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Abstract: This study explores a prediction system for global horizontal irradiance and cloudiness 1

in a humid subtropical terrestrial region. This system consists of regional simulations performed 2

with the Weather Research and Forecasting model using the initial and boundary conditions from 3

the Global Forecast System. The predictions show significant biases for the variable of interest, with 4

notable variations within the daily and annual cycles. The study also finds significant biases in 5

cloud incidence and clarity index predictions, with relevant diurnal and seasonal variations. During 6

austral summer, multiplying the relative humidity of initial and boundary conditions by a fixed factor 7

improves the forecasts of global horizontal irradiance and cloud incidence for the central hours of the 8

day and the afternoon. During austral winter, an empirical correction of the clarity index obtained 9

from the simulation’s outputs also shows the potential to improve the forecasts’ biases. This work 10

proposes a hypothesis about the causes of the forecast biases. 11

Keywords: Weather Research and Forecast Model; cloud prediction; humid climate; forecast biases; 12

empirical corrections 13

1. Introduction 14

Predicting surface irradiance is important in managing large-scale photovoltaic sys- 15

tems, though it can be limited by the poor prediction of cloudiness in humid regions. This 16

study investigates the accuracy of a numerical prediction system for global horizontal 17

irradiance (GHI) at a location in central Uruguay within southeastern South America 18

(SESA). 19

The relative importance of specific physical processes related to clouds may differ 20

in each region and even in different seasons, which can affect the performance of any 21

given forecast system for GHI. Besides this, the performance of numerical predictions 22

also depends on the availability of data to initialize the numerical simulations, which 23

differ among various regions. Therefore, the conclusions for a specific area are not directly 24

applicable to others. There are several published works about numerical predictions of 25

GHI in humid climates, but very few in SESA. As examples of works of this kind in other 26

humid climates, we can refer to the works by Mathiesen and Kleis (2011) [1], Huang and 27

Thatcher (2017) [2], and Bezerra et al. (2024) [3]. In southeastern South America, Rincón et 28

al. (2018) [4] studied a system of model output statistics to correct numerical simulations 29

of GHI in Paraguay, obtained from the WRF model with initial and boundary conditions 30

obtained from NCEP reanalysis (the simulations were in analysis rather than in forecast 31

mode). The authors considered ground measurements of GHI during 2015 and found that 32

the simulations had significant biases. The uncorrected simulations showed relative bias 33

between 10 and 15 percent during winter and fall and between 20 and 25 % during spring 34

and summer. The relative root mean square errors were, on average, more than 70%. The 35

systems of model output statistics employed reduced the relative bias to values below 5% 36
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and relative RMSE to values from 40 to 60%. Texeira Branco et al. (2022) [5] evaluated GHI 37

forecasts for the first 24 hours in Uruguay, obtained from a NOAA Global Forecast System 38

forecast, comparing them with data from several ground stations available for this study 39

for three years from 2017 to 2019. Their study found a systematic overestimation of GHI, 40

from 3.5% in the central and late hours of the day to 15% during the early hours. However, 41

this study did not show the seasonal cycle of these errors or discuss the compensation of 42

errors during different seasons. 43

The present work explores a specific numerical system for GHI prediction in Uruguay 44

for time horizons within 24 hours. It emphasizes determining the seasonal and daily cycles 45

of the predictions’ systematic errors and proposing techniques to alleviate such systematic 46

errors. The methodologies described can be a base for developing an optimized forecast 47

system, although such optimization is beyond the scope of this work. This work also 48

proposes a hypothesis about some of the causes of bias. 49

Next, we describe the main characteristics of the climate in SESA, especially those 50

aspects associated with clouds, and we point out the numerical predictability of these 51

processes. 52

SESA is a subtropical region with a humid climate and an average annual precipita- 53

tion of 1000–1500 mm/year, without a particularly distinct seasonal cycle (Ferreira and 54

Reboita, 2022[6]). It is affected by cyclogenesis processes and the associated frontal devel- 55

opments throughout the year (Gan and Rao 1991 [7], Rao et al. 2002 [8], Vera et al. 2002 56

[9]). The development of deep convection is also important. It can be associated with 57

frontal processes (Ross and Orlanski, 1978[10], Rassmusen et al. 2016 [11], Siqueira and 58

Machado 2004 [12]) and also with mesoscale convective complexes (MCCs), which are 59

of great importance in the region (Velasco and Fritsch 1987 [13], Salio et al. 2007 [14]). 60

The predictability of baroclinic processes and MCCs is substantial, with numerous studies 61

demonstrating skillful forecasts within 24-hour lead times (Seluski and Saulo 1998 [15], 62

Satyamurti and Bittencourt 1999 [16], Ortelli 2023 [17]). Orteli (2023) [17] analyzed the 63

quality of precipitation predictions obtained from the ensemble forecasts of the United 64

States National Ocean and Atmosphere Administration (NOAA)’s Global Forecast System 65

(GFS) and from the European Centre for Medium-Range Weather Forecasts in a subregion 66

of Uruguay. Their study found significant prediction abilities for both systems within 67

horizons of up to 5 days. The prediction capacity is confirmed for both frontal processes 68

and MCCs. These results suggest that the incidence of clouds related to these processes has 69

good potential for numerical predictability in the region and within the 24-hour temporal 70

horizon considered in this work. These clouds are generally thick, and their tops occur in 71

the middle or upper troposphere. 72

The region of interest is also affected by low-level cloudiness, including stratocumulus 73

and shallow cumulus clouds. These cloud types are related to shallow convection processes 74

and are affected by the characteristics of the atmospheric boundary layer (ABL). Porrini 75

(2017) [18] studied the 24-hour predictability of solar irradiance at various locations in 76

