a local equation of Bg(Y) at P where 

t¡yp 15 the image of z in Oy, p. The assertions (1) and (ii) follow directly from the 

above observations and definitions 1.2.1 and 1.2.2. 

2.2.3. COROLLARY. — With Y, I and Á as above, the Rees valuations of 

the image ly of I in Oy o are the order functions ug on the function field K(Y) of 
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Y for which the class one proximity inequality for A with respect to the projective 

tangent space Proj Tg Y of Yq at Q is strict 1.e. 

moa> Y) mp. 
REC y, ,R=Q 

2.2.4. REMARK. — Note that given Q € C and a k-dimensional linear 

subvariety W of Bg, there exists a least P £ Q such that W is the projective tangent 

space at Q of the strict transform of some non singular Y going through P. The 

proximity inequality with respect to W is strict if and only if the order funcion vg on 

K(Y) is a Rees valuation of I py. 

2.3.1. — Various global linear systems are naturally attached to clusters and 

finitely supported ideals (Basic definitions and properties of linear systems are given in 

(H], chap. 1.7). 

Let A = (C,m) be a cluster and let D == D(A). First observe that by 2.1.3 and 

2.1.4, the complete linear system d(A) on the germ (Z,|D|) of Z along the exceptional 

fiber |D| of 1: Z — X corresponding to Oz(—.D), is the set of virtual transforms of” 

those hypersurfaces in (X, O) passing through 4. Indeed the stalk 7 of 7.(Oz(—D)) 

at O is the set of global sections of the inverse image of Oz(—D) on (Z,|D|) and, by 

definition, D(A) = (dif) — D|f€ 1). 

For each completely self-proximate set J = [51 <-+-<1i¿) with 1<k<d-1, 

we denote by 97(4) the trace of MA) on Eg := Ej, N---N£;, (1.1.4). 

Recall that, by definition, 90.7(4) is the linear system on £y corresponding to 

the image of / under the natural map 

1 — HUE7,Oz(-D)9O0g),). 

It consists of all divisors T(H¡)o E 7 with f € I such that the virtual transform 7(H¿) of 

the hypersurface Hy defined by f intersects Ey properly. Even if A is associated to a 

finitely supported complete ideal 7, 9.7(A) may be a proper subsystem of the complete 

linear system c7(4) on Ey associated to Oz(-D) 9 Og, (cf. example 2.4.3 below). 

The following notations generalize those which have been introduced in 1.3.3 

and 1,3,4. Let 17 : Ez —= Bz := E¡¿N-:*:*N8;, C Zi,+1 be the map induced by 

Z — Ziys1 let Ly := 7701 7) be the total transform of a general hyperplane A y in the 

(d— k) projective space By and for ¿ — J (ie. 1—> ip, 1<2£< k) let Eg = EjoEz 

(this is also the total transform on Ey C Z of the exceptional divisor of the blowing-up 

of Q; in Ez = £;, N--*NE;, C Zi+1). Finally let my := m;,. 
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2.3.2. Lemma. — With the preceding notation, there is a natural Og,- 

Isomorphism 

Oz(—-D)8 Or, =Or5 (mzLy —- Y, mE; 7) ; 

i>J 

Proof. — Since D = Y m,E!, this is a straightforward consequence of 1.3.4. 

This last computation suggests to extend the notions of constellations, clusters 

and associated linear systems from local to projective context. 

2.3.3. DEFINITIONS. — A constellation (resp. cluster) of points of B = 

P£., £ > 2, consists of finitely many constellations (resp. clusters) with distinct origins 

in B. 

The sky of such a constellation is the variety obtained by blowing-up its points. 

Given such a cluster, its associated exceptional divisor is the sum of the 

exceptional divisors of each one of the clusters originated at a point of B init. (1.1.8). 

Given an integer m > 1 and a cluster 2, the linear system sg(m) is the set of. 

those hypersurfaces of degree m in B passing through each one of the clusters originated . 

at a point of B in 4 (2.1.2). 

We extend these definitions to B = PL. by identifying infinitely near and proper 

points of PL. 

2.3.4. PROPOSITION. — Let D = D(A) be the exceptional divisor of a 

cluster A of points of B and let 7 : E — B be the canonical map from its sky E to 

B. For any projective hypersurface W in B, let T“(W) denote its total transform 

on E and set T(W) = T*(W)-— D. 

The map T is a projective isornorphism from sa(m) to the complete linear 

system calm) corresponding to Og(mL — D), where L := tr*(1) is the total 

transform of a general hyperplane H in B. We call T(W) the virtual transform 

of W on E (with respect to 4). 

Proof. — It follows immediately from 2.1.3 that sa(m) corresponds to the 

subspace H(I 8 Og(m)) of HUOg(m)) where 3 := r,(Og(—D)). Therefore for 

W € sa(m), there exists a unique F € FUI 8 Og(m)) such that W =div(P)+mH ; 

since T(W) = div() + mL — D, it is enough to verify that the natural isomorphism 

K(B) = K(E) of function fields respectively of B and E induces an isomorphism from 

HJ8 Og(m)) wih HYUOg(mL — D)). Itis a direct consequence of the definitions 

of 3, L and of the projection formula. 

27



2.3.5. — Note that, J = [i, < -*- < iz) being a completely self-proximate 

set of indices as in 2.3.1, (JT) := (Q; EC|i= Ty is a constellation of points of 

By3 whose sky is Ey. By restricting to C(J) the weights in A, we get a cluster A(J) 

whose associated exceptional divisor is Y my E; 7. Lemma 2.3.2 expresses that the 

complete linear system cy(A) on Ez is chia but cas (m7). Similarly, we write 

ay(A) instead of 527 (m 7) ; the linear system ay(A) is the set of those hypersurfaces 

of degree my in By passing through each one of the constellations originated at a point 

of By contained in (Q; € C | ¿ — J] with virtual multiplicities induced by m. By 

2.3.4, the operation of taking virtual transform 77 is an isomorphism from ay(A) to 

c7(A). We denote by b 74) the linear subsystem of ay(A) corresponding to 9 7(A). 

More generally, if 7 is a finitely supported ideal with associated cluster 4, we 

consider the linear subsystem (7) of 0(4) defined by (1) := [div(f) -D|f El) 

and its trace 9/(1) on Ey. We denote by b7(1) the corresponding subsystem of ay(A). 

If 7 is complete, then 97(1) = 97(A) and b7(1) = 6/(4). The linear system 

b7(1) can also be described directly from the weak transform of l at Q7 := Qi, as 

follows : 

2.3.6. THEOREM. — Let 1 be a finitely supported ideal and let b (1) be 

the linear system of hypersurfaces of degree my in By just defined. 

(1) The image [7 of the weak transform lg of I at Q = Q;, in the local 

ring Sy of (Q on E; N--*NE;,_, C 4;, has order mz(= mg) with respect to 

M5 := Max Sz. 

(ii) Let In 1,7 be the image of ly under the canonical map 

M5” —+ ME? ¡man 2. PO, (m7)) . 

Then b 7(1) is the linear system corresponding to In 1; 7. 

In particular, for each base point Q = Q;í of 1, bg) = by:y (1) is the linear 

system given by In lo. 

Proof. — First, we observe that by definition, (1) coincides with (Ig) 

on a neighborhood of Eg = E;,. Now, it follows from 2.2.2 applied to lg and 

Y = Ei M--*-NE;,_, C Zi, and from the definition of the trace of a linear system 

that ordg (17) = ordg [q = mg and that 97(1) = 9Q(1,7). Indeed, 2.2.2 ii) expresses 

that the operations of taking virtual transforms and intersecting properly commute. 

Consequently, replacing (E;, A---N Es, _,,Q) by (2,0) and 1; 7 by 1, we are reduced 

to prove (ii) in the case where k = 1 and J = (i,) = (0). So consider f € 1. The 
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virtual transform F(Hy) of Hy intersects Ep properly if and only if ordo f = mp and 

if this is so by 2.1.4, 1.3.4, 2,3.4, 2.3.5 

T(H ¡Eo = 1" (Hy) Eo — Y m¡E¡ «Eo 

Tin p)— Y mi Efy = Hp) 
¿0 

where To : Eg — Bo is the canonical map and (Hip $) is the virtual transform on Ep 

of the hypersurface of degree mo in Bo defined by In f = f mod Mp"**! (with respect 
to 2(0)). This completes the proof. 

The following diagrams gather all linear systems previously introduced and 

bijections between them are represented by ] 

DI(M)CIF(A)JCEG(A) (A) 

| - | ñ 

J 

(Z,1DI) 

21
 

ED CE JA)CAG(A) 

  
+ > 

s(A) a 

| (X,0) 

2.3.7. REMARK. — Let A be the set of completely self-proximate sets. 1£ 7 
is a finitely supported ideal, then 

(3) for each J E A, 9(1) is base-point free 

(ii) for each pair JS”, J of sets in A with 7 CJ”, 9I(Djz. = 97:(1), where 

97(1)7» is the trace of 27(1) on Eg». 
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Proof. — Indeed, it follows from 1.2.3 and 1.2.4 that, / being finitely supported, 

10z = Oz(—-D) where D is the exceptional divisor of A = Ar ; this implies that 

d(1) is base-point free hence (i). Condition (ii) follows immediately from the definition 

of trace since both linear systems correspond to the image of / under the natural map 

1= HUE7:,OzZ(-D)9 Og,,). : 

This motivates the following definition : 

2.3.8. DEFINITION. — Let Á be as above and for each J E A, let Dz be a 

linear subsystem of c7(A4) (see 2.3.1) ; we say that D = (07)7ea is an Á-exceptional 

system if conditions (1) and (ii) of 2.3.7 hold for ». 

Note that, i£ € = (Qo,...,Qn), an A-exceptional system is uniquely determined 

dy (Vido<i<n with the properties : 

(17) 9; is base-point free, O0<i<n 

(ii”) for each pair ¿,j wih0<i<j<nandj—=i dilo . =Vilgnp.- 

The following technical reformulation of (ii?) helps constructing A-exceptional systems 

step by step. : 

2.3.9. PROPOSITION. — With the preceding notation, let b; be the linear 

system on B¡ corresponding to 0; by the isomorphism T, : aj(4) — e(A) 

(2.3.5). For each j — 1, let a = (E, mm) be the cluster of points of B; with 

El = (Qu 1Q; > Qr and Qa — Qi) and such that mÍ is induced by m. 

Let o = F (b;) where q denotes the natural isomorphism from $y;(m;) to 

cas(m:) (2.3.4). 

(Note that b; C as(A) = 5q,(m;) C syi(m;) and that El i= E C Lia ds 

the sky of El, hence UÍ ¡is a linear system on El and Bi5j) = El NB; (2.3.1).) 

Then, (11?) holds if and only if for each 1,3 with j — 1, 

e. > Bs) : 

Proof. — Set J = fi<j)j and consider the isomorphism 77:a7(4) > es(A) 

(2.3.5). Then it is enough to prove that : 

T7(Bj¡8,) =0¡5, and T7(0)¡g,) = 08, - 

If H is an hypersurface in 6;,, A contains Bz if and only if its virtual transform 

T¿¡(H) on Ej contains Ey and by 1.3.4, T(M+E7 = TI(HoBg). Similarly, if H 

is an hypersurface in b,, F(H) contains Bz if and only if 7,(H) contains Ey and 

T(H)»Eg = 77 (F (H)+B7). This completes the proof. 
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Erom the above geometric discussion, we derive a series of examples and counter- 

examples. We begin by a remark. 

2.4.1. REMARK. — Let A be a cluster. For any d > 2, we have the following 

implications between the following five conditions : 

(i) There exists a finitely supported complete ideal / such that A = Ar. 

(10) —D(A) is r-generated and no weight in A is equal to zero, 

(ii) There exists an .A-exceptional system (2.3,8). 

(im) For each 2, 0< ¿< n, e¡(4) is base-point free (2.3.1). 

(PD For each 1,0< 1 < n, Á satisfies the proximity inequalities with respect 

to any projective subvariety (resp. curve)of B; (1.3.6, 1.3.10). 

(NEP) —D(A) is r-nef 

0 > (1) > Gi) > (iv) > (PD > (NEF) 

1f d = 2, all conditions are equivalent (1.3.7). 

Proof. — The equivalence (i) <> (ii) has been proved in 1.2.7. According to 

2.3.8, (1) > (ii) is remark 2.3.7. Since Dd; C c¡(A), (111) > Gv). Now, with D = D(A), 

(iv) is equivalent to saying that Oz(—D) Y Og, is generated by its global sections. 

Hence, by [Fl], th. 12,1, if V is the strict transform on £; of a k-dimensional subvariety 

W of Bs, 

deg(W) mi —- Y eg (W) mi = CDA = (DEN V >0. 
ii 

A geometric proof of this inequality can also be derived from Bézout's theorem applied 

to W and the intersection of k general hypersurfaces in a¡(4). 

2.4.2. REMARK. — If d > 2, then (PI) % (iv). In example 1.3.9, (PD holds 

but Wo is the only cubic in Bo passing through P1,..., Po, hence ao(4) = [Woj and 

the strict transform of Wo on Ej is a base curve in co(4). 

(iv) $ (ti). Assume d = 3 and let C be the constellation consisting of a point 

O € X, six points Q = Qo, Q1,..., Qs in general position in Bo and four points 

Pr, ---, Pa in general position in Bg. Condition (iv) holds for A = (C, m) with mo = 3, 

mg = 2, Mg, = mp, =1,1<1<5,1< j< 4. Indeed, ao(A) is the pencil of 

cubics in Bo having a double point at (Q and passing through Q;, 1<1<5S and co(A) 

is the set of their strict transform by blowing-up Q;, O < ¿ < 5. By Bézout's theorem, 

Qo,--., Qs are the only proper or infinitely near points of By in the intersection of any 
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two curves in ao(4). Hence co(A) is base-point free, The linear system ag(A) is the 

pencil of conics passing through P;, 1 < j< 4, and as above by Bézout's theorem, 

cg(A) is base-point free. 

Now apy(A) and ag(A) being pencils, for any exceptional system ), one has 

do = Co(A) and dq = cg(A) hence bo = ao(A) and boy = agí(A). By 2.3.9, this 

is a contradiction, since P;, 1 < j < 4, being in general position, the trace of 98 on 

EoNBq = P1 which coincides with that of co(4) and the trace of cg(A) are distinct 

pencils in the complete linear system |Op1 (2)|. 

In example 2.4.3 (resp 2.4.4) below, / is a finitely supported complete ideal and 

there exists a point Q in the constellation of base points of 7 such that the linear system 

DQq(1) (resp. the weak transform /q) is not complete. 

2.4.3. EXAMPLE. — Here again d = 3. Let C be the constellation consisting 

of a point O € X, a point Q in Bo and four points P,,..., Pa in general position in 

Bg. Let A = (C,m) with mo = mg = 2 and mp, = 1,1< ¿< 4. As usual, let Z 

be the sky of C and let r: Z — X be the canonical map. Ser D = D(A). One can' 

check that the stalk 7 of 7.(Oz(—D) at O is a finitely supported ideal and that A is 

its associated cluster. 

Now by 2.3.5, ao(4) is the net (two dimensional linear system) of conics in Bo 

having a double point at Q and ag(4) is the pencil of conics in Bg passing through 

Pi,..., P4. Therefore, its linear subsysiem bg(1) coincides with ag(A) ; this implies 

that the trace of byg(I) on Eo N Bq is a one-dimensional subsystem of |Op:(2)|. 

On the other hand, assume 9o(1) is complete (1.e. = co(A)) ; then Bo(1) = 

ao A) and 021 ) is the set of the strict transforms on Eg of conics in ay(A). lts trace 

on Eon Bq = P! is |Op1(2)|. This is a contradiction by 2.3.7 and 2.3.9. Hence do(1) 

is not complete. : 

2.4.4. EXAMPLE. — The ideal J := (2%2 — y?,y?z — 2?,27) is finitely 

supported. The tree of its constellation of base points is 
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The weights in its associated cluster Á are equal to one except mo = 3 and 

mg = mp = 2. lts completion / has the same associated cluster ([L2], prop. 1.10). 

We will show that the weak transform /g of T is not complete. First, we observe 

that is enough to check that b2(1) 4 bo(Tq) where TQ is the completion of JQ. 
Indeed by 2.3.6, one has bg(1) = Bg(lg). We proceed now to compute by(Tg) and 
its trace on Ey N Bg. The cluster of points of Xy with origin at Q associated to lg 

is Aq := (Q,Pj,moq = mp = 2) and by lemma 2.1.3 and remark 2.1.5, f € la if 

and only 1f the hypersurface defined by f in (X1, Q) passes through Ag. Here, with the 

notation of 1.2.1, p¡ : Xy — X is the blowing-up with center O and p, : X2 > X1 1s 

the blowing-up with center Qo,..., Qs. In the chart of Xy given by 1 =x/z, y = y/z, 

z' = z, the point (2 is (0,0,0). In the chart of X, given by 1" =2'/2, y” = y'/2', 

2" = z', the point P is (0,0,0). Therefore la is the ideal in Ox, y generated by 

LI yP 2 with 2(a: +8) + y > 4 and, by 2.3.6, by (12) is the linear sysiem of conics in 

Bg identified with the projective tangent space of Bo at Q given by the vector space 

generated by 22 ,2'y',y?. So, Eo M Bg being the projective line given by z' = 0, 
dada) EonBa is identified with the complete linear system |Op1(2)| ; its dimension 

1s 2. 

To complete the proof, it is enough to check that ba(D)jzong has dimension 1.. 

Since Q — O, it coincides with E DitonBo where 0911) is the set of virtual 

transforms on Eo (with respect to the cluster of points of Bo((Q],2)) of curves on 

Bo in Bai. 

From 2.3.6, it is obvious that bo(J) is the linear system of cubics in Bo 

(identified with the projective tangent space of X at O) given by the vector space 

generated by 122 — y?, y?z — 27. But, by definition, a9(A) consists of the cubics in 

Bo going through Q;,..., Qs and having multiplicity at least 2 at Q. Hence ap(A) 

is a pencil. Since bo(J) € bo) C aofA) the inclusions are equality, 021 ) consists 

of the strict transforms of curves in bo(J) and its trace on £o N Bg is the pencil in 

|Op:(2)| defined by the vector space generated by 27, y”. 

3. Some embedded resolutions 

In this last section, we will be concerned with embedded resolutions of complete 

intersections defined by general enough elements in a finitely supported ideal 7 of Ox o. 

First we recall what an embedded resolution is. 
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3.1.1. DEFINITION. — Let V be a reduced subscheme of a non singular 

algebraic variety X with an isolated singular point at O. A projective and birational 

morphism Tr: Z — X is called an embedded resolution of Y if : 

a) Z is non singular and r induces an isomorphism of Za TTH(O)on Xx0. 

b) the inverse image r7*(V) of V on Z is a normal crossings subscheme. 

Condition b) means that each irreducible component of r7*(V) is non singular 

and that for any Q € m7*(0O), there exists a regular system of parameters (uy, ..., Uy) 

of Ozq and non negative integers T, Qp+],..., 4 Such that (ur,..., ur) (resp. 

(Ur, 0. Ur)usip +++ u4*) is the ideal of Oz q defining the strict transform V? (resp. the 

total transform) of Y at Q. Note that r, Q%,.,1,..., 0: depend on Q and that Q,+],...,04 

may not all vanish. The restriction my, : V' — V is a desingularization of V. 

Now we make precise what we mean by saying that some property holds for a 

general r-uple of elements of 7. We maintain the notation of $1 and $2. 

3.1.2. DEFINITION. -— Let Í be a finitely supported ideal of Ox o and let 

A = (C,m) be its associated cluster. We say that f E 1 is proper if for any 

T=(í<--<iz) with 1 <k<d=dim(X, O) such that Eg := E,¿0--ME, 20 
(in the sky Z of C), the image f7 of the virtual transform fg a of f at Q =Q;, in 

the local ring Sy of Q on £;, N-**NE;s,_, C 4;, has order mg with respect to the 

maximal ideal My of Sy. 

Recall that in view of definitions 1.2.2 and 2.1.1, the order of fy a at Q is at least 

mo. Moreover, observe that for any J as above, the image 1, 7 of the weak transform 

lg of Il at Q in Sy has order mg with respect to M7. Indeed, according to 2.3.6, this 

is soif k < d, 1.e. 1f J is completely self-proximate, Now if k = d, Q = Q;, is a point 

On the line £;, N-+*NE;,_, C 4, and by 1.2.2, ordg lg = mg ; hence it is equivalent 

to say that 1,7 has order mg and that Bz := Es, N:-*N£s,_, N Bi, C Zi,+1 1s not a 

base point of ] (¡.e. By 4 C), where, following 1.1.2, B,, is the exceptional divisor of 

the blowing-up of Q;,. But since the line £;, N---N£;,_, and the divisor B;, intersect 

transversally at By, and their respective strict transforms on the sky Z of C intersect 

transversally at some point, this implies that the canonical map Z — Zy,+1 does not 

factor through the blowing-up of By, therefore By E C. lt follows immediately from 

the above remark, that if 7] = (fo,..., fn), there exists a non empty Zariski open set (2 

in PR such that if (Ap : ---: An) € $2, then f = LA; f; is proper. Therefore 

3.1.3. LemMaA. — Any finitely supported ideal can be generated by proper 

elements. 
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The following proposition expresses the geometrical significance of defini- 

tion 3.1.2, 

3.1.4. PROPOSITION. — Let f € 1 be proper. Then, 

1) the hypersurface H; defined by f in (X,O) passes effectively through A. 

li) for any completely self-proximate set J = [ii < --* < iz) with 

1<%<d-—1 (resp. k =d-— 1) the hypersurface Wy(f) of degree m7 := m;, in 

the linear system b 7(1), defined by the homogeneous polynomnial la f y mod Moo? 

passes effectively (resp. passes) through the cluster M(J) of points of Bz := 

Ej, N---NB;, C Zi, obtained by restricting m to (JT) =4Q;€Cli=J)Y. 

The strict transform H; of H y on the sky Z of C intersects Ey properly and 

HpEz is the strict transform ol Wy(f) (zesp. ¡ts virtual transform with respect 

to MJ). 

ii) for any J = (1 <-+-<ig) such that Eg A40, H, does not contain the 

pont Ez. 

Proof. — Using 2.2.2, the assertions 1) and 1i) are essentialiy a reformulation of . 

2.1.2, 2.3.6, 2.3.4 and 2.3.5. The assertion iii) follows from the fact that f being proper, 

the tangent line to £;, A---N £;,-1 C Zi, at Q;, 1s not contained in the tangent cone 

of the strict transform of Hj. 

Now consider r < d proper elements f¡,..., f, € l and let J be any completely 

self-proximate set. Extending the notation of 2.3.6, we denote by In[fi,..., fr]¡7 the 

K-subvector space of In/¡7 generated by Inf; 7, 1 < ¿ < r. Our assumption on 

fi,-.., fp implies that each one of these r forms is different from zero but they need 

not be linearly independent. 

3.1.5. DEFINITION. — With / and r as above, we say that a property 

holds for a general r-uple of elements of I, if for any completely self-proximate 

JT =(%4 <-+*< ig) win 1 << d, there exists a non empty Zariski open set £27 

in the Grassmann variety, G,(In 1; 7), of vector-subspaces of rank r of In /] 7 such that 

the property holds for those proper fi,..., f, in £[ such that In[f¡,..., f.]7 € L7. 

3.1.6. THEOREM. — Ássume that the characteristic of the ground field K 

is zero. Then, for a general r-uple of element (f;,..., f,) in a finitely supported 

ideal I of Ox o with 1<r< dim(X, O), 

i) the subscheme Hy,.. ¡, of (X,O) defined by f1,...,f, is a reduced 

complete intersection. 
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li) the canonical map T: Z — X from the sky Z of the constellation of base 

points of I to X is an embedded resolution of H y, ... f.. 

Proof. — For any subvariety V of X, the exceptional part of r7*(V) is a normal 

crossing divisor. Let V” denote the strict transform of Y on Z. If V is the intersection 

of r hypersurfaces H¡,..., H, in (X, O), then V is a reduced complete intersection and 

1 is an embedded resolution of V if and only if for any set J = [i¡ <---< 1) with 

1 < k< d such that Ez 4 0 as in 3.1.2, either V' does not intersect Ey or V'N Ez 

is a non singular variety of codimension r in Ey ; in particular, this last condition 

implies that for k > d—r, V'N Eg =0. Here V'N Ey denotes the scheme theoretic 

intersection. 

In addition assume that H; is defined by a proper f, € Í and let H! be its strict 

transform on Z. 

First consider J as above with k = d. Then f;,..., f. being proper, by 3.1.4, 

iii), for any ¿, 1< 1 < r, the hypersurface Hf does not contain the point Ey. Hence a 

fortiori H¿¡N-+-AA(NE7=0. 

Now assume that J is completely self-proximate. Then there exists a morphism 

pr : Eg —= Pr and a linear subspace L of codimension r in P% such that the 

scheme-theoretic intersection A¡ NA ---M Af N Eg coincides with the inverse image 

pz (L) of L on Ez. The construction is standard (cf. 1.3.2). Choose a system of 

generators Jo,...,gn Of Í consisting of proper elements. Let Y C X z Pr, be the 

closure (in the sense of schemes) of the graph of the morphism X + (O) — P%, given 

by zx > (go(íc) : >>: gntz)) ; recall that Y is primary for the maximal ideal of Ox o. 

The map Y — X induced by the projection on X is the blowing-up of 1, the map 

G: Y — Pr is the so-called Gauss map. Now /0Oz being invertible, Z dominates Y. 

Set py := G oque, where q : 2 — Y is the morphism factoring . Finally let L be 

the linear subvariety of P. defined by the r linear equations (Xo,..., XnJA = 0 where 

A is the image in /í, canonically identified with the residue field of O on X, of the 

n xr matrix A with entries in Ox o such that (f1,..., fr) = (90,...,9n)A. Because 

ft). fr 5 90,---,gn are proper one has A N---NH¿NEJ =p (L). 

By applying Bertini's theorem to p 7 ([J], cor. 6.11), one gets a non empty Zariski 

Open set $27 in the Grassmann variety, G(r, n), of linear subvarieties of codimension r 

in P%. such that for L € $27, Pz (L) is empty if the dimension of py(Ey) is less than 

r (in particular if k > d—r) and is a smooth equidimensional subvariety of codimension 

r of Ey otherwise. 

Therefore if, for any completely self-proximate set J, the r-uple of proper 

elements f1,..., f, of 1 gives rise to a linear subspace L € $2%, then A¡N---N Af 
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is a non singular subvariety of codimension r of Z ; hence it coincides with the strict 

transform of A1N---M HA, in Z and by the above criterion Hi N---MA, is a reduced 

complete intersection having r as an embedded resolution. 

Finally the open set £27 in G,(ín 17) is obtained from s2” by identifying the 

one dimensional space generated by In g; 7, O<¿< n, with the coordinate hyperplane 

Xi =0 in Pz. 

3.1.7. REMARK. — The above genericity condition on a r-uple f1,..., f, of 

proper elements in / amounts to requiring that for any completely self-proximate set J 

and for any proper point Q of By in Wy(f)M---NWy(f,) which is not a base point 

of 1, the hypersurfaces W7(f;), 1 << 7 are non singular and intersect transversally 

aq. 

By analogy with the notion of non degeneracy of a polynomial or a formal series 

(resp. r Laurent polynomials) with respect to its Newton polyhedron given in [V] (resp. 

[Kh]), we will say that such an r-uple is. non-degenerate with respect to the cluster 

Ay associated to 1. The cluster extends the role played by the Newton polyhedron, the 

condition of properness of f € 1 replaces that of having a given polyhedron as Newton' 

polyhedron, finally the previous transversality condition is the adaptation to this context” 

of that of [Kh]. We could reformulate 3.1.6 by saying that the non-degeneracy condition 

is open. 

