Hierarchical tensor representation and Tensor Networks -

R. Schneider (TUB Matheon), A. Uschmajew (U Bonn)

FOCM Montevideo 2014

Acknowledgment

DFG Priority program SPP 1324

Extraction of essential information from complex data

Co-workers: T. Rohwedder (HUB), A. Uschmajev (EPFL Laussanne)

W. Hackbusch, B. Khoromskij, M. Espig (MPI Leipzig), I.

Oseledets (Moscow) C. Lubich (Tübingen), O. Legeza (Wigner I -Budapest), Vandereycken (Princeton), M. Bachmayr, L. Grasedyck (RWTH Aachen), ...

J. Eisert (FU Berlin - Physics), F. Verstraete (U Wien), Z.

Stojanac, H. Rauhhut

Students: M. Pfeffer, S. Holtz ...

High-dimensional problems

Ι.

Equations describing complex systems with multi-variate solution spaces, e.g.

$$\mathbf{x} = (\mathbf{x}_1, \ldots, \mathbf{x}_d)$$
, where usually, $d >> 3!$

stationary/instationary Schrödinger type equations

$$i\hbar \frac{\partial}{\partial t} \Psi(t, \mathbf{x}) = \underbrace{(-\frac{1}{2}\Delta + V)}_{H} \Psi(t, \mathbf{x}), \quad H\Psi(\mathbf{x}) = E\Psi(\mathbf{x})$$

describing quantum-mechanical many particle systemsstochastic SDEs and the Fokker-Planck equation,

$$\frac{\partial \boldsymbol{p}(t, \mathbf{x})}{\partial t} = \sum_{i=1}^{d} \frac{\partial}{\partial x_{i}} \left(f_{i}(t, \mathbf{x}) \boldsymbol{p}(t, \mathbf{x}) \right) + \frac{1}{2} \sum_{i,j=1}^{d} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \left(B_{i,j}(t, \mathbf{x}) \boldsymbol{p}(t, \mathbf{x}) \right)$$

describing mechanical systems in stochastic environment,

▷ chemical master equations ...

Parametric PDEs - uncertainty quantification (UQ) e.g. $\nabla_x a(x, y_1, \dots, y_d) \nabla_x u(x, y_1, \dots, y_d) = f(x)$ $x \in D$, $\mathbf{y} \in \mathbb{R}^d$, + b.c. on ∂D .

arise from Schwab et al., Tempone , Nobile, ...

$$abla_x a(x,\omega) \nabla_x u(x,\omega) = f(x) + b.c$$

by using Wiener- Ito chaos polynomials, Hermite polynomials h_k

$$u(x,\omega) := \sum_{i=1}^{\infty} \sum_{k_i=1}^{\infty} U[x,k_1,\ldots,k_d] \otimes h_{k_i}(y_i(\omega)) , x \in D$$

Simple case, by Karhunen Loéve expansion

$$\begin{aligned} a(x,\omega) &= a_0(x) + \sum_{k=1}^{\infty} \lambda_k a_k(x) y_i(\omega) \\ \Rightarrow \tilde{a}(x,\mathbf{y}) &= a_0(x) + \sum_{k=1}^{\infty} \lambda_k \tilde{a}_k(x) y_i , \ y_i \in \mathbb{R} \end{aligned}$$

 $\mathsf{Hilbert space} \ \ \mathcal{H} = H^1_0(D) \otimes \mathsf{L}_2(\mathbb{R}^d,\mu) \ , \ \ d \to \infty$

Stochastic PDEs (numerical Malliavin calculus)Karniadakis et al.

Quantum physics - Fermions

For a (discs.) Hamilton operator **H** and given $h_p^q, g_{p,q}^{r,s} \in \mathbb{R}$,

$$\begin{split} \mathbf{H} &= \sum_{p,q=1}^{d} h_{p}^{q} \mathbf{a}_{p}^{T} \mathbf{a}_{q} + \sum_{p,q,r,s=1}^{d} g_{r,s}^{p,q} \mathbf{a}_{r}^{T} \mathbf{a}_{s}^{T} \mathbf{a}_{p} \mathbf{a}_{q} \ . \\ \text{where} \ A &\coloneqq \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ A^{T} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \ S &\coloneqq \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \ , \end{split}$$

and discrete annihilation operators

$$a_p \simeq \mathbf{a}_p := S \otimes \ldots \otimes S \otimes A_{(p)} \otimes I \otimes \ldots \otimes I$$

and creation operators

$$a_{p}^{\dagger}\simeq a_{p}^{T}:=S\otimes\ldots\otimes S\otimes A_{(p)}^{T}\otimes I\otimes\ldots\otimes I$$

The stationary (discrete) Schrödinger equation (neutral syst.)

$$\mathbf{H}\mathbf{U}=E_0\mathbf{U}~,~~\mathbf{U}\inigotimes_{j=1}^d\mathbb{C}^2\simeq\mathbb{C}^{(2^d)}~,~~(d
ightarrow\infty)$$

includes electronic Schrödinger equation as well as Hubbard, Heisenberg model etc.

Curse of dimensions

 $\mathcal{H} = := \bigotimes_{i=1}^{d} V_i, \quad \text{e.g.:} \quad \mathcal{H}_d = \bigotimes_{i=1}^{d} \mathbb{R}^{n_i} = \mathbb{R}^{\left(\prod_{i=1}^{d} n_i\right)}$ functions of discrete variables $(\mathbb{K} = \mathbb{R} \text{ or } \mathbb{C})$ $U: \times_{i=1}^{d} \mathcal{I}_i \to \mathbb{K}$, $\mathbf{x} = (x_1, \ldots, x_d) \mapsto U = U(x_1, \ldots, x_d) \in \mathcal{H}$. For $\mathcal{I}_i = \{1, \ldots, n_i\}$ we consider tensors as multi-index arrays $U = \left(U[x_1, x_2, \dots, x_d] \right)_{x_i=1,\dots,n_i \dots i=1,\dots,d} \in \mathcal{H}_d \quad ,$ d = 1: n-tuples $(U_x)_{x=1}^n$, or $x \mapsto U[x]$, or d = 2: matrices (U[x, y]) or $(x, y) \mapsto U[x, y]$. If not specified otherwise, $\|.\| = \sqrt{\langle ., . \rangle}$ denotes the ℓ_2 - norm. dim $\mathcal{H}_d = \mathcal{O}(n^d)$ -- Curse of dimensionality! e.g. $n = 100, d = 10 \rightarrow 100^{10}$ basis functions. \sim coefficient vectors of 800 \times 10¹⁸ Bytes = 800 Exabytes n = 2, d = 500: then $2^{500} >>$ the estimated number of atoms in

the universe!