Uruguay during the austral summer using a forecast system similar to that used here 77

and found that, during the central hours of the day, there was an overestimation of the 78

frequency of clear-sky days, partly attributable to a systematic underestimation of low-level 79

cloudiness. Therefore, cloud prediction should consider synoptic and mesoscale processes 80

as well as cloud development related to shallow convection processes. The predictability of 81

clouds related to synoptic and mesoscale processes is high in the region of interest, whereas 82

the forecasting of low-level clouds directly related to atmospheric boundary layer processes 83

and shallow convection remains challenging. 84

In recent years, there have been considerable advances in the numerical modeling of 85

ABL processes, several of which have been incorporated into the ABL parameterizations 86

available in the Weather Research Forecasting (WRF) model (Skamarock et al. 2017) [19], 87

including the Yon Sei University ABL scheme (Hong et al. 2009) [20] and the Washington 88

University ABL scheme (Bretherton et al. 2004) [21]. Both schemes effectively reproduce 89

marine stratocumulus clouds in the tropical eastern Pacific. Marine stratocumulus clouds 90
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are also well simulated by the ABL schemes described by Konor et al. (2009) [22] and Lock 91

(1998) [23]. The predictability of shallow cumulus clouds has also been improved through 92

numerical schemes described by Park and Bretherton (2009) [24], Grell (1993) [25], and 93

Kain and Fritch (1993) [26]. Despite these advances, the predictability of stratocumulus and 94

shallow cumulus clouds can vary in different climates or depend on specific simulation 95

systems. 96

The objectives of this study are as follows: 97

• To evaluate primarily the GHI predictions at the study site within a 24-hour horizon. 98

The prediction system consists of regional simulations obtained from the WRF model 99

(Scamarok et al., 2017) [19] with initial and boundary conditions prescribed by the 100

GFS system. 101

• To evaluate the predictions of clouds with different ranges of cloud-top heights at the 102

study site. 103

• To evaluate the sensitivity of the GHI and cloudiness predictions to specific initial and 104

boundary condition modifications. 105

2. Data Used and Numerical Experiments 106

2.1. Global Horizontal irradiance filed data 107

This work uses GHI measurements from a pyranometer that belongs to a meteoro- 108

logical station at the Bonete hydropower plant, located approximately in the middle of 109

Uruguay (see Fig. 1). The station is part of a network that measures wind velocity at 110

heights up to 100 m above the ground and solar radiation near the ground, operated by the 111

National Administration of Electric Power Plants and Transmissions of Uruguay (Usinas 112

y Trasmisiones del Estado; UTE) since 2008. This network is described by Cornalino and 113

Draper (2012) [27], and its measurements (including GHI averaged every 10 min) are made 114

available online by UTE. 115

2.2. Numerical Simulations 116

The regional simulations take their initial and boundary conditions from global pre- 117

dictions made by the GFS. The horizontal grid of the regional simulations has a resolution 118

of 0.25º in the zonal and meridional directions. It has 49 grid points in both directions and 119

is centered at the location of Bonete station (Fig. 1). 120
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Figure 1. Grid points of the horizontal discretization used in the regional simulation. The larger red
point indicates the location of Bonete station.

Appendix A shows the vertical discretization used. It has 33 layers; the highest vertical 121

resolution is concentrated in the first three thousand meters. Over Bonete, the thickness 122

of the first 20 layers above the terrain is around 150 meters. The choice of such a high 123

resolution in the lower troposphere was made with the aim of improving the simulation of 124

processes related to shallow convection. 125

The set of reference simulations extends 24 hours and starts at 0:00GMT daily from Novem- 126

ber 1st 2018 to October 31st 2023. The parameterizations of physical processes used in the 127

reference simulations are listed in Appendix A. 128

2.2.1. Modification of Initial and Boundary Conditions 129

Some simulations in this work modify the water content of the initial and boundary 130

conditions derived from the GFS data. A multiplying factor, called WPS, affects the relative 131

humidity field (RH) that is included in the output files of the WRF preprocessing module. 132

The WPS module, described by Sclamarock et al. (2017)[19], horizontally interpolates 133

meteorological data onto the horizontal grid of the projected domain at the time slices 134

selected to prescribe initial and boundary conditions to the regional simulation. The results 135

of the WPS module are the "met" files, which are used as input to a specific program 136

(real.exe) that completes the build of the files for initial and boundary conditions. The 137

"met" files contain surface and 3-dimensional fields of temperature, total water content in 138
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terms of relative humidity (RH variable), geopotential height, pressure, and the horizontal 139

components of wind speed, as well as the 2-dimensional fields of static terrestrial properties. 140

The water content used to build the initial and boundary conditions is modified as follows: 141

the RH variable is read from the "met" files, multiplied by a uniform factor at all the vertical 142

levels of the "met" files, and re-written to the "met" files. Appendix A shows a scheme of 143

this procedure. 144

2.2.2. Clear-sky simulations and clarity index (Kc) 145

To define GHI for clear sky conditions, we perform simulations for the whole period 146

with the WRF model in the conditions described above, except that inside the short-wave 147

radiation routine, we set the water content of clouds in their liquid, ice, and rain phases to 148

zero. 149

For any given prediction of GHI in any WRF configuration, we define the clarity index 150

(Kc) as 151

Kcpredicted = (predicted GHI)/(clear sky GHI) (1)

where the predicted and the clear-sky GHI correspond to the same instant. 152

Analogously, for any given measurement of GHI at the pyranometer of Bonete station, 153

the observed Kc is 154

Kcmeasured = (measured GHI)/(clear sky GHI). (2)

Again, the observation and the clear-sky prediction correspond to the same instant. 155

2.3. Cloud incidence and cloud top height data from MODIS satellites 156

This work considers cloud incidence and cloud top height based on analysis of mea- 157

surements obtained by MODIS Terra and Aqua satellites, which are made available by 158

NASA’s Level-1 and Atmosphere Archive Distribution System (NASA LAADS DAAC). 159

Cloud incidence is taken from MODIS Cloud Mask Products, and cloud top heights are 160

taken from MODIS Cloud Products (Platnick et al., 2015 [28]; King et al., 2003 [29]). 161

Figure 2 shows histograms of the frequency of overpasses through Bonete of the Terra and 162

Aqua satellites as a function of local time (UTC minus 3 hours). The Terra satellite provides 163

information at this site late in the morning and noon, while the Aqua satellite provides 164

information in the early afternoon. 165
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Figure 2. Histogram of the frequencies at which the MODIS Terra satellite (green bars) and the
MODIS Aqua satellite (blue bars) overpass Bonete for time intervals of the local hour.