3.1.8 COROLLARY. — For each base point Q of 1, the multiplicity 

eq(Ay,....,) at Q of the strict transform of the complete intersection H y, ;. 

defined by a general r-uple of elements as in 3.1.6 is m( where mg is the weight 

of Q in the cluster associated to J. 

Proof. — By definition 3.1.2, for any proper f € 1, the virtual transform fq A 

of f at Q coincides with its strict transform f¿ and it is a proper element of the 

weak transform lg of 1 at Q. In particular the assertion holds for r = 1. Moreover, 

1£ fi,-.., fr is a general r-uple of elements of 1, by remark 3.1.7, f] y,...,f; 9 is 

a general r-uple of elements of /y. Hence the subscheme defined by these elements 

is a reduced complete intersection ; therefore it coincides with the strict transform 

of Hp... 1 Q. Now eg(Hy, .. ,,) is the degree of the exceptional divisor of the 

blowing-up of Q in this last scheme. By the above remarks, this divisor is noting but 

Wa(fy0n--- A Wa(fr). Each one of these hypersurfaces of Bg has degree mg. This 

completes the proof. 

3.1.9. COROLLARY. — Let Y be a non singular subvariety of X passing 
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through O of dimension at least two. Then, under the assumptions of 3.1.6, for a 

general r-uple (f1,..., fr) of elements in ] with 1 < r < dim(Y, O), 

i) the subscheme Ey, ... ,, NY is a reduced complete intersection of (Y, O). 

ii) the canonical map ty : Zy — Y from the strict transform Zyof Y in Z 

to Y induced by r is an embedded resolution of HA y, .. 7, NY. 

Proof. — We maintain the notation of2.3.6, 3.1.2 and 3.1.5. Let ly be the 

image of ] in the local ring of O on Y. By 2.2.2, fy is a finitely supported ideal ; its 

associated cluster is the cluster Ay = (Cy, my) induced by 4 on Y, hence Zy is the 

sky of its constellation of base points Cy and ry is the canonical map Zy — Y. 

In addition, the restriction fy of a proper f E Í is a proper element of ly 

if and only if for any completely self-proximate set Y = [í < --- < ¿¿) with 

1 < k < dim(Y, 0) such that Zy NE, N---NE, 40 (Ge Qi, € Cy), Infz 

does not belong to the kernel Xy of the canonical surjection In/7 — Inly¡7. In 

particular, if f¡,..., f, is a r-uple of proper elements in / and if for any such J, 

In[f1,-.., fr Ny = (0) then fi, y,..., fr y is a r-uple of proper elements in ly and. 

the H-vector spaces lalf, Le h7 and In[f; y,.... fr y 17, which is nothing but ¡ts - 

image in In 7, y, have the same rank. Now let Xy = [V € Gn 7) | VAKy A (0)) 

and let Oy be the non empty Zariski open set of Gs (In ly ¡ 7) provided by theorem 3.1.6 

applied to ly for k < dim(Y, O). lts inverse $27 under the canonical map : 

G+(n 17) xx — G, (Un ly ig) 

which sends V to its image in In ly, 7 is a non empty Zariski open set in G,-(In 1, 7). 

The properties stated in 3.1,9 hold for those proper fi,...,f, in Í such that 

In[fi,.--,frIz € Sy (resp. £ Ey) for any completely self-proximate set J such 

that Q;, € Cy with k < dim(Y, O) (resp. k = dim(Y, O)). 

From these results, we derive another geometric interpretation of the combina- 

torial proximity inequalities r7 =(—-D)*.E, 0 ---*E;, >0 (see 1.3.7). 

3.1.10. COROLLARY. — Let C =(Qo,...,Qa) be the constellation of base 

points of I and let TJ = [iy < ---< tx), 1< k < d-— 1, be a completely self- 

proximate set. Then under the assumptions of 3.1.6, for a general (d — k)-uple 

f1,..., fa—x of elements of I, 

i) the intersection of the strict transform of H y, ... ¡,_, atQ;, with E,¡N---N 

E;,_, (in the ambient space Z;, containing Q;, ) is a reduced complete intersection 

curve. 
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ii) the non negative integer r y is the number of its branches, i.e. analytically 

irreducible components, whose tangent direction at Q;, (identified with a point of 

B7) is not a base point of I. These branches are non singular and have distinct 

tangents. 

In particular, Hp, ..¡,_, has Y ri branches and it can be formally 
0<i<n 

UU Ts 
QiEC1SIST: 

decomposed as : 

where 

1”) for each 1,j,0<i<n,1<jS<r;, the only points of C on I;¡ (1.e. on 

its convenient strict transforms) are those in the chain ending at Qi. 

11) Ziw1 being the blowing-up of (Q;, Zi — X is an embedded resolution of 

ÚU Tij 
1S3Sri 

Proof. — The assertions i) and ii) are immediate consequences of 3.1.9 applied 

with Y = E,, N-:-N Es, _, in the ambient space %;, containing Q;,, 1 = Ig, the. 

weak transform of 7 at ();, and r =d-— k. Then we consider the special case k = 1. 

The following picture represents the possible behavior of the various branches 

o Hp... fa, after blowing-up Q; : : 

a 
| QEC 1%, 

  

When d = 2, any primary ideal 7 for the maximal ideal M of Ox o is finitely 

supported. If T is complete, its factorization into a product of simple complete ideals is 

given by the decomposition into branches of the curve in (X, O) defined by a general 

f € l (see [22], th. 11.2). 

3.1.11. THEOREM (Zariski). — Suppose d = 2. Let ] be a M-primary 

complete ideal of Ox o and let D = Y m;¡Ej be the exceptional divisor on 
0<i<n 
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the sky of the constellation of base points C] = (Qo,...,Qn) of I associated to I 

(1.2.3). 

The following conditions are equivalent : 

1) £ is simple. 

ii) For a general f € 1, the curve Hy defined by f is analytically irreducible. 

ii) 1 =(=D)E, =m¡- Y  mj=1lifi=n and O otherwise. 
jo 

The map which takes I to C; is a one to one correspondence between simple 

complete ideals and finite chains of infinitely near points originated at O. 

One has the following factorization of Í : 

L= TI > 

0<i<n 

where Í; is the simple complete ideal whose constellation of base points Is the 

descending chain from Q; to O ; this is the unique factorization of Í into simple 

complete ideals. 

The exceptional divisor of the (normalized) blowing-up of ] is irreducible if. 

and only if 1 = If”. 

Proof. — Since Th = Min > 0, the equivalence between 11) and ii) follows 

immediately from 3.1.10. 

Now for any M primary complete ideal /, consider the galaxy G of Cr. By 

1.2.9 and 1.3.8, there exists a unique complete ideal [; whose associated cluster Ay, 

is in G and such that D(Ar,) = —EY where (E/Do<i<n is the Z-basis of E such that 

(EY.Ej) =0 for j X i, 1 otherwise. Since (DeE;) = —r¡, 0 < i < n, one has 

D = Y ri(-E!), hence Az = > r¡Ar, and since 7 is complete and d = 2, / =[] 17". 

For any 21, 0 < ¿ < n, the ideal /; is simple. Indeed the base points of 1; are 

contained in Cr. Assume 1; = J| - J¿ with ideals J,, J2 in Ox o. One also may assume 

J¡ and J2 to be complete. The base points of J¡ and J2 are among those of /;, hence 

they are contained in C/. Therefore there exist D, € D(G) such that D(47,) = Da, 

h =1,2 and D(Ar,) = —EY = Dj + D,. From the characterization of D(G) given in 

1.3.8, it follows that either 0, or D, is O. Hence either J, or J2 is Ox o. 

Note also that lo,..., [n are the only simple complete ideals whose base points 

are contained in Cy ; indeed, if J is such an ideal, then Ay E G, hence there exists 

s¡ € Z>0, 0< i¿<n, such that D(Ay) = 2, sE, J = TI 13" and J being simple, 
1 1 

is one of the /;”s. Therefore the above factorization of / is the unique one. 
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Finally, since Tr, > 0, / itself is simple if and only if r, = 1 and r; = 0, 

0<1<mnm e. i) + il). Moreover, if this is so, for any general, hence proper f € 1, 

the curve Hy defined by f is a branch which passes effectively through the cluster 

Ar = (Cr, m) associated to / (3.1.4) ; in other words, for any 2,0 < ¿< nm, Q; 

is a point on the strict transform of Hy. This forces Cy = (Qo,...,Qn) to be the 

descending chain from Q, to O. 

Now one can recover the weights m from Cy ; miis the only solution of the 

triangular system m, =1,m;-— Y m,=0,0<1< n and this system depends only 
joi 

on the proximity relations in C/. Note that EY = Y m,Ef. 

On the other hand, if C = (Qo,...,Qn) is a chain, this same system produces 

a cluster for which the proximity inequalities hold trivially . Since d = 2, this cluster is 

associated to a complete ideal which is simple by the equivalence of 1ii) and 1). Hence 

any chain originated at O is the constellation of one and only one simple complete 

ideal. 

Finally, from 2.1.7, the exceptional divisor of the normalized blowing-up of / is 

irreducible if and only 1£r¿=0,0<:3<nm,¡e.if Il = fr. 

The above results are used as an essential tool to understand the isolated * 

singulariues of surfaces obtained by blowing-up complete ideals in dimension 2. These 

singularities are the so-called “sandwiched singularities” ; cf. [S], [GS]. 

None of the previous assertions extends in higher dimension. Ín particular / may 

be simple and C, may not be a chain. In [L2], $2, Lipman recovers a one to one 

correspondence between the set of finite chains of infinitely near points with origin at O 

and a class of special *-simple ideals in Ox o. However, the exceptional divisor of the 

normalized blowing-up of such ideals may still be reducible. Monomial examples are 

easily obtained from the combinatorial formula computing the weights in the associated 

cluster from the chain of points given in [C.G.L], th. 10. 

We end this section by some more remarks on the singulariies of hypersurfaces 

or more generally of complete intersections defined by a general r-uple of elements in 

a finitely supported ideal. 

3.2.1. ReEMARK. — Let (V, O) be a reduced curve singularity given by f =0 

in a non singular surface X. Then there exists a complete ideal / in Ox o such that 

f € I and is non-degenerate with respect to the cluster Ar (3.1.7). Such an T is not 

uniquely determined. 

Proof. — Consider any embedded resolution r : Z — X of V ; mis a finite 
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composition of point blowing-ups and we get a cluster A by giving for weight to 

each blown-up point (), the multipliciry eg(V) of the strict transform of Y at Q. The 

proximity inequalities hold trivially for A since its associated exceptional divisor D(A) 

is the exceptional part of the total transform 1*V of V, hence for any irreducible 

component E; of aT1(0), 1; = (-D)o E, is the number of branches of V whose strict 

transforms on Z meet E, and r; > O. Let 7 be the stalk of 7.Oz(-D) at O; Jl is 

complete and since d = 2, A = Ar (1.2.8, 1.3.7, 2.1.5). By definition, V passes through 

A,so f € I; finally f is non-degenerated with respect to A, because rr is an embedded 

resolution of V = H¡. RM 

Following the comparison between clusters and Newton polygons introduced in 

3.1.7 recall that, on the contrary, in general there does not exist any coordinate system 

for which f is non degenerate with respect to lis Newton polygon. If the characteristic 

of K is zero and if (Y, O) is analytically irreducible, this is so if and only if (V, O) has 

only one Puiseux characteristic exponent. In higher dimension, these singularities are 

quite special, since they admit an embedded resolution and hence a desingularization 

which is a finite composition of point blowing-ups (*). As for curves, one may find 

among them, hypersurface singularities which are defined by degenerate functions with 

respect to their Newton polyhedron in any coordinate system. 

3.2.2. EXAMPLE. — Let (S, O) be the surface in C? defined by : 

pj=zór2da?s 22 y - (y y + ya? . 

The ideal 7 = (2%, 222? 22%y, (y? — 27), yz6) is finitely supported and f is non- * pp 
degenerate with respect to Ay. 

There does not exist any coordinate system in which f becomes non-degenerate 

with respect to lts Newton polyhedron. 

Proof. — Let P' be the intersection of S with the plane 2 = 0; I' has two 

Puiseux characteristic pairs 3/2 and 9/2. One can check that Ay = (Cr, m) where 

Cr = [Qo = O,...,Qs) is the chain of infinitely near points of O of level at most 5 

lying on T' and m = (4,2,2,2, 1, 1) = leg (D)o<i<s- 

The Newton polyhedron WN of f with respect to (x,y,z) has four vertices 

ni .= (0,0,4), nz = (0,4,0), nz = (Q,0,2), n4 = (6,0,0), five edges and two 2- 
dimensional faces 7, = (n;,n2,n3) and 7, = (nz, n3, na) respectively normal to (1,1,1) 
  

(*) Nevertheless, this property is not enough to characterize them. For example, an embedded 

resolution of the singularity of type Tss,5 at the origin O of the surface defined by f = 

ryz+xa5+y?+2% in C?, is obtained by successively blowing-up O and the three double-points of 
its strict transform ; but there exists no finitely supported ideal / such that f is non-degenerate 
with respect to Aj. 
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and (2,3,4). 

   15 

The polynomial f is degenerate with respect to A because the sum of its 

monomials f, on its edge y = (n2,na) is (y? — 27)?, hence the scheme defined by 
f, has singular points in C* = ([(2,y,z) € C?,zyz 40). 

Now we discuss the effect of a coordinate change on N. 

First we observe that, up to permutation and scalar multpplication, a change of 

coordinates which would make f non-degenerate with respect to its Newton polygon- 

should be of the form : 
DA 1 * * T 

(3.2.2.1) (») = (o 1 :) (s) 
yz 0.0 1 Z 

where * denotes any complex number. (This is also equivalent to saying that Qo, Q1, Q2 

remain 0-orbits of the natural action of C** = ((2, 7,2) € C? | 272 4 0) on C?.) Indeed 

the singular locus of the tangent cone of S at O is the line y = z = 0 and it should 

remain the intersection of two coordinate hyperplanes, say y = 2 =0, hence the first 

column of the matrix. Now the coefficient A of y in z must vanish, otherwise in addition 

to n3, the point ns = (2, 2,0) should be a vertex of the Newton polyhedron Ñ of f 

with respect to (2, 7, 3). The sum of its monomials on (n3, ns), namely (z + Ap?z? 

would define a scheme having singular points in 2yz % O, contradicting the fact that f 

is non-degenerate with respect to N. 

This computation implies in particular that (n2,n3) remains the intersection of 

the faces and % of N respectively normal to (1,1,1) and (2,3,4). Now let f,, (resp. 

fs,) denote the sum of monomials of f in (z, y,z) on 7, (resp. (2,3, 2) on 72). One 

has : 
2 2 

Fs =2 2? + (y? _ z*) 

and it follows from 3.2.2.1 that there exists y € € such that 

La == f,,(2, y, a yz?) 
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Indeed, the homogeneous polynomial of lowest degree for the weights (2,3,4) in 

(2, j, Z) appearing respectively in x,y,z, is 2,5, 7 — 3? for some 4 € C. K y 40, 

the singular locus of the surface defined by f,, is the curve given by ¿ =*?, j =*é, 

Z = pit*. Since this curve has points in 232 F 0, f is degenerate with respect to Ñ. 

If y =0, then fa = fr, 7. = T2, y remains an edge of 7, and f remains 

degenerate for N. This completes the proof. B 

Note that f being proper in 7, (23 is a double point of the intersection of the 

strict transform of S with the exceptional divisor of the bilowing-up of (2. The last 

computation implies that Q3 lies on a 1 or 2-dimensional orbit of any C**-action on €? 

leaving Qo,..., Q2 fixed. The points Qo,..., (Q3 are intrinsicaily characterized from S, 

since they are its infinitely near singular points. 

Finally we observe that : 

3.2.3. PROPOSITION. — The minimal desingularization of a complete 

intersection surface defined by general elements in a finitely supported ideal I 

is a composition of point blowing-ups, namely those (2 € Cr such that mg H 1, 

where Ar = (Cr, mm) is the cluster associated to 1. 

Proof. — We have already noticed in proving 3.1.8 that if f¡,..., f, is non- 

degenerate with respect to Ay and if f¡g,..., f¿g and Ig denote respectively the strict 

and the weak transform of f;,..., f. and TI at Q € Cy, then ho fig is non- 

degenerate with respect to 4A7¿. Therefore if r = dim(X,O) — 2 and S denotes the 

complete intersection H;y, ... ,,, 1t is enough to prove that the minimal desingularization 

rm: Y — S factors through the blowing-up 01 : S1 — S with center O, provided O is 

a singular point of S, 1.e. mo £ 1 by 3.1.8. 

Let mi : Y — Si be the minimal desingularization of Si. Because of the 

minimality property of T, there exists a commutative diagram 

Y. == Y 
m | E 

Ss — $S 
91 

and since the morphism 7; is birational and V, and V are non singular surfaces, 7] is 

a composition of point blowing-ups. Actually, M being the maximal ideal of Ox o, Tn 

is the minimal sequence of point blowing-ups which makes the inverse image of M 

invertible. 

If 7, is not an isomorphism, 7, contracts an exceptional curve of the first kind E 

of Y, on a point P € V such that MOy is not invertible locally at P, while, 7, being 
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the minimal desingularization of Si, 1, may not contract E on a point of S¡. Hence 

there exists an irreducible component F of a7*(O) such that 7(L) = F. 

We will now get a contradiction by analyzing the geometric behavior of a general 

hyperplane section A of S. Here general means that Á is the schematic intersection of 

S and of a non singular hypersurface Y in (X, O) whose projective tangent hyperplane 

H = ProjTy o at O does not contain any Q E Cr of level 1 and intersects 0; 10) 

identified with the projective tangent cone of S at O transversally. 

Recall that f,,..., f. being non-degenerate and Wo(f;) denoting the exceptional 

divisor of the blowing-up of O in the hypersurface HAy,, 1 < 1 < r, one has 

aMO) = Wo(f) N--- N Wo(f,) and that any Q on 07 (O), which is not in Cy 
is a non singular point of ai *(0) and $1 (3.1.7-3.1.8). This implies in particular that 

the exceptional divisor a; (O) is reduced and that A is a reduced complete intersection 

curve. 

Now since FM HA 4 0, on the one hand A has a branch J' whose strict transform 

on S| (resp. V¡) meets FF (resp. E). Therefore the exceptional point of the strict transform 

of P on V is P. 

On the other hand, one gets an embedded resolution of S by blowing-up the - 

points (Y € C7 and the conditions imposed on Y imply that the blowing-up with center 

O in X is an embedded resolution of A. Therefore the branches of A are non singular 

and intersect transversally ; in particular 1” is non singular. 

If O is a singular point of S, we have got our contradiction. Indeed S is normal 

at O because S is a complete intersection and O is an isolated singular point. The 

exceptional fiber of r(O) has no isolated points. Án easy computation shows that MOy 

is invertible on a neighborhood of the exceptional point of the strict transform of any 

non singular curve on S. 
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ABSTRACT. 

We study the asymptotic distribution of the 

sequence Sy(AM)= (2N+1) 4 ( y Xa ), where A is a subset 

NA y 

of 2d, Ayo AMENNIÁ, v(A)= lim yy cardíAyy) (2N+1y4 € (0,1) 

and X is a stationary weakly dependent random field. We show 

that the geometry ofA has a relevant influence on the problem. 

More specifically, Sy(A,X) is asymptotically normal for each X 

that satisfies certain mixing hipotheses if and only if A verifies 

that EXN(mA)> cardíAy n+A y) H2N +159 has a limit F(n;A) as 
Í 

N>00, for each neZ 7, We also study the class of sets A that 

satisfy this condition. As an application, we develop an 

asymptotic test for the comparison of the mean of two weakly 
dependent spatial samples. 
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1. Introduction, Notation and Statement of the Main 
Result. 

A problem common to many disciplines is that of comparing 

samples of dependent spatial data. Spatial Statistics arise naturally in 

environmental science, geostatical analysis, epidemiological studies and 

other areas (for an expert account see [13], [27]). A probabilistic model! that 

takes into account dependence is reasonable in many cases, in particular 

when there are transference phenomena that "mix" the information of the 

different sample points. We will consider here a very simple model (the 

sample corresponds to a stationary mixing random field with finite second 

moment) and a very simple problem: a test for the homogeneity of the mean 

against the assumption that there is a difference in the mean in two given 

subsets of the sample space.We will consider the case of borh discrete and 

continuous data and develop asymptotic methods to solve it. Since the basic 

ideas of the method are the same in both cases, we will concentrate our 

presentation in the discrete case, that is when the random field is indexed 

by the lattice 24, 
If we consider an lid sample, then, via the Central Limit 

Theorem (CLT, for short), we can construct an statistic whose asymptotic 

distribution is an F of Fischer, with excentricity O under tne hypothesis of 

homogeneity, and with an excentricity that goes to infinity under the 

alternative. This give us an asymptotic F-test with a given level of 

significance and consistent for each fixed alternative (we will call it P-test, 

for short). If the sample is dependent, we show that the viability of an F-test 

depends strongly on the geometry of the subsets that we are compairing. if 

the sample has a mixing property (even if it is m-dependent) and if the 

border between this subsets is "regular", we have a suitable CLT and hence, 

an F-test; but, if that border is "very irregular", CLT can fail to hold, and 

thus. we do not have an F-test anymore. Therefore, we will discuss results 

related to the CLT, showing the influence of the geometrical factor, and as an 

application, we will give an F-test when it is possible. In what follows, we 

will precise the problem and the notations. 

Consider a real valued random field X-- f Xo: nezd ij .Givena 

subset A of ZA denote: Ao AMI-N:¡NJA . Denote G(zd ) the class of subsets 
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for wich the limit : 

v(A)= lim N card(A y) (2N+1y 0 exists and O < víA) < 1. (1.1) 

In Z4 we will take the distance d induced by the restriction 

of the norm: lInll=maxfIn(i)!:1<i <d,and use the following notations for 

Aczd, Bezd : 

d(A,B)= miníd (n,m): n eA, me B| ,2A=ÍfneA:d(n,AS)=1]. 

Define: 

yAx)= V(2N+1) ya 2% Sy 

Cc 

Ay SHA) y 
and 

Sy(A5X)= (2N+1y70 ( “Y XX) 

neA N 

Definition 1.1.: We will say that a subset A of zá belongs to the class M 

(2d ) if it belongs to G (zd ) and satisfies the following condition: 

The sequence F(m;A)= cardíAyN (n+AJH2ZN+1)74 has a 

limit F(n;A) as N > es, for each nezl, (1.2) 

(We will say that F(.;A) is the border function of the set Á and that A 

has an asymptotically  measurable border ). 

In the case d=1, for the construction of invariant means via 

Nonstandard Analysis, a definition than can be considered related to 

Definition 1.1 appears(cf. [28], page 86). We will also extend our definition 
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to the continuous case. 

We will deal with mixing random fields. Under the 

assumption of stationarity and mixing it is possible to extend most of the 

asymptotic results for lid sequences (for a detailed study, see [8], [19], [21] 

and [22]; for examples of statistical models satisfying mixing conditions see 

[16]). Given a probability space ((2,4,P) and F, G sub u- fields of A, the « 

and y - mixing coefficients between F and 6 are defined by: 

x(F, 6 )=sup Í IP(ANB)-PLA)P(B)I: Ag F, BeG 1. 
(1.3) 

o(F, 6 )=sup í ICorr(X,Y)l: Xe L%(F ), Ye 12(6 ) l 
(1.4) 

If we have a real valued random field X= $ X, : teT] with T=-ZA 
t 

or RÁ and ACT, we will denote by oX(A) the a - field generated by ( X,: teA 1. 

We have several alternatives for the definition of the x- mixing coefficients 

of the fieid X: ( here meÑN ) 

ox, m) = suplico X(A), 0X(B) ): ACT, BcT, d(A,B) => m] 

oX(E m) =supia(aX(Aj, 0%(B)): AST, BET, A,BeE d(A,B) > mi 

XT m)=supia(oX(A),0X(B)):AcT, BT, AeT,d(A,B) > m!? (1.5), 

where = stands for the half=spaces of T and IM for the rectangles of T with 

sides paralel to the coordinated axes . lt follows from the definitions that 

ox dm) > aX(E,m) > aX Tm). In a similar way, we can define the p- mixing 

coefficients of X . If EX(x,m) goes to zero as m goes to infinity (where E=a or 

pand X=, Z or II) , we will say that X is EX(x) mixing . In general pX(x) 

mixing implies ao) mixing (cf. [81, [16]). 

Bradley has given an extension of Kolmogorov-Rozanov 

inequality that implies the following result (cf. [11]): 

If X is strictly stationary then: 

aX) and ox) mixing are equivalent ; If d> 1 «X(E ) and 

Az) mixing are equivalent. (1.6) 
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This result, based on a nice application of the CLT for mixing 

sequences, gives the idea that aX(o) (land oX(z) for d> 1) mixing is a strong 

assumption. The coefficient aX(Tlzm) was introduced by Bulinskii, who has 

given examples showing that ox) mixing is actually weaker than aX(z) 

mixing (cf. 14], [5], [6)). 

In this paper we will also consider the coefficients 

aX(T:m:;a,b), with a, b, mel. They are defined as in (1.5), but with the 

additional restriction: 

card(A) < a, card(B) < b. (1.7) 

We will use the following well-known covariance inequalities 

(cf. [8], [16], (21)). 

If X is F - measurable random variable, Y is G - measurable 

and they are both a.s. bounded by 1, then |Cov (X,Y)l< 4 x(F, G ). (1.8) 

1 14 01 
More in general, if p,q, r =1, ae as pl, Xe LP(F ),Ye 14(G ), 

1 
then: ¡Cov (X,Y)l< 8 (a(F, 6 )) + IX] S vil q 0-9) 

We will consider two sets of assumptions for our 

field X, we will list in what follows all the hypotheses we will 

use. 

(H1) E(X,)=0, for each nezd. 

(H2) X is strictly stationary 

(H3) E(IXy!? )< oo. 

(H4) lim, aX(Tlim; 00, 00)=0, 
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00 

(HS) y; m-1oX(TI:m;a,b) < co for a+b< 4 
m=1 

(46) lim, mdaXTIm;1,00)=0, 

(H7) Y trX (n)< 00, where r% (n)= EX ¿X,). 
nezd 

(18) Y Y (m)= 02(x)>0 
nezd 

(H9) For each A =zÚ, lim y lim supy EfISA(A, X-xJ))23=0, 

where X) is the truncation by J of the random field X, defined by: 

Xy xs El Ax 13 > 
(H10) There isa real number C(J)>0 , depending only on 

card(Ay) 7 

X and J such that sup ASL-N,NJd Ej (SpA, XINH <C) [ QNDÓ ] 

Definition  1.2.: We wili call B to the class of real valued 

random fields X= Í Xp: nezd j that satisfy (H1), (H2), (H3), (H4), (H7), 

(H8), (H9) and (H10). We will call S to the class of random fields that satisfy 

(AD), (42), (13), (H5),(H6), (H8) and (H9). Finally, let us call F to the union 

of Band S. 