Setting - Tensors of order d

Goal: Problems posed on tensor spaces,

 $\mathcal{H} := \bigotimes_{i=1}^{d} V_i, \quad \text{e.g.:} \quad \mathcal{H}_d = \bigotimes_{i=1}^{d} \mathbb{R}^n = \mathbb{R}^{(n^d)}$ <u>Notation:</u> $\mathbf{x} = (x_1, \dots, x_d) \mapsto U = U[x_1, \dots, x_d] \in \mathcal{H}_d$ For simplicity let us consider the Hilbert spaces $\ell_2(\mathcal{I}), \mathcal{I} = \{1, \dots, n\}$ Main problem:

dim $\mathcal{V} = \mathcal{O}(n^d)$ -- Curse of dimensionality!

e.g. $n = 100, d = 10 \rightsquigarrow 100^{10}$ basis functions, \rightsquigarrow coefficient vectors of 800×10^{18} Bytes = 800 Exabytes

Approach: Some higher order tensors can be constructed (data-) sparsely from lower order quantities.

As for matrices, incomplete SVD:

$$A[x_1, x_2] \approx \sum_{k=1}^{\prime} \sigma_k \Big(u_k[x_1] \otimes v_k[x_2] \Big)$$

Setting - Tensors of order d

Goal: Problems posed on tensor spaces,

 $\mathcal{H} := \bigotimes_{i=1}^{d} V_i, \quad \text{e.g.:} \quad \mathcal{H}_d = \bigotimes_{i=1}^{d} \mathbb{R}^n = \mathbb{R}^{(n^d)}$ <u>Notation:</u> $\mathbf{x} = (x_1, \dots, x_d) \mapsto U = U[x_1, \dots, x_d] \in \mathcal{H}_d$ For simplicity let us consider the Hilbert spaces $\ell_2(\mathcal{I}), \mathcal{I} = \{1, \dots, n\}$ Main problem:

dim $\mathcal{V} = \mathcal{O}(n^d)$ -- Curse of dimensionality!

e.g. $n = 100, d = 10 \rightsquigarrow 100^{10}$ basis functions, \rightsquigarrow coefficient vectors of 800×10^{18} Bytes = 800 Exabytes

Approach: Some higher order tensors can be constructed (data-) sparsely from lower order quantities.

As for matrices, incomplete SVD:

$$A[x_1, x_2] \approx \sum_{k=1}^{\prime} \sigma_k \Big(u_k[x_1] \otimes v_k[x_2] \Big)$$

Setting - Tensors of order d

Goal: Problems posed on tensor spaces,

 $\mathcal{H} := \bigotimes_{i=1}^{d} V_i, \quad \text{e.g.:} \quad \mathcal{H}_d = \bigotimes_{i=1}^{d} \mathbb{R}^n = \mathbb{R}^{(n^d)}$ <u>Notation:</u> $\mathbf{x} = (x_1, \dots, x_d) \mapsto U = U[x_1, \dots, x_d] \in \mathcal{H}_d$ For simplicity let us consider the Hilbert spaces $\ell_2(\mathcal{I}), \mathcal{I} = \{1, \dots, n\}$ Main problem:

dim $\mathcal{V} = \mathcal{O}(n^d)$ -- Curse of dimensionality!

e.g. $n = 100, d = 10 \rightsquigarrow 100^{10}$ basis functions, \rightsquigarrow coefficient vectors of 800×10^{18} Bytes = 800 Exabytes

<u>Approach</u>: Some higher order tensors can be constructed (data-) sparsely from lower order quantities.

→ Canonical decomposition for order-*d*-tensors:

$$U[x_1,\ldots,x_d]\approx\sum_{k=1}^{\prime}\Big(\otimes_{i=1}^{d}u^i[x_i,k]\Big).$$

Curse of non-linearity - non-convexity

Formally low order scaling:

- operators + right hand side admit low rank tensor representation, e.g.
- there might be a hope the the solution of also low rank
- promising to get rid of the curse of dimensions
 But curse of non-linearity or curse of non-convexity
- the multi-linear parametrization is not harmless
- counter example by Silva & Lim (non-closedness)
- even the computation of the best rank one approximation is NP hard Hilliar & Lim Almost all tensor problems are NP hard
- counter example by Landsberg & Ke Ye for tensor networks with closed loops

Can we circumvent also the problem with nonlinearity and non convexity?

II.

Subspace approximation, hierarchical tensors and tensor networks

(Format \equiv representation closed under linear algebra manipulations)

Subspace approximation d = 2

Let $F : \mathcal{K} \to V$, $y \mapsto F_y \in V$ and \mathcal{K} be compact. (Provided it make sense,) the Kolmogorov *r*-width is

$$d_{r,\infty}(F) := \inf_{\substack{\{U: \dim U \le r, U \subset V\}}} \sup_{y \in \mathcal{K}} \inf_{f_y \in U} ||F_y - f_y||$$

$$d_{r,2}(F) := \inf_{\substack{\{U: \dim U \le r, U \subset V\}}} \left(\int_{\mathcal{K}} \inf_{f_y \in U} ||F_y - f_y||^2 dy \right)^{\frac{1}{2}}$$

Theorem (E. Schmidt (07))

 $V := \mathbb{R}^{n_1}, \mathcal{K} := \{1..., n_2\}, (x, y) \to F_y(x) := \mathbf{U}[x, y] \in \mathbb{R}^{n_1 \times n_2},$ then the best approximation in the library of all subspaces of dimension at most r is provided by the singular value decomposition (SVD, Schmidt decomposition) and

$$d_{r,2}(F) = \inf_{\{\mathbf{V} \in U_1 \otimes U_2 : U_1 \subset \mathbb{R}^{n_1}, U_2 \subset \mathbb{R}^{n_2} \ ; \ dim \ U_1 \le r\}} \|\mathbf{U} - \mathbf{V}\|$$

SVD as sub-space approximation

We are seeking subspaces $U_i \subset V_i$, i = 1, 2, fitting best to a given tensor $X \in V_1 \otimes V_2$, in the sense

$$||X - V^*||^2 := \inf_{\{V \in U_1 \otimes U_2 : \dim U_i \le r\}} ||X - V||^2$$

i.e we are minimizing over subspaces $U_i \in \mathcal{G}(V_i, r)$,

 $\mathcal{G}(V, r) := \{ U \subset V \text{ subspace } : \dim U = r \}$ Grassmannian

$$U_i = ext{ span } \{ \mathbf{b}_{k_i}^i : k_i \leq r \} \subset V_i \ , \ ext{ rank } r \ .$$

$$\Rightarrow \quad C[k_1,k_2] = \langle X, \mathbf{b}_{k_1}^1 \otimes \mathbf{b}_{k_2}^2 \rangle \quad \text{in SVD} \ C = \text{diag}[\sigma_k]$$

$$V^*[x_1, x_2] = \sum_{k_1=1}^r \sum_{k_2=1}^r C[k_1, k_2] \mathbf{b}_{k_1}^1[x_1] \otimes \mathbf{b}_{k_2}^2[x_2]$$