2.3.1. Mean cloud incidences 166

The mean incidence of clouds at a specific time of day and during a particular season 167

is defined for both forecasts and MODIS analysis results as 168

i =
Y
n

(3)

where Y is the number of instances in which forecasts or the MODIS analysis detects 169

clouds over Bonete and n is the total number of days within the season of interest between 170

November 2018 and October 2023. We calculate forecasted and MODIS-diagnosed average 171

incidences when the Terra and Aqua satellites overpass Bonete. 172

For the forecasts, clouds are considered to be detected if the specific content of cloud 173

liquid water or cloud ice is greater than zero at some point in the vertical grid at the 174

horizontal grid point that corresponds to the Bonete site. Note that cloud detection by 175

MODIS analysis and numerical forecasts are defined differently. The MODIS analysis 176

considers specific properties of radiation measured by the Terra and Aqua satellites (King et 177

al. (2003) [29], Platnick et al. (2021) [30]), but not all of these properties are readily available 178

from the numerical simulations used for the forecasts. On the other hand, water content is 179

available from the simulations but not directly measured by the satellites. Therefore, cloud 180

incidences obtained from MODIS analysis may be considered as a qualitative reference for 181

forecasted cloud incidences, while it is possible to make direct quantitative comparisons 182

between the cloud incidences obtained from different kinds of numerical simulations used 183

in this work. 184

2.4. GHI data from NASA POWER analysis 185

To complement the field data of the Bonete station, we consider GHI estimates from the 186

National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) 187

Prediction of Worldwide Energy Resource (POWER) Project funded through the NASA 188

Earth Science/Applied Science Program (NASA POWER analysis). This database estimates 189

solar radiation from satellite observations and meteorological data from assimilation models 190

and is described by Lauret et al. (2017) [31]. 191
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2.5. Forecast metrics and statistical significances 192

2.5.1. Relative bias (RBIAS) and RRMSE 193

If a is the GHI measured at a given hour during a particular month or season and b is 194

the correspondent prediction, the relative bias (RBIAS) is defined as 195

rbias =
(b − a)

a
(4)

where the overline indicates the average over all the cases within the month or season 196

considered. 197

The relative root mean square error (RRMSE) is defined as 198

rrmse =

√
(b − a)2

a
(5)

2.5.2. Statistical significance for biases and differences of mean cloud incidences 199

Because biases are differences in means, it is possible to compute their significance 200

with a two-tailed Student t-test as described by Press et al. (1992) ??. The same test is 201

applied to the differences in bias. 202

The statistical significances of differences in mean cloud incidences between forecasts 203

and MODIS analysis or between different types of forecasts were computed as indicated by 204

Snedeckor and Cochran (1967) [34]. We define the variable z as 205

z =
i1 − i2√

i(1 − i)(
1
n1

+
1
n2

)

(6)

where i1 and i2 are the average incidences to be compared and n1 and n2 are the total 206

number of days within the samples. The parameter i is computed as 207

i =
Y1 + Y2

n1 + n2
(7)

In our cases, n1 and n2 are equal and correspond to the total number of days within 208

the season of interest from November 2018 to October 2023. The differences are considered 209

statistically significant at the 5% level when the value of z corresponds to a percentile below 210

0.025 or above 0.975 of a normal distribution with an expected value of zero and a unit 211

standard deviation. 212

3. Results 213

We assess the availability of solar resources at Bonete based on the average monthly 214

GHI from November 2018 to October 2023 at 10:00, 12:00, 14:00, and 16:00 local time (Fig. 215

3a), along with the corresponding average of measured Kc indices (Fig. 3b). We find that 216

the Kc indices have moderate-amplitude daily and annual cycles. 217
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Figure 3. (a) Observed monthly means of GHI at Bonete for local times of 10:00, 12:00, 14:00 and 16:00.
(b) Monthly means of measured Kc indices for the same local times considered in (a).

Figure 4 shows the relative biases in the GHI reference predictions compared to the 218

field measurements for each month at the times of the day considered in Fig. 3. There are 219

important differences between summer and winter. In the austral summer (DJF), we find 220

positive biases at 10:00 and, to a greater extent, at 12:00, 14:00, and 16:00. During the austral 221

winter (JJA), we find pronounced negative biases at 10:00 and, to a lesser extent, at 12:00 222

and 16:00. 223

Figure 4. Relative bias for the reference forecast of GHI at Bonete for each month at 10:00, 12:00, 14:00,
and 16:00, local time.
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As a complement to this information, Fig. 5 shows the relative bias of GHI forecasts for 224

each local hour from 10:00 to 16:00 for the bimesters January–February, March–April, May– 225

June, July–August, September–October, and November–December. During the November– 226

December and January–February bimesters, the forecasts underestimated GHI in the early 227

morning and overestimated it at noon and in the afternoon. During the May–June and July– 228

August bimesters, the relative bias is reduced during the central hours but is significantly 229

negative in the early morning and late afternoon. 230

Figure 5. Relative bias for the reference forecast of GHI at Bonete as a function of local time, from
10:00 to 16:00. (a) September–October, November–December, and January–February bimesters. (b)
March–April, May–June, and July–August bimesters.