Remarks 1.1. : 

a) The basic idea is that the class B allow us to derive a CLT using 

Bernshtein's "big blocks" method (cf. [1]), while for the class S we can obtain 

a CLT by using Stein's methods (cf. [31]). ft should be noticed that in (H4) no 

rate is assumed, but since "big blocks" are involved, it is sometimes 

difficult to verify this kind of conditions. In certain applications, like 

Gibbs fields , conditions of asymptotic independence between very big 
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blocks are quite useless (cf. [15]). Stein's method requires conditions on 

"small blocks”, like (H5), and asymptotic independence between one-point 

sets and arbitrary sets, like (H6). On the other hand, in (H5) and (H6) rates 

are required. This is the reason why we preter to include both classes as 
alternatives. 

b) We will see later that we can replace (H9) and (H10) by the condition: 

(M) pX(TI;1;00, eo)< 1, thatis if X satisfies (H1), (H2), (H3), 
(H4), (H7), (H38) and (M), X belongs to B. 
c) We will also see that we can replace (H9) by the condition: 

1 

(R) fou) (Q(2u))2 du<oo ; where Q is the quantile 
0 

function defined by Q(u)= inf [ pO: P( IX ybUs ul and ol depends on the 

mixing coefficients between one-paint sets: 

ol(u)= card $ nezd :a (aX; 0b,oX((n3))> ut. 

As an example, if X satisty (H1), (H2), (H3), (H5), (H6), 

(H8) and (R), then X belongs to S. 

We can present now our main result. 

Theorem 1.1: Let Ae G(24 ). Then the following statements are equivalent: 

(1) For each Xe FE, the random variable: Sy(A,X) has a weak limit S(A,X). 

(11) For each Xe F, the random vector Mu(AX) has a weak limit M(A,X). 

(111) For each Xe F, the random vector MAX) has a weak limit M(A,X), 

whose distribution is gaussian, centered and with variance matrix C(X) given 

by: C(X) 2 v(AJO (0-4 00, C(X)7 9= C(X) 212400), C(X)79= Urano ?(x)- 
y(X), where 
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+00= Y Tk (MF(m;A), with F(sA): 24 > [0,1] . (1.10) 
nezd 

(iv) AeM (2d). 

Remarks 1.2.: 

a) The funcion F(.;A) that appears in (1.10) is the border function of A. 

b) In fact, we are going to show that if Ag M (2d ) there is a stationary, 

centered and m-dependent gaussian field X such that SylA,) has no weak 

limit . 

c) Erom (H7) It follows that y (X) is well-defined. 

The paper is organized as follows: in section 2 we pesent 

the proof of Theorem 1.1, together with some preliminary results. In section 

3 we study the class M (zd ), giving examples of sets that are not included 

in this class. We also include in this section an extension of Theorem 1.1., 

called Proposition 3.1: we consider there a k-valued random vector, 

corresponding to the normalized mean of X over k disjoint subsets whose 

union is 24 (Theorem 1.1 corresponds to the case k=2). As an application of 

Proposition 3.1, we develop in section 4 an asymptotic F-test for the 

comparison of means. The result of the application of this test to some 

simulated samples is shown in the appendix. 

2. Central Limit Theorems. 

Theorem 1.1 follows as an inmediate consequence of 

Propositions 2.1, 2.3 and 2.4. The proofs that we will present use standard 
methods for mixing processes (cf. [7], [14], [19], [22] ). 
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Proposition 2.1: 

a)Let A be a subset ofZA. Then: ES ¡(A 0)2)= $ pA (n)H y (n:4), with 

nezd 

Hy(m;A)= card[Ay (+A) 2N+ Dd, 

b) If X satisfies (H7) then there is a constant € depending only on X such 

: card(A y) 

(2N+1)4 * 

c) If Ae G(ZU y, then: lim n;A) + Fy(mA))= vía). y Hu 

d) If Ae G(zd) and Af M (2d ) there is a stationary, centered, m-dependent 

gaussian field X such that S NA, X) has no weak limit. 

Proof: We have: ESA AD) Í (2N+1y74 ( y EX E ))= 

k,mMEÁ yy 

y ¿E (n)Cy(n:A), with Cy(n;A)=cardf (k,m)eA y x Ay¿kem= nj(2N+1)4 > 
nel 

Hyim;A) , and a) follows. 

To prove b), note that Ha (mA) is bounded by card(A y) and 

use (H7). 

Consider As c(zd ); we have that: 

Ha (mA) + Pay(1A)=card(ENNIÓ) n (a+ AL) HN 1 (2.1); N? 

If meA NI ri then m+ne[-N,NÍN(n+A y) and it is obvious that 
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: . S ; .1yA_0: : , limy(card(A y) card(A y np RN 1y 420; from this and (2.1), c) follows 

Consider Ag M (2d); pick n*ezd such that the sequence: 

FF L(nó;A): Ne] <= [0:11] has no limit (it is obvious that we can take nO). 
N 

(m*A) that 

(m,1) (m, 2) 
converges to b(1) and $ (2), respectively. Let us consider a centered, 

Then there are two subsequences F (mA) and F 
N ÑN 

1 
stationary, gaussian field X with covariances:rX(0)=1, rx(n)=pe (07 ) for 

n=n* -n* and rÁA (n)-=0 for nz0, n*,- n”. It follows that X is || nl- dependent. 

From a) and c) we have that for i=1,2, Ef(S (A;X) 12 converges to 
Nm) 

v(A)(1+0)-0 (1)p; since X is gaussian, it follows that Su (A;X) converges 

-(m,1) 

to a N(O,v(A)J(1+p)-4 (1)p) distribution and that S (A;X) converges to a 

ím,2) 

N(O,v(A)(1+p) -6 (2)p ) distribution. Hence, SylA;X) has no weak limit + 

The following result, whose proof is elementary, 

ciiaracterize the possible limits under some of the hypotheses considered 

above. 

Proposition _ 2.2: Let X be a random field that satisfy (H1), (H2), 

(43), (H4), (H7) and A a subset of ZA. If Sy(AX) converges weakly to a 

random variable Z, then Z is gaussian. 

Proof: Take O<s<l and N(s) the integer part of sN. Then we get: 

e 2N(s)+1 4 
Sy(A,X)= Sus) AO! m1 J21+ SylA-A y (gy 0 (2,2). 
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The first term on the right side of (2.2) converges weakly to YsA Z; by 

Proposition 2.1., part b), Sy(A - Ax(sy% is uniformly integrable and hence, 

tight. Choose a convergent subseguence of Sy(A - An(sy% and call Y(s) to its 

limit. Both Z and Y(s) are centered and with finite second moment. 

A o, Take q(N) increasing to infinity such that limy N 

Applying again Proposition 2.1., part b), it follows that we can replace 

l ; [ 2N(8)+1 4 a 2N(s)+1 4 Se 
Sus (AND Í ( 2N+1 ) 1by Sxig)- ans) (4% DJ 2N+1 11m (223 s 

without changing asymptotic distributions. 

It follows that if EN stands for the characteristic function of Sy(A,X) and YN 

stands for the characteristic function of SyíA - Anís» then, by (1.9): 

| $ 2N(s)+l q , ¡ 8 X (N)) d th iz Yayo " Vn(s)- ans) ( 2N+1 JS Yy O ls as(q(N)) and then, by 

(H4), we deduce that if y is the characteristic function of Z and v(S) the 

characteristic function of Y(s), then: 

yw(0)= y(Wsó] er (S)(t) , for each real t, O<s<1. (2.3) 

This implies that Z belongs to the class L of Kintchine (see 

[18], page 553); what follows is just the proof that the only distribution with 

finite second moment that belongs to this class is the gaussian. 

Iterating (2.3) we obtain that Z is the weak limit of a 

triangular array of independent random variables (centered and with 

bounded second moment); therefore Z is infinitely divisible and its 

characteristic never vanishes. 

From (2.3), we obtain: 
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y -d 

vis ovisiy- LAS 10 she) > 
yw([s 4] y 

a vs) y. (2.4) 
w(Ís 

[terating (2.4) we deduce that for each O<s<l, Y(s) is 

infinitely divisible. 

Then, we can use the following representation (see [2], 

pages 384-388 ) 

5 2 i ll 1 a » w(0=exp! j A 100 A en, 
Xx 

ba 

v(S)(t)= expf | peo dels) (29), 
XxX 

-00 

where als), are positive finite measures that characterize y and y(S), (2.5) 

From (2.3) and (2.5) it follows that: 

deco Vedas Vs dx) mE des) (x) for all real x,0<s<1. (2.6) 

lt follows from (2.6) that if: 

1 1 
MÍS)(a) = == del . —— de(x) for 0, MÍS) is an increasing 

x2 x2 
a a 

tad l= 3 al 

function of a for each O<s<1. 

If € is not concentrated in the origin, then there is an O<s ps! and an 20 >0, 

such that MÍSo)(a,)>0; but for a > ay we have that: 

E(la, JUL A al) >222MÍ(S0) (a) 2a2M(89 (ap), that goes to infinity with a, what 

contradicts the finitess of ¿9 

Ín what follows, we give the proof of the CLT using 
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Bernshtein”s method. 

Proposition __2.3.: Let X be a real valued random field such that 

Xe B, and consider Ae M (zd ); then the random vector My(A,X) has a weak 

limit M(A,X), whose distribution is gaussian, centered and with variance 

matrix C(X) given by: 

CO) y VA) 09-Y 00, C00)y 75 C(X)7 1 = Y 0), C09,) = (I-v(a)J02(- 
v(X), (where y(X) is defined as in (1.10) taking as F(.;A) the border function 

of the set A ). 

Proof: Since (H9) holds, it is enough to prove the result for X 

bounded. 

Take A,u two real numbers such that: 

T(A1)=22[v(AJ0200-y00] + 241 Y 00 + 12 [(1-v(4)02(00-Y 00] >0 (2.7), 
where y (X) is defined as in (1.10) taking as F(.;A) the border function of the 

set A. 

Itis enough to prove that : 

Wy(4,1)= (2N+1)4 la Y X a + y Ea ) converges weakly to a 

neA y ne(AC) N 

N(0,T (A,11)) distribution, where ANT AN[-N:N]d (A, 1 will be assumed fixed). 

Consider the real valued random field: 

X(A,U )= (X, (A41):meZ 9), where X (MUA, if neA, and X y (41)=p X, in 

other case. 

Set: Sala (O V(2N+ 1) Y X,(55). (2.8) 

nen 

Consider two non-decreasing sequences of natural 
numbers p(N), q(N) such that: 
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lim yp(N)=tlimyq(N)= 00; 

Jj , 

2. PA a NK(N) aX (TI: q(N);00,00 )=0; limy P(N) = lim y N 

ZN 
yd and "int" stands for the integer part (the Nan) ger p 

existence of such sequences fllows from (H4)). 

where k(N)= int 

A bit of notation: for at 3-1, call Jn (3) 

to the interval [-N+ip(N)+ig(N),-N+(1+1)p(N)+iq(N)] ; consider their union, 

2N a )-13 and Ay= Uy IA, 
A SE y U Ey 0: 0, int 

Au is the union of k(N) disjoints d-cubes of side p(N): N 

Ay = Uf Ay (1): i21,2,..., K(N)J; hence card(A y )= K(NXp(N)+1)4. Even more, 

ifizh,d (Ay 0 ,Ay (1) )J> a(N). (2.9) 

Using the computations made in Proposition 2.1 parts a) 

and 2) we get: 

Ef (Sy(A10(0)2) =(2N+1)34 f22 y cast (CyNA)N (n+CA NA) rX (n) 
nez 

+2A4 Y cardf (C4MAON (n+C NA) rX (n) 
nezd 

+12 Y cardf (CyNAS)N (n+C NACI (m)3 (2.10); 
nezd 

lim y Ef (Sy (A 11(29)2)- 1(4,11) (2.11), and 

Sy(AL) ( An )2 converges in L? to O. (2.12) 

Therefore, it will be be enough to prove that Sy(41) (An ) 

converges weakly to a N(O,T(A,11) ) distribution. 
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We have that: 

i=k(N) 

S nia) (Ay)> y Syb (yy (1) (213) Then, 

j=1 

using(1.9), we obtain: 

m=k(N) 

n*1 

4K(N) ok (g(N)(2.14); 

hence, Sy(a, Ji Mn ) has the same asymptotic distribution than: 

i=k(N) ; 
; e y A E A z 
Za (A )= Lo a wnere [ Zy (4,1): i=1,..,K(N)) is 

l= 

a triangular array of independent copies of [ Sy(A Mn (0) :i=L.... KN) 

Using (2.10) we have: 
i=k(N) 

EZ (31 )4= y EISy(»U)NAy (1) )2> 
l=1 

i=k(N) 

(2N+1)4 (12 $ S carl (Ay()NAJN (n+Ay(INA) rX (n) 
nezd i=1 

¡=k(N) 

+2A4 Y S card (Ay(BNASA (+A (NA) r% (n) 
nezd i=1 

i=k(N) 

+42 Y S carál (AN(YNAS)IN (n+A (YNAS)] rÁ (m)). (2.15) 
nezd i=1 

Pix neZ A and pick N(n) large enough such that q(N)> l|n]| for 
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N > Nín). It follows that for N > N(n), An (1) and n+An (h) are disjoint sets 

if ieh. Using this and the fact that limy, card(EN;NILA y ) (2N+1)4 =0, we 

have that: 

limy card(AyA (n+Ay¡)) (2N+1) 4 - 

i=k(N) 

lima Y card (Ay(DNA)JN(+A y (1)NA)H2N+ 14 ; using the same 

i=1 

idea in the other terms of (2.15) it follows from (2.11) that: 

lim y Ef (Zy (419) 1(A,11) >0. (2.16) 

To conclude the proof it is enough to prove that the 

triangular array Í ZN (AJA): i=1,...,K(N)] satisfies Lyapunov's condition; i.e., 

that Ly(AJ1) goes to O with N ; where: 

i=k(N) 

Ena 1) y . (ALAOR (2,17) 
j-= 

From (H10) we have: 

Ly (A,11)s k(N) max EZ (1H 
1<i<k(N) 

reía y 2N_—— ¿¿pime+nd, > 
- CODK(NI (2Ne1y4 ] 4= DE man ) e 1 ] 4, that goes to O with 

N. 

Therefore, Ly (511) goes to O with N 6 

The following proposition give sufficient conditions to have 
asymptotic normality, based on the p - mixing coefficient. 

Proposition _ 2.4.: Let X be a random field that satisfies (H1), 

(H2), (43), (H4), (H7), (H8) and: 

(M) eX (TI; 1:00, 00)< 1. 
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Then X belongs to B, and therefore, My(A,X) has a weak 

limit M(A,X), whose distribution is gaussian, centered and with variance 

matrix C(X) given by: 

C(X) y ¡= VA) y 00, 000) 7 000 y 1 = Y 00), 00) =(1(A)0200-y (0) . 

Proof: It is enough to prove that (H9) and (H10) hold. 

The basic arguments are the following inequallities: 

Consider F a finite set, and a set of centered random 

variables Í Xx, teF | with moments of order q> 2 finite and: 

p = max pcoX(A), oX(B) ): ASF, BF, A and B disjoint!, 

R = sup ¡ ICorr (V,W)l : Ve SÁ(A), We SX(E-A): AGE] and 

SX(A) stands for the set of linear combinations of Í X,: teA |. 

Then we have that: 

1+R 
If q=2, R< 1: mod A (X, 12 El Dx 1 <( El y Ea. 

teF teF 

(2.18) 

If q=4, p< 1, there is a constant € depending only on p such that: 

Ef O X; 4.00, ex 1212) Ef(x,)23.(2.19) 
teF teF teF 

( For the proof of (2.18) see cf. [9], Lemma 1; for the proof of (2.19) cf. [12], 

Lemma 3) 

Applying (2.18) and the trivial observation that R<p , we 

get: 

] 1+pX(TT;1;00, co al J 
ES. (A, X-3))23 2N+1 EX - X2)2 ES (A, 4,2) na y) RNA > (X, - xp3 

neÁ y 
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X(11:1: 
Lp Mt, co 1yo An ) EX - X0)2)s ia +1) card(Ay) El(Xy - X)%s 

Aun; epica, Ef Xo -xy2) t, and (H9) follows. 
mA. 00, 09) 

In order to prove (H10), we apply (2.19) to XJ and obtain: 

Ef (Sy(A, XI) % <C(2N+1)20 $1 y E( x22) 1% y El X23 - (2.20) 

DEA y NA y 

Using the fact that IX < 2] we obtain: 

EAS (A) Hs C(2N+1)724(16J4card(A y)? 4 4J2card(A y)ls 

CoDÍ 2N+1)2ócard(Ay)?, where C(J) is a constant depending only on X and J, 

and (H10) followse 

Remark_2.1.: 

a) Using Bradley's results, condition (M) can be restated in 

the following way: 

1 
oxMb;li00, e0)< > (cf. [11], Theorem 1). 4 

b) It should be noticed that condition (M) is weaker than 

oXó)- mixing (cf. [10], Theorem l or [12], Remark 2 ). 

We can also get the CLT using Stein” s method. 

Proposition  2.4.: Let X be a real valued random field such that 

Xe S, and consider Ac M (2d ); then the random vector Mu(A4,X) has a weak 

limit M(A,X), whose distribution is gaussian, centered and with variance 

matrix C (X) given by: 
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C(X) y = víAJa209-y (0, CO y = 000 71 = 1.00, CO, 7=(1-v(A))0200=Y (2) . 

Proof: Since (H9) holds, it is again enough to prove the result for 

X bounded. 

In that case, one can follow very closely the arguments given by Bolthausen 

in [3]. Details are left to the reader 4 

In what follows we give another sufficient condition to have 

asymptotic normality, under adittional assumptions on the quantile function 
and on the mixing coefficients. The basic tool is the following covariance 

inequallity, due to Rio (cf. [26], Theorem 1.2 ), wich has been used to obtain 

functional CLT's (cf. [17])): 

ff X is a random field that satisfies (H2) and (H3), then: 

1 

$ ICov(X > X ¡Js f lu) (Q(2u))2? du ¡where Q is the quantile 

nezd O 

function.Q(u)=infíbO:P(IX,l>t)<uj and oc7l depends on the mixing 
0 

coefficients between one-pont sets and is defined by: 

orl(u)=cardine2d: a (aX 0p:0X(1n3))> u3.(2.21) 

Proposition  2.6.: Let X be a random field that satisfies (H1), 

(H42), (H3) and the following condition: 

1 

(far (Qu? du< oo. 
0 

Then X satisfies (H7) and (H9). 

In particular, if X satisfies (H1), (H2), (H3), (H5), (HO), (R) 

and (H8), then X belongs to S. 

Proof: (H7) follows inmediately from (2.21). 

Applying (2.21) to X-XJ it is clear that is enough to show 
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that: 

1 

lim ¡Jo (Qlí2u))2 du =0, where Q stands for the 

10) 

quantile function of the random variable Xo! 22) 
IX; 

But it is easy to see that Ql(u)= Qíu)1 and 
tusP(IX ob) 

(2.22) follows from (R) and Dominated Convergence Theorems 

Remarks_2.2.: 
a) It is important to study under what kind of conditions 

(H8) holds. If we assume: 

(UJEf (5 E2% X92)K2N+10)% is unbounded ; 

and that one of the foliowing conditions holds: 

(1) lim mm RX(m)=0, where: 

RX(m) = supf ¡Corr (V,W)l : Ve EX(A), We HK(B): Azzd, Bezd, d(A,B) = m) 

and HX(A) stands for the L2 -closure of the set of linear combinations of 

EX, neA]; 

(11) y | nildirX (mn) < 09; 

nezd 

then (H8) holds. 

The proof that (U) and (ii) imply (H8) is elementary; the 
fact that (U) and (i) imply (H8) follows from Bradley (cf. [9], Theorem 3). 

In addition, if we have that: 

(O)RX(1)<1, 

66



then, by (2.18), (U) holás. In particular, (M) implies (U). 

If the random field is positively associated (pX (n)20 for 

all n), then it is obvious that (H8) is satisfied if X is non-null (For CLT"s for 

associated random fields, cf. [30])). 

b) Consider a linear field X given by xr A A 

me 

where the random field W=[ W,,: neZd je E, and the kernel Í Y nezd y 

belongs to ¡1 ¡zd ), 1.e., y hy, < eo. This kind of fields appear in many 

mezd 
applications, even in the case W ¡id. Assume that (H7) and (H8) are satisfied. 

lt is very easy to see that Theorem 1.1 holds in this case, using standard 

argument (for recent results for linear fields, cf. [23)). It is well known that 

X is not necessarily mixing. More precisely, if d=1 and X is the solution of 

1 1 
the AR (1) equation X= 7 X-1 + 3 Wo , where W= [ Wo! ne Z ] are lid such 

1 ji 1 ete Ex ] 
that rw, => )- ais AWA ia ), then X fails to be mixing (cf. [29]), 

eventhough it is a linear field as above. But X can be suitable approximated 
by moving averages on W (truncating the summation), and it is easy to verify 

that we can apply theorem 2.1 to these approximations; consequently, we get 

the Central Limit Theorem for X itself . 

c) We can consider an increasing sequence of finite subsets of 

zd ÍA yiNElN3, and say that it is M-convergent if: 

Hy(m)=cardíAN (n+A y) H2N+1)74 has a limit H(n) as N> co, 

for each nezd, and O< H(O) < 1. Following the ideas that we have used, it can 

be proved that if X satisfies(H1), (H2), (H3), (H4), (H7), (H8) and (M), then 

CLT holds for Sy(A;X)= V(2N+1)4 ( y Xo ). This extends the notion of 

neA N 
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convergence in the sense of Van” t Hove (cf.[6], [21]), that has been used in the 

development of CLT“s for random fields. 

d) Condition (R) includes as a particular case hypotheses 

of the Davydov's type: 

(1) There is a 8>0 such that El Xy8)< co, 

co 

5 
(ii) Ba mál(ax(6:m;1,1))2,5<00 

m=1 

3. Examples. 

We will study in this section examples of sets that belong 

to M (zd ), and examples of sets that do not belong to this class. All the 

proofs are elementary, and we will frequently set d=1 for the sake of 

simplicity; the extension of the examples to greater dimensions is trivial. 

We will begin showing that the class M (zá ) contains all 

the sets with "regular" border, in the sense of the following definition. 

Definition 3.1: Let A be an element of G (zd ) . If v(JA)=0, we will say 

that A has null border. We will cal NB (2d ) to the class of sets that have 

null border. 

Lemma 3.1: Let A be a subset of 24. Then for each n ezd , NElN, we 

have that: Fs (mA)s (d [| nl] +1) card(3Ay (2N+1)9 (3.1). 

In particular, NB (24)= m(z0). 

Proof: If n=0, (3.1.) is trivial, because En (0;A)=0. 
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. e . A $ e ej y zu NN If nx0; we have cardíAyN in Any - 2 a [m-nea,J' 

MEÁy 

id 
. € . > . . . . 

lfm An and m-n EAN , consider the p(n) E In(i)!+1 points with integer 

11 

coordinates included in the oriented poligonal C(m,n) that joins m and m-n ; 

its obvious that at least one of this points must belong to dAy> lfp € JAN ; 

€c 
there are no more than g(n) points m An such that im n DA and peC(m,n); 

from this we have that: 

cardfAgN (+A Ii < g(n) card(dA y is id nl +1) card(dAy, ), and (3.1) 

follows. 

If Ae NB (2d ), then, applying (3.1) we get: 

lim yy Fy¡(n:A)=0 Yn e HZ Ace M(2 ) and F(.:A)=0 4 

a) IF A belongs to NB (zd ) and X isa random field that 

satisfies (H1), (H2), (H4), (H7) , (H8) and such that 8 Es, X) is 

asymptotically normal, then My(A, X) converges weakly to a gaussian with 

independent coordinates. 

This can be proved as follows: (H7) implies tighness of 

My (A,X). Pick any weakly convergent subsequence. Let us call (V,W) to a 

random variable with the distribution of the limit. (H4) implies that V and 

W are independent. Since Ez, X) is asymptotically normal, then V+W is 

gaussian; then, from the well-known theorem of Cramer (cf. [18], page 498), V 

and W are gaussian. 
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Therefore, it is easy to develop an F-test for the comparison of 

the means [f the set A has null border (cf. [24]). 

b) The inclusion is strict: take A =2%, d=1. We have that 

1 
E(n;A)=0 if n is even and F(n;A)= ¿Y n is odd. Then, for each Xe F, M NA) 

has a weak limit M(A;X) distributed as a centered gaussian random 

. l . 
vectorwhose coordinates have variance 2 a PA (n) and covariance 

nel£ 

yX (n) . In particular we can obtain, for particular processes X, a 

ne22+1 

degenerate limit. [t is very easy to extend this example to d>1. 

l z 

The following result shows that there is an uncountable family 

of sets that do not belong to M (zd Jn fact this family has the cardinal of 

the continuum). 

Lemma 3.2: Define A(0)= [0,100), A(n)= 2 A 107 for sl, 
Take: A(n,0)= A(n3n(5Z ), A(n,1)= A(n)nf(10Z JU(10%+1)1, neN. Given 

ca 
i=n-1 

xe[0,1], write x= y (x(n)2%), where x(n)= int(2Mx - Ss x(1)28-D)e10,1] 

n=0 i=0 
for each n, and define 4 (x)= U Í A(n,x(n)) : neiN]. 

Then, if D stands for the set of diadic numbers (countable), 

$(x) belongs to G(2) - M (2) for each xe [0,1] - D. 

Proof: Let x e [0,1] - D. Then there is pair of subsequences n(k) and 

m(k) such that x(n(k))=1 for each k and x(m(k))=0 for each k. 

Consider N(x)= 1002" y(x)-1002 97, pop: 

1 10028 19H op 
Engo BAS 77 É HZ N(k) 10 2 10020k), 4 5 
  

- ] 
2 100270, ; 
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pants .19a 10029 00-1 
  (1; Aja 1 + 5 

de 2 1002700), 1972 10028, 

Hence: 

; Fo e1zaye 9.001 19.999. a 
im sup 1 EngybAls 00.000 < 200.000 5 4? SUP y Puy HA), an 
does not belong to M (4), while it is vbvious that A belongs to G (2 ) and 

1 
Y — 

VEA 10 * 

Remarks  3.2.: 

a) The following example is very illustrative. It follows 
2 

from the previous Lemma that if we consider A= $93 and the centered, 

stationary, gaussian and l-dependent process X=1X,: neZ) with PA (0)=1, 

TÁ (1)=rX(-1)= =pe (0;1/2), then SyA:X) has no weak limit. However it is 

obvious that $ Sy(B; X) has a gaussian weak limit for any B of NB(2). The same 

random field, with a very simple structure (gaussain and l-dependent) has 

essentially different asymptotic behaviours for different sets. 

b) mM(zd) is not an algebra. In fact, if d=1, using the 

notation of Lemma 3.2, define B(n,0)=A(n)N(52-102); Bln,1)=A(Nn1O0Z2+1) 

and n(x)= U f B(n,x(n)) : ne]. It is easy to see that n(x) belongs to M(£ ) and 

it is obvious that 10 Z belongs to M(X ) , while $(x)=n00U(10%) does not 

belong to M(4) . 

Taking into account this last remark, we will introduce an 

additional definition that allow us to extend Theorem 1.1 to the case in wich 

we consider a k-valued random vector, correponding to the normalized mean 

of X over the k sets of a partition of zd. 
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Definition 3.2: let A and B be elements of G (2d ), we will say that the 

pair [A,B] has asymptotically  measurable relative border . if: 

For each nezd,; F y (n;A,B))> card[Ay M(n+BH2N+1)74 

has a limit F(n;A;B) as N > 00; F(.;¡A;B) is the relative border function 

of the sets A and B. (3.2) 

Definition 3.3: We will say that the subsets AD... Ador ZA define 

an asymptotically measurable partition of zdif: 

Al DD... A) is a partition of zd. (3.3) 

alDeG (2d ), 10,1,...,k . (3.4) 

Each one of the pairs AD A(h)z; hs lie ko has 

asy mptotically measurable relative border. (3.5) 

(Observe that (3.3), (3.4) and (3.5) imply that AlDem(zd ds 

i=0,Lh ok. 