Tucker decomposition - sub-space approximation

We are seeking subspaces $U_i \subset V_i$, i = 1, ..., d fitting best to a given tensor $X \in \bigotimes_{i=1}^d V_i$, in the sense

$$\|X - V^*\|^2 := \inf_{\{V \in U_1 \otimes \dots \otimes U_d : \dim U_i \le r_i\}} \|X - V\|^2$$

i.e we are minimizing over subspaces $U_i \in \mathcal{G}(V_i, r_i)$,

$$\mathcal{G}(V, r) := \{ U \subset V \text{ subspace } : \dim U = r \} \text{ Grasmannian}$$
$$U_i = \text{ span } \{ \mathbf{b}_{k_i}^i : k_i \le r_i \} \subset V_i \text{ , rank tuple } \mathbf{r} = (r_1, \dots, r_d) \text{ .}$$
$$\Rightarrow C[k_1, \dots, k_d] = \langle X, \mathbf{b}_{k_1}^1 \otimes \dots \otimes \mathbf{b}_{k_d}^d \rangle \text{ core tensor}$$

$$V^*[x_1,..,x_d] = \sum_{k_1=1}^{r_1} \dots \sum_{k_d=1}^{r_d} C[k_1,..,k_d] \bigotimes_{i=1}^d \mathbf{b}_{k_i}^i[x_i]$$

Data complexity: $O(ndr + r^d)$ curse of dimensions!

Subspace approximation

Subspace approximation

▷ Tucker format (MCSCF, MCTDH(F)) - robust But complexity $O(r^d + ndr)$

Is there a robust tensor format, but polynomial in d?

Univariate bases
$$x_i \mapsto \left(U_i[k_i, x_i] \right)_{k_i=1}^{r_i} (o \mathsf{Graßmann man.})$$

$$U[x_1, ..., x_d] = \sum_{k_1=1}^{r_1} \dots \sum_{k_d=1}^{r_d} B[k_1, ..., k_d] \bigotimes_{i=1}^d \mathbf{U}^i[k_i, x_i]$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

$$(1,2,3,4,5)$$

Subspace approximation

▷ Tucker format (MCSCF, MCTDH(F)) - robust But complexity $O(r^d + ndr)$

Is there a robust tensor format, but polynomial in d?

 Hierarchical Tucker format (HT; Hackbusch/Kühn, Grasedyck, Meyer et al., Thoss & Wang, Tree-tensor networks)

 $\triangleright \text{ Tensor Train (TT-)format} \simeq \text{Matrix product states (MPS)}$ $U[\mathbf{x}] = \sum_{k_1=1}^{r_1} \dots \sum_{k_{d-1}=1}^{r_{d-1}} \prod_{i=1}^{d} B^i[k_{i-1}, x_i, k_i] = \mathbf{B}_1[x_1] \cdots \mathbf{B}_d[x_d]$

 \triangleright Canonical decomposition

⊳ Subspace approach (Hackbusch/Kühn, 2009)

(Example: $d = 5, \mathbf{U}_i \in \mathbb{R}^{n \times k_i}, \mathbf{B}_t \in \mathbb{R}^{k_t \times k_{t_1} \times k_{t_2}}$)

Canonical decomposition not closed, no embedded manifold!

⊳ Subspace approach (Hackbusch/Kühn, 2009)

(Example:
$$d = 5, \mathbf{U}_i \in \mathbb{R}^{n \times k_i}, \mathbf{B}_t \in \mathbb{R}^{k_t \times k_{t_1} \times k_{t_2}}$$
)

Canonical decomposition not closed, no embedded manifold!

▷ Subspace approach (Hackbusch/Kühn, 2009)

(Example:
$$d = 5, \mathbf{U}_i \in \mathbb{R}^{n \times k_i}, \mathbf{B}_t \in \mathbb{R}^{k_t \times k_{t_1} \times k_{t_2}}$$
)

- Canonical decomposition not closed, no embedded manifold!
- ▷ Subspace approach (Hackbusch/Kühn, 2009)

$$(\mathsf{Example:}\; d=5, \mathbf{U}_i \in \mathbb{R}^{n imes k_i}, \mathbf{B}_t \in \mathbb{R}^{k_t imes k_{t_1} imes k_{t_2}})$$

- Canonical decomposition not closed, no embedded manifold!
- ▷ Subspace approach (Hackbusch/Kühn, 2009)

$$(\mathsf{Example:} \ d = 5, \mathbf{U}_i \in \mathbb{R}^{n \times k_i}, \mathbf{B}_t \in \mathbb{R}^{k_t \times k_{t_1} \times k_{t_2}})$$

Canonical decomposition not closed, no embedded manifold!

▷ Subspace approach (Hackbusch/Kühn, 2009)

Canonical decomposition not closed, no embedded manifold!

▷ Subspace approach (Hackbusch/Kühn, 2009)

Recursive definition by bases representations

$$U^{\alpha} = \operatorname{span}\{\mathbf{b}_{i}^{(\alpha)} : 1 \leq ir_{\alpha}\}$$

$$\mathbf{b}_{\ell}^{(\alpha)} = \sum_{i=1}^{r_{\alpha_{1}}} \sum_{j=1}^{r_{\alpha_{2}}} \mathbf{c}^{\alpha}[i, j\ell] \mathbf{b}_{i}^{(\alpha_{1})} \otimes \mathbf{b}_{j}^{(\alpha_{2})} \qquad (\alpha_{1}, \alpha_{2} \text{ sons of } \alpha \in T_{D}).$$

The tensor is recursively defined by the transfer or component tensors $(\ell, i, j) \mapsto \mathbf{c}^{\alpha}[i, j, \ell]$ in $\mathbb{R}^{k_t \times k_1 \times k_2}$.

$$U[\mathbf{x}] = \tau(\mathbf{c}^{\alpha})[\mathbf{x}] := \sum_{k_{\alpha}: \alpha \in \mathbb{T}} \bigotimes_{\alpha \in \mathbb{T}} \mathbf{c}^{\alpha}[k_{s_{1}(\alpha)}, k_{s_{2}(\alpha)}, k_{\alpha}]$$

(with obvious modifications for $\alpha = D$ or α is a leave.) Parametrization τ is multi-linear Data complexity $O(dr^3 + dnr)$! $(r := \max\{r_\alpha\})$