Significant biases in a deterministic prediction system imply systematic errors in one 231

or more components and limit the system’s performance in practice. Considering the 232

seasonality of the biases, we focus on the periods between November and February (NDJF), 233

which shows the most considerable positive biases during the central and afternoon hours, 234
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and between May and August (MJJA), which exhibits the most significant negative bias in 235

the morning. Although there is some level of arbitrariness in the choice of these seasons, 236

they allow us to sample the seasonal cycle in seasons that show essential differences in 237

terms of the systematic errors of the forecasts. 238

We analyze the prediction biases and other performance metrics of GHI forecasts 239

throughout the day during these seasons, along with the incidence of predicted clouds, 240

averaged according to the pass times of the Terra and Aqua satellites, and compare these 241

values with the corresponding MODIS analyses. 242

3.1. The NDJF season 243

Several WRF parameterizations, including the WRF-Solar model, were tested to im- 244

prove predictions, but all underestimated cloud incidence and overestimated GHI during 245

the central hours of the day and the afternoon. However, two alternative methodologies 246

improved the systematic deviations of the predictions without compromising the other 247

forecast metrics considered. 248

• The initial and boundary conditions of the simulations were modified by systematically 249

increasing RH by a factor of 1.2. Although this is a simple modification (independent 250

of the vertical level and geographic location), it allows for a preliminary exploration 251

of predictions’ sensitivity to changes in this variable. 252

• We tested forecasts that used the Yonsei University ABL scheme (Hong et al. 2006??) 253

and an increased RH of the initial and boundary conditions as explained above 254

(YSUBL-RHx1.2 simulations); forecasts that used the Washington University ABL 255

scheme (Bretherton et al. 2004??) with the same modification of initial and boundary 256

conditions (WUBL-RHx1.2); and a composite forecast that considered for each hour 257

the forecast among these two that produced the lowest GHI value. These predictions 258

were called COMP. 259

Figure 6 shows the relative biases in the reference, YSUBL-RHx1.2, WUBL-RHx1.2, and 260

COMP predictions for NDJF between 8:00 and 18:00 local time during the years 2018–2019 261

and 2022–2023. The reference forecasts show a sizable negative bias at 8:00, which evolves 262

into a strong positive bias exceeding 10% from 11:00 onward. These biases are statistically 263

significant at a 5% level at each round hour. Between 8:00 and 10:00, the YSUBL-RXx1,2, 264

WUBL-RHx1.2, and COMP forecasts have negative biases worse than those of the reference 265

forecast, while the new ones improve the positive biases of the reference forecasts from 266

12:00 onward. The COMP forecast bias improves the YSUBL-RHx1.2 and UWBL-RHx1.2 267

forecasts from 16:00 to 18:00. As for the statistical significance of these differences, the 268

biases of the YSUBL-RHx1.2, UWABL-RHx1.2, and COMP forecasts are different from 269

the bias of the reference forecasts, with statistical significance at a 5% level from 8:00 to 270

18:00. In addition, the bias of the COMP forecasts is different from the biases of both the 271

YSUBL-RHx1.2 and UWABL-RHx1.2 forecasts, with statistical significance at a 5% level 272

from 16:00 to 18:00. 273



Version December 19, 2024 submitted to Journal Not Specified 11 of 28

Figure 6. Relative bias of GHI forecasted at Bonete during the NDJF season, as a function of local
time. Black, reference forecast; blue, YSUBL-RHx1.2 forecast; magenta, WUBL-RHx1,2 forecast; red,
COMP forecast.

The biases found for the reference forecast indicate errors in predicting the incidence 274

or thickness of clouds. However, based only on the information from the simulations, we 275

cannot deduce the relative importance of these factors or whether they are concentrated in 276

specific altitude ranges. We compare the simulation results with cloud information derived 277

from MODIS Terra and Aqua satellite data to gain insights. 278

Table 1 indicates the percentage of days within these seasons when clouds are predicted 279

at the passing times of the Terra satellite by the four schemes considered in Fig. 6 and the 280

corresponding percentage when the MODIS analysis indicates the presence of clouds. It 281

also considers subpopulations of clouds with tops above and below 3000 m to distinguish 282

between mid/high and low clouds. For the reference forecasts, the mean predicted cloud 283

incidence is smaller than the corresponding MODIS analysis in all categories by 10-15%, 284

with these differences being statistically significant to a 5% level (according to the test 285

described in Section 2). The YSUBL-RHx1.2, WUBL-RHx1.2, and COMP forecasts increase 286

cloud incidences in all categories, reaching values similar to those from MODIS analysis. 287

Table 1. Cloud incidences at times when the Terra satellite overpasses Bonete during NDJF, forecasted
by the reference, YSUBL-RHx1.2, WUBL-RHx1.2, and COMP predictions and diagnosed by MODIS.

Cloud incidences at times of MODIS Terra overpasses

All clouds Clouds tops > 3000m Cloud tops < 3000m

Reference forecasts 24.8 19.7 5.0
YSUBL-RHx1.2

forecasts 40.1 25.0 15.1

WUBL-RHx1.2
forecasts 39.4 26.6 12.8

COMP forecasts 45.3 26.4 18.9
Diagnosed by MODIS 40.9 27.7 13.2

The first column of Table 2 shows the mean predicted Kc index for cases when pre- 288

dictions indicate clouds at times that the Terra satellite overpasses Bonete (first to fourth 289

rows) and the mean measured Kc index for cases when the Terra satellite effectively detects 290

clouds (fifth row). The second and third columns are analogous to the first for clouds with 291

tops >3000 m (second column) or <3000 m (third column). The predicted and measured Kc 292

indices are similar on average for the reference forecasts. The predictions have more clarity 293

in high-cloud cases and less in low-cloud cases. The YSU-RHx1.2, WU-RHx1.2, and COMP 294

predictions have a mean Kc slightly lower than reference predictions and measures. 295
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Table 2. Mean Kc indexes at times when the Terra satellite overpasses Bonete. The first row shows
mean Kc indexes from reference predictions when these predictions determined clouds over Bonete
at times of Terra overpasses. The second, third, and fourth rows are analogous to the YSUBL-RHx1.2,
WUBL-RHx1.2, and COMP predictions. The fifth row shows the mean measured Kc indexes when
MODIS analysis detected clouds at times of Terra overpasses Bonete.