Given A(D ... A(K) subsets of ZÁ such that (3.3) and (3.4) 

hold, we are going to consider: 

MyA0D,... AC)x) > V(2N+1y4 ( e X,)-6.6) 

n(A DY) na) 

Then we have: 

Proposition 3.1: Let A)... A(Kk) be subsets of 24 such that (3.3) and 

(3.4) hold. Then the following statements are equivalent: 

(1) For each Xe FE, the random vector MAD)... A);x) has a weak limit 

MAD)... A);x) 

(11) For each Xe E, the random vector MytaD,..., A) :x) has a weak limit 

MAD Ax; whose distribution is gaussian, centered and with 

covariance matrix C(X) given by: 
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C00 iy Y EA Ah); ita PCsAó), Al): za, 101] 
nezd 

for i,h=1,..,k. (3.7) 

(111) A)... A(K) define an asymptotically mesurable partition of zd, 

Remarks 3.3: a) The funcion ESA) A(h)) that appears in (iii) is the 

relative border function of the sets A(Y and A(M, 

b) As before, if (111) does not hold there is a stationary, 

centered, m-dependent gaussian field X such that M Naco... a(;x) has 

no weak limit. 

c) An important question for the statistical applications 

we will consider later is the following: given Ae M (2d), isit possible to 

divide AC in two pieces, B and C, such that A, B,C define an asymptotically 

mesurable partition of zd7 

We will see now that we can generate a random set and 

obtain almost surely an asymptotically mesurable border. In addition, we 

will answer to the last question . 

Consider a random set A(t)) constructed as follows: 

U=Í U,* nezd Lisa aXTT)- mixing strictly stationary random field and 

such that each coordinate u has a Bernoulli(p) distribution, where O<p<l; 

set Alw)= i neZd : U,(19)=13. 

Lemma 3.3: Let A be defined as above, then: 

(1) AeM (24) as. 

(11) FCO;¡A)=0; E(n;A)= p- E(UQU y) , for each 110; a.s. 
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n 
Proof: Given neZd let us consider the random field YA =f 2. mezd ? 

defined by Y, A - . , then YA js stationary, ergodic, bounded 

(indeed, each coordinate is Bernoulli) and from the Strong Law of Large 

Numbers it follows that: 

Ex (n,A)= (2N+1y4 y y converges almost surely to 

mel-N,Nj 
F(n;A) e 

Lemma 3.4: GivenAeM (zd ) , let us take the stationary random field 

U=(U,; nezd; as before. If we define Bíid)=Íne AC:U ¿Lt and 

C(1)=A*-B(í), then: 

(1) A,B,C define a.s. an asymptoticaly measurable partition of zd, 

(11) v(B)=p(-víA)); v(C)=(1-p)(1-v(A)); F(n;B,C)=(p-E(UQU,,) HMA- VCA)) if 0 

(0 if n=0); F(n;A,B)= p F(n;A) if nz0 (0 íf n=0); F(n;A,C)= (1 - p) F(n;A) if 

nO (0 if n=0), a.s. 

Proof: Completely similar to Lemma 3.3 » 

Remark 3.4: The continuous case. The definition of M (pa y is 

completely similar to that of M (zd), replacing "cardinal" by "Lebesgue 

measure". We can give results similar to the previous for M (md ). We can 

also derive a "continuous" version of Theorem 1.1, replacing "sum" by 

"integral with respect to Lebesgue measure”, but the ideas involved are the 

same. It is interesting to observe some connections that the class M(md ) has 

with some ideas of Harmonic Analysis. 

Consider d=1. Wiener called "regular" to a pair of real 

valued medsurable functions f,g such that the correlation: 
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T 
] 
7 $ f(t+s)g(s)ds exists for each t real (cf. [32]). 

0 
C(f,g;t)= lim Tc0 Pad 

It is well known that the class of regular functions in the 
sense of Wiener is not a vector space and that it includes strictly the class 

of quasiperiodic functions, i.e., the clausure of the linear space generated by 

í exp(iAt ): AéR ] with respect to the Marcinkiewicz”s norm: 

T 1 
lfl= tim sup 7,0 37 gu físds 31/2 (cf. 1203). 

It should be noticed that the class of quasiperiodic 

functions is an algebra. It is obvious that A e M (IR) ¡ff the indicators of A 

and AC are regular in the sense of Wiener. We will call quasiperiodic to a set 

a such that its indicator is a quasiperiodic function. Thus, quasiperiodic 

sets are asymptotically measurable. But inclusion is strict: there are sets 

AM (R ) that are not quasiperiodic. Indeed, the class of quasiperiodic sets 

is an algebra, while M (KR ) is not. 

4. A test for the comparison of the means. 

Let us consider a random field X= f Xp; nezd j such that 

X(c)€ FE, where X(c)= Í Xp (c): nezd + is given by Xp ()=X > EX). Assume 

that there exists Ae M (24) such that E(X ])=M ifne Aand E(X )=148 if 

ne AC(u and +3 are unknown but A is known). 

Consider the following test: 

(H,: 3=0; H;: 8=85%0 (8“unknown)). 

Take B, C known such that A,B,C define an asymptotically 

measurable partition of Zd (there are such sets by Lemma 3.4. 
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If V, W are random variables with finite second moment 

Corr(V,W) 

Var(W) JA) 

It is obvious that if (V,W) is gaussian, then (K(V,W),W) is 

gaussian and its coordinates are independent. 

such that Var (W)> O, denote K(V,W) =V- ( 

If N, Q, Y are random variables with finite second moment 

such that E(N)= au, E(Q)=b(U1 +8), E(Y)=c(1 +3) with a, b, > O, we will denote 

V(N,Q Y:a,b,c)= N - G Y) and W(N,Q,.Y:a,b,c)=Y - E Q) . (4.2) 

Obviously, El W(N,OQ,Y;a,b,c))=0 and El V(N,O,Y;a,b,c))=- añ. 

IF C,(N,Quía,b,c)-Var(Y) - (Con, HH 2Var(Y 10, 

C)(N,QYia,b,c)=War(N)- ECoMN 1) 2var(V)7>0, the distribution of the 

random vector (N,Q,Y) is gaussian and we denote: 

€, (N,Q,Yja,b,c) 

T(N,O,Y:a,b,c)=[——————M then: 
Er N,Q,Y;a,b,c) 

K(V(N,Q, Y;a,b,c), W(N,O,Y;a,b,c)) 2 Ñ 
WIN,Q.Y:a,b,c) 12 T(N,O,Y;a,b,c) follows a 

Fischer"s F distribution F(1,1;e(N,Q,Y;a,b,c)), with 1 and 1 degrees of 

freedom, where: 

e(N,Q,Y;a,b,c)= lad IV T(N,Q,Y;a,b,c) is the excentricity. (4.3) 

  ¿(N,Q, Y;a,b,c)=f 

As in proposition (3.3), we will use the following notation: 

C00ip= Y CovíXoX )Fm:A(D,A(h)), where AlUza, A(2)=B, A(3)=C. (4.4) 
nezd 

We will make the following assumptions: 
(Al) X(c)€ F 

v(C) v(C) 
  y2 C0) 33 > 0, and 
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o HA (A as 00011 a A   2 C(X)33 >0. 

Given the significance level «x, we are going to consider the 

critical region: 

Ry (0=tEy(A5BCX)>F y ,(1,1)) ; where: 

Ey (A:B:CX)=E(My(AsB:CIO5V(A IZDA vB 9 2N+ DA vic RN DÓy) 

and F¡_¿¿(m,n) stands for the 1-x percentile of a Fischer's F distribution 

with m, n degrees of freedom. (4.5) 

Finally, we denote «y and By (5%) the probabilities of error 

Of first and second kind, respectively, corresponding to the critical region 

(4.5).Then, we have: 

Theorem_4.1: Under the assumptions (Al), (A2), (A3): 

k 
lim y %y=%, lim y By(8%= 0, for each 80. 

Proof: We have that 

lim N Cy (My(A;B;CX); YA VNS, v(Bay) (2N+ 1) (Cy (2N+ 109) = 

“Chan MO) 
TT 

  10) 33 (4.6), 

and that: lim y C¿(My(A;B;C;X); YA) V2N+DA, (BJ W(2N+1)9) a 

v(A) víA) 
4% tuo M3 + ua 

  )2 C(X) 33 (4.7). 

Applying Theorem 3.3 to the random field X(c) , using (4.7) 

and the basic poperties of weak convergence, we conclude that the 
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distribution of ¿a (A;B;C;X) approaches a F(1,1;e 1 (8) ); where ey (8) is the 

excentricity : 

  

  

CO) rar EL la 
AA RABO NZS “wuB NU 33 entr V2N+ DÁv(a)al a E TN : 
Cy - O ) CA) 13 + ( MO ) e 33 

(34.8) 

Since y = (Ry (00:80) and By (3%) = P(Ry(a);3=8%), it follows 

inmediately that lim Ny a, lim N Bn (8%)-=0 0 

Remarks 4.1: 

a) This is an F-test. in a similar way, we can present another 

kind of tests (x4, for instance), but there is no essential difference between 

these proposals. The number of degrees of freedom is (1,1) just to present the 

result as clear as posible. lt is obvious that it could be modified to get (k,1) 

dehgrees of freedom. 

b) This test involves parameters like Co; 1 that in general, 

are unknown. However, it is easy to show that they can be consistently 

estimated under some aditional assumptions. For instance, if we assume that 

the coordinates of X have bounded momenuis of order 4-+8, we assume stronger 

mixing conditions (of the Davydov's type), we replace in the formulae of the 

parameters the covariances of X by its standard estimates, and the series by 

a sum of My terms, itis easy to show that my, Can be choosen properly in 
d 

order to obtain consistent estimates of the parameters (cf. [25]). 

c) It is natural to ask how different is the behaviour of this F- 

test with respect to the behaviour of another F-test. For instance, the 

classical F -test assume an ¡id sample, and the F-test presented in [24] 

assume dependent samples but "thin" border (in the sense of Definition 

3.1).Roughly speaking, the comparison of these three F-tests could be taken 

as an evaluation of the relevance of the dependence and the geometry on the 

statistical problem. More precisely, take dependent data and an 

asymptotically measurable geometry, but with "thick” border. The 
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performance of the classical F-test will show what happens if you ignore 

completely the dependence, the performance of the F-test given previously in 

[24] will show what happens if you take into account the dependence of the 

data but ignore the complexity of the geometry, and, at last, our F-test will 

show what happens if you take both problems into account. This comparison 

is presented in the appendix, using simulations. 

d) if we consider a sequence of alternatives 

H¿(N): B= /(2N+ 1) 5* (se O; unknown), then following the arguments of 

the proof of Theorem 4.1, it can be shown that: 

lim y By (Ví2N+1)4 8* )= E(L,L:e(8*)) (E, (1,1), where 

MC) v(C) 

  

  

< | j Ak 2 EN 

, ¿Mirra 3 ba 2 
e(8)= v(AJ87 [ v(A) e j VAN 3 S $- 

CA 11 a O 7 ( 13 iZ ( v(C) / Cl 33 
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Appendix. 

The aim of this appendix is to show the behaviour of the 
method given in Theorem 4.1 and to enphasize that the geometry is relevant 

in the comparison of dependent data. We are not trying to make an exhaustive 

study , taking into account any other alternative method, or a variety of 

different specific problems, but only consider some simple cases. 

At first,we are going to take d=1 and compare the method 

given in Theorem 4.1 (we will call it M) with the classical F- test for the 

comparison of two lid samples (CM, in what follows) and the F-test given in 

[2.4], wich assumes weakly dependent data but "null border" geometry ( we 

  

  

will call it NBGM). This test has as critical region the following set: 

Culo)=tuy (AB, SX)>F 1 ¿(1,1 )j, where: 

AE ca 
vB). Sy(A;X)- ANA o e 

wi tA,B, C;X)= ( 74 34 , and B, C are disjoint 

A As és As (cx N , Y N > 

sets with null border whose union is AC. 

We will take A=24%. Our process will be a stationary and m- 

dependent gaussian process (indeed, a moving average of a gaussian white 

noise). We consider different values of m (5, 10, 20) in order to evaluate the 

reponse to different dependence structures, «= 5%, N=100 and we give 

estimates for Xy and By (8%) for moderate values of ¿* (0.25, 0.1). Each 

estimate will be based on1000 simulations. The results are the following (in 

percentages): 

k 

ny By (8) 

E! 80.25 
m CM NBGM M CM NBGM M CM NBGM M 
5 0 227 53. 99 90.9 84 99.8 95.9 91.7 
10 0 04192 45 7 1988 55923. 2077:3% 1007 11 -96.2'>89)8 
20 0 0.1 5.8 974 95.6 79.8 100 98.7 88.6 

We can observe that there is no relevant difference between 

CM and NBGM; although NBGM seems to behave better. lt seems to be a 
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significant difference between M and the others. To study this more deeply; 
we are going to compare NBGM and M for big, moderate and small values of 3* 

(1, 0.1, 0.61), and taking m= S, 10, 20, 40, 60, 80 and 100. All the 

characteristics of the simulations are the same as above. Then, we obtain: 

n Bn 
ye 1 0.1 0.01 
m NBGM  M NEGM  M NBGM  M NBGM MM 
5 2.2 5.9 60.2 428 959 91.7 96.6 928 
10 0.1 4.5 718 284 96.2 89.8 99.1 95.8 
20 0.1 5.8 81.6 29 98.7 886 99.7 92.7 
40 0.4 11.1 852 318 989 87.6 999 86.8 
60 0.1 147 883 336 98.1 79.3 99.8 84.4 
80 0.2 16.9 89.8 344 987 746 99.9 83.1 
100 02 19.5 90 37.8 984 68.6 99.9 81.4 

We can observe that M behaves in a more powerful way. In 

the sequel; we are going to consider only 8*=1, and observe the reponse of 

NBGM and M to changes in N: 

y Bn 
$N N NEGM MM NBGM MM 
10 50 0.4 4 80.6 40.1 
10 100 0.1 4.5 718 28.4 
10 200. 0.2 2,3 614 128 

20 s0 0.3 6 83.8 46.2 
20 100 0.1 5.8 81.6 29 
20 200 0.1 4 71,3 125 
20 2500 0 2 225 0 

40 50 0.1 11.7 88 50.2 
40 100 04 LLL. 85.2 31.8 
40 200 03 10.8 774 14.1 
40 1000 0 4.5 63 E 
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m N 

60 50 

60 100 

100 100 

100 5100 

NBGM 
0.1 
0.1 

0 

IN 
M NBGM 

14.1 90.9 

14.7 88.3 

19.5 90 

1ZS 43 

Finaily , 

M 
55.4 
33.6 

37.8 
O 

we take d=2 and generate a random 
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Abstract 

This paper survey some know results in the theory of Moral Hazard, when from asymme- 

tries of information the agent effort cannot be monitored perfectly. We show sorae sufficient 
condition for the existence of the second best solution, we prove that it is not a Pareto optimal 

solution, and show some sufficient condition for the validity of the first order approach. Most 

of this results are well know, the main thing of ¡bis paper is that it show these results as a 
unity in a particular but expressive case. 

Introducción 

La Economia de la Información se propone estudiar situaciones en la que una parte de los agentes 

económicos no disponen de toda la información, ya sea referido a lo que los demás están haciendo, o 

saben, o en relación a las oportunidades de transacciones óptimas. Entre las áreas de investigación 

que tratan del problema de la asimetría de la información se destacan: la teoría del Perjuicio Moral, 

de la Selección Adversa, Búsqueda Optima, y la teoría de Expectativas Racionales. 

En el caso de la Teoría del Prejuicio Moral, el problema consiste en que una parte de los 

agentes toman decisiones que afectan a los retornos de los demás sin que estos sean capaces de 

monitorear totalmente estas decisiones en provecho propio. La solución para este problema consiste 

en elaborar un programa de incentivos, pautado en un contrato, en el que será establecido el pago 

del agente por el principal, una vez que sean observados determinados resultados, dependientes 

del esfuerzo del primero. 

El problema central de la teoria será entonces el de establecer un contrato óptimo en el sentido 

de que beneficios y riesgos sean distribuídos de forma tal que el agente tenga incentivos para elegir 

aquellas acciones que maximicen las utilidades de uno y otro. 
  

*This paper is in final form and no version of it will be submitted for publication elsewhere. 

'Facultad de Ingeniería, IMERL CC 30. Montevideo, Urugauy 

'IMPA, CEP 22461, Rio de Janeiro, RJ, Brasil. 
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Existe abundante literatura referido al tema, son referencias clásicas, [G-H], [H]. El presente 

trabajo pretende dar una visión sintética de algunos resultados conocidos pero publicados en 

lugares diferentes, probando la existencia de solución en un caso particular pero esclarecedor de 

las técnicas utilizadas, Se muestra también que como resultado de la información incompleta se 

llega a un resultado que no es un Optimo de Pareto. 

En el presente trabajo, en la primera sección presentamos el modelo, en la sección dos, a 

través de la llamada aproximación de primer orden, veremos que bajo determinadas hipótesis es 

posible hallar un programa óptimo de incentivos; en la sección tercera veremos que este óptimo 

no es Optimo de Pareto, lo que es debido precisamente a la asimetría de la información, pues 

el agente estará mejor informado que el principal respecto a la elección del tipo de esfuerzo 

que será desarrollado para alcanzar determinados resultados. El costo de la desinformación es 

precisamente la desviación de la regla socialmente óptima en el sentido de Pareto. En la sección 

cuarta, presentaremos algunos aplicaciones del modelo y finalmente en la última sección haremos 

la demostración de la existencia de la solución del llamado problema débil. 

1 El Modelo 

Un individuo, el agente, tiene que tomar decisiones que afectan a su propio bienestar y al de 

otro(s) individuo(s), el principal, a cambio de cierto pago, la forma del cual será establecida en 

un contrato. El conjunto de los contratos posibles será indicado como $. - 

El agente eligirá una acción a dentro de un cierto conjunto A de acciones posibles. Supon- 

dremos que la acción elegida corresponde a un determinado tipo de esfuerzo a cuya intensidad a 

corresponde un determinado número real positivo. Asi entonces A C Ry. 

A cada elección de a está asociada una determinada distribución de probabilidad £(x2/a) sobre 

los posibles retornos monetarios brutos los que serán representados por x. Dichos retornos serán 

función de los estados de la naturaleza así como de la acción elegida por el agente. Los estados 

de la naturaleza forman un espacio de probabilidad el que será representado por (8, B, y). Luego 

:QxA—= Ry. 

El contrato establecido entre las dos partes puede representarse por una función s € S;s: 

X — Ry, siendo X el conjunto de retornos monetarios brutos posibles, el que supondremos real 

positivo y compacio. Es decir s(x),x € X representará el pago que recibirá el agente, una vez 

conocido z. 

En nuestro modelo z € X, tendrá para el principal el valor de un señal para el esfuerzo 

desplegado por el agente, al que el principal no puede medir directamente. Combinaremos en que 
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a un mayor z corresponde un mayor a, esto es, mayores z corresponden a elecciones más eficientes 

de a por parte del agente. 

Definición 1 Decimos que una señal z es más favorable que otra y, lo que escribiremos como 

r > y si para toda distribución a priori G para a, la distribución a posteriori G(-/x) domina 

estocasticamente en el sentido de primer orden a G(-/y). 

Recordemos que una distribución F, para la variable aleatoria 6 domina estocasticamente a otra 

G, para la referida variable cuando para toda función Y creciente se tiene que: f, U(0)dF(0) > 

S¿U(6)dG(9), siendo A el dominio de definición de la función U. Ver [R]. 

Sea f(x/a) la densidad condicional de z cuando a toma un valor particular y sea g(a/z) la 

función de densidad a priori para G. 

Por el teorema de Bayes tenemos que: 

gla'/z) _ gla)f(z/0') 
glajz)  galj(a/a). 
  

Se tiene la siguiente proposición: 

Proposición 1 Una señal x es más favorable que otra y, si y sólo si para toda a! > a se tiene 

que f(2/0)f(y/a) - fz/0)f(y/a”) > 0. 

La demostración puede verse en [M]. 

El principal posee una función de utilidad u: 5xR —=R, 

u(s,a) = EU(a — s(a)] = fue -s(2)dF(e/0), 

siendo U creciente en z — s(x), con Ugg < 0. 

El agente tiene una función de utilidad v: Sx A —>R, 

v(s,a) = [visir 

siendo Y, > 0 y Vas < 0, esto es el agente es adverso al riesgo. 

Una vez que el agente elige un determinado a € A, concomitantemente elige una cierta función 

de distribución F(z/a) común para el agente y el principal, tal que el principal resolverá el siguiente 

programa: 

MAZ tea di Ulz — s(2))(2/a)da (1) 

sujeto a las condiciones: 

[ V6t2)S0/0dz - e(a) > K (2) 
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a € argmaz J, V (six) f(x/ajdz — e(a), (3) 

siendo c(a) el costo del agente para implementar a € A, que supondremos real y convexa con 

dominio en A, f(x/a) es la densidad correspondiente a la distribución F(x/a). 

En el apéndice 1, discutiremos condiciones que garantizan la existencia de la solución, en las 

condiciones de nuestro modelo alcanza con la existencia de un 3 y de un á para los que v(3,4) > K 

En el programa es el principal quien decide la acción que va a ser implementada y elige un 

programa de incentivos acorde con esa finalidad, el principal conoce las preferencias del agente. 

La primera de las restricciones que figuran en el programa, tiene por objetivo asegurar al 

agente un minimo en la utilidad esperada de forma de garantizar su participción en el programa, 

la última asegura que dado un contrato, s € S, la acción elegida por el principal maximiza la 

utilidad del agente. 

Si el principal tiene como observar directamente la acción elegida por el agente entonces la 

última restricción es superflua, basta en este caso poner en el contrato una cláusula que obligue 

al agente a implementar una determinada acción. En este caso el contrato solución del problema 

es conocido como la “solución de primera vez”. En el caso en que el principal no pueda observar 

directamente la acción elegida por el agente, la segunda restricción tiene sentido, la solución 

obtenida se llamará entonces Ja “solución de segunda vez”. 

2 La Aproximación De Primer Orden 

En el caso en que la condición 3) pueda ser reemplazada por la condición más débil 

valzsa) = Josi sa(2/aJaz -e(a)=0, (4) 

el programa que se obtiene sustituyendo 3) por 4) es llamado problema débil, o aproximación de 

primer orden. 

El problema débil (P.D.), queda caracterizado entonces por: 

Maze J Ufa —s(Y) le Jajes, (5) 

sujeto a las condiciones: 

J V(s() Hu /ajda — da) > E, (6) 

/ V66)N2/0)de (a) =0. (7) 
Mirrlees [Mi], fue quien primero observó que las soluciones obtenidas para el problema débil 

no son necesariamente soluciones para el problema original, obsérvese que el hecho de que a € A 
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verifique la ecuación (7), no implica que deba verificar (3). Mirrless, prueba que para que una 

solución del P.D. sea solución del problema original, o no relajado, las siguientes dos condiciones 

son suficientes: 

1) Condición de monotonía en la razón de verosimilitud. CMRV. 

2) Condición de convexidad en la función de distribución. CCFD 

Definición 2 Una familia de densidades (f(2/a) jaca satisface la propiedad de monotonía es- 

tricta en la razón de verosimilitud, CMRV, si para todo z > y y para todo a! > a vale: 

Nela) - la) 
fz/a) * fly/a) 

Definición 3 Una familia de distribuciones [F(zx/0))a8A satisface la condición de convezidad en 

la función de distribución, CCFD, sí para todo a,be A y A€ [0,1] vale: 

  

F(2/M+ (1-6) < AF(2/a) + (1 - A)F(2/b. 

Proposición 2 Si CMRV y CDFC son satisfechas se tiene que para que s*(1) y a” sean solución 

para 1) con las restricciones 2)y 3) es necesario y suficiente que satisfagan las siguientes dos 

ecuaciones: UY *(2)) falx/a”) 
2—s*(2) yla xfa” HO Ral” (8) 

fu 2) fa(2/at) dz + v UAT a '(a)) =0, (9) 

siendo A y v multiplicadores de Lagrange. 

  

Prueba Se demuestra considerando el método de Lagrange para el problema de maximización” 

sujeto a restricciones y que bajo CMRV y CCFD toda solución del problema débil, es solución 

para el problema original. Ver apéndice 2. 

Nota 1 De la proposición 1 y de la propia definición de CMRV se tiene que si x > y entonces x 

es más favorable que y. 

Lema 1 La densidad f(x/a) satisface CMRV Si y solamente si para todo a € A, Lu es cre- 

ciente. 

Prueba: Obsérvese que: 77% = infla) de donde se sigue que: JE SS exp[fo LE da). 

Luego por el hecho de ser bt función creciente con la señal obtenemos el resultado. 
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Lema 2 Con las hipótesis CMRV y CCFD tenemos que s'(x) > 0, esto es el pago del agente 

aumenta con el crecimiento de la señal. 

á ab : Ue (e 
Prueba A partir de la ecuación (3) obtenemos que si Íelzlo) crece con z entonces a 

es creciente, derivando obtenemos que s'(x) > 0. 

Nota 2 En la medida en que una señal mayor, supone la realización de un mayor esfuerzo por 

parte del agente, el lema dice que, el contrato óptimo establecerá un mecanismo que asegure que la 

retribución del agente aumentará con el esfuerzo por él desplegado lo que será monitoreado através 

de la señal x. 

3  Optimalidad 

Será mostrado en esta sección que la regla s(-) no es óptimo de Pareto en casos en que como el 

presentado en la sección anterior se buscan incentivos para que el agente realice un determinado 

esfuerzo, con asimetría en la información. El costo de la desinformación será precisamente el 

alejamiento de la regla óptima en el sentido de Pareto. 

Recordamos que una distribución de recursos es óptimo de Pareto cuando no es posible obtener 

una redistribución de los mismos sin perjudicar a por lo menos uno de los agentes económicos. 

Lo anteriormente dicho, será corolario de los siguientes dos lemas. 

Lema 3 5can U y V funciones de utilidad estrictamente cuasi-cóncavas, derivables y estricta- 

mente erveientes, entonces la solución del siguiente problema eziste, es única y es un óptimo de 

Pareto, 

Mazíg U(z), 

sujeto a las condiciones: 

v(y) > c 
2+y=r 

Prueba: Sea C = ((2,y) € R1:2+y="; V(y) > c), suponemos que es no vacio. Sea 

[2,y') € C y consideremos el siguiente problema equivalente: 

Maz¡¿U(z), 

Sujeto a las condiciones: 

Vinyzc 
V(y) > V(y) 
2+y=T 
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Sea C? = ([(z,y) € RA : satisfacen las nuevas restricciones.), C” es compacto, como Y es 

continua existe la solución, la unicidad proviene de la estricta cuasi-concavidad. El hecho de que 

la solución es un óptimo de Pareto se verifica facilmente. 

Veremos que nuestra afirmación resulta de considerar la equivalencia entre el problema original 

y el presentado anteriormente. Para esto considere: z = 2—s(z), y = s(x), y suponga que la regla 

s(-) es un óptimo de Pareto. En este caso, bajo las hipótesis U* > 0,U" <0,V* >0, y V"<0 

tenemos por el lema anterior que O = K, donde K es el multiplicador de Lagrange, para 

el problema de Pr vez. De acuerdo con esto y con la ecuación (3) tenemos la siguiente 

identidad: A+ vi = Es 

Com: o eL allá = f falz/a)dx = 0, se sigue que A= K y que via = = 0, 

El siguiente Tera probará que entonces f.(1x/a) = 0. 

Lema 4 Si la regla s*(+) es un óptimo de Pareto con (a) > 0 y Fa(x/a) < 0 entonces v > 0. 