TT - Tensors - Matrix product representation

Noteable special case of HT:

TT format (Oseledets & Tyrtyshnikov, 2009) ≃matrix product states (MPS) in quantum physics Affleck, Kennedy, Lieb &Tagasaki (87)., Römmer & Ostlund (94), Vidal (03), HT ≃ tree tensor network states in quantum physics (Cirac, Verstraete, Eisert)

TT tensor U can be written as matrix product form

$$U[\mathbf{x}] = U_1 \circ \cdots \cup U_d[\mathbf{x}] = \mathbf{U}_1[x_1] \cdots \mathbf{U}_i[x_i] \cdots \mathbf{U}_d[x_d]$$

$$=\sum_{k_1=1}^{r_1}..\sum_{k_{d-1}=1}^{r_{d-1}}U_1[x_1,k_1]U_2[k_1,x_2,k_2]...U_{d-1}[k_{d-2}x_{d-1},k_{d-1}]U_d[k_{d-1},x_d,k_d]$$

with matrices or component functions

$$\mathbf{U}_{i}[x_{i}] = \left(u_{k_{i-1},k_{i}}[x_{i}]\right) \in \mathbb{R}^{r_{i-1} \times r_{i}} , \ r_{0} = r_{d} := 1 .$$

Redundancy: $U[\mathbf{x}] = \mathbf{U}_1[x_1]\mathbf{G}\mathbf{G}^{-1}\mathbf{U}_2[x_2]\cdots\mathbf{U}_i[x_i]\cdots\mathbf{U}_d[x_d]$.

Tensor networks

contraction and decontraction of a tensor of order 4 rank r decomposition, e.g. SVD

$$A[x_1, x_2, y_1, y_2] = \sum_{k=1}^{r} U[x_1, x_2, k] V[k, y_1, y_2]$$

Tree tensor networks

Tensor trains - Oseledets & Tyrtyshnikov (2009) - simple tree tensor network \vec{T}_{3} $T[x_1,\ldots,x_4] = \sum_{k_1-1}^{r_1} \ldots \sum_{k_n-1}^{r_3} T_1[x_1,k_1]T_2[k_1,x_2,k_2]T_3[k_2,x_3,k_3]T_4[k_3,x_4]$ Hierachical (Tucker) format Hackbusch & Kühn (2008) $B_{\{1,2,3,4,5\}}$ $\mathbf{B}_{\{1,2,3\}} \qquad \mathbf{B}_{\{4,5\}} \\ \mathbf{U}_{13} \qquad \mathbf{U}_{14} \qquad \mathbf{U}_{14$ $B_{\{1,2,3\}}$ ${f B}_{\{1,2\}}$

Operating on tensor networks

this is again a TT tensor but with possibly larger R_i instead of r_i

Complexity of computing $T \mapsto \mathbf{A}T$ linear in d polynomial in n, r, s, m

Remark the cost of an SVD of $U[k_{i-1}, n_i; k_i]$ with rank r is roughly $O(rnR^2)$

Example

Any canonical representation with r terms

$$\sum_{k=1}^r U_1(x_1,k)\cdots U_d(x_d,k)$$

is also TT with ranks $r_i \leq r$, i = 1, ..., d - 1. But conversely canonical r term representation is bounded by $r_1 \times \cdots \times r_{d-1} = \mathcal{O}(r^{d-1})$ Hierarchical ranks could be much smaller than canonical rank. Example $x_i \in [-1, 1]$, i = 1, ..., d, i.e r = d,

$$U(x_1,\ldots,x_d) = \sum_{i=1}^d x_d = x_1 \otimes I \cdots + I \otimes x_2 \otimes I \otimes \cdots$$

but

$$U(x_1,\ldots,x_d)=(1,x_1)\left(\begin{array}{cc}1 & x_2\\ 0 & 1\end{array}\right)\cdots\left(\begin{array}{cc}1 & x_{d-1}\\ 0 & 1\end{array}\right)\left(\begin{array}{c}x_d\\ 1\end{array}\right)$$

here $r_1 = \ldots = r_{d-1} = 2$.

Redundancy: we explain TT as model example

 $U[\mathbf{x}] = \mathbf{U}_1[x_1]\mathbf{G}_1\mathbf{G}_1^{-1}\mathbf{U}_2[x_2]\mathbf{G}_2\mathbf{G}_2^{-1}\cdots\mathbf{U}_i[x_i]\cdots\mathbf{U}_d[x_d] .$

Given a linear parameter space X and groups G_i

 $X := \times_{i=1}^d X_i = \times_{i=1}^d (V_i \otimes \mathbb{R}^{r_{i-1} \times r_i}) \ , \ \mathcal{G}_{\mathbf{r}} := \times_{i=1}^{d-1} \mathcal{G}_i = \times_{i=1}^{d-1} \mathcal{G}\mathcal{L}(\mathbb{R}^{r_i})$

Lie group action

$$G_i U_i := \mathbf{G}_{i-1}^{-1} \mathbf{U}_i(x_i) \mathbf{G}_i \ , \ i = 1, \dots, d, \ \ U_i \in X_i \ .$$

$$\underline{\textit{U}} \sim \underline{\textit{V}} ~~ \Leftrightarrow \underline{\textit{U}} = \underline{\textit{GV}} ~, \underline{\textit{G}} \in \mathcal{G}_{r}$$

defines a manifold

$$\mathcal{M}_{\underline{r}} = \left(\times_{i=1}^{d} X_{i} \right) / \mathcal{G}_{\mathbf{r}}$$

Then tangent space \mathcal{T}_U at U is given by

$$\delta U = \delta U_1 + \ldots + \delta U_d$$

= $\delta \mathbf{U}_1 \circ \mathbf{U}_2 \cdots \mathbf{U}_d + \ldots + \mathbf{U}_1 \cdots \circ \delta \mathbf{U}_d$

where $\delta \mathbf{U}_i \perp \operatorname{span} \mathbf{U}_i$, $\forall i < d$. compare with matrices of rank $\leq r$

Holtz & Rohwedder & S., Uschmajev & Vandereycken, Arnold & Jahnke , Falco &

Fundamental properties of HT (particularly TT)