Kc index at times of Terra overpasses

All clouds Clouds tops > 3000m Cloud tops < 3000m

Kc form reference
forecasts .54 .55 .50

Kc from
YSUBL-RHx1.2

forecasts
.50 .48 .53

Kc from
WUBL-RHx1.2

forecasts
.51 .47 .59

Kc from COMP
forecasts .49 .46 .52

Kc from
measurements .56 .49 .72

Tables 3 and 4 are analogous to Tables 1 and 2 but refer to the Aqua satellite data. 296

The reference predictions have lower mean cloudiness than MODIS analysis in all the 297

categories, with magnitudes similar to those for the Terra satellite (Table 3). The differences 298

are statistically significant to a level of 5%. In addition, the average clarity from the 299

reference forecasts for predicted cloudy cases is higher than that for measured cloudy cases 300

for all categories. The cloud incidences for the YSUBL-RHx1.2, WUBL-RHx1.2, and COMP 301

forecasts are significantly higher than the reference predictions and similar to the MODIS 302

analysis, particularly in the WUBL-RHx1.2 and COMP simulations. The mean Kc indexes 303

from the YSUBL-RHx1.2, WUBL-RHx1.2, and COMP forecasts are also more similar to the 304

mean Kc obtained from observations compared to the reference simulations. 305

Table 3. Analogous to Table 1 for Aqua overpasses.

Cloud incidences at times of MODIS Aqua overpasses

All clouds Clouds tops > 3000m Cloud tops < 3000m

Reference forecasts 27.3 22.3 5.0
YSUBL-RHx1.2

forecasts 31.8 26.4 5.4

WUBL-RHx1.2
forecasts 37.2 28.5 8.7

COMP forecasts 39.1 29.1 10.0
MODIS analysis 39.1 28.3 10.8
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Table 4. Analogous to Table 2 for Aqua overpasses.

Kc at times of Aqua overpasses

All clouds Clouds tops > 3000m Cloud tops < 3000m

Kc from reference
forecasts .71 .69 .80

Kc from
YSUBL-RHx1.2

forecasts
.64 .60 .81

0 Kc from
WUBL-RHx1.2

forecasts
.63 .58 .83

Kc from COMP
forecasts .62 .56 .80

Kc from measures .58 .53 .70

In summary, the apparent underestimation of predicted cloud incidence compared 306

with the MODIS data during the Terra satellite overpasses is consistent with the overesti- 307

mation of predicted GHI in the late morning. Meanwhile, the apparent underestimation of 308

predicted clouds and overestimation of the average clarity index at the times of the Aqua 309

satellite overpasses is consistent with an overestimation of the GHI in the early afternoon, 310

which is relatively higher than that in the late morning. 311

To gain insights into the differences in cloud incidence predictions obtained from the 312

forecast systems considered, we plot their mean cloud incidences for each hour from 6:00 313

(around sunrise during NDJF) to 18:00. Figure 7 shows the cloud incidence frequency 314

during NDJF for each hour from 8:00 to 18:00 based on the different forecasts for cloud tops 315

higher than 3000 m (Fig. 7a), <3000 m (Fig. 7b), and lower than 1000 m (Fig. 7c) 316
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Figure 7. Forecasted cloud incidences during the NDJF season as a function of local time. Black,
reference forecast; blue, YSUBL-RHx1.20 forecast; magenta, WUBL-RHx1.2 forecast; red, COMP
forecast. (a) Clouds with tops >3000m. (b) Clouds with tops below 3000m. (c) Clouds with tops
<1000m.

For high clouds, the YSUBL-RHx1.2, WUBL-RHx1.2, and COMP forecasts have similar 317

incidences, which are higher than those in the reference forecasts. In all forecasts, there is a 318

slight increase throughout the day. In contrast, low cloud cover shows a higher incidence 319

in the morning for all forecasts. From 8:00 to 11:00, the YSUBL-RHx1.2, WUBL-RHx1.2, and 320

COMP forecasts show a notable increase in incidence compared to the reference forecasts. 321

Such an increase may not be realistic during the early morning hours (8:00–9:00), when the 322

YSUBL-RHx1.2, WUBL-RHx1.2, and COMP forecasts show stronger negative GHI biases 323

than those in the reference forecasts. 324

Between 10:00 and 12:00, the incidence of low clouds decreased across all forecasts. 325

Compared to the MODIS analysis, the reference forecasts underestimate the low cloud 326

incidence during this time, whereas the other forecasts slightly overestimate it. From 327
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10:00 to 18:00, all forecasts show a relatively stable mean cloud incidence, with the YSUBL- 328