Nota 3 Observe que la hipótesis Fa(a/x) es coherente con el hecho de que a una señal mejor 

corresponde un esfuerzo mayor, esto es: Pax <h) < Palzx<h) con a! > a; ala E A. 

Prueba: Del lema anterior resulta que A= K > 0, se obtiene entonces que: 

Ule-st2) ¿y helzla) 
V!(s(z)) JG/a) 

donde s%(x) es una solución de primera vez. 

Sea X?=[2EX: falx/a)>0) y X” =fx2 EX: falz/a) < 0). 

Definamos r(x) = x — s(x) consecuentemente, rA(2) = x — sx). 

Como o es decreciente con respecto a r(x) tenemos, r(z) > r*(x) Vx € X* y que 

r(x) < (2) Vz € X7. En cualquiera de los dos casos valen las siguientes desigualdades: 

/ U(r(2))fa(x=/ajdz > / UP) fa(2/aJdz >0, (10) 
XxX XxX 

U!(z — sz) 
SAS A) > 

la última desigualdad sale de la dominancia estocástica de primer orden y de la hipótesis F¿(x/a) < 

0. 

En la ecuación (9) tenemos que el factor que multiplica a y es negativo, (Mirrless [Mi], prueba 

Que bajo CCFd, la utilidad del agente es cóncava en la acción). Considerando (10) resulta que v 

debe ser positivo. 

Ahora bien, si y > 0 tenemos que sf debe ser igual a cero, esto es f¿(x/a) = 0. Pero por 

hipótesis tenemos que F¿(x/a) < 0 lo que supone f fa(x/ajdx < 0 lo que contradice a fa(12/a) = 0. 

Resulta entonces que A debe ser diferente de Á y por lo tanto no es óptimo de Pareto. 
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4 Algunas Aplicaciones 

1) Bajo las hipótesis del modelo se observa que la regla s(-) se desvía de la siguiente forma con 

respecto a la regla s*-) óptimo de Pareto: 
( s(1) > sz) en X* 

s(1) < s (zx) en X7 

La prueba se desprende del hecho de ser la función S(2) = a creciente en s(z). La 

prueba puede verse en [H]). 

2) Suponga ahora que A = (1,h), esto es el agente puede elegir entre una de dos posibles 

opciones: trabajar debilmente /, o trabajar fuertemente h. Supongamos además que U(w) = w 

representa la utilidad del principal. La ecuación (8) tendrá la siguiente forma: 

alo: 

Sea q la probabilidad apriori para h y q' la probabilidad a posteriori, esto es q = P(h) y 
h ql = P(h/z), entonces q = TIEM: 

Luego: GE =4a+ Y. 

Se desprende de aqui que el agente recibirá una penalización si los resultados obtenidos, esto 

es el valor del producto z, revisa las creencias en sentido negativo, mientras que será premiado en 

caso contrario. 

3) Puede considerarse la siguiente extensión para el caso de dos acciones, el agente puede elegir 

enA =(a:a=Ah+(1- AN A € [0,1]), suponiendo que f(2/a) = Af(2/0) +(1-A)f(2/h). 

La condición (3) quedará asi : J Vís(2)/(z/h) — f(2/1)dz > aa, 

Por más aplicaciones ver [H] o [L]. 

5 Apéndices 

En esta sección discutiremos brevemente algunas condiciones para la existencia de la solución de 

segunda vez. 

5.1 Apéndice 1. Prueba de la Existencia de La Solución. 

Llamamos F(s) al conjunto de las a € A que verifican la condición (2). Supondremos que dicho 

conjunto es no vacio, de lo contrario el problema no tiene sentido, pues el agente preferiría quedar 

al margen de la actividad. En las condiciones del modelo, como se verifica facilmente, F(s) es una 

aplicación semicontinua superiormente. 
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Sea ahora G(s) el conjunto de las a € A que verifican la ecuación (3), por el hecho de ser A 

compacto, las condiciones impuestas sobre las funciones en el integrando aseguran que G(s) es 

no vacio. Considerada G(s) como aplicación del espacio de los contratos S en el conjunto de las 

acciones cal A resulta ser semicontinua superiormente. 

Luego T'(s) = F(s) NG(s) es una aplicación semicontinua superiormente de S en A. Entonces 

siendo M(s) = Mazaer(s) J Ulz — s(2))f(2/a)dz obtenemos por el teorema del máximo, ver [B], 

que M(s) es una función semicontinua superiormente. Si elegimos el espacio de los contratos S 

como un conjunto compacto el problema tiene solución. 

Admitiendo que X es compacto, un posible conjunto con esta propiedad es S =[(s:X => 

R Hoólder- continuas). El teorema de Arzelá Ascoli permite concluir que este conjunto es relati- 

vamente compacto. Ver [K]. 

Condiciones más generales para la existencia de la solución pueden encontrarse en [Y]. Por 

ejemplo, para modelos con propiedades análogas a las del nuestro, alcanza con que el conjunto S 

sea debilmente compacto. 

5.2 Apéndice 2. Validez de la Aproximación de Primer Orden. 

Las ecuaciones (8) y (9) pueden obtenerse también a partir de la regla de Euler para el cálculo 

variacional, el hecho de que caracterizan a un máximo provienen de la concavidad de las funciones 

del programa. Ver por ejemplo [C]. Obsérvese que el conjunto B de los pares (5,a) que satisfacen 

las restricciones del problema original, está contenido en €, este es el conjunto de los pares (s, a) 

que satisfacen las condiciones del P.D.. Mirrless en [Mil, prueba que CMRV y CCFD aseguran 

la concavidad en la acción, para la función de utilidad del agente. Esto permite afirmar que si 

(s*,a*) maximiza u sobre C, entonces (s*,a*) es un elemento de B. 
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Abstract 

in this note the LR is seen in the perspective of the generalized Kullback- 

Leibler distance. The generalized K-L distance permits to obtain a unified vision of 

the Maximum Likelihood Estimate, mainly in the case of Models, ¡.e. when the 

underlying distribution in the sampling does not correspond to any parameter 

value. This is specially interesting when dealing with dependent observations, and 

shows some robustness of the ML method. Likewise the generalized K-L distance 

leads to extend to the dependent case several well-known properties of the 

likelihood ratio in the independent case. 

1. Introduction. 

There is an extensive literature about consistency and other 

properties of the ML Estimates. This is also the case of several 

connected concepts as the likelihood ratio test. However the results 

AMS subject classification: primary 62 F12, 62 A10. 

This paper is in final form and no version of it will be submitted for 

publication elsewhere. 
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following the Wald's classical proof of consistency of MLE are often 

established only in the independent case. 

Nevertheless the concept of generalized K-L distance 

permits precisely a unified approach without discriminating 

between the independent and the dependent case. 

The next section contains some notations and summarizes 

well-known facts about the K-L distance. Section 3 deals with the 

independent case and shows some related examples of the 

"robustness" of the method. Section 4 examines discrete time 

stochastic processes, generalizes the K-L distance and establishes 

some results for the MLE. Finally Section 5 provides some 

applications and examples of estimation of parameters and testing 

hypotheses. 

Though the principal purpose of this note is to show a unified 

vision of some statistical applications through the generalized K-L 

distance, we point out that Propositions 3.1 and 4.1 and Theorems 

4.1 and 5.1 apparently are not in the literature. Theorem 5.2 is well 

known since Pinsker ([14]) but here is used in applications. 

Theorems 5.3 and 5.4 are versions of theorems in Basawa and 

Scott ([5]). 

2. Definition, notations. 

We will use very often along this paper the K-L "distance", also 

called K-L divergence or relative entropy, which is however a 

distance only in broad sense, (see Kullback ([12])). 
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DEFINITION 1. 

FP, Q are probability measures on a measurable space 

(W,A) the (classical) K-L distance is : 

(P,Q) = ek(P,Q)= | p log(p/q) dv= Epllog (p/q)) (2.1) 
fP<Qe«v, 

p(P,Q) =w ¡if P is not absolutely continuous with respect to Q, 

where v is a 0 -finite measure on ( W,A) and p=dP/dv, q=dQ/dv 

are the corresponding Radon-Nikodym derivatives. 

in general p(P,Q)x«p(Q,P), ¡.e. the K-L distance privileges the 

first argument, which will be always, in this paper, the "true 

probability”, the "true density function", etc. 

We remind now some elementary results about the K-L 

distance: 

PROPERTIES 

(1) p(P, Q)> 0 and p(P, Q)=0 if and only ¡fP=Q (v). 

Ifthe Hellinger distance between P and Q is defined by: 

pH(P, Q)=%% f(p4 -q Pdv=1- (pq “av . 
then, it is known that 

(ii) 0< 2pH(P, Q) < p(P, Q). 

(It is obvious that the Hellinger distance is a distance in the proper 

sense). 

If we denote PN, QN the respective product measures, then 

(iii) p(P”, QM)= n p(P, 0). 

(Cf. for instance, Borovkov ([8]) ). 
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3. Some results and comments in the independent case. 

Let X4. Xo, X3, ++» Xn,... be independently distributed random 

variables with a common density p(x) with respect to a O -finite 

measure v, and let q(x,8) =q%(x), 8€0 be a family of densities for 

some parametric space O. 

Assume that P<Q% for all 8€8. In this situation, if P=Q%o for 

some 8¿€0 and some regularity conditions are verified it is known 

that the MLE Sn, (or any approximate MLE in the sense of A.Wald, 

([17))), converges a.s. (P) to the true parameter value. lt is also 

known that, under similar conditions, if there exists a 8 such that tor 

every BE0, B x Bo, 

Epllog(a? /q%0)) < 0 (3.1) 

(and this last condition implies uniqueness of 8 ), then 

8/>85 as. (P). 
(Vid.Huber ([10])). Note that the condition (3.1) may be fullfilled 

even though Px Q for all 8€0. 

When dealing with the MLE along this paper we impose the 

following conditions: 

3.1. Assumplions. 

a) ("Identifiability") For all 8€O, 8'EO, P(P (x) + 4" (x))>0 if 8 8" 

b) The parametric space O is a compact topological space with a 

countable basis for the topology. 

The simple form of b) is assumed only for the sake of 

simplicity. 

Condition (3.1) is easily derived from the following one: 
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p(P,Q80) < p(P,Q9), BEO, 88% (3.2) 
¡.e. 84 minimizes strictly the Kullback-Leibler distance p(P,Q8). 

lt is necessary however some care about finiteness of 

involved integrals. In fact it is possible that 8. satisfies 3.1 and 

p(P,Q90) = oo. (Cf. example 4.1, case (3)). 

We point out that L. Kullback in his book "Information Theory 

and Statistics", (Kullback ([12]) ), minimizes this distance, but the 

optimization is performed in the first argument, ¡.e. in the measure P. 
A simple example will be ¡llustrative. 

Example 3.1. 

Suppose we have a uniform density, (the true density), in the 

rectangle 

[-c/2, c/2] x [-d/2, 0/2] , with c > d 

and we consider the family of centered bivariate Gaussian densities 

with covariance matrix 2 : 

2 = OO 

where the matrices A and O are, respectively : 

ae 0 _(cosd -sing 

a=[% p2) Ono A 

The parameter space is taken, for simplicity, as 

O = ((ab,9)/ a>b>0, de [-5,11-5)). 

Straightforward calculations show that the best fitting is 

obtained when 

a/b= c/d , $=0. 
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On the other hana, it is possible to check directly that the MLE 

actually converges with P=1. (See also Examples 4.1, 2 and 5.1, 2 

in fine). 

in fact 

Bo= (0/(12)%, d/(12)2,0). 
The following proposition will also be ¡llustrative. 

PROPOSITION 3.1. 

Let P,Q be probability measures on (R9/B 4), P<Q<«A, with A 

the Lebesgue measure, (for instance). Suppose that q= dQ/dA is a 

symmetric density and that -log(q(x)) is a convex function. 

Let p=dP/dA be another symmetric density and consider the 

family q(x-8), 8E€RK which verifies Ep(llog(p(x)/q(x-9)|)< oo at least 

for some value B,. 

Then, the best fitting of a(.-8) to p(.) is obtained at 8=0. 
PROOF: 

Itis a simple application of convexity of - log(q) which implies 

that 

6 dogíp()/q(x-8)+log(p(x)/q(x+8)) p(x) dx > 

[5 dog(p2(x)/q(x)2) p(xJax 
Examples 3.2 

q(x-8)= ' exp(-| x-8 | ) verifies the assumption of convexity 

for the -log(q) function. Let p(x)= 1121) x2exp(-x2/2) be the true 

density. The fitting occurs at 8¿=0, as expected. 
A slight change in the latter example gives rise to 
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p(x)=1/(21)(x2+y2) exp((x?+y3)/2), 
and the Model 

q(x)=1/(2102) exp(-((x-1, 2+(y-11, )2)/(202)), 8=(11,0)€ R2xR*. 
in this case the model fits at the value 85=(U%, 0%) = (0,3% ). 

REMARK 3.1. In both cases clearly the MLE converges a.s. 

(P) to Bo. 

4. Discrete time stochastic processes. 

4.1 Some previous ideas. 

in paragraph 1 we pointed out some properties of the K-L 

distance in the independent case. 

However there is another important property to be 

considered. 

(iv) Let (W,A) be a measurable space and B C A a 0-algebra. 

If P and Q, (P<AQ) are probability measures on ( W,A) then 

o(P/B,Q/B ) < p(P,Q) (4.1) 

with equality if and only if dP/dQ is B-measurable (a.e. Q). (Here 

P/B,Q/B, denote the restrictions to B of the probability measures 

P,Q). 

This fact is obvious if p(P,Q)=00- 

On the other hand, when P « Q itis an easy consequence of the 

convexity of the function 

0(x) = x log x+1-x 

with x=dP/dQ. In fact Jensen's inequality yields 

Ea(d(X)/B) > d(EQ(X/B)) 
which implies (4.1). 
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Hence, if there is a filtration, F4C F2C..C FpC..C Fo=A 

we will have that 

On =0(P/F,,Q/Fp) 7 a<oo 

In particular, if we consider F,, the d-algebra generated by 

X1, X2, X3, ..., Xp we will have 

lim pp < oo. 

Suppose now that Q9 is a family of distributions as a model 

for a process (Xp), n21, which has true distribution P, and P « Q « y, 

where v is a 9 -finite measure on (W,A). 

We consider 

0n(8) =0(Pn, Qf ) 
lf Ppe«* Q% « v and we denote by pn, qu the 

corresponding Radon-Nikodym derivatives, we have that Pp (8) is 

increasing for every Be0. 

Then we summarize the possibilities for the behavior of p n(8) 

in the following. 

PROPOSITION 4.1. 

There are only three possibilities as n> +00: 

(1) O0<P n(8)/ h(8), finite for some BE0. 

(2) O0<pn(8)7 +00 for all BEO, but there is a sequence (bn)n>1, 

bn>+0 such as bp”?. 0 n(8) converges to a strictly positive value 

g(8) for all 8€O, which at least is finite for some value of the 

parameter. 

(3) There is not such a sequence bn, ( for instance, for all 8, 

0 n(8)=+00 for some value of n, which can be dependent of 8). 
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Therefore, the value g(8) , (or h(8)) may be 

interpreted as a "generalized" K-L distance. 

We will see for instance, that if some additional conditions 

are satisfied, the MLE converges to the value 8, which strictly 

minimizes g(8). Also, by using the "generalized" K-L distance, we 

will prove some propositions which extend known statements for 

tests of hypotheses in the independent case. These theorems are 

exposed in paragraph 5.2. 

Examples 4.1. 

For (1): 

1f Q9 =P for some value of 8€0, say Bo, Pn(8Bo)=0 for all n. 

Then, if the outcomes are ¡.¡.d., the MLE converges a.s. to the true 

value when well-kown conditions are fulifilled. 

A different example: 

Consider a random variable which is the same for all values 

of the index n: Xp=X:. 

Suppose that Xy has unknown density p(.), and consider the 

density p(.-8), 8€R, as a model and add some condition for 

integrability. 

In this example the information remains the same for n > 1, 

and the MLE is not consistent except for trivial situations. 

The following is another example. Assume a process of 

independent random variables with density 

ya 
00 

pi0)= 1/21) Pexp(-(x+a)/2), i=1,2,...n,..., with Y ajé<oo, 
l=1 
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and a model 

a(x,8)=1/(211) %exp(-(x+8)2/2). 
Then h(8 ) => for 8%0 and h(0)<oo. 

Observe that in this example Bn >0cC.s. (P),¡.e. the MLE 

converges to the parameter value that minimizes h(8), (it is a 

"consistent " estimate). 

For (2): 

lt suffices to consider any independent and i¡dentically 

distributed sequence of r.v. with density p(.) and a model af (.) with 

01(8)<o0 for some 8. In this case, bn= 1/n. 

Theorems 4.1 and 5.1 establish important examples for the 

dependent case. 

The case (3) in Proposition 2 is ¡llustrated by taking a 

process of i¡.i.d. r. v. with 

pode “ar Pee 

and the model 

a%(x)=4exp(-|x-8|), BER 

We obtain p , (8)=0(Pn, B,)=co for all BER. However, 8nis 
the sample median, a consistent estimate of the median of the 

distribution. Actually this example shows that it can happen that 

(3.2) has not sense but (3.1) is verified. 

In what follows we consider mainly the case (2) and bp= mn. 

In paragraph 5.1 below, the example 3 shows that 1/n cannot be 

the "unique" usual sequence in case (2). For stationary sequences 

however, it seems that the "canonical" sequence is 1/bp = 1/n. 
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Actually, under mild assumptions it is easy to prove the following 

proposition: 

" In the stationary q there exists (in general) 

im 5 On (4.2) 

If the restrictions . Q, ofthe probability measures P, Q to 

Fp= 0(X4, X2, X3, ..., Xp) verify Pp « Qp for each n, and both are 

invariant for the shift, let us denote: 

Pn 
Pn="J0, and P1n=Pn(X1, X2 X3,.... Xp) , 

Ph, k= Phk (Xh. Xh+1, +) Xx) = Pien1 An, Xi, Xk). 

Assume that 

  

f llog pr, n| AP <oo for every n. 

Then, we have 

flog p+, n AP > flog p1,k- Pk+1,2k. - - Plr-1)k, ri - Pr, OP, 
provided that 

Pron <P 9 Piar, 2 9. .O Piro, rx SP, (4.3) 
for every n, where n= r.k+s with o <s <k, (k fixed). 

Therefore, by stationarity we have: 
1 -S)/k 1 
2 flog pi, n ar > LES log py, x += $ log pa. dP 

and then, again by stationarity if 

f log P1, m dP< +00 foro<m<k, 

(4.4) 
1 1 

lim - Jlog p+, ndP >¡¿/ log ps, k dP (4.5) 

Now, if (4.3) and (4.4) are verified for all k, we can take 
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LS log p1, k dP 

and the limit in (4.2) exists. . 

4.2 Applications of generalized K-L distance: consistency of MLE, 

We denote q%, «f, the densities corresponding to QÉ, 

OÍ for 8=B0. 

The remaining notations are the ones established above. 

THEOREM 4.1. 

Suppose that the assumptions a) and b) of paragraph 2.1 are 

satisfied, that Pp « CP, for each 8€0 and all n, that P, Q%« 

v where v is a C-finite measure in the underlying space, (v.g. the 

canonical ( R”, Boo)), and that: 

(i) limo Epílogí pn/ d% )) = g(B0), where 8 is the point where the 

function g(8) attains its strict minimum. | 

(ii) lim —log(pn(X1,X2,X3,.... Xn)/ % (X4,X2,X3,...,Xn))=9(8) with 

P=1 for each 9€0, 

(ii) Denoting qh= qn (X1,X2,X3....Xn)= gu. dn(X1,X2,X3,...Xn)), 
we suppose that, for each 80 

lim limÍlog ( qh / 0%) < 9(85)-9(8) with P=1. 
Vy(8) 

The limits are taken in the indicated order: first in n, then when V 

shrinks to 6. 

Then, if 8n is an approximate ML estimator, 

8n > 8% a.s. (P). 
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REMARKS 4.1.The most important assumption is (iii), that can 

weakened as follows 

lim TrTÍ log (qn / R)<tH8) <0 
Vi(8) 

for each 8€0, 8 = Bha.s. (P). Itis possible to prove the Theorem 

4.1 with this assumption only. Anyway (i) and (11) are often verified 

(Cf. Barron ([3 |), Theorem 1)). 

in Leroux ([13 ]) is proved the consistency of MLE for hidden 

Markov Chains following the scheme of Theorem 4.1. We point out 

that B.G. Leroux arrives in his paper at the same concept of 

generalized K-L distance for hidden Markov models (p.136). 

Obviously if P =Q% for some Bo, the assumption (i) is fulfilled 

with 9% =80: In this case, g(Bo)=0 . 

In general, there is a Boy which minimizes the 

generalized K-L distance. This happens when O is compact and 

lim Í Epllog py/ 8 )= 9(8) 
is a continuous function of 8. 

Theorem 4.1. generalizes the independent case, where (i) 

appears in the form of the expression (3.1) and (li) is a 

consequence of the Law of Large Numbers: 

lim, log(pr(X1)P1(%2)...p1(Xn)/q,2(X4) q,9%)...q4(Xn)= 
Ep(log(p(X1)/q(X1)) = (8 ), 

where the convergence is a.s.(P). 

There are some hypotheses that can be weakened in 

Theorem 4.1. For example, it is possible that the limits in (ii) and 
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(iii) should be verified only in probability. The proof is easily 

modified to cover this situation. (Cf. Theorem 5.2. and related 

examples). 

PROOF OF THEOREM 4.1: 

We omit the proof because it is very easy and can be 

performed following the method of Wald ([17]). .. 

5. Applications and exampies. 

With the same notations that we have been using up to here, 

let (Xn)n=0 be a Markov process defined on ( W,A,P). We 

assume that the measurable space is the canonical (R“, Bo), and 

(Xnjn>9 the coordinate process. 

Let us suppose that the true probability P is absolutely 

continuous with respect to a 9d -finite measure v, and that under P 

the process has a stationary transition probability p(.,.) with a unique 

invariant density p(.). Under P the process is stationary and p(x, .) « 

p(.). (Cf. condition 2.1 (1) in Billinsley ([6])). These conditions assure 

the ergodicity of the process . 

We consider a model QÍ, 8€0, with stationary density q?(.) 

and (stationary) transition probability q?(.,.), P«Q%«v for every 8€0, 

and we assume the hypotheses a) and b) of paragraph 3.1. 

Then,we have 
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THEOREM 5.1. 

If Ep(log (p(x1,x2)/q%(x+,x2)))< +00 for some 8€0 (1) 

and there is a 9 such that 

Ep(log (p(x1)/q%0(x1)))<+00 
Epllog (q Lo x2)/ q90(x1,x2)))<0  torall 8x0; (2) 

Denote q Y(x4,x2) =suD %(x41,x2) where V=Vg is a 

neighborhood of 8 and suppose that 

Ep(log+ q Vx1)/q00(x1)))<00 
Ep (log+( q V(x1,x2)/q9 o (x1,x2)))<00 

(3) 

for some V for each 8. (lt is assumed measurability of the involved 

functions). Suppose also that when 8n > 8, 

Timgén (x4,x9) < ol (x4,x2) a.s.(P), (4) 

¡.. e. qU(x1,x2) is upper semicontinuous in 8 a.s.(P). 
A 

Finally if 8n Pta 

  
ñ xj, X 
II Xi Xi4 1) >C>0 forall8€0, then 
j=1 P (Xi, Xi+1) 

8n>85 as. (P). 
PROOF: 

We omit details. The keys of the proof are ergodicity and 

Theorem 4.1. 

REMARK 5.1. 

We observe that G. Roussas, ([16]) , and B.L.S 

Prakasa Rao, ([15]), state theorems close to ours in the case 
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Qé=P.The former reference also provides a proof of asymptotic 

normality. 

The observation of P.Billingsiey, ([7]), that the initial density 

is negligeable for Markov Chains has a complete justification 

through the generalized K-L distance: in our hypotheses the 

function g(8) does not depend on this first term. 

Clearly, it is possible (and straighttorward) to generalize the 

precedent result for p-steps backward. ( Cf. the foliowing example ). 

Examples 5.1. 

1.Consider an AR (1) stationary process xXn=Po0 Xn-1+Un 

with 

Po | < 1 and Un independent from the past with a centered and 

symmetric distribution with variance 0%. (For instance, a density with 

compact support and Ep(|log(p)l)<w ). 

For the model we take also an AR (1) process with Un -density 

abo= 112102) Pexp(-x?/ 202 ). 

We take the parameter space O = [(02, p)/ 02> 0, Jp|<1). 

ltis a simple matter to solve the equation (3.1) and to 

determine Bo=(03 , Po). 

The conditions of Theorem 5.1 are easily verified. The ML 

estimators are, in this case: 
n n n n n A A 1 a 

O ARO RIAS] 
i=1 

which are clearly consistent, (See, for instance, Anderson ([2]) ). 

2. To show a situation in which Theorem 5.1 is not applicable 

but the same conclusion is obtained, consider a random walk. 
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Let pp[X4,X2,...,Xn) = p(X4).p(X2-X4)...P(Xp-Xn.1) be the 

underlying distribution and consider the model: 

Qn[(X1,X2,-..,Xn)=08(x4) q8(x2-X4)...9*(Xp"Xp-1) with 8BEOCRK, 

p« q. Also suppose: 

(a) 9(8)=[p(x)log(p(x)/q 8 (x))dx<oo for some parameter value 80 

where g(8) attains its strict minimum. 

(b) suo ae (x) ¿+ «%(x) when V¿(8), V neighborhood of 8, 

a.s. (P), (i.e, the function a? (x) is - at least - upper semiconti- 

nuous in 8). 

in fact, we may take the true distribution and the same model 

as in example 3.1 and we will obtain the same estimate and limit 

a.s.(P). (In this case X is a bidimensional random vector). 

3. A slight modification of the underlying distribution provides 

an example of a sequence (1/0,) different from (1/n). 

(See paragraph 4.1). 

Suppose that p(.) changes in each step. For instance, let pn 

    

be 

Cn X Ls Pn(Xx) = tl AS AR with 

1 
Cn = > => = 6 5 n + O(n) and q o 2 
1 arctan(n) 

where 1,0 denotes the indicator function of A, AC symbolizes the 

complementary set of A, and O(n)/n > o. 

Then, 

[(og(pni)/a00)pníx)dx = 2/7, cnlogícn) =2109(Cp) A 
(1x2)



and for the generalized K-L distance we obtain: 
n 

On = » 2log(c;i) = 2n log(11/2)+2log(n!)+ O(log(n!)). 
¡=1 

But 

| log(n!) = og(21) + nlogn-n +logn. 
: 1 

Therefore, in this case, by! can be chosen as nlogn * (The model 

1 . 0 : 
can be taken as Aaa? but it has very limited interest). 

5.2.Stationary Gaussian process. 

Let X4,Xo,...,Xp,... be a discrete time stationary Gaussian 

process with spectral density f% and Pa stationary Gaussian 

model for the process. 

Suppose that O<m<f*, f9 <M<oo. Then, if P,Q9 are the true 

distribution and the model distribution and Ph, QÍ the respective 

finite dimensional distributions, we have: 

THEOREM 5.2. 
4 TT 

lima; 0(Pn, 0% )= 5 je 21-109 (8/2) dA 

being A the Lebesgue measure. 

This limit is strictly positive (a.e. (A)) unless that ?= 1% ae. (A). 

Moreover 
TÍ 

7 109 Pr(X4X2,...,Xn) /Q8 (4 M2, Xm) > 35) (97 %-1-l0g(19 19))dA 
-T 

the convergence being in L?(P). 
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For a proof, see for example Dacunha Castelle - Duflo ([9]), 

Vol. ll, pp. 70-72 . 