Grouping indices at $t \in \mathbb{T}$, $(D \in \mathbb{T} \text{ is the root})$

$$t := \{i_1, \ldots, i_l\} \subset D := \{1, \ldots, d\} \ , \mathcal{I}_t = \{x_{i_1}, \ldots, x_{i_l}\}$$

into row or column index of $\mathbf{U}_t = \mathbf{U}_t(U) = (\mathbf{U}_{\mathcal{I}_t, \mathcal{I}_D \setminus \mathcal{I}_t}) \Rightarrow$ matricisation or unfolding of

$$(x_1, \ldots, x_d) \mapsto U[x_1, \ldots, x_d] \simeq \mathbf{U}_{\mathcal{I}_t, \mathcal{I}_D \setminus \mathcal{I}_t} \Rightarrow r_t = \operatorname{rank} \mathbf{U}_t(U)$$

e.g. TT format $r_i = \operatorname{rank} \mathbf{U}_{(x_1, \ldots, x_i), (x_{i+1}, \ldots, x_d)}$.
 There exist a well defined rank tuple $\mathbf{r} := (r_t)_{t \in \mathbb{T}}$,
 e.g. $\mathbf{r} = (r_1, \ldots, r_{d-1})$ for TT
 $\mathcal{M}_{\mathbf{r}} = \{U \in \mathcal{H} : r_t = \operatorname{rank} \mathbf{U}_t, t \in \mathbb{T}\}$ is analytic manifold
 $\mathcal{M}_{\mathbf{r}} \approx \left(\times_{i=1}^d X_i \right) / \mathcal{G}_{\mathbf{r}}$

$$\mathcal{M}_{\leq \mathbf{r}} = \bigcup_{s_i \leq r_i} \mathcal{M}_{\mathbf{s}} = \overline{\mathcal{M}_{\mathbf{r}}} \subset \mathcal{H} \text{ is (weakly) closed}$$

Hackbusch & Falco

 $\mathcal{M}_{\leq \textbf{r}}$ is a an algebraic variety.

TT approximations of Friedman data sets

$$f_2(x_1, x_2, x_3, x_4) = \sqrt{(x_1^2 + (x_2 x_3 - \frac{1}{x_2 x_4})^2)},$$

$$f_3(x_1, x_2, x_3, x_4) = \tan^{-1}\left(\frac{x_2 x_3 - (x_2 x_4)^{-1}}{x_1}\right)$$

on 4 – D grid, n points per dim. $\sim n^4$ tensor, $n \in \{3, \ldots, 50\}$.

ALS (with A = I) (Holtz & Rohwedder & S.)

Summary - reduction to matrix analysis

- d = 2 is unique because tensors of order two can be considered as matrices or linear operators, where we have spectral theory
- removing an edge in a tree decompose it into 2 subtrees low rank matrix factorisation
- the trick is that one can reduce the treatment of tree tensor networks to matrix analysis or to Hilbert-Schmidt operators
- but retaining a low order scaling (it is slightly worse than the canonical format)
- Subspace approximation and Grassmann manifold are the central concepts

We will see that with this approach the curse of non-linearity and non-convexity can be avoided to a large extend, and still with polynomial complexity

III.

Optimization with tensor networks and hierarchical tensors Dirac-Frenkel variational principle

Optimization Problems

Problem (Generic optimization problem (OP)) Given a cost functional $\mathcal{J} : \mathcal{H} \to \mathbb{R}$ and an admissible set $\mathcal{A} \subset \mathcal{H}$

finding

argmin
$$\{\mathcal{J}(W): W \in \mathcal{A}\}$$
 .

Working framework Fixed the model class - find the best or quasi-optimal approximate solution in this model class

Problem (Tensor product optimization problem (TOP))

$$U := \operatorname{argmin} \left\{ \mathcal{J}(W) : W \in \mathcal{M} = \mathcal{A} \cap \mathcal{M}_{\leq \mathbf{r}} \right\}$$
(1)

We have fixed our costs so far. But, in order to achieve a desired accuracy, we must enrich our model class (systematically).

WARNING: Hillar & Lim (2011):Most tensor problems are NP hard if $d \ge 3$.for example: best rank 1 approximation (multiple local minima).

example

Espig, Hackbusch, Rohwedder & Schneider (2010)

Approximation: for given $U \in \mathcal{H}$ minimize

$$\mathcal{J}(W) = \|U - W\|^2 \ , \ W \in \mathcal{M}$$

solving equations: where $A, g : \mathcal{V} \to \mathcal{H}$,

$$AU = B$$
 or $g(U) = 0$

here

In m

$$\mathcal{J}(W) := \|AW - B\|_*^2 \text{ resp. } F(W) := \|g(W)\|_*^2$$
.

or, if $A: \mathcal{V} \to \mathcal{V}'$ is symmetric and $B \in \mathcal{V}'$, $\mathcal{V} \subset \mathcal{H} \subset \mathcal{V}'$,

$$\mathcal{J}(W) \coloneqq rac{1}{2} \langle AW, W
angle - \langle B, W
angle$$

computing the lowest eigenvalue of a symmetric operator $A: \mathcal{V} \to \mathcal{V}'$,

$$\label{eq:argmin} \begin{array}{l} U = \text{argmin} \left\{ \mathcal{J}(W) = \langle AW, W \rangle : \langle W, W \rangle = 1 \right\}. \\ \\ \text{nany cases } \mathcal{A} \cap \mathcal{M}_{\leq \mathbf{r}} = \mathcal{M}_{\leq \mathbf{r}} ~. \end{array}$$

Block coordinate search for TT (HT) tensors - ALS

E.g. Let $\mathcal{J}(U) := \langle \mathcal{A}U - f, \mathcal{A}U - f \rangle$ For $j = 1, \dots, d$ do,

1) fix all component tensors U_{ν} , $\nu \in \{1, ..., d\} \setminus \{j\}$, except index *j*. Then the actual parametrization becomes linear,

$$\mathbf{P}_{i,1,U}: \xrightarrow{\mathbf{r}_2 \bullet \mathbf{r}_3}_{\mathbf{n}_3} \longmapsto \xrightarrow{\mathbf{0}_1 \bullet \mathbf{0}_2}_{\mathbf{n}_1 \bullet \mathbf{n}_2 \bullet \mathbf{n}_3} \xrightarrow{\mathbf{0}_4 \bullet \mathbf{0}_5}_{\mathbf{n}_1 \bullet \mathbf{n}_2 \bullet \mathbf{n}_3 \bullet \mathbf{n}_4 \bullet \mathbf{n}_5}$$

- Optimize U^j[k_{j-1}, x_j, k_j], U₁ · · · U_{i-1} ⊗ U_{i+1} · · · U_d spans a linear subspace ≃ ℝ^{r_{i-1}} ⊗ V_i ⊗ ℝ^{r_i} ⊂ H ⇒ coupled (linear) system of low dimensional PDEs (ODEs)
- 3) and orthogonalize left to define a basis for the next step
- 4) Repeat with \mathbf{U}^{j+1} (tree hierarchy is reordered to optimize alway the root!)