RHx1.2, WUBL-RHx1.2, and COMP forecasts showing slightly higher incidences than the 329

reference forecasts. In the early afternoon, the WUBL-RHx1.2 and COMP forecasts have 330

average cloud incidences similar to the MODIS measurement based on the Aqua satellite 331

data. There is also a significant reduction in positive biases in the reference simulation 332

starting at 12:00. 333

A possible hypothesis regarding the performance of the reference predictions during 334

this season is that the global predictions on which the regional simulations are based may 335

have RH biases that depend on the level of the troposphere. The RH in the initial conditions 336

may be realistic within the first 1000 m but not at higher levels, where it may have a 337

negative RH bias. As the day progresses, ABL and shallow convection processes affect 338

higher levels. The entire ABL becomes dryer since it mixes with relatively dry air, possibly 339

contributing to underestimating low clouds after late morning. On the other hand, the 340

possibility of overestimating surface heat fluxes can be another alternative hypothesis, also 341

consistent with a progressive underestimation of low clouds. Fig. 10 shows the average 342

ABL height and upward surface heat flux at Bonete for the reference simulations. The 343

results for the other simulations are similar and are not presented here. The negative RH 344

bias at the middle and higher tropospheres may contribute to the reference simulations’ 345

underestimation of clouds at these levels. Field measurement campaigns are necessary to 346

verify the proposed hypothesis, as discussed in Section 4. 347

Figure 8. (a) Mean forecasted ABL height above the surface at Bonete during the NDJF season as a
function of local time. (b) is analogous to (a) for forecasted upward heat flux from the surface.

Thus far, we have analyzed the biases in the GHI predictions, as well as the means of 348

cloud incidence and Kc indices. As a measure of random errors, we include the RRMSE 349

of the GHI predictions for each hour between 8:00 and 18:00 (Fig. 9). Between 8:00 and 350

10:00, the YSUBL-RHx1.2, WUBL-RHx1.2, and COMP forecasts exhibit higher errors than 351

the reference forecasts. From 11:00 onward, the errors are similar. From 14:00 onward, 352

the errors in the YSUBL-RHx1.2 and WUBL-RHx1.2 forecasts are lower than those in the 353

reference forecasts. 354



Version December 19, 2024 submitted to Journal Not Specified 16 of 28

Figure 9. Relative RMSE of GHI forecasts at Bonete, during NDJF season, as a function of local time.
Black, reference forecast, blue, YSUBL-RHx1.20; magenta, WUBL-RHx1.2, red, COMP forecast.

Fig. 10 shows the error distributions for clarity index predictions during the central 355

hours of the day (11:00–17:00) for both the reference and COMP forecasts. The errors in the 356

reference forecasts show a markedly asymmetrical distribution, which is consistent with the 357

bias. In contrast, the errors in the COMP forecasts show a more symmetrical distribution, 358

indicating an improvement. Therefore, the prediction performance of the alternative 359

prediction systems is inferior to the reference simulation in the morning hours but exhibits 360

less bias and more symmetrical error distributions after 12:00. This improvement is achieved 361

with no corresponding increase in random errors during these hours. 362
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Figure 10. Histograms of forecast errors for the clarity index during NDJF, from 12:00 to 18:00 local
time. (a) Reference forecasts. (b) COMP forecasts.

3.2. MJJA Season 363

Figure 11 shows the relative bias in the GHI reference predictions for the MJJA seasons 364

between 2019 and 2023 for each hour between 9:00 and 16:00. Biases are negative throughout 365

the day and significant from 9:00 to 12:00 and at 16:00. Moderate negative biases are 366

observed during the central hours of the day (13:00 to 15:00). 367

Figure 11. The relative bias of GHI from the reference forecasts at Bonete during the MJJA season.

Table 5 shows the cloud incidence forecast provided by the reference forecasts when the 368

Terra satellite overpasses Bonete and the incidence diagnosed by the MODIS analysis. Table 369

6 shows the average Kc predicted by these simulations when predictions indicate cloud 370

incidence during the Terra satellite overpass and the Kc obtained from GHI measurements 371

in Bonete when the MODIS analysis detects clouds. 372

Table 5. Analogous to Table 1 for the MJJA season.

Cloud incidences at times of Terra overpasses

All clouds Clouds tops > 3000m Cloud tops < 3000m

Reference forecasts 47.2 25.4 21.8
MODIS Analysis 51.9 32.4 19.5
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Table 6. Analogous to table 2, for MJJA season.

Kc at times of Terra overpasses

All clouds Clouds tops > 3000m Cloud tops < 3000m

Kc from reference
forecasts .35 .36 .34

Kc from measures .54 .50 .60

Tables 7 and 8 are analogous to Tables 5 and 6 for the Aqua satellite overes. The 373

reference simulations do not appear to overestimate cloud incidence (Tables 9 and 11), 374

which does not contribute to explaining the underestimation of GHI in the predictions. 375

However, such underestimation is consistent with the apparent underestimation of Kc 376

shown in Table 10 and, to a lesser extent, in Table 12. 377

Table 7. Analogous to Table 10 for the Aqua satellite.

Cloud incidences at times of Aqua overpasses

All clouds Clouds tops > 3000m Cloud tops < 3000m

Reference forecasts 44.3 24.8 19.5
MODIS Analysis 54.2 36.0 18.2

Table 8. Analogous to Table 10 for the Aqua satellite

Mean Kc at times of Aqua overes

All clouds Clouds tops > 3000m Cloud tops < 3000m

Kc from reference
forecasts .41 .39 .43

Kc from measures .53 .49 .59

To explore possible empirical corrections of the predictions, we compute Kc for each 378

forecast of GHI at Bonete and deduce a new Kc index, K′
c, as a convex linear combination 379

between 1.0 and the original Kc. 380

K′
c = α + (1 − α)Kc (8)

where α is a parameter between 0 and 1 to be set empirically. Note that Kc < K′
c < 1, 381

K′
c → 1 if α → 1 and K′

c → Kc if α → 0. 382

Then, the corrected forecast of GHI would be 383

corrected GHI f cst = (clear sky GHI).K′
c (9)

To test this methodology, we select an alpha value of 0.2. The corrected forecasts show 384

significant differences in bias at all hours. The absolute negative bias improves from 8:00 to 385

12:00 and decreases at 16:00. From 13:00 to 15:00, the corrected forecasts show a positive 386

bias, with an absolute value larger than the original forecast. Figure 12b shows the RRMSE 387

of the reference and corrected predictions. The corrected forecasts have a smaller RRMSE 388

than the reference for all hours considered. 389
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Figure 12. The relative bias of GHI from the reference forecasts at Bonete during the MJJA season.