REMARK 5.2. 

Theorem 5.2 assures the applicability of Theorem 4.1 

to Gaussian stationary process with spectral densities satisfying the 

convenient hypotheses. 

in fact, if there exists a parameter value 8, such that 
1 

9(8)=37 7 (07 1%-1-09(89/ 1% Jada 
-T 

attains a strict minimum, assumption (i) of Theorem 4.1 is verified. 

On the other hand, the second statement of Theorem 5.2 assures 

that assumption (ii) of Theorem 4.1 is fulfilled in probability, so that it 

is only necessary the verification of (iii) in probability, in order to 

apply Theorem 4.1. 

The hypothesis O<ms<f, fé <M<oo can be weakened to the 

following one f%/f9 < M<oo and still the convergence in probability 

to a positive constant stated in the Theorem 5.2. is true. 

Examples 5.3. 

1.Assume a moving average process 

Xi=2Zp+8Z4.1 

with Z; a Gaussian white noise with variance 1 and |8|<1. Let the 

model be an AR(1) process 

XrPX1=V1 
with |[p|<1-3 and V; a Gaussian white noise independent of the past 

with variance 02.



For the respective spectral densities, we have: 

P(A)= (1+82+28c08A)/211, (A)=5 02.(14p2-20c08M0" 

Then, as 
O 

o = (14+82%+28c05A)(1+p%-2pc0sA)/0 2 

we have for the generalized K-L distance: 

a(p,8)= [(1+ p2)(1+ 82-28p)1/20? -1/2+ 1/2log(a?) 

and for 84 we obtain the value: 

Do= 8/(1+82), 09% 1+82-82/(1+82 )2 
1 

(f log((1+82+28c0sA)dA=0, by Poisson-Jensen formula. Cf. for 
Y 

instance, L. Ahlfors ([1])). 

lt is quite elementary to verify the hypothesis (iii) of Theorem 

4.1. Therefore, the conclusion of T.1 follows. 

2. Suppose now the same model, but the true process is a 

Gaussian ARMA(1,1): 

Xr0X¡4=2i+0Z(4, [9 |< 1. 

  

  

in this case, 

P(A) (1+024+28c0sA) (1+p2-2pc05A) 4 

eq 5 y? “(1,8228c0sA) *" 
o qyoL1+82)(1+p%) _ 80 92(1+p2)- 8p(1+82) 

90.00 =12 24-82) “g21-03* g2(1-82) 
(-1/2)+1/2l0g(0 2) 

(2+02)8  .9 1+202+504-88 

(1+382) “9% (1+382)(1-82) 
We obtain po=



We point out that the variance of the X; of the Model is exactly 

the variance of X; for the true process, and the true correlation 

cuan+ ie. 2(1+83)8 coefficient is: (1+302) 

3. Consider a p-moving average and a model AR(1). 
p . El ñ S 

For instance, we have Xp= 0 E n-ip1 Where (Eih>2-p isa 
¡=1 

Gaussian white noise with variance 0% , and for the model we have 
00 

YY, 0512 ni41 where (£j)j>-00 is also a Gaussian white noise with 
1 

(unknown) variance g?. 

For the quotient of densities we have : 

Lan_ g2 1 (1-cospA).(1-2pc0sA +02) 

Por “sl 02(1-cosA) 

A few computations show that: 
* -¿ * 3 

Do= mn and 0$=0%. Se and it is easy to see that the MLE 

converges a.s.(P) to these values. 

Observe that Theorem 5.2 is not applicable because the true 

  

. , , 21 $ 
density vanishes for instance in A e (p>1), but the condition 

f9 » 
y < M<oo ¡is verified . 

Observe also that Y, has the same variance that the moving 

average. 

4. Finally, let Xi=(2¡+Z¡.4)/2 be the true process with Z¡ a 

Gaussian white noise with variance 1 and a Model Y¡=V¡+8V;.; 
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with 8 >0, fixed, and V¡a Gaussian white noise with unknown 

variance 0?, 
The quotient of densities is: 

  

  

E (1-cos2A) 1 = 1/4 ; 

(92 (1-cosAJo2 (1+02+28c0sA) anamecabiala Jar fre 

variance of the model the estimate - , ; 
2(1+8) 

We observe that the Model is non-Markovian. (Compare with 

Barron ([3))). 

As an example of application of the generalized Kullback- 

Leibler distance in a different direction we have, in the context of the 

previous paragraphs, the following statements (Cf. Basawa € Scott 

(15] )): | | 
THEOREM 5.3. (Probability ratio test ). 

(i) If tor a sequence (bnjn>1, Dn >+00 we have 1/bp log(pp/qn) 

>C>0as. (P) and we consider a sequence of Neyman-Pearson 

tests with size Xp > «e€(0,1), then Tim 1/bn log[ Bn) € -c, where Br is 

the error of second kind probability. 

(11) A similar result is verified if 1/bp log(pn/qn) > Z , where Z is 

(a.s. (P)) a positive random variable .The convergence being a.s. 

(P). In this case however 

Tim 1/bp log( Bn) € -t, where t,, is defined by P(Z<t,)=t 

PROOF OF THEOREM 5.3: 

(1) Let An = (Qn/Pn> Kn) be the critical region. Since 

1/07 log( Bm) = 1/0n 109 (/ ,¿ An )= 1/ blog (Í ¿(Gn / pr) AP) < 
n n 

a 
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< 1/bn log(Kn.P(A%)) = 1/bn logí Kn) + 1/bn log (1- X p), 

by using that 1/bn log(pn/qn) > e a.s.(P), that bn >+% and that 

Xp>X€(0,1), we will have that 

Tim 1/0nlog( Bn) < Tim 1/bnlog (Kn) <- c. 

For (ii), we start with the inequality 

Tm 1/bpnlog( Bn) < Tim 1/bplog ( Kp) - 

Now 

P((1/0plog( Gr/ Pn) € t ¿+ €)) > 

P((1/0plog( Qn/Pn) +2 < €) O [-Z<-+,))> P(Z2t¿))=1-x, 
and if we choose a' such as P([ Z21t,.))=1- a>1- x, we will have 

simultaneously that 

P([ 1/0plog(kKp) ))<1/bnlogl An/pn) ) > Xx and 

P([ 1/0nlog( Qn/Pn) € - ty + E) > 1-a>1- a, as. (P) 

Hence 

Tim 1/0p log( Bn) € -t¿+€ forall e >0 and all a'< a, that is 

Tim 1/bn log[ Bn) € - to 

THEOREM 5.4. 

For all test $ y with size Xp < « € (0,1), 

lim 1/0p log(Bp9n) > -t, 

PROOF : 

Without loss of generality we can choose kp = exp(- bnt, ). 

Let Bf be a critical region with P(B%) = Yn < y < X and



A, = (Qn/Pn> K+%) . We have : 

am =04Bn =>). dOn adi ever ive ka PP 
Bj 5 An Bn An n 

1+e Si 14+€ =E = y PB, PRAJ>S kE O PB," P(Ap)) 

Since 

P(AS) = P((1/bn log(Qr Pr) < (1+ €)1/bn log K,)) = P( £1/0n lOg(Qny Pn) 
S (1+ El -19) > PAZ >ty (1+ e)) <1- a 

and 

P(Bp) = 1- Yn2 1- y >1-x, 

we find that 

lim 1/0p log( Bp%n) > -t,.(1+ €), forall e > 0. 

REMARK 5.3. 
(Asymptotic optimality of the Neyman-Pearson test). 

If Y, stands for the Neyman-Pearson test, we obtain as an 

immediate consequence of the last Theorem that 

lim 1/bp log Bn%h) > -t¿ > TT 1/bplog( Bp%), ¡.e. there is 

equality . 

Examples 5.4. 

As a source of examples for the Theorems 5.3 and 5.4 we 

mention only the case of exchangeable variables. Concretely we 

may consider the following distributions: 

Pp = Je 120% expl - «Bo 1)2/2). exp(-12/2) du=



00 

men" 11n+1)% expl - Y x 02). exp(-x2/2(n+1)) 
hd 

and for the model q, the multivariate density function corresponding 

to n independent standard Gaussian variables. In this case we have 

clearly 

1/n log( Gn/Pn) > Z>0a.s (P). 
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Abstract 

Ín this paper delay equations In4++ = f(Ln,-.., Zn+£-1) are considered, where the function 

f is supposed to be convex, having a unique point of maximum. It is proved that if there 

are no stationary solutions then ail solutions must diverge. Considering the one parameter 

family f, = 4+f and essociating to it a family of two dimensional maps F,, it is shown that 

the set of points having bounded orbit under F,, is homemorphic to the product of a Cantor 

set and a circle, and is hyperbolic and stable. 

i Introduction 

Any delay equation of order k: 

Tn+k = Hbrs + En+k=1) (1) 

can be associated with a transformation of R* given by 

PlEzs o DB) 5 (EZ 1 Ebo $ (Ex > Ta)) (2) 

Any orbit of the map F' is in one to one correspondence with a solution of the delay equation (1). 

Here we will deal with delay equations where the function f is conver, in the sense that fis a C? 

function such that the quadratic form associated with the second derivative is definite at every 

point. Ín this case equation (1) is called a convex delay equation and the map F' defined in (2) 

is called a convex delay endomorphisrm. In the rest of this work, we will take this quadratic form 

negatively definite, so that f could have at most one critical point that should be a maximum. 

A stationary solution of the delay equation (1) is a constant solution 2, = z for every n; the 

existence of such an zx is equivalent to have a solution of the equation f(z,...,2)= 1; Moreover, 

the fixed points oí F' are the points (x,..., 1), where z is a solution of f(z,...,x)= z. So when f 

is convex the delay equation associated would have at most two stationary solutions, or, wich is 

the same, the endomorphism F' would have at most two fixed points. We will prove the following 

result: 

Theorem 1.1 Let f be convez and suppose that F has no fized points. Then the w limit set 

under F of any point in RE is empty. 
  

*The final version of this paper will be submitted for publication elsewhere 
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In terms of delay equations this says that if f is convex and there are no stationary solutions, 

then all the solutions must diverge. 

Consider a convex first order equation given by f : R —> R, and suppose that f is not only 

convex but there is a negative constant such that f” is less than this constant. If we push 

up the graph of f vertically, we will obtain a one parameter family f, = p + f; for this one 

dimensional map it is easy to see that for every large parameters the function f, will have two 

fixed repelling points and that the set of preimages of any one of these points accumulates in a 

Cantor hyperbolic set which is the complement in the line of the basin of attraction of oo (or, 

what is the same, the set of points with empty w limit set). Under some new conditions on the 

function f that will be defined in section 3, this result remains true for second order equations; 

these are open conditions, define a set Y, and imply that F is convex. 

Theorem 1.2 There ezisis an open set U in C*(R?) such that for any f € U the family of 

endomorphisms F,(2,y) = (y, 4 + f(2,y)) has the following properties, for every y sufficiently 

large: 

a) F, has two fized saddle points 

b) The closure of the stable manifola of one of these points 15 diffeomorphic to the product of a 

Cantor set K wsth a circle S? 

c) The basin of oo is the complementary set in R? of the closure of the stable manifold. 

As a corollary of the proof of this theorem it can also be obtained a description of the dy- 

namics of F, restricted to the closure of the stable manifold (= K x S*). Each circle of K x S? 

is mapped into a not closed curve contained in other circle, so this defines a one dimensional 

map on K, that becomes equivalent to a shift: 

Theorem 1.3 Let W¿ be the stable manifold of one of the fized points of F,,, and W; its 

closure. Consider the set: A = An>o FR(W¿). Then A 1s compact, F, — invariant, hyperbolic 

and comncides with the closure of the persodic points of F. Two different cases can occur: Exther 

A is a horseshoe and F/A is a homeomorphism, or il 35 contaimed in the unstable manifold of 

each one of the fized points, whsch in this case are equal. 

The second alternative of the last theorem it is not generic: the usual case is the first. Now the 

dynamics of the maps F,, are cornpletely described for every large parameter values. 

For a particular family of quadratic delay endomorphisms, the first theorem was proved by 

Whitley, in [W], where it is also described the maximal invariant set, however these proofs 

cannot be extended to this general case, and the stable manifolds are not studied. 

A very interesting reference on the subject of delay equations is the book of P. Montel, [Mon], 

where the theory of delay maps is treated from a general viewpoint. 

We aknowledge R. Mañé and P. Duarte for useful suggestions. We are also indebted with 

IMPA, Rio de Janeiro, where we find the hospitality that encourage us to carry out this work. 
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2 Abscence of fixed points 

As was explained in the introduction the hypthesis of theorem one is equivalent to the non 

existence of solutions of the equation f(%,..., 2) = x or, which is the same, the graph of f does 

not intersects the diagonal of REL Let f(x) be the Hessian matrix of f at the point z. By 

hypothesis, f is convex, which means that if Q. is the quadratic form associated with $), 

then Qu(v) = vf"(z)v? < 0 for each vector v not zero. 

PROOF OF THEOREM 1.1 

As the graph of f doesn't intersects the diagonal of RF+L there is a positive number a and a 

unique point zo € R” such that the graph of f + a: intersects the diagonal of REH at (Lo; «-., 20)- 

Without loss of generality it can be assumed that zg = 0; then, using Taylor's expansion around 

0, it 15 obtained: 

f(2)=-a+vx+iHr+ Rz (3) 

where v= f'(0), H = f"(0) and R:R* —=+ Risa C? function such that limooRíz)/]zf? =0 

Denoting v = (vx,..., V¿) observe that the vector (vz, ..., y, —1) is orthogonal to the tangent space 

of the graph of f at 0, which by assumption contains the diagonal of R*+!, so that sa v¡=1. 

Now define the following Lyapunov function: 

L(t1,..,24) = 0121 + (01 + 09)22+-.+(01+..+0-1)8k-1 + 2 (4) 

As it is well known, to prove the theorem it is suficient to show that for every z € R?, L(F(x))- 

L(z) < 0. Then, using (3), (4) and that Y v; = 1, it is obtained: 

L(F(2)) — L(z) 0122 + (01 + 09)23 +... + (01 +-...+ 04-1)23:+ f(2) — L(<) 

= —-a+2Hx+R(x) (5) 

Now define the function p : RF — R by p(z) = »Hx+R(z) and observe that p(0) =0, p'(0) =0 

and p"(x)= f(x). So p” is negative definite from which it follows that p(x) < 0 for every 

z E RF, x not zero. This implies that L(F(x)) — L(z) < —a < 0 in (5), and the theorem is 

proved. 

3 Dynamics for large parameter values 

We will begin by describing the C?-open set U for which the theorems are valid; 

Let 

B= —suplózf(2,y) : (2,4) € R?] 

A=-inflíóuf(2,y) : (2, y) € R?) 

A'=-—sup[Omf(2,y) : (2,y) € R?) 

Definition 3.1 Let be the set ofC? functions f : R? —= R such that the following conditions 

hold: 
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(P1) B>KA A 

where K is a positive number to be defined later 

(P2) — —0uf(2,y) > lO f(2,y)) Ve, y) € R? 

(P3) A4>0 

Remarks: 

1. (P1) and (P2) together imply that fis convex. Using also (P3) it follows that 

liM(2,y) j=cof (2, y) = 00. 

2. It is clear that this set 4/ is open in the C? topology. 

3. The theorems 1.2 and 1.3 are not valid in general if B < A: take for example f(z,y) = 

— Az? - By? with A > B, calculate the eigenvalues of the fixed points of F,,, and observe 

that it are not saddles. 

4. The number K is an absolute constant independent also of f € U. 

Now define the one parameter family to be considered: take f € U, and define: f,(z,y) = 

p+f(2,y) and F, :R?= R? dy Fale, y) = (y, fu(z, y). 

Now let's introduce some elementary curves that will play an important role. The critical 

curves of f, are: 

li=[(2,y) : 01f,(x,y) = 0) 

la=[(2,y) : 02fy(2,y) = 0) 

These curves are in fact independent of ¡; l; is the graph of a function of y, so that l; = 

[(=(Y),y) : y € R), with 
012f(2(y), y) 

01f(3(y), y) 

l2 is the graph of a function of zx, so that l2 = [(2,3(2)): z € R], with 

_ Of (2, y(z)) 

002 f(2,4(2)) 

By properties (P1) and (P2) we have that: 

7 (y) =- 

Y (=)= 

(y) < 1/K Wy and lg (2) < 1/K? Ve 

So K > 1 implies that l; and ly have one and only one point of intersection tha will be 

supposed to be (0,0) by making a translation. From this it follows that f,, takes its maximum 

at (0,0). 
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Also observe that ly is the set of critical points of F,,. 

The image P,, of l; under F, is the graph of a function Z,(2) = f,(2(7),2), that has negative 

second derivative as it is easy to check using (P1) and (P2). So the complementary set of P, 

contains two connected components, one of which, P,, , is convex; actually, F,(R?) = P,¿U Pg, 

Any point outside PU Pu has no preimages under F',; a point in P, has only one preimage lying 

on 11; and points in Pu have two preimages, having the same second coordinate and located one 

at each side of l;. 

Denote by £a(p) the a-level curve of f,,, that is, E£q(4) = [(2,y) : fu(z, y) = a) 

   

    

   
! 
pss 

fai 7 q 

Lemina 3.1 For every y sufficiently large it 35 defined a function s of p such that: 

a) (s(p),s(1)) is a fized saddle point of f, 

b) s(1) — —o as y = +00 

l Pu 

s'(4) —>0 as jp — +00 

c) A local stable manifold of (s(1),s(1)) is transversal to E(p), the family of level curves of 

Íu- 

Proof: As was explained before, the fixed points of F, are the points (z,x) for which 

fi(2,12) = z. Let g(2) = f(x,7). Using (P1), (P2) and (P3) it is easy to see that y has 

negative second derivative bounded below from zero which implies that the graph of g intérsects 

any line y = z — y for y large enough. As g has its maximum at zero, one of this points will 

have negative coordinates; let's denote this point by (s(u),s(u)). It is clear that s(4) —> =00 as 

p => +00 and that s'(1) = (1— g'(su))7?, which implies part b. Let's prove that (s,, sy) is a 

saddle point. The eigenvalues are given by 

Ay =1/2E + VE?+4D) 
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where E = E, = 02f(5.,s.) and D= D,= 91 f(sp,Su) 

Now observe that: 

o 
o ! : 

Dy= | —O12f(2,2)-011f
(2,x) d2=/ —01f(2,2) (a

 

where (P2) was used. Similarly, using (P1) and (P2) it can be obtained that 

5 , 0172f(2,2) 
E, = E —O07f (1,2) ( + ias) 

Therefore E,/D, > 1 which implies that A- € (—1,0). In addition it follows from the facts 

) de < A(14 K"*)(=sz) 

)az > 811/3055) 

above that Ay — +00 when 4 — +00. This proves part a) of the lemma. To prove part c) it 

is enough to observe that an eigenvector associated to A- is (1,4), while a tangent vector to 

Ex (e) at (s(1), s(1)) is (1, —D/E) being easy to check that A- > —D/E. 

The proof of theorems 2 and 3 is based on the study of the behavior of the stable manifold 

of S, = (s,,8u) (thai is defined locally as for a diffeomorphism and then taking preimages). 

Denote by W¿ the stable manifold of S,,. We will prove thai W has infinitely many connected 

components, each one difleomorphic to a circle. We begin with the following simple fact: 

Remark: 

Let y be a C? 1-1 curve such that intersects P,, transversally at two points Then EUA is a 

C? Jordan curve. The proof of this fact is easy using that any point in P, has double preimage. 

The transversality is used to obtain that FM) is Cl at the points of intersection with l;. 

This is the procedure that makes W¿ contain a closed curve: it is enough to prove that the 

local stable manifold of S, intersects P, in a pair of points to imply that Wi contains a C? 

simple closed curve. 1t will be shown that this curve has, in fact, four poiuts of intersection with 

P,,; taking the preimage under F, of this curve it will be obtained another closed simple curve, 

which will also intersect P, at four points. Automatically, the following preimages under F,,, 

give a sequence of closed curves each one having four points of intersection with P,. To prove 

these facts we will first show that W¿ is transversal to £(14) before its intersection whith !, or la, 

this, as we will see, implies that these intersections actually occur. And secondly, a technique 

wiil be developed permitting us to study the set W¿ as it was a level curve of f,,. 

As f is convex, every level curve €,(p) is a Jordan C? curve that enclose a convex region. 

In general, if £ is a Jordan curve then ¿(£) will denote the bounded component and e(€) the 

unbounded component of R?X €. As the maximum of each f,, is taken at (0,0) we have that 

€al) = $ for a > p+ f(0,0), and that (0,0) € i(€a(1)) for a < up + f(0,0) ; in this case, Ea (1) 

intersects both 1; and la, the intersections with l correspond to the horizontal tangents of € (y) 

and those with [2 to the vertical tangents of £«(16). For any fixed u, the level curves £,(1) form 

a foliation of RA (0,0), that we have denote by £(1).Let y be any C? curve that is transversal 

to the family £(1); then we will say that y is entering £(u) at tif (fo y)'(t) > 0 and that is 

leaving E(p) at tif (fo y),(t) < 0. 

Let's denote by Q; the connected component of R?X 1, U la wich contains Su. Leta =a, bea 
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curve parametrizing the connected component of W¿NQ1 wich contains the point S,,, and with 

the following properties, where we take y large and drop the subindex: 

e a(0)=S,. 

e a(t)= (ax(t),a2(t)) with ax(t) >0 fort small. 

It follows from lerama 3.1 that a is entering £(4) at t =0. 

Lemma 3.2 a, is transversal to E(p) 

Proof: .Observe first that if at a point t, « 1s tangent to £, then foy has a critical point at t, 

so that Fo y has horizontal tangent at £, and this implies that F?o y has vertical tangent at £. 

Reasoning by contradiction, suppose that at a point s< 0, a is tangent to some curve of £; let 

sy = maz[s<0: a is tangent to € at s). Then, at so, Fo a has horizontal tangent and F?o y 

has vertical tangent. Now, as a is part of W?*, wich is invariant, it follows that there exists 

s1 € (s9,0), such that a has a vertical tangent at s1 (that is, a1(s;) = 0). Redefine, if necessary 

51 as maximum with this property. Obviously so < s1 < 0, and we have to distinguish between 

TWO cases: 

i) añ(si)<0 and ii) ar(si)>0 as(e) >0 

P
r
 

Es, (14) ¡ 
/ ae(s]) 2 

a(t)     
case 11) 

case 1)   / 
eat) <o0 

In case 1), observe that a is leaving £ at s1, because a is contained in Q1; as it was entering 

€ at zero there must occur a tangency between a and £ in the interval (s¡,0), which is a contra- 

diction with the definition of sg. 

In case li), there must exist a point 52, 51 < s2 < 0, such that an (s2) = (0. Take s2 maximum 

with this property. 1 aj(s2) < 0, we conclude that a: is leaving € at sz, so as in case la 

contradiction appears. If aj(s2) > 0 define t' > 0 such that F(a(sz)) = a(t”) (so aj (t”) = 0). 

Now ax(t') > 0 implies that there exists 1” € (0,t”) such that a2(t”) = 0; thus, taking the 

image of a(t”) we find a point of vertical tangency between a and € which corresponds to an 

s € (s1,0), in contradiction with the definition of s1. Therefore a%(t') < 0, so there exists 
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"€ (0,t”) such that £ and a are tangent at 1”; it follows that «a has horizontal tangent at a 

point in (s2,0), which contradicts the definition of $2. 

The following two lemmas, that will be used often later, imply that the level curve of f, 

passing throught the fixed point S, must intersect the set P,,; this, together with the previous 

result will imply that also W¿ intersects P.; then, using the remark above lemma 1 forces W ¿ 

to contain a C* Jordan curve. 

Lemma 3.3 Let r be a C* function of p such that T'(1) => 0 as 4 — co. then for all p 

sufficiently large Ey (1) has four points of antersection with P,. 

Proof: Let's first calculate y, = mazl[y: (z,y) € Ent). As it is easy to see, this maximum 

must be taken at a point of intersection of £,(,)(1) with [1 so that y, satisfies: FulElup)i Ya) = 

r(1). This implies that y, — oo as 4 — 00 because f(2(y,), yu) = 71) — p Which tends to —oo 

as p — oo by hypothesis. Therefore, as 01 f£,(2(y,), Yu) = 0, 1t follows that: 

is Tu) =1 

di d2f(E(Y¡), Yu) 

From this it can be obtained that Y, — 0 as 4 — 00 because 07 f(2(Y,), Y) — +00. In addition, 

the maximum second coordinate of points in P,, is p + f(0,0), which results to be greater than 

Yu lor every y large, because Ye —= 0. This shows that P,, crosses E-(,) (1) vertically. 

  >?
 

  

Now let z, be the first coordinate of the left point of intersection of l2 with £,()(1) and £, 

the first coordinate of the left point of intersection of l¿ with P,. We claim that |, |>|2, |. 

Observe that z, satisfies the equation: 

Ful2u 0(24))= Tu 

so that 2, — —00 as 4 ——= +00,which can be proved as above. 

Using (P3) it follows that: 
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He Bd) / Y (e a(0)dt+ (0,0) 

(Of(s HS)? aléd — port 
022 f(s, Y(s)) tE ABU 

similarly, but now using (P2), it follows that: 

t 

Of(t,5(0) = / 9, 18) - 

(1,50) > -A(1+1/K*)1 

and this implies that: 

A' A 
GUY K zz < p-r(u) < 70+1/K5)2% 

and therefore: 

¡tu! — 21 (6) 
As 

  liminfumo 
E 

where Ag = £(1 FILES 

Now let's estimate the point ¿,. It is easy to see that 2, (1) < —Bpr? + p, where By = 

a — 1/K?) from which it follows that P, can be substituted by the parabola y = —Bgz? + y. 

This, together with the fact that lo is contained in the cone |y |< 2/X?, imply that: 

. 1/K?+ /1/K?+ 4Bop 
pl € — AA AA 

2B0 

from wich 1t follows ¡hat: 

: EP 
limsSUPyr4+o == S< 1 ( 

vB a 

As Bo > Ao, (6) and (7) imply the claim. Observe that this should be repeated for right 

intersections. So this shows that P, crosses £,(,y) (4) also horizontally. This finishes the proof of 

=j
 

—
 

the lemma. 

Let r be a C? function of y such that 7'(4) — 0 as 4 —> 00. Then the lemma just proved 

implies that for any point in PA ¿(Er(u)(1)) the partial derivative with respect to the second 

variable is not zero. We will need now to find a lower bound for this derivative and , more than 

this, we will show that a relation between the partial derivative with respect to the first and 

second variables exists. This will be used later to obtain stable foliations in Pa Vi(Ex(u)(4))- 

Lemma 3.4 There exists A (for example, A = 10) such that, if (x, y) € e(Exu)(1)) N Ba and y 

is sufficiently large then: 

: Ofu(z, y) 
01Íu(z, y)     
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Proof: . Firstly observe that: 

|d2fte,y) I=1 822,9) + [| Imflesidds 12 B 14-52) | 

And in the same manner: 

101fHz,y)1< Alz(y) — y | 

From this it is obtained that: 

d2f(z, y) Bly- y)! (8) 
Ofley)l  Alz(y)-2=] 

Now suppose that a constant A independent of y was found such that: 

  

AA Y(=)— y 
EE 3 (9) 
3(y) - z 

for any point (x=, y) of intersection of P, with £,(,)(1). It follows that the same estimate is 

valid for any other point in P, N Er(u) (1) (this can easily be seen using that the tangent vector 

    

to P,, is almost vertical at points not approaching l,, see the figure). In fact, what we will show 

is that (9) is valid for (2,y) = (Bu, Zp(Bp), the point of intersection of P, with £,(1)(1) located 

at Q1. For the other points in P,¿ N £,(1)(4) the reasoning is similar. 