S. Holtz & Rohwedder & S. (2010), Uschmajew & Rohwedder (2011), rigorous analysis is difficult, see Uschmajew & S.

This is the single site DMRG /density matrix renormalization algorithm (S. White (1992))

This provides a model reduction often by a factor $10^3-10^{10}\ \mbox{and}\ \mbox{more!}$

ALS - (single site) Density Matrix Renormalization Group

Dirac Frenkel principle $\mathcal{M}_{\mathbf{r}} \subseteq \mathcal{H}$

 \triangleright for optimisation tasks $\mathcal{J}(U) \rightarrow$ min:

Solve first order condition $\mathcal{J}'(U) = 0$ on tangent space,

$$\langle \mathcal{J}'(U), V \rangle = 0 \quad \forall V \in \mathcal{T}_U.$$

(Dirac-Frenkel variational principle, Absil et al., Arias & Edelman &Lippert)

Dirac Frenkel principle $\mathcal{M}_{\mathbf{r}} \subseteq \mathcal{H}$

$$\triangleright$$
 for differential equations $\dot{X} = f(X), X(0) = X_0$:

Solve projected DE,
$$U = P_U f(U), U(0) = X_0 \in \mathcal{M}$$
,

$$\langle U(t),V
angle = \langle f(U(t)),V
angle \quad orall V \in \mathcal{T}_{U(t)} \; .$$

(Dirac-Frenkel variational principle, Lubich et al., Chemistry: TDMCH ...)

Riemannian gradient iteration

Along the manifold M_r , minimize

$$\mathcal{J}(U) := \frac{1}{2} \langle U, \mathcal{A}U \rangle - \langle U, Y \rangle \ , \ \nabla \mathcal{J}(X) = (\mathcal{A}U - Y)$$

by Riemannian gradient iteration Edelman et al. Absil et al. ...

1)
$$V^{n+1} := U^n - P_{\mathcal{T}_U} \alpha_n (\mathcal{C}^{-1}(\mathcal{A}U^n - Y))$$

 $V^{n+1} = U^n + \xi^n , \mathcal{M}_r + \mathcal{T}_U$
2) $U^{n+1} := \mathcal{R}_n(V^{n+1}) := \mathcal{R}(U^n, \xi^n)$.

daSilva & Herrman, Lubich & Rohwedder & S. & Vandereycken $P_{\mathcal{T}_U}: \mathcal{H} \to \mathcal{T}_U$ orthogonal projection onto tangent space at Uretraction (Absil et al., M. Shub) $R(U, \boldsymbol{\xi}): \mathcal{T}_{\mathcal{M}_r} \to \mathcal{M}_r$,

$$R(U,\boldsymbol{\xi}) = U + \boldsymbol{\xi} + \mathcal{O}(\|\boldsymbol{\xi}\|^2)$$

e.g. R is an approximate exponential map

Riemann gradient iteration global convergence

Theorem (joint work with A. Uschmajew (d = 2)) Let $V^{n+1} := U^n + \lambda_n C^{-1} (Y - AU^n)$, and A is SPD $(n < \infty)$. Then, the series $U^n \in \mathcal{M}_{\leq \mathbf{r}}$ converges to a stationary point $U \in \mathcal{M}_{\leq \mathbf{r}}$.

The same results holds for the Gauß Southwell variant of ALS (1site DMRG). The paper includes the treatment of singular points. *Lojasiewicz (-Kurtyka) inequality*

$$\mathcal{J}(V)^{ heta} - \mathcal{J}(U)^{ heta} \leq \Gamma \| ext{grad} \ \mathcal{J}(V) \| \ , \ 0 < heta \leq rac{1}{2} \ , \| U_V \| \leq \delta \ .$$

LK inequality is valid on *algebraic sets*, *o-minimal structures* etc. [*Bolte et al.*]. It is a powerful mathematical tool for proving convergence.

$$\begin{split} \theta &= \frac{1}{2}: \text{ linear convergence } \|U^n - U\| \lesssim q^n \|U^1 - U^0\|, \ q < 1. \\ 0 &< \theta < \frac{1}{2}: \ \|U^n - U\| \lesssim n^{-\frac{\theta}{2-\theta}} \end{split}$$

There remains the curse of non-convexity, i.d. convergence only to stationary points - one is often trapped by local minima

Convergence estimates

Time-dependent equations:

$$\begin{split} &\frac{\partial}{\partial t}U = \mathcal{A}U + F(U) \ , \ U(0) = U_0 \in \mathcal{M}_r \ , \\ &\mathcal{A} = \sum_{i=1}^d I \otimes \cdots I \otimes A_i \otimes I \cdots , \ A_i = H_0^1(\Omega) \cap H^2(\Omega) \to L_2(\Omega). \\ &\triangleright \ & \text{Quasi-optimal error bounds (Lubich/Rohwedder/S./Vandereycken)} \\ &\mathcal{A} = 0, \ 0 \leq t < T \ \text{suff. small, solution } X(t) \ \text{with approx.} \\ &U(t) \in \mathcal{M}_r, \ X(0) = U(0), \end{split}$$

$$egin{aligned} & \|U(t)-U_{ ext{best}}(t)\| \ \lesssim & \|\Psi(t)-V(t)\|+tL\int_0^t \Big(\inf_{V(s)\in\mathcal{M}_{ ext{r}}}\|\Psi(s)-V(s)\|+arepsilon\Big)ds \end{aligned}$$

Some numerical results - e.g. Parabolic PDEs

joint work with B. Khoromskij, I. Oseledets

$$\frac{\partial}{\partial t}\Psi = H\Psi = \left(-\frac{1}{2}\Delta + V\right)\Psi , \quad \Psi(0) = \Psi_0 ,$$
$$V(x_1, \dots, x_d) = \frac{1}{2}\sum_{k=1}^f x_k^2 + \sum_{k=1}^{d-1} \left(x_k^2 x_{k+1} - \frac{1}{3}x_k^3\right).$$

Timings and error dependence for the modified heat equation (imaginary time) with a Henon-Heiles potential

-

time interval [0, 1],
$$au = 10^{-2}$$
, the manifold has ranks 10 Table: Errror

Table: Time

		au	Error
Dimension	Time (sec)	1.000e-01	3.137e-03
2	2.77	5.000e-02	7.969e-04
4	21.39	2.500e-02	2.000e-04
8	64.82	1.250e-02	5.001e-05
16	142.2	6.250e-03	1.247e-05
32	346.9	3.125e-03	3.081e-06
64	832.31	1.563e-03	7.335e-07