To complement the field data of the Bonete station, we consider GHI estimates from 390

NASA POWER analysis (referred to in Section 2) in two additional locations in Uruguay, 391

located about 170km north and south of Bonete. The results are shown in Appendix B. The 392

biases at these locations are consistent with those obtained from the Bonete station. 393

4. Conclusions 394

This study primarily evaluates a numerical system’s performance in predicting GHI 395

at a representative site in Uruguay, SESA, a humid subtropical region. The reference pre- 396

dictions have significant biases, with notable variations within the daily and annual cycles. 397

This study also found significant biases in cloud incidence and clarity index predictions, 398

with relevant diurnal and seasonal variations. 399

This work proposes methodologies that can improve the predictions; these are as 400

follows: 401

• Modifications to the initial and boundary conditions of the numerical simulation; 402

• Post-processing of the simulation results. 403

Each of these methodologies has positive impacts on specific parts of the seasonal 404

and diurnal cycles, and thus there is potential to combine them to optimize the forecast 405

system’s general performance. This work also proposes a hypothesis about the reasons for 406

the prediction system’s systematic errors. 407

Next, we present a summary of our findings. 408

In austral summer, the reference predictions underestimate GHI in the morning hours 409

and overestimate GHI from 12:00 onward, with differences of about 10% in the observed 410
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mean GHI. When the Terra and Aqua satellites overpass the location of interest (late 411

morning and early afternoon, respectively), the reference predictions underestimate the 412

incidence of clouds, particularly for the Aqua satellite. We tested various parameterizations, 413

including the WRF-Solar model, but the systematic deviations in the cloud incidence and 414

GHI of the reference simulations remained. Adjusting the RH of the initial and boundary 415

conditions by a factor of 1.20 has a significant impact. Although these simulations show 416

worse bias in the morning hours compared to the reference, from 12:00 onward, there is a 417

significant improvement in bias without an increase in the RRMSE, likely due to an increase 418

in cloud incidence and, to a lesser extent, a decrease in Kc. We subsequently tested the 419

performance of simulations involving two ABL schemes—YSU and WSU—and considered 420

the lowest GHI prediction at Bonete for each hour. This combination produces moderate 421

but statistically significant improvements in bias during the late afternoon. The histogram 422

of errors of the COMP prediction is noticeably more symmetric than that of the reference 423

simulation from 12:00 to 17:00. Moderate skewness is a desirable property for the practical 424

use of a forecast system. 425

During austral winter, we observe a significant underestimation of GHI during much of 426

the day, specifically from 8:00 to 10:00 and in the late afternoon. These biases are consistent 427

with underestimating the mean Kc during the Terra and Aqua satellite overpasses. We 428

employ a post-processing procedure in which Kc is recalculated, significantly improving 429

relative bias. However, further research is needed to verify the role of this correction. 430

To complement the field data of the site used in this study, Bonete station, we consid- 431

ered GHI estimates from NASA POWER analysis in two additional locations in Uruguay, 432

about 170 km north and south of Bonete. The biases at these locations are consistent with 433

those obtained from the Bonete station (Appendix B). 434

5. Discussion 435

The current work is exploratory, and because GHI numerical predictions in SESA are 436

so far scarcely documented, it is necessary. The findings can contribute to optimizing a GHI 437

prediction system in the region, particularly the proposed techniques to alleviate biases. 438

However, such optimization would imply actions beyond this work’s scope. 439

In more detail, a fully operative forecast system requires putting into practice some 440

actions additional to those described in this work: 441

• Optimizing the actions that were adequate to alleviate systematic errors—in particular, 442

tuning the parameters that modified the initial and boundary conditions, or the kc 443

index, depending on the time of the day and the time of the annual cycle. 444

• Using ensembles of forecasts based on global predictions with perturbed initial condi- 445

tions. NOAA GFS produces ensembles of 30 such runs four times per day. Ensembles 446

of several members require empirical adjustments of the forecast dispersion to make 447

such dispersion a valuable measure of confidence intervals for the operative predic- 448

tions or to express the forecast in probabilistic terms. 449

• Considering ensembles of forecasts based on global predictions of different origins. 450

Most of this study focuses on data from a pyranometer at a central Uruguay station 451

and cloud diagnostics from MODIS analysis. To consider other locations within Uruguay 452

and data from other sources, we use estimations of GHI from satellite measurements 453

provided by the NASA POWER database. The results in these locations are consistent 454

with those obtained with the GHI data from the station at Bonete, particularly the diurnal 455

variation of the forecast’s relative biases during the seasons selected to sample its annual 456

cycle. 457

A possible hypothesis for the performance of the reference predictions during austral 458

summer is that the global predictions on which the regional simulations are based may have 459

RH biases that depend on the level of the troposphere. The RH in the initial conditions may 460

be realistic within the first 1000 m but not at higher levels, where it may have a negative 461

RH bias. This may reduce low-level clouds as the day progresses due to the relatively dry 462
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mix into the ABL. In addition, negative RH bias in the middle and higher tropospheres 463

may contribute to the reference simulations’ underestimation of clouts at these levels. 464