(Za, Y(r,)) 

    

   

(Bus Zu(Bu)) 

Er(u) (4) 

4 

Let's begin estimating the numerator of (9): The level curve £,(1)(4) is given by the equation 

fu(x,y) = r(1) wich defines a function X (y) in a neighborhood of the point (24, 3(2,)) such 

that: X(y(2,)) = 2,, fi(X(y),y) = r(u) and therefore: 

0 (X (y), y) 

20-10, 40 
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Derivating once more it can easily be obtained that X”(y) < 0; thus, we can assume that: 

02f(X (y), y) 3 (11) 

f(X (Y), y) 

because the contrary assumption trivially implies the lemma. As X”“(y) > 0 equations (10) 

and (11) imply that X'(y) < A, for every | y— iz) | < X7*(%,), where for X7*(2,) we 

denote that preimage of £, contained in Q1. Now this implies that for y € (He 4), Xp): 

  

  

IX(y)— zu] < AMAy— y(z 4)! (12) 

Let 1 be the line 2-2, = —A(y-— y(z )). It follows that the vertical distance from (2, 3(2 ,)) 

to l is: 

Tun 
EL) -y= (13) 

Now, if (Bu Ent Bu)) is the point of intersection of P, with [, then it follows from (12) that: 

HBu) — En(Bu) > HBa) — 2nlé,) (14) 

But Br can be estimated easily, because P, can be substituted by the line y-y(£,) = —2B0t,(x— 

2) (this follows from the fact that | EE) l> —-2Bg2, for z < £,), and this gives, just inter- 

secting this line with /: 

f 5 y—U(Ejp) _ Yl(=p) — UE p) — 1/MBs —2u) ES 2 = : 
—2Bo0ty -2Bo01 y 

and following: 

2 [HE E) + 1 /Me di O/A 4 1/3) | 2 ¿y 1 
| ME 2Bot,(1+1/A) rar 

Finally, using (13) and (15) it can be obtained that: 

; 7 , 1/K? 4 1/2)? 181-Edbm) 2 UME—21)-0/4H1/M(8,-É6,) 2 (1 A) (E,=2) 
Therefore we can take y large in such a way that: 

a 15 Ey la 
pu Ss e 

y(Bu) ZulBu) > ZA 

This provides, using also (14), an estimative for (Bu) — 2(Bp). 

Now join this with (8) and the fact that the horizontal distance from (Pu, ¿.(8,) to l1 is less 

than |z,,| to obtain that: 

024 (Bu, Zu(By) 
01F (Br, 2u(B,) 

  

    T 2AA =x, 244 Ér 

Thus, using the estimatives for 2, and 2, obtained in the previous lemma it follows that, - 

for y sufficiently large, 
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(92£(Bu, Zu(Bu) Y, VK 

911 (Bu, Zu(By) > K/42 > VK/4 B 1 = Bolo) > el 0/40) > 

  

4AA 

To do the last step works, we make A < VXK, so for any A satisfying this, the lemma is 

proved (recall (9)). In particular, we can take A = 10 if K is large enough. 

This provides the necessary techniques to obtain stable foliations. 

Lemma 3.5 Lei r be a C?* function of y such that 7'(1) — 0 at infinity. Let Ry = Pa n: 

e(Er(u) (1) and define G, = Pa>oF¿"(Ry) Then, if y is sufficiently large,there exists a C? 

stable foliation of G, invariant under F,. 

Proof: . Fix any p large enough and drop the index . Observe first that F(G) C G. Define, 

for each x € G a cone Cs = [(u,v) : | v/u |< e) where e is a positive number to be chosen. 

Now, for (u,v) € Cf(s) We have: 

E -1 
DE (uv) = 5 (ub2f — 0,u01f) = (u1,v1) (16) 

where the derivatives are calculated at F(x). Furthermore: 

u01f 01f 
u0daf — v df — v/u 

df 

02f/2 

fe <102f|/2. But F(x) € GC e(Er(u)(1)) so that the previous lermma can be applied to 

v1 

u1 

  

            

obtain: 

A < 2JA< e 
u1     

ife = 3/4. This e satisfies also e < | 02f | /2 if y is sufficiently large, because A(= 10) is 

independent of y, while | 02f |> co for points in e(£,(u)(4)). This proves that (uz,v1) € Co if 

(u,v) € CF(x). In addition, using (16): 

| ud2f — v |+]u01f| 

  

    

¡(ua w)] = [au l+]10u/= 1017] > 

> Jul(19f]-1u/o1+ 194) 7 lulfof] . 
19 | = 2 l0f| = 

A Aluleler, .4.. > Az A q ul 2] (u,v) | 

This proves that DF”? leaves the family of cones invariant and expands length. As it is known 

this implies the existence of the foliation (see [HPS]), thus proving the lemma. 
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PROOF OF THEOREM 1.2 

STEP 1: W¿ has infinitely many connected components. 

It is known, by lemma 3.2, that the connected component of W¿NQ 1 containing S, (parametrized 

by the curve a), is transversal to the family of level curves £. This means that a(t) € e(€s,(1)) 

fort < 0, because f(«:(0)) = sy. In addition, by lemma 3.1, it follows that lim,-00s, = 0, and 

thus lemma 3.3 (with s, in place of r), can be applied to obtain that €, (4) intersects P, in Q1. 

Joining these facts it follows that a also intersects P,, unless it doesn't reach l¿ nor P,. But in 

this latter case we will find a contradiction: firstly, this implies that there is a two periodic orbit 

(p1,p2) such that pz and pz are the extreme points of «. Now it follows that the direction given 

by the tangent to q at pi, is non contracting. Also observe that: 

  

    

¡an(t;) 101f 
| 
¡01 (t1) 07f 

where t1 is suck that a(1) = pj and the last inequality follows from lemma 3.4. Now the 

equation above implies that the tangent direction to a at py is contained in the stable cones as 

defined in the previous lemma: thus we have found a contradiction because tbis direction must 

be an invariant non contractiug direction. 

Until now we have thus proved that a (and so also W¿) intersect P, at one point. Let's denote 

by «1 the curve F7*(a)Y a and let's show that it also intersects P, : in fact, let S;, be the 

preimage of S, which is not S,. The image of that part of a] that lies between l, and Ss 

is located above Sy, and this implies that a; is outside €,, (1) between l; and Sh At Sl 01 

intersects €s, (4), and after this, «1 is contained in e(£,,(1)), so that lemmas 3.3 and 3.4 can be 

used as before to obtain that a1 also intersects P,. Therefore, we have proved that W¿ contains 

a Cl curve intersecting Py transversally at a pair of points, which implies that W; contains a 

closed simple C* curve that contains the point S,,, and that will be denoted by W.. 

la Y ), 

Evlu ) 
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v | 1 1 
  

  

| v < - < < all ra 10 JA < amar E 
1 

—— Se 17 102fI/2 = wr 
where it was used the lemma 3.4, and e = 3/B This proves that (uz, v1) € Cf(s) for (u,v) € Cz. 

Furthermore: 

[(u,vyi = Juil+ lo] = lo] + lud f + v02f1 > lvl (1 + 102f| - 101f|lu/v!) 

[v1102f| 102f| á E O (18) 

It follows that DF expands lenght of vectors in the cones and the lemma follows by the 

results of [H PS]. 

Define l, = (W)3n P, and l¿= F(1;) niwp), (Á denotes the closure of A). /; is the union of 

two curves and /2 is the union of at most four curves. What we must show is that Win lisa 

Cantor set. 

Observe that the stable foliation obtained in lemma 3.5 can be extended to PAUn>0 F¡"((W2)) = 

P,nWi because ¿i(Wa) D ¡(€ (14)) and y¡ (1) — 0 as y — oo which was shown in step one. This 

defines a map r which carries points in W¿N l2 to /; along the leaves of the stable foliation. 

Now the proof will be completed by observing the three following facts: 

1. The map F restricted to 1, N F7X(12) is an expansive map because /; and /z are almost 

vertical lines and lemma 3.6 can be applied. This implies that this restriction of F' satisfies 

bounded distortion properties and so it preserves cross ratios of intervals (this is a well known 

fact, for the definitions see [M)). 

2. The map r has been defined as induced by a stable foliation of a C? map, F,. This implies 

that m also has to satisfy bounded distortion properties (this is an observation of Newhouse that 

can be found in [PT]). Now, as above, the map T also preserves cross ratios. 

3. Maps which preserves cross ratios of intervals define Cantor sets (this is a simple fact). 

The proof of the theorem 1.2 is complete. 

PROOF OF THEOREM 1.3 

Fix any large value of p. Suppose first that there exists some integer n > ( such that 

F restricted to F”(R?) is one to one. Then obviously F/A is a homeomorphism, (recall that 

A= Mhna>o FW). To prove that F/A is a shift we proceed as for a horseshoe: first give an 

¡tinerary j(=) € 2% to each z in A and then prove that j conjugates F'/A with the shift. To 

obtain the hyperbolicity just use the foliations shown to exist in lemmas 3.5 and 3.6. 

If there is no n > 0 such that F/F”(R?) is one to one then it follows that the unstable manifolds 

of the fixed points must coincide because there is a contraction in the horizontal direction. 

Now A is contained in the unstable manifold of S, (and of the other fixed point). Finally, the 
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hyperbolicity follows from lemma 3.6 and the fact that these unstable manifolds have to be 

contained in the unstable foliation. 
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UNITARY EXTENSIONS OF ISOMETRIES AND INTERPOLATION 

PROBLEMS: DILATION AND _LIFTING_THEOREMS 

Rodrigo Arocena 

Our aim is to give a rapid introduction to the use of operator 
theoretic methods in interpolation and extension problems. Here, the 

fundamental dilation and lifting theorems are establisned. Only basic 
notions concerning Hilbert spaces, measure theory and complex 

functions are assumed. The emphasis is on the unifying and geometric 

features of the method of unitary extensions cr isometries. 

.. Nevertheless, some proofs and even some statements are perhaps 

new.? 
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IL BASIC. CONSTRUCTIONS 

Naimark"s_ dilation_theorem 

Unitary operators in Hilbert spaces are very nice objects. Suitable 

constructions of unitary operators give fundamental results 

concerning interpolation problems. One of those constructions is the 
unitary dilation of a function of positive type. Roughly speaking, such 
functions are the Fourier transforms of positive measures. We start 

giving a basic example and the definition of that notion. 

Let H bea Hilbert space, L(H) the-set of bounded operators in H, U € > 

L(H) a unitary operator and E a closed subspace of H. If Pe denotes the 

orthogonal projection of H onto E, let the function k: 2 > L(E) be given 

Whis paper is in final form and no version of it will be submitted for publication elsewhere.



by k(n) = Pb: The support of any funcion h is the set supp h = 

íh = 0]. Then: 

(1) Fi<k(m-mnh(m,hm>:mneZ] 20 
holds for every function of finite support h: Z>E. 

Whenever (1) is verified, k is said a funcion of positive type. 
The content of the following Naimark”s dilation theorem is that 

the converse of the previous example is always essentially true. 

For any Hilbert spaces E and F, L.E.F) is the set of bounded 

operators from E to F; if E is a closed subspace of F, le = (PL)” is the 

inclusion of E in F; | is the identity in the space under consideration; if 

[Gp] is a family of subsets of E, W(G+] denotes the smallest closed 

subspace of E that contains every set Gr. Then: 

(2) THEOREM Let E be a Hilbert space and k: Z >» L(E) a 
function of positive type. There exists a Hilbert space H, a 

unitary operator U € L(H) and an operator p € L(E,H) such that 

k(n) = e*u"o, Y ne Z. It may be assumed that 

H = viu" pe: ne Z], and then H, U and g are unique up to 
unitary isomorphisms. If k(0) = 1, E may be considered as a 
closed subspace of H and p = In- 

Sketch of the proof : 

Set H' = (h: Z > E, supp his finitej ana <h,h'> = 

zí(<k(m-n)h(m),h'(n)>: m,n e 2; for any h,1' < H'. Then H'y := 

íh e€ H: <h,h'> = O) is a subspace of the vector space H'; let 1 be the 

projection of H' onto the quotient H'/H'¿; setting <mh,mh'> = <h,h'>, 

we obtain a scalar product in H'/H'¿, so the corresponding completion H 

is a Hilbert space and Tí can be considered as a map from H' onto a 

dense subspace of H. 

Let S be the shift in H', ¡.e., the operator given by Sh(n) =h(n-1); 

an isometry V with domain and range TH" is defined by Vr = TS, so V 

can be uniquely extended to a unitary operator U € L(H). If any v e E is 
identified with h e H' such that supp h = [0] and h(0) = v, and p 

denotes the restriction oftt to E, then llpvil? = <k(0)v,v>, so p € L(E,H). 

From <k(n)v,w> = <nS "y rw> and ase = u”p, it follows that k(n) = 
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ou” o. Since any h e H' is the sum of vectors like S”v, H= 

WU PE: n e 2. 

If H4, Uy and py are as H, U and p, by setting A(U"pv) = Ur "py v a 

unitary operator A e L(H,Hy) is defined in such a way that AU= UA 

and Ap = p1; that is the unicity statement. 

(3) Exercise Naimark"s dilation theorem holds when Z is replaced by 
any group P. State and prove it. 

Unitary_ extensions _of_an isometry 

The above proof produces the fundamental operator U as the 
unitary extension of an isometry V. in order to extend the scope of 

Naimark"s method, we shall see that any isometry V acting in a Hilbert 
space H (i.e., such that its domain D and its range R are subspaces of H) 

can be extended to a unitary operator U in a Hilbert space F containing 

H (as a closed subspace). 

We may assume that D and R are closed subspaces; let N and M be 
their orthogonal complements in H, respectively (the so-called defect 

subspaces of V): N=H8D,M=H8R.Set F=HBH=DBNDREM 

and define U by U(d,n,r,m) = (v"1rn,Vd,m); the assertion follows. 

in several problems the following notations will be useful: 

(U,F) e€ U ¡if U is a unitary extension of V to a Hilbert space F > H such 

that F = vu": ne 21; (U,F) and (U',F') define the same element in U ¡f 

there exists a unitary operator A € L(F,F') such that AU = U'A and the 

restriction of A to H equals the identity in H, in which case we write 

(U,F) = (U',F”). Each (U,F) e€ U will be called a minimal unitary extension 
of V. 

(4) Exercise Prove that (1) =1 ¡if N = [0] or M= [0] and that 4(U) = 

in any other case. 

Extending_a_function of positive type 
Let a be a positive integer and E a Hilbert space. Call H', the space 

of functions h: Z > E such that supphCíneZ:0<ns<aj. Then 

k: [ne 2: Ínl < aj + L(E) 

is said of positive type if 2(<k(m-n)h(m),h(n)>: mn € Zj > 0 holds 
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for every h € Hz. 

Set D' = íh € H'g: Sh € H'2) and R' = SD”. Applying Naimark”s dilation 

method we obtain a Hilbert space Hz, an operator 1 from H'g onto a 

dense subspace of Hz, an isometry V with domain and range equal to 

(the closure of) TID' and TIR', respectively, and an operator p e L(E,H5) 

such that k(n) = p *y" pifO<ns<a. For any (U,F) € U set Kín) = 

p*P FU M0, Y n € Z Thus: 

(5) EROPUSIION Any function of positive type 

k ín e Z: ínl < aj » L(E) can be extended to a function of 

positive type K: Z >» L(E). 

Call K. the set of all positive extensions K of k to Z. Then: 

(6) Exercise There exists a bijection between XK and 14, 

Complements: Some remarks on Fourier transforms 
If T is the field of complex numbers and T = [z € E: [zi = 1], C(T) 

is the Banach space of complex continuous functions on “TP with the 

Hilo, norm and M(T) is its dual, ¡.e., the space of complex Borel- 

measures on T. Set enlz) = z" for every ze Tandne 2. lfveM(T) 

| are dv s its Fourier transform %: 2 >U is given by %(n) = 

(7) Exercise %: 2 > [ is of positive type ¡ff v > O. 
(8) Exercise Naimark's dilation theorem and the spectral theorem for a 

unitary operator give a proof of the Herglotz-Bochner_ theorem: a 

function k: Z >» LT is of positive type ¡ff there exists a positive 

measure v € M(T) such that k = $9. 
e A fundamental reference for dilation theory is [NF]. References 

concerning unitary extensions of isometries and functions of positive 
type can be found in [AF]. 

UL AN EXTENSION OF SARASON'S INTERPOLATION THEOREM 

In the previous chapter some results were established by using the 

data of a given problem, stated in a Hilbert space, to construct a new 

Hilbert space.and an isometry acting in it, in such a way that the 
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unitary extensions of that isometry give the solutions of the problem. 
This method can be applied to several interpolation problems. An 

economic way of doing it is to prove by that method the following 
abstract interpolation theorem, by means of which such problems can 
be solved. 

(1) THEOREM Let Uy € L(Gy) and Us € L(G>) be unitary 

operators in Hilbert spaces, By € Gy and B2 € G> closed 

subspaces such that UyBy C By and u»1B> C Bo, 

w(U¡"B,: n< 0) =Gy, V[U2"B2: n2 0) = Go. IA € L(B7,B>) is 

such that AU11B, = Pg,UZA then there exists Á € L(Gy,G>) 

such that: ÁUy =U7Á, A= Pa, AB, and NAIL = NAIL 
1 

A proof can be based in the following fact. 

(2) Representation of contractions Let A e L(B4,B>) be a contraction 

between two Hilbert spaces (i.e., IIAIl < 1). There exists a Hilbert space 

H and two isometries u € L(BjH), = 1,2, such that H= 

(u1B4) Y (u2B2) and A=u>2 uy. 
In the vector space E := By X B> we set <(b3,D2),(b"y,b'2)> 5 

<by3 D1>B, + <bB2Ab'1>B, + <Ab1,>8,, + <b2b'2>8, thus obtaining 

"nearly" a scaiar product, because <(b+,b7),(b4,b>7)>= O does not imply 

(b3,b7) = O. As before, a quotient and a completion give a Hilbert space 

H and a natural operator tm from E onto a dense subspace of H. Setting 

uyby =Tr(b4,0) and uzb> = ti(0,b>) , the result follows. 

Sketch of the proof of theorem (1) 

a) IfA = 0, the result is obvious; thus, we may assume that l¡All = 1. 

b) With notation as in (2), set D = (uqBy3) Y (u7U7”1B») and R= 

(uU481) Y (u2B>); since Aus, = Pa ies , an isometry V with 

domain D and range R is defined by V(u¡b3 + u>U»”*b,) = 

u4U¿bx + u>b>. 

c) Let (U,F) € U. An isometric extension Uy eL(G7,F) of uy is 

defined by 7 (Uy Ub) =.U"yyb, for every n e Zand be€Bj3. In fact, let 
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ques € Z and Dq »--=»Dk eBx; ifs e Z is such that S+ny....,S+Ny 2 0 

then 1U4"1by db EE Uy Kbyllg, = uy Tp, + o... + Ud, = 

s+m»7 

43 Iv by Ku dll, = MU yq by +... + UK Dal 
Analogously, an isometric extension Ú> € L(G>,F) of u> = defined by 

G2(U2"b) = U”u>b, for every n e Z and b e B>. Clearly, Ui; = Vu; j = 

1,2. 
d) Set A= "4 e L(G,,G2). Then NÁll < 1 and AUy =L-Á. For any 
by €By and b> € B> <(Pg,418,2D1:b2>8, = <Uby 12b7>fp = 

<Aby.b2>pg,, 50 Pa, Ap, = A and llÁll = ¡All 

(3) Exercise With notation as in theorem (1) and its proof set: 

A = (Ae L(Gy,G7): AUy =U2Á, A= Pa, AB: AI! = 341). 

Prove that there exists a bijection between 4 and U. 

in order to obtain a concrete version of the above theoram, set LP = 

PT m), with 1 <p < e and m the normalized Lebesgue msasure in T, ] 

and let HP be the closed linear span in LP of (ep: n > 0). The Fourier 

transform foffe L? is the Fourier transform of the meas.re 

(f dm) € MCT). iffe A an analytic function in D = ([z = E: lzl < 1) 

which we also call f is given by f(z) = Yif(n)z": ne £!. 

The shift is the operator S e £aé) given by (Sf(z) = z7 2). 

(4) Exercise Let X e L(L%) be such that XS = SX and h = Xe,. Set M,f = 

hf, .e., Mj, is the multiplication by h. Then X = My, he L% and llhll_ = 

XII. 
Sarason's generalized interpolation theorem says that: 

(5) THEOREM Let K be a closed subspace of H2 

s(H%a k) c H 
such at 

8 K. If T= PS ix and A' € L(K) comm:.tes with T 

then there exists h € H” such that A'g = Py (hg) , Y 3€K, and 
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HA" = lhtl. 
Sketch of the proof 

2 2H Set Hé 14 gHÉ . Set Gy =G7=1%,U, =U=S,B, =HÉ, 

B> = Ke H2. , and consider A := AP as an operator from y2 to 

ko HÓ. Thus AU7¡g, = ATP t . X 2 : 
y" TA Pu = Pay Uzé Let Á € L(LO) se 

given by theorem (1). Let he L” be such that Á is the multiplicaton 

by h, Hall = ¡IAN = HA'IL From A = Pa, AB, it follows that <A'P,U,v> = 

<hu,v> for every u € HÉ and veK 9 HÉ... Since A'K CE Kc HÉ, her? 

and A'g= P(hg) , Y gé€K. 

Complementary  _remarks _on_ Toeplitz and _Hankel operators, 
their_symbols and Nehari's_theorem 

Let E be the linear span of (en: n 2 0); a linear operator T: E > HÉ is 

called a Toeplitz operator if <Tw,w> = <TSv,Sw> for every vw e E A 
finite or infinite square matriz tii jo is called a Toeplitz matrix if 

there exists taj) such that tj 3 aj; Thus, T is a Toeplitz operator ¡ff 

[<Tej,ej?1; ¡29 is a Toeplitz matrix. 

(6) Exercise A Toeplitz operator T defines a bounded operator in HO ff 

there exists gy € LT) such that T =P 2Mg ; in such case, Ii = llgll.., 
H 

g(i-j) = <Tej,e> and g is called the symbol of T. 

(Show that the sesquilinear form B: E xXE > [ given by B(v,w) = <Tv.w> 

can be extended to a bounded sesquilinear form B': a Xx e > [ such 
that B'(v,w) = B'(Sv,Sw) and consider the operator T' associated to B”. 

A linear operator H: E> H2. such that P_> SH = HS y2 is calles a 
H 

Hankel operator. A finite or infinite square matriz [h;;; 0) is callec a 

Hankel matrix ¡f there exists (ajj such that hi¡ = a¡,;¡. Thus, H is a 

Hankel operator iff [<Hej,e.;-1>]; ¡>9 is a Hankel matrix. 

Nehari's theorem says that 
(7) THEOREM.A Hankel operator H defines a bounded operator 
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2 2 
from :H* to H*_ iff there exists g € LIT) such that 

H = Pz Mg ; in such case UH = dist, =(g,H ) and 3(-i-j-1) 

<He¡,e.¡-1> for every ij20. 

When the above conditions hold, g is caled the symbol! of H, 

Exercise: prove (7) by applying theorem (1) with Gq = Go = 12, Uy 

Us =S, By = Hó and 87 =HÉ.. 
» Sarason's general interpolation method is presented in [S]. 
Fundamental references concerning this subject are [FF] and [N]. 

II APPLICATIONS TO CLASSIC PROBLEMS 

On the _Nevanlinna-Pick problem 

Given any set J, a function k: J X J>£is positive definite (p.d.) if 

for every n2 1, tq»... Ep € J and Cq +0, Cp € Cit is true that n 
Fik(tpt;)0,C; 1<ijsn] > O. Then: | 

(1) THEOREM Let J be any set, ÍZp: te Jj a set of different > 

points in D and (w,: te Jj C E. Set H = (he H”: h(2,) = wy,' 
Ytej in < 1). Define k: JXJ]->»Eby k(s,t) = 

[1-w¿W¿1/[1-252Z 41. Then H is non empty ¡ff k is positive 

definite. 

Sketch of the proof 

For any u € DD set Yy (2) = uz): then f(u) = <> for every 

fe H2. The set Wa, t € Jj ¡s linearly independent; in its linear span K' 

define a linear operator X by XY 2) = WE Y te J; it can be seen 

that líXI! < 1 is the same as k being p.d. Cail K the closed linear span in 

LÉ of K'. If there exists h € H, X= PMA > so k is p.d. 

Conversely, assume the last; thus X < L(K) and !XIl < 1. Apply 

theorem (11.1) with Uy = Uz =S, By =H%,B2=K 8H and 
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A e L(By ,B2) such that Af = XP. For any n 2 O and t e J we have 

: n+1 
AGE y + = Rda y = W<€n41 ne y = Wi(Z1) = 

ZWE<E pz, > = 21 <> = zp (Aep)(2;) = <SA€ py Y, > since ABy 

is orthogonal to HÉ. it follows that ASB, = Pg A: Consequently A 

is non empty. For any Á e A set h = Áe¿, so Á = M,. Then llhil,, = MAI! < 1. 

2 If g e HS_, <h,g> = <Pp, Ae7:9> = <Ae,,9> = 0, so h € H”. For any 

teJ, h(2p) = <h vz > = <Pg Ag Y z/> = <Ae py vz > = <egX vz > bs 

w¿- Summing up, h € H. 

Note that a bijection from 4 onto H is given by 4>h= e. 

On the Carathéodory-Féjer problem 

(2) THEOREM Let C,,...,Cy € E. Set H = (g e H”: 30) = 0 j= 

0,....N , gil < 1]. Define T € c(cn+1) by the matrix 

ltiido<i,j<n such that Gi = Y. ifi2 joand új =0 is i<j>” 

Then 3 is non empty iff ITI < 

I- 

e 

Exercise Let K be the span of ej] O,....n and f(z) = 

Cy + 092 + «o. CAz.. Note that [t;;] is the matrix of (PkMero- Prove the 

above theorem by means of (11.1) as before. 

Complements: _On the _ Nudelmann__and  Rosenblum-Rovnyak 
interpolation_ _theorem 

This theorem has several applications. lt says that: 

(3) THEOREM Let E be a complex vector space, E' its algebraic 

dual, p a linear operator in E, g' its dual, b,c € E. Let F be a 

. subspace of E" such that p'F C.F and yiltede xuyié: j20)<0,. 
Y xx € F. The following conditions are equivalent: 

i) 3fe H*(T) such that lll, < 1 and 

(bx) = EF (elcx"): 32 0), W Xx €F; 
11) xao + > 03 < Tiade 1: ¡> 0) xXx EF. 
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Note that the equality in (1) can be seen as an extension of b = 

f(p)c, which makes sense for example when f is a polynomial. 

Exercise 

Set Gy =G2=1%, Uy =U>=S, By =HÍ 2 ,B2=K OH ., With K the 

closure in uÉ of í2 (90, x)e;; x' e FJ. Show that se, C B>. j20 
Assume (ii). Show that the contraction X € Lx H2) given by 
¡ PoR ME E =s| XIE2 (80 )ejl = Ey (eb Je; is such that XP 95 =P 25 UX 

By applying theorem with A e L(B7,8>) such that A = XP obtain 

g € L(T) such that: 
(ii) <gby,b5> = <Ab; ¿07> Y by € Bx, b> € Bo. 

Show that g € H*(T) and complete the proof of (i) by setting f(z) = 

az). 
Conversely, assume (i). Show that (iii) defines a contraction 

A € L(B4,B2) such that ATTE 2 y (0 cx") = Esp irbaldey so (ii) 
J 

holds. 

e  Concerning this chapter see [FF], [N] and [RR]. 