Some numerical results - e.g. time dependent Schrödinger

joint work with B. Khoromskij, I. Oseledets

IV. The hierarchical SVD (HSVD)

HSVD - hierarchical (and high order) SVD

- Vidal (2003), Oseledets (2009), Grasedyck (2009), Kühn (2012)

$$\begin{array}{l} \text{Matricisation or unfolding} \\ (x_1, \ldots, x_d) \mapsto \textbf{A}_{(x_1), (x_2, \ldots, x_d)} = U[\textbf{x}] & \in V_1 \otimes V_2^* \otimes \cdots V_d^* \end{array}$$

The tensor $\mathbf{x} \to U[\mathbf{x}]$

$$U[x_1,\ldots,x_d] = \mathbf{U}_1[x_1]\cdots\mathbf{U}_i[x_i]\cdots\mathbf{U}_d[x_d]$$

$$=\sum_{k_1=1}^{r_1}\dots\sum_{k_{d-1}=1}^{r_{d-1}}U_1[x_1,k_1]U_2[k_1,x_2,k_2]\dots U_{d-1}[k_{d-2}x_{d-1},k_{d-1}]U_d[k_{d-1},x_d]$$

with matrices or component functions

$$\mathbf{U}_{i}[x_{i}] = (U_{i}[k_{i-1}, x_{i}, k_{i}]) \in \mathbb{R}^{r_{i-1} \times r_{i}}, \ r_{0} = r_{d} := 1$$
.

Hard thresholding $H_s(U)$: $s_1 \le r_1$; truncate the above sums after s_1 .

HSVD - hierarchicalSVD

- Vidal (2003), Oseledets (2009), Grasedyck (2009), Kühn (2012)

Matricisation or unfolding $(x_1, \ldots, x_d) \mapsto \mathbf{A}_{(x_1, x_2), (x_3, \ldots, x_d)} = U[\mathbf{x}] \in V_1 \otimes V_2 \otimes V_3^* \otimes \cdots \vee V_d^*$

The tensor $\mathbf{x} \to U[\mathbf{x}]$

$$U[x_1,\ldots,x_d] = \mathbf{U}_1[x_1]\cdots\mathbf{U}_i[x_i]\cdots\mathbf{U}_d[x_d]$$

$$=\sum_{k_1=1}^{r_1}\dots\sum_{k_{d-1}=1}^{r_{d-1}}U_1[x_1,k_1]U_2[k_1,x_2,k_2]\dots U_{d-1}[k_{d-2}x_{d-1},k_{d-1}]U_d[k_{d-1},x_d]$$

with matrices or component functions

$$\mathbf{U}_i[x_i] = (U_i[k_{i-1}, x_i, k_i]) \in \mathbb{R}^{r_{i-1} \times r_i} , \ r_0 = r_d := 1$$
.

HSVD - hierarchical (and high order) SVD

- Vidal (2003), Oseledets (2009), Grasedyck (2009), Kühn (2012)

Matricisation or unfolding $(x_1, \dots, x_d) \mapsto \mathbf{A}_{(x_1, \dots, x_{d-1}), (x_d)} = U[\mathbf{x}] \in V_1 \otimes \dots V_{d-1} \otimes V_d^*$ The tensor $\mathbf{x} \to U[\mathbf{x}]$ $U[x_1, \dots, x_d] = \mathbf{U}_1[x_1] \cdots \mathbf{U}_i[x_i] \cdots \mathbf{U}_d[x_d]$ $= \sum_{k_1=1}^{r_1} \dots \sum_{k_{d-1}=1}^{r_{d-1}} U_1[x_1, k_1] U_2[k_1, x_2, k_2] \dots U_{d-1}[k_{d-2}x_{d-1}, k_{d-1}] U_d[k_{d-1}, x_d]$ Error estimate of truncated HSVD

and quasi-optimal approximation Grasedyck

$$\|U - \mathbf{H}_{\mathbf{s}}(U)\| \leq \sum_{t} \sum_{k_t=1}^{s_t} \sigma_{k_t}^2$$

$$\begin{split} \|U - \mathbf{H}_{\mathbf{s}}(U)\| &\leq \sqrt{d-1} \inf_{V \in \mathcal{M}_{\mathbf{r}}} \|U - V\| \\ \text{Data Complexity: } \mathcal{O}(ndr^2), \ r &= \max\{r_i : i = 1, \dots, d-1\}, \\ \text{Computational costs are } \mathcal{O}(dn^2r^2R^2) \text{ reducing representation ranks } R \text{ to } r \end{split}$$

Iterative Hard Thresholding

Minimize residual

$$J(U) := rac{1}{2} \langle \mathcal{A}U, U
angle - \langle U, f
angle \ \nabla J(U) = (\mathcal{A}U - f)$$

w.r.t. low rank constraints by

1)
$$Y^{n+1} := U^n - \mu \left(\mathcal{C}_n^{-1} (\mathcal{A} U^n - f) \right)$$
 prec. gradient step
2) $U^{n+1} := \mathcal{R}_n(Y^{n+1})$.

 \mathcal{R}_n (nonlinear) projection to model class

 $\mathcal{R}_n : \mathcal{H} \to \mathcal{M}_{< r}$

e.g HSVD σ_{s_t} singular values of $\mathbf{Y}_t = \mathbf{Y}_t(Y^{n+1})$, $\sigma_s := 0$, $s_t > r_t$,

Iterative Hard Thresholding

Minimize residual

$$J(U) := \frac{1}{2} \langle \mathcal{A}U, U \rangle - \langle U, f \rangle \quad \nabla J(U) = (\mathcal{A}U - f)$$

w.r.t. low rank constraints by

1) $Y^{n+1} := U^n - \mu \left(\mathcal{C}_n^{-1} (\mathcal{A} U^n - f) \right)$ prec. gradient step 2) $U^{n+1} := \mathcal{R}_n(Y^{n+1})$.

 \mathcal{R}_n (nonlinear) projection to model class

$$\mathcal{R}_n:\mathcal{H}\to\mathcal{M}_{\leq r}$$

e.g HSVD σ_{s_t} singular values of $\mathbf{Y}_t = \mathbf{Y}_t(Y^{n+1}), \sigma_s := 0, s_t > r_t$, Theorem With good preconditioning, i.e.spectrum $C_n^{-1} \in [\gamma, \Gamma]$ s.t.

$$\mu := \frac{\Gamma + \gamma}{2} \ , \ \kappa := \frac{\Gamma}{\gamma}, \rho := \frac{1 - \kappa}{1 + \kappa} \leq \frac{1}{2\sqrt{d - 1}}$$

one obtains linear convergence ho < 1 to a quasi best approximation

$$\|U^n - U\| \lesssim rac{
ho^n}{1-
ho} \|U_1 - U_0\| + rac{1}{1-
ho} \mathsf{dist}(U,\mathcal{M}_{\mathsf{r}})$$