An alternative hypothesis is that the model underestimates the cloudiness due to 465

parameterization errors. In this case, the RH modification may improve the predictions 466

by compensating for errors. The initial conditions provided by the GFS system were com- 467

pared with ERA analysis, finding very similar vertical profiles of temperature and specific 468

humidity in the region of interest (these comparisons are not shown here). Consequently, 469

future studies should consider conducting surveys of the vertical profile of the troposphere 470

to a height of at least 5000 m during summer at various times of the day, which would be 471

economically feasible using drones equipped with meteorological sensors. These data can 472

then be combined with WRF models and nested large eddy simulations to understand the 473

simulation dynamics better. These data can also be used to evaluate the performance of the 474

radiosonde measurement network currently operational in the region and identify areas 475

for improving measurements’ frequency and geographic density to provide more accurate 476

initial conditions for predicting atmospheric processes that impact GHI. 477
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Appendix A 489

Appendix A.1 490

The setting of the WRF model used in this work is similar to that of the work by 491

Cazes Boezio and Ortelli (2019) [35]. The horizontal resolution is 0.25º. Figure 1 shows the 492

grid points used to compute air temperature, pressure, density, and vertical velocity. The 493

meridional and zonal components of wind are computed in points staggered by one-half of 494

the horizontal resolution in the zonal and the meridional directions, respectively, according 495

to the Arakawa C-grid. The vertical resolution considers 33 layers in the vertical direction. 496

The model vertical coordinate is η, defined as 497

η =
pd − pT
pS − pT

(A1)

where pd is the hydrostatic component of dry air pressure at a particular atmosphere level 498

and pS and pT are the analogous pressures at the Earth’s surface and the atmosphere 499

conventional top, respectively. The atmosphere top was set to 50 hPa. Table A1 gives the 500

values of η at each layer interface. 501
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Table A1. η values at the top of each layer of the vertical discretization.

Layer
number η at layer top Layer

number η at layer top Layer
number η at layer top

1 .987 12 .848 23 .709

2 .975 13 .836 24 .697

3 .961 14 .823 25 .684

4 .950 15 .811 26 .662

5 .937 16 .798 27 .624

6 .924 17 .785 28 .568

7 .912 18 .773 29 .494

8 .899 19 .760 30 .403

9 .886 20 .747 32 .295

10 .874 21 .735 32 .163

11 .861 22 .722 33 0.00

The horizontal velocities and the air temperature are computed inside each layer, 502

while the vertical velocity is computed at the layer interfaces, according to the Lorenz 503

vertical grid arrangement [1]. 504

The parameterizations of physical processes used in this work are shown in Table A2. 505

Table A2. Parameterizarions of physical processes.

Physical Process Scheme used

Short Wave Radiation Dudia scheme [36]
Long Wave Radiation RRTM scheme [37]

Surface Layer Revised MM5 surface layer [38]
Atmospheric Boundary Layer Yonsei University scheme [20]

Microphysics Hong et al. scheme [39]
Cumulus Precipitation Simplified Arakawa Schubert scheme [40]

Gravity Wave Drag Kim Arakawa scheme [41]
Land Processes Noah and surface model [42]

Figure A1 shows the procedure for producing initial and boundary conditions for 506

the WRF simulations with the WPS module and the real.exe program. It also shows the 507

procedure for modifying the total water content (RH variable) at the "met" files. 508
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Figure A1. Scheme of the process to generate initial and boundary conditions with the WPS module
and real.exe program and to modify the relative humidity variable of the "met" files.

Appendix B 509

Appendix B.1 510

In order to test the forecast results in contrast with data from the ground station at 511

Bonete, we also used GHI estimations from the NASA POWER database. This database 512

uses inter-res surface insolation values from satellite observations. The GHI measurements 513

at Bonete were contrasted with the corresponding NASA power estimates. The mean GHI 514

obtained from each source differs by less than 5%, and the correlation of hourly data is 515

above 0.90 for most of the hours and months. In this Appendix, we show the relative bias of 516

forecasted GHI compared to NASA POWER estimates for two other locations in Uruguay, 517

at two points situated at the exact longitude of Bonete, one of them to the south of this site, 518

close to the coast, and other to the North, in a more Mediterranean location. These points 519
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are named P South and P North, and their coordinates are 34.30ºS, 56.42ºW and 31.30ºS, 520

56.42ºW, respectively (see Fig. A2). 521

Figure A2. Location of P South and P North points.

Figure A3 shows the relative bias at these locations for the NDJF season as a function 522

of local time (analogous to Fig. 5). It also shows the COMP forecast results. The biases of the 523

reference forecast are very similar to those found in Bonete in Fig. 5; early morning forecasts 524

underestimate the GHI from NASA POWER estimates, while during the central hours of 525

the day and late afternoon, the predictions overestimate GHI from the analysis by 10% or 526

more. As with the results in Bonete, the COMP forecasts worsen the underestimation of 527

GHI during the early morning but improve the bias markedly during the central hours and 528

late afternoon. The results of COMP forecasts reduced RRMSE slightly during the central 529

hours of the day and the afternoon (this is not shown here). 530
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Figure A3. a) The relative bias of GHI from the reference forecasts during the NDJF season (continuous
blue line) and from the COMP forecasts (dashed red line) with respect to NASA POWER data at the
P South location. b) is analogous to a) for the P North location.

During MJJA (Fig A4), the results showed a substantial underestimation during the 531

morning hours, similar to that for the Bonete station, and to a lesser extent during late 532

afternoon. The empirical corrections of the Kc index from the model output improved the 533

bias significantly without worsening the RRMSE during the morning hours (this is not 534

shown here). 535
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Figure A4. a) The relative bias of GHI from the reference forecasts with respect to NASA POWER
data at the P South location. b) is analogous to a) for the P North location.

In conclusion, the data from NASA POWER and Bonete station validate each other 536

reciprocally, and the results obtained at Bonete apply to wider regions of Uruguay. 537
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