IV. UNITARY  _DILATIONS OF CONTRACTIONS AND THE NAGY- 

FOJAS THEOREM 

A special unitary extension of an isometry 
Consider an isometry V acting in a Hilbert space H with domain D, 

range R, and defect subspaces N =H 8D, M=HB8BR. Let G be the Hilbert 
space of sequences f = M6 € 2) such that É; eMifj<o, a e H, f; eN 

if j > O and EEN: y e 2] < o, with the scalar product <f,g> = 

21<f9j>:] e Zj. Identify H with [f e G: Í; =0 if j= O] and define g = 
J 

j>1. 

(1) Exercise (U,G) is a minimal unitary extension of Y and (ve) = 
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n 
PY 1H holds for every n = O. 

iIsometric_and __unitary dilations of contractions 

An operator T e L(E) in a Hilbert space is a contraction if ll < 1. 

It is said that W e L(M) is a minimal isometric dilation of T if Mis a 

Hilbert space that contains E as a closed subspace and W is an 

isometry such that "a p¿Ww" Yn20,and M= viwPE: n > 0]. 
IE? 

Analogously, U € L(G) is a minimal __unitary” dilation of T if G is a 

Hilbert space that contains E as a closed subspace and U is a unitary 

operator such that rm”. PEU pe Yn>0,andG = vue; ne 23. The 

following fundamenta! result is due to Nagy. 

(2) THEOREM Every contraction in a Hilbert space T € L(E) has 

a minimal isometric dilation W e L(M) and a minimal unitary 

dilation U € £(G) which are unique up to  unitary 
isomorphisms. 
Sketch of the proof 

Given a contraction T e L(E) set Dr = (1 - 7) and let D, be the 

closure of the range of Dy- Let V be the isometry acting in H := E 9 Dr, 

with domain D = E, given by Vh = (Th,D.-h). Then U € L(G) as in (1) is a 

minimal unitary dilation of T. Set M == wiuPE: n 2 Oj and Y = Um? then 

W e L(M) ¡is a minimal isometric dilation of T. Uniqueness is proved as 

in Naimark's dilation theorem. Thus, we may speak of "the" minimal 
(isometric or unitary) dilation of T and assume always that MCG. 

An alternative proof can be based directly in Naimark's theorem as 

follows. Let T(.): Z > L(E) be given by T(n) = T” ifn>0 and T(n) = ce 

ifn<0.!lfh: 2 > E is such that supp h < [0,k], it may be considered as 

= Tif 
oK 7 e n+1 a vectorinE” ;letR= rudosijsk eL(E”” )be given by r,., i 

O Si<kand 1 = 0 184-] =1; then a- ey ale A 

a- 2h, then Fi<T(m=n)Jhtm)Am)>: min e Zj > 
<a Ry? aa? 1h hs = MIÉ - [IRvllé; consequently, TO) ls of 
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positive type and Nagy's theorem follows. 

(3) Exercise Let T € L(E), W e L(M) and U e L(G) be as in (2). Then. 

PW= TPL, W'"¡¿=T" and W(M BE) C (M 8E). Set M' = VUE: n < 0) and 

W' = O then W' e L(M") is the minimal isometric dilation of T* and 

G=M8(M'BE). 

The _commutant lifting theorem 
The famous abstract extension of Sarason's interpolation theorem 

due to Nagy and Foias can be stated as follows. 

(4) THEOREM For j = 1,2 let T; € L(E) be a contraction in a 

Hilbert space with minimal isometric dilation Wi; € L(M;) and 

minimal unitary dilation y € L(6;). Let X € L(E1,E2) be such 

that XTy = T2X. Then: 

i) 3yYy€ L(M,,M>) such that yWy = W>y, Pg, Y SS XPE and 
1 

liyil = 1Xi; 

11) 3 T € L(G4,,G>2) such that TUy =U2T, TMy E Mo, PE my = 

XP. and lltil = HXI. 
E7 

Proof 

We apply theorem (11.1) with By = M4, B2 = v(u>"E): n < 0] and 

A € L(B; ¡B2) such that A = PE, á Thus, ADT, = AE, = AT7 PE = 

ToXP, = PEA = Pg,UZA. So there exists T € L(G; ,G2) such that 

TUy =UST, A = Pa UB, and lA = ltl. Consequently litli = 1Xil and 

Po = Es HB . Since Pa, UE, =X and Go = M> 9 (B> 8 Es), TEy a M> 

so also TMy C M5. : 

Note that PB TIM, = Pes implies that T(My4 8 Ey) is orthogonal to 

B2, so T W[U2"E>: n <0] € W(Uy "Es: n<0). 
Now let y € L(M, ¡M>2) be such that y = TIM" The result follows. 

e A complete study of the Nagy and Nagy-Foias theorems is given in 
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[NF] and [FF]. The approach to generaized interpolation presented in 
this paper extends the proof of the cormutant lifting theorem given in 
[A]. 

Y. ON _PARROTT'S EXTENSION OF "THE COMMUTANT_ LIFTING 
THEOREM 

In this section (T4,T2,X] denotes a cr.en commutant, so, 

forj=12, v € L(Ej) is a contractior with. minimal unitary dilation 

Uj € L(Fj) minimal isometric dilation W: = L(Mp, and X e L(E1,E2) is 

such that XT4 = T2X. When T e L(E) is a sontraction, the function 

T(.): Z > L(E) is defined by T(m) = T" if => 0 and Tim) = 1" 

m<0. 

(1) PROPOSITION If HXIl < 1 ths following conditions are 

equivalent: (a) 1 Ñ€ L(F¡,F2) that =xtends X and is such that 

ZU] = U2É and IÉN < 1; (b) 1 - Ty Ty - XX + (T2X)*T2X > 0; 
(0) 2i<T2(m-n)Xh(m),Xh(n)>: mneZ” < 

2(<T4 (m-n)h(m),h(n)>: mneZ_ holds for every finitely . 

supported function h: 2 >E. 
Sketch of the proof 

We must have £qu1%e) = U>"Xe, =ne€ 2,e € E, so (a) holds ¡ff 

if 

UE, U2 "Xh(m)llf, < ME, Us htm), Í is always true, .e., iff (0) 
holds. 

lf v is a positive integer such that sop h C [-v,v] we may assume 

2v+1 2v+1 

be given by Tik = T; (k-), Rije1 = T; ara Rik = 0 if k-j x= 1. Then 

ar)” 6 LLE, 2v+1 
); for u = an” h eE. tl we have 

2 2 2 2 
2<T4 (m-njha(m),h(n)> = llull” - lRull” = Xlu(m)il” - 21 u(m)l and 

E<T2(m-n)Xh(m),Xh(n)> = Ellxu(mJI1ó - IT Xu(m)11é; thus, (€) and (b) 
are equivalent. 

Condition (b) above holds in the Fuilowing particular cases: ¡i) X is 
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q 
an isometry; ii) T> is an isometry; iii) (Ty ellé + lXell” < li, Yee Ex; 

iv) XT) = T¿X*. In fact, the last implies that X"XTy =T¡X*X, so 
> 

DxTy = T4Dx and (b) follows from 1ITy Dyelló < IIDxell” for every e € Ey. 

Consequently, if T e L(E) is a contraction with minimal unitary 

dilation U € L(F), every A e€ L(E) that bicommutes with T (i.e., such 

that A commutes with T and T*) has a (unique) extension Á € L(F) that 

commutes with U and is such that lÁl = NAIL 
Let L(X) be the set of liftings of X, i.e., 

L(X) = [TEL(F, Fa): TUz = U2T, Pe Te, =%, TU = XII. 

Let T € L(X); then PE TIM es PE, My? consequently. = E, is orthogonal 

to My 8 Ey; duality considerations show that TEy CM), so TMy € M5. 

From now on we assume that lIXIl = 1. Thus, conditions (1.b) and 

(1.c) are equivalent to the existence of an extension X of X that 

belongs to L(X). 

(2) Exercise XT, = TyX" ¡ff 3% € LOO such that Pg? =XPE, . 
The Nagy-Foias commutant lifting theorem states that L(X) is 

never empty. An extension due to Parrott of that result is closely 
connected with the following. 

(3) THEOREM Let the commutant (Ty,T>,X; be given. Set 

(A7,A2) EA if Aj € L(E) bicommutes with Ti = 1,2, and 
* * e . 

XA7 = A2X, XAy =A2 X; let Aj € L(F;) be the extension of Aj 

that commutes with uj and is such that HÁ ¡il = HAj Il, j= 1,2. 

There exists T € L(X) such that TÁ] =Á2T, Y (Ay,A27) eA. 

Our proof is based on the following 
(4) LEMMA Let V be an isometry with domain D and range R, 
both closed subspaces of the Hiibert space H, and A the set 

of operators 3 € L(H) such that D and R are invariant under 3 

and 5”, and V38¡D = 38V. Then the minimal unitary dilation 

U € L(F) of VPp € L(H) is a unitary extension of V to F > H 

such that every 3 e A has a (unique) extensicn 3 € L(F). that 
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commutes with U; moreover, 11311 = 118ll and 3” extends 3”. 
Let N and M be the orthogonal complements of D and R in H, 

respectively; then F = (9, (UM) BDHe (8, pU'N) and 3 € L(F) is 

defined by sury = uv) for ve M,n<0 and for ve N, n > O. The 

assertion follows. 

(5) Exercise Prove theorem (3) in the following way. 

a) Set My = (uy "Ey: n 2 0j and M'> = w(u>"E>: n < 0]. Let H bea 

M7 . , t H ta Hilbert space such that H = My Y M'>2 and P M'>IM4 = X= XP Ey" 

Prove that every (Ay ,A>2) € A defines an operator A e€ L(H) by 

A(g'2+91) = A29'2 + 4197, Y 9'7 € M'2 and gy € My. , 

b) Set D = U2*M'2 V My; let V be the isometry given by V(U2*g'>+94) 

= g'2+U7 97 andU € L(F) as in (4). It may be assumed that F = Fy VW Fo 

and that UF; = U.. Since A € A it extends to Á € L(F) such that AU = 

UA ; thus AIF = >
 

j 

Cc) Set T= lr then TEL(X) and TÁ] E A9T . 

From theorem (3) we obtain the following result of Parrott. 

(6) THEOREM Let T € L(E) be a contraction, W € L(M) its 

minimal isometric dilation and X € L(E) such that TX = XT. 

Let Úú be the algebra of all the operators in L(E) that 

bicommute with T and X; let A' e L(M) be the unique 

extension of A e€ Y that commutes with W. There exists 

X' € L(M) such that: X'A' = A'X, Y Ac UU; PÉEA'WwMx'Mg = 

ATMXA for every mn > O and A e UU; 1IX'll = HXIL 
Proof. Assume lIXI! = 1 and let T € L(X) be given by theorem (3), with Ty 

= T2 =T, My = Mand Uy ¡q = W. IFA € U, (A,A) € A and A' = Áyy. Since M 
is invariant by T, the operator X' := T¡y € L(M) commutes with W = Uy 

and A", and is such that P¿X' = XP£. The result follows. 

e Parrott's extension of the commutant lifting theorem was 
established in [P].. : 
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VI. THE COTLAR-SADOSKY LIFTING_THEOREM 

Let P be the space of trigonometric polynomials, ¡.e., the linear 

span of feg:n e 2]; set P, = [Zapen €P: an =0ifn<0j and P_ = 

[Zan£n €P: an =0 if n 2 03. 1fV = Vik; k=1 2 8 a matrix with entries 

in MC) and fF = (E, >) e€ C(T) x CCT), we set (VF,F) = 

Et] of Tv j,k = 1,2). It is said that V is a positive matrix measure 

if [vi La)1; k=1.2 defines a positive operator in cé, for every Borel set 

ACT. 
(1) Exercise V = Vir; k=1.2 is a positive matrix measure ¡ff (VF,F) > 

O for every F € C(T) x CCT). 

The Cotlar-Sadosky lifting theorem can be stated as follows. 

(2) THEOREM Let the matrix measure V = Vir; k=1.2 be such 

that (VF,F) > O for every F = Cf, 2) € P,x P_. There exists a 

function h € H] such that, setting Wi = Vi 

v12 + h dm, and W21] = (w3 2), then W := Wsl; =1,2 is 

E 

1)
 

positive matrix measure and (VF,F) = (WF,F) hoids for every F 

= Cf, 7) eP,xP. 

Proof 

in order to apply theorem (11.1) note that Vi; is a positive measure 

and let U; be the shift in G; := Ló(T,w¡), j = 1,2. Call B,(B2) the 
closure of P,(P.) in G¡(G2) and let A e L(B4,B>) be defined by 

SAfy f2> = | E Fadv7 2 , Y (fp 2) € PX P.. Since (VF,F) 2 0 for 
every F = (f,,f£,) €P, x P., NIAll < 1. There exists Á € L(G4,G>) such 

that AUy =UzÁ, A= Pa, AB, and lIAl! = MÁll. Thus, Á is given by the 

multiplication by the function g = Ae, and <Af, ,f)> = | Í 129 IV2> > 

Y (f; fo) € CCT) x C(T); since j ren] 9 | En dvo> for every 
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n > O, the F. and M. Riesz theorem shows that 3 h € HY such that 1 9 

a 9 + h dm = g dv>>; since lÁI < 1 , (WF,F) > O for every 

= (f,,f7) € CCT) x CCT). The proof is over. 

Remarks on Fourier series and the Helson-Szegó_theorem 

The Fourier series of f e p) is given by Si(f) = Hif(m)en: inl<k]; the 

functional in y) given by f> f(n) is continuous. for every ne 2. If 

fe Lp = LT m) then lim k=00 USk(H) - fll = O. Helson and Szegó 

characterized - as stated in theorem (5) below - the positive 

measures UL e€M(T) such that the same happens in LT), a 

characterization that also answers a question concerning the 
"prediction theory" of stochastic processes. 

Let Py, P., Pk (ke 2) and Pk m (k,m 2 0) be the operators in P 

defined by P,[Ef(n)en] = Xif(n)en: n20), P.IXF(m)en] = X1f(n)ep: n<0), 
PLLEF(men] = F(O, and Pk miEf(Men] 3 Xif(m)en: -k<n<m|. We keep the 

same names for continuous eextensions of these operators to spaces 

where P is dense. Thus, P(F) = F(k), Y k € Z and f e Lrm. 

(3) PROPOSITION Let y e€ M(T) be positive. If Py is bounded in 

L2(T 1) then so is Pi for every k e 2, LÉ (Tu) € LDirm) 

and PL(f) = F(k), VW ke Zand f e Lo(T, pu). The following 

conditions are equivalent: (i) P, is bounded in LE; 

(ii) the operators Pk m, km 2 0, are uniformly bounded in 

LT); Chi) Pk is bounded for every k e Z and 

lim ¿09 MSK(f) - fl = 0 for every f e LÍ(T,u); (iv) the 

operators Pm, m» M 2 O, are uniformly bounded in LT). 

Sketch of the proof 

PL = ps k , Yke€ 2; if Py is bounded ey £ VÍen: n = 0) in Lp) 

so there exists g € Léer, 14) such that g du =dm and 
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: 2 
< la dm < 1, 2 A 2 y fe LT). 

(1) => (ii): Pk m = sk+1p_g-k-m-1 p, sk. 

(0) => Gi): lim ¿3 USK(H - fl = O holds for every fin P which is 

dense in LZ(T,L) and PL (E) = SL, YELMO 
(11) => (iv): follows from the uniform boundedness principle. 

(iv) = (1): P¿f= lim y, SKPL gSTKE, fe P. 

Let the operator H be defined in P by H =i[P. - (P,. - P¿)]; then 

f + ¡Hf = 2P,f - Pof ¡is analytic, so Hf is the harmonic conjugate of f 

that verifies Hf(O) = O. Since 1 + H2 = P,, H is bounded in LÓ(T,y) if 
the same holds for P,. it can be seen that, for example when 

fe L2(T.m), Hf is given by a "singular integral", HE(ebo) = 

li ¡Qey) a . 
IM ¿,9+ e<tylgmfL€ Y)] cotg(y/2) dy , which is called the Hilbert 

transform of f. 

(4) Exercise H € Clié (rr u)] iff 3 M > 1 such that, setting V = 
Vid; k=1 3 with V1 = Vo = (M-1)u and Vq29=V2] = (M+D ju, 

(VF,F) 2 O holds for every F = (4 12) EP, xP. 

(5) THEOREM Let q € M(T ) be positive. The following 

conditions are equivalent: (i) H € LiLé(cT >]; (ii) Pp is 

bounded for every k € Z and lim o HSi(F) - fll = O for every 

fe LE); (iii) du = el +HV dm, with uv € LO(T ,m) and 
livilo < T/2. 

Sketch of the proof 

Assume (i); by (4) and the Cotlar-Sadosky theorem 3h e HY such 

that, setting Wo; = (M-1D)u, j= 1,2, W72 = (M+1)u + h dm, and W>] = 

(w4 2), then W := Wii k=1,2 ¡g 2 Positive matrix measure. It follows 

that (A) = O for any set A such that m(A) = 0, so du = f dm. For r = 

(M-1)/(M+1) 

[++] f2 (2-1) -2(Reh)f- Ihi2 > 0 
holds a.e. Set hz = Re h and h2 = Im h; since f2 O, hi < 0 and 
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lhy /hiÉ 21- r2, so Ih2/hl < r. Then the theory of Hardy spaces HP shows 

, ñ oo. Hv - ¡(ver a mE 
that h is an "outer function", so h=ce ( ) , with c a positive 

constant and v+1t = arg h; thus, llvll,, < 11/2. Now, [+] shows that (f/Ihl) 

is bounded from below and from above by positive constants, so 

A 
. The Cotlar-Sadosky lifting theorem was established in [CS]. 

Vi. ON THE BAND EXTENSION PROBLEM 

The Naimark type approach can be developed in order to handle 
some of the problems that Gohberg, Kaashoek and Woerdman have 

solved by the "band method". 
We are given the integers N and p such that O<p<N-1, the Hilbert 

spaces H;, 1<j<N, and the operators Aj € L(H;, Hp), 1<i,j<N, li-jI<p. The 

"band" A(D) := (Aj: lijl < pj is positive if the operators 

lAkilisk jsi+p € LIB(H; isisi+p)] are positive for 1Si<N-p; ALP) is 

positive definite (p.d.) if [Arli<k ¡<i+p is positive definite for 

1<iSN-p. Recall that an operator in a Hilbert space is positive definite . 
if it is positive and boundedly invertible. A positive operator F = 

[Fil <k,¡<N € Lle(H;: 1<Sj<N)] such that Fs a Aj whenever 

li-jl < p is called a positive extension of the given band. We shall prove 

that 

(1) THEOREM Every positive band A(P) = (1Aj¡1: li-jispj has 

positive extensions. If A(P) is positive definite, ¡it has 
positive definite extensions and there exists one of them A 

such that [4 7?],¿ = 0 if ls-"1 > p. 
Proof 

If rAs denotes the minimum of r and s, set LD = 

((1j) € Zé: 15iSN, isjs(i+p)ANI, Hi; 
91H; (ij) eL]. Every f e Á is naturally given by ia eb $ € H;; 

= H; for every (ij) €. and Á = 

J 

its support is the set supp f := ((i,j) e C: fi; = 0]. Let the sesquilinear 

hermitian positive semidefinite form [.,.] in Á be given by [f,f'] =. 
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HSA y (i,j), GO € 2]. The vector space Á and [.,.] generate 

a Hilbért space G and an operator e e L(A,G) onto a dense subspace of G 
such that <ef, efg = [f,F]. 

Set D' = (f € Él: f¡ = 0, 1<i<N] and, for f e D', let g = tf € Á be given 

by 9 =fi1 ¡ if (55), (1,5) eL and q =0 if (ij) eL but 

(i-1,) £ €. Setting Wef = eTtf for every f e D' an isometry W is 
defined in the closure D of £D' in G with range R = WD CG. 

For 1St<N let Az € L(H,,G) be given, for any v € Hp, Dy ApV=EV', 

where v' e Á is such that supp v' = [(t,t)] and v'¿y = v. It follows that 

G= 0, ¿y VIW Taj; isis(irplAN, 

D =D ¿en 1 VW isjs(iep) AN] and 
R= 9) ¿y VIWI Aj isis(i+p-1)AN). 

If (1,5) € L, u € H; and v e Hj, supp Tu = ((1,5)) and supp v' = 

¡(1,1)J, so <WwHaju, Avg = <wHeu', ev = <erhlu” ev > = 

ru! v"] =<A ju, V2py, Thus: 

Aj WwHa; = Aj, Y (6J) (j) el. 
J 

FUEL is a unitary operator such that X > G and Up = W, a 

positive extension A of the band AÍP) ¡is given by Aj¡ = Ay UA yy : 

1Si,¡SN, with Ay = iG Aj 1<j<N, and iG the injection of G in X. (In 

fact, it can be shown that every positive extension of the positive - 

band A(P) is obtained in this way). 

Now let U € LOO) be the minimal unitary dilation of the contraction 

WPp € L(G). Then, with obvious notation Á := UI en is a 

positive extension of A(P). 

For 1<i<N-p set J; = V¡Waj¡H; isjsi+p) 8 VW ¡H;: isj<i+p).- 
Then, if 1<i<N-p and p < k < N-i, 

(a) VUTAA;: isjsitk) = 

MWH isjsirp) e 01,1 8... 6 UP 
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in- fact, since G . U""[G 8 R], Y n> 1, and the subspaces J¡ are 
contained in [G 8 R], the orthogonality relations in (a) hold; thus, - 

Y 0: isisirk) = , 

MUA, isisite13) Y (MIURA: imepsjsirk)) = 
MUTAp isistelet3) Y TU it: iekepsjsisk)) = 

(VO a pisiside 1) E ÚEP (y qw at ei+kpsj<i+k] Oj p) 

= (WU Ap isisipk-1)) vU “(k- Pie -p: 

Now assume that A(P) ¡s p.d. Let [+] denote the alpebrale direct 

sum. There exists a positive constant c such that clifily < lefa iffeH, 

so the operator e e L(H,G) is boundedly invertible. Then the operators 

Aj are one to one, 1<j<N, and vin; isisi+p) = 

[+]1W Day isisi+p), 1<i<N-p. Thus 

(b) viU TH jo iSjSi+sj = (+HUJAH Aj H;: iSisi+s], 1<i<N-s, 

holds for s = e we shall prove it by induction for s > p. By (a) we may 

assume that VOTA; iSisi+s+1] = (+IUTAH;: iSisi+s] O Gi+s+1 ; 

i+s+1<N, with St+p = (+0 H jp tsjst+p) 8 [+](0 us j: tSj<t+pj, 

1<t<N-p. Then, any f e VGA; isisi+s+1) can be written as f = 

UTA h;: isjsiss+1] with hj € Hs if f = O, then 

y+s- aos € [+]107 NA i+s+1-pSj<i+s+1], so h; = O and O = 

f= EU; i+1<Sjsi+s+1), i+s+1<N; the induction hypothesis shows 

that h; = 0, iSisi+s+1. So (b) holds for any s < N, and so does 

(c) VUTGnj isjsios+1) = [eNUTA A; isjsios) O Ejygy 7, Hs+1SN. 

Set E = v(UTA¡H;: 1<j<N]; then E = +JVIUTA 1Sj<N]. Set H = 

B(H;: 1Sj<N) and let B € L(H,E) be given by B = EUA 1Sj<N]; then 

A =B"B and B is a bijection, so A is p.d. 

Set A'=A") and B'=B"? soA' = B'B'”. Assume r+p < s; we must 
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show that A'rg = 0, ¡.e., that B "Hs 1 BH, Now, B'"Hp = 

E 8 (1+HUÍAH; 1Sj<N, jek)) ; (c) shows that E= 
[ITA nj: 15j31+4 O Do 41 8 ... O By. Ifkp >", 

Gx < [+ JU r<isN] CE 889, ,so B"H,CE8 (Gryp+1 O... O En) 

= [+0 7GH; 1Sjsr+p) C E 8 BH. The proof is over. 
e  Concerning the band method see [GKW]. 
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On some extensions of the commutant lifting theorem: 

corrections 

Rodrigo Arocena 

in our paper [A] some mistakes concerning theorem (VIII.1) were included. We hope to 

correct them in the following, where we keep notations and numerations. 

in fact, the mistakes appeared in the derivation of formulas (V1.2) and (V1.3), which should 

be corrected as follows. 7 

From formula (i.2) we obtain Ey Y (W”"1M3) =E1 € A(0,1) Y W"1(M18E7), 

with A(0,1) = ((W"1-T"7)b: beE)”. 
Assume that M7 = Ey Y (W"1M3); it follows that 

(M7 BE7) = A(0,1) HS W"+ (M7 BE7), 

so W'3 (My BE1) = W"¡ W"+ (M- 8E1) 0 [W'1(W"3-T"7)b: b € Ex F, and consequently 

(R'8R) = [1(1- xp 4? €, W 13: 261 B(W'¡(W"]-T"1)b: DE] y] 

8 (xp 6, W1W01c: ceE7Y”. 

Now, the correspondence given, for any a € E7 and b € Ex, by 

( xP Wa O W'1(W*%-T")b > Dxpya 8 Dy",b_ is an isometry of 

My Pos po ' " s > D D $ [ic xp py A 18:,9€E4] B(W"7(W"4-T"4)b: DEE3¿ ] onto xr", d 7», that, for every 

c € Er, takes (l- xP, Wi W"0 = (- xP WTC DW (W"¡-T"4)c to 

Dx", 1"1c € Dyw,c. Thus: 

(VLZ) If My = Ey Y (W"M1), 

(R'BR) = [Dxr, 8 Dr", ] 8 (Dxp,T"10 8 Dy»,c:c € Ex). 

From formula (1.3) we obtain E2 Y (W"2M2) = Az(0,1) O W"2%, 

with Az(0,1) = ((- W"2T"2)a: asE2). 

Assume that M2 = E2 V (W"2M2); it follows that 

M2 = ((1 W2T"2)a: at2j O "2, so 

WoaMo = own O 1 Wr2(1- 4 "2T"2)a: a€E2)”, and consequently 

(D'8D) = [í W2(1- W2T"2)a: ato DW S2XT1)b: beE7 Y] 
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8 (e SAO XT TO: CEE1 Y. 
The correspondence W'"2(t- W"2T"2)a O (EH '2XT4)b > Dy“,a Y Dr,xb shows that: 

(VI.3) If Mo =E2 Y (Woo), 

(0'80) = [Dy», 8 Dr-2x] 8 [Dp",T'2Xc O Dr, ye: Cc € Ep). 

Now, the same proof as in [A] shows that: 

(ViM.1) THEOREM For j= 1,2 let Y; and UN be commuting contractions in a 

Hilbert space Ej, u'; and y”; commuting unitary operators in a Hilbert space 

Ej such that qu” u”;":m,n € Li is a unitary dilation of the semigroup ma 

TU": mn > O). Let X € L(E1,E2) be such that X Ty = TX and XT"¡ = 
T''2 X. Assume that one of the following condiuons hold: 

DM = Es Y [viu ” ur": minz20:] and (XT'4)T"+ is a regular 
factorization of XT"3T"4y = T2T'2X; 

ii) > = Ez Y [Wiu"” un, Mies: m,n<0?] and T"2(T'2X) is a regular 

factorization of XT'3T"4 = T'2T"2X. 

Then there exists T € L(F1,F2) such that TU'y = U'2T, TU"y = U"2T, 

F2 - a p Es le, 7 X and ITli = HXIL 

Note that (1) holds if T'"4 is a unitary operator ane chat (ii) holds when T”2 is a unitary 

cperator. 

“E 
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