Iterative Hard Thresholding - adaptive algorithm

Projected Gradient Algorithms: Minimize residual

$$J(U) := \frac{1}{2} \langle \mathcal{A}U, U \rangle - \langle U, f \rangle \ \nabla J(U) = (\mathcal{A}U - \mathbf{y})$$

w.r.t. weakend low rank constraints $(r_t, s_t \to \infty, n \to \infty)$

1) $Y^{n+1} := U^n - \mu_n S_n \left(\mathcal{C}_n^{-1} (\mathcal{A} U^n - \mathbf{y}) \right)$ gradient step 2) $U^{n+1} := \mathcal{R}_n(Y^{n+1})$.

with (nonlinear) projections to model class

$$\mathcal{R}_n: \mathcal{H} \to \mathcal{M}_{\leq \mathbf{r}_n}, \ \mathcal{S}_n: \mathcal{H} \to \mathcal{M}_{\leq \mathbf{s}_n}$$

AMEn Savostyanov & Dolgov, Adaptive Algorithm Dahmen & Bachmayr A posteriori control of the residual by HSVD With appropriate choice of $\mathbf{r}_n, \mathbf{s}_n$ the iterate $U_n \in \mathcal{M}_{\leq \mathbf{r}_n}$ converges

to the exact solution $U \in \mathcal{H}$

$$\|U-U_n\| \lesssim \frac{\rho^n}{1-\rho} \|U_1-U_1\| \to 0 \ , \ n \to \infty$$

no curse of non convexity - but more expensive!

Iterative Soft Thresholding - adaptive algorithm

Ongoing joint work with M. Bachmayr (in preparation) Iteration history and effective ranks, α threshold, for $\Delta u = f$

10

Preconditioning and Sobolev-norms

Remark: \mathcal{H} is always assumed to be Hilbert spaces with cross norm, i.e. $\|U\| = \|U_1\|_{V_1} \cdots \|U\|_{V_d}$ for all rank 1 tensors $U \in \mathcal{H}$. and $\|U\| = \|U\|_{\ell^2}$ for $U \in \mathcal{H}_d$. E.g. $\|U\| = \|U\|_{L^2}$.Let

 $\langle \mathcal{A}U, U \rangle \sim \|U\|_{H^1(\mathcal{I}^d)}$

$$\Delta = \sum_{i=1}^d \Delta_i = \sum_{i=1}^d I \otimes \cdots \Delta_i \otimes \cdots I$$
.

There is no isomorphic operator $\mathcal{C}: L^2(\mathcal{I}^d) \to H^1(\mathcal{I}^d)$ with finite (multi-linear) rank. But on finite dimensional subspaces $\otimes_{i=1}^d V_{i,J}$, $n_i \sim 2^J$. one can use the *d*-dim BPX

$$C_J = \sum_{j=0}^J 2^j P_j \otimes P_j \otimes \cdots \otimes P_j$$

Or exponential sums: e.g for $\Delta^{-1}: H^{-1}(\mathcal{I}^d)L o H^1_0(\mathcal{I}^d)$

$$\Delta^{-1} = \int_0^\infty e^{-t\Delta_1} \otimes \cdots \otimes e^{-t\Delta_d} dt \approx \sum_{k=1}^n \omega_k e^{-t_l \Delta_1} \cdots e^{-t_k \Delta_d}$$

(Beylkin et al., Hackbusch & Braess, Bachmayr & Dahmen) Both are exponential converging. For details, see Bachmayr & Dahmen.

Regularity and a priori error estimate

Tractablility, regularity and a priori error estimates

► The previous problems are only formally polynomially tractable, e.g TT is of data complexity O(dnr²), but for a required accuracy e,

$$dnr^2 = d(\epsilon)n(\epsilon)(r(\epsilon))^2$$

- ► fundamental question: what is the dependence of d(ε), n(ε), r(ε) on ε?
- Counter examples, i.e. intractable systems, are known from physics spin systems
- Theory is still widely incomplete!!!

Convergence rates w.r.t. ranks for HT (TT)

Let
$$\mathbf{A}_t = \mathbf{U}^T \Sigma \mathbf{V}$$
, (SVD) $\Sigma = \text{diag}(\sigma_i)$

 $0 , <math>s := \frac{1}{p} - \frac{1}{2}$, Schatten classes (e.g. Nuclear norm p = 1)

$$\|\mathbf{A}_t\|_{*,p} := \left(\sum_i \sigma^p_{t,i}\right)^{\frac{1}{p}}, t \in \mathbb{T} \setminus \{d\}$$

then the best rank k approximation satisfies (talk Petruchev (Wed))

$$\inf_{\mathsf{rank}} \|\mathbf{A}_t - \mathbf{V}\|_2 \lesssim k^{-s} \|\mathbf{A}_t\|_{*,p}$$

Theorem (Uschmajev & S. (2013)) Assume $\|\mathbf{A}\|_{*,p} := \max_t \|\mathbf{A}_t\|_{*,p} < \infty$, and $|\mathbf{r}| := \max\{r_t\}$, then $\inf_{\substack{rank \ V \leq \mathbf{r}}} \|U - V\|_2 \lesssim C(d)|\mathbf{r}|^{-s}\|\mathbf{A}\|_{*,p} \quad with \ C(d) \lesssim \sqrt{d} ,$

Mixed Sobolev spaces $H^{t,mix} \subset L_{*,p}$, $p = rac{2}{4t+1}$, $\Rightarrow s = 2t$

Estimating the ranks for HT (TT) work in progress

this is ongoing work with A. Uschmajew & D. Kressner , see talk Uschmajew this afternoon

 $\mathcal{A}=\mathcal{A}_1+\cdots-\mathcal{A}_d ,$

 A_i with nearest neighbor interaction

Using ideas from Arad & Kitaev & Landau & Verzirani. M. Hastings - proof for the area law in physics has simplified by them to a purely combinatorial argument

under construction ...

I have not reported about

- tensor completion or tensor recovery (Kressner et al., Hermann & daSilva, Rauhhut & Stojanac & S., Cichocki et al.,),
- adaptive sampling techniques (Oseledets, Khoromskij et al., Grasedyck, & Kluge
)
- vector tensorization e.g. QTT (Oseledets, Khoromskij et al.) related to wavelets.
- tree optimization (Ballani & Grasedyck)
- greedy methods (Ehrlacher & Cances & Lelievre & Nouy

Comparison and summary

	canonical	Tucker	HT
complexity	$\mathcal{O}(ndr)$	$\mathcal{O}(r^d + ndr)$	$O(ndr + dr^3)$
			TT- $O(ndr^2)$
	++	_	+
rank	no	defined	defined
	$r_c \ge$	r _T	$r_T \leq r_{HT} \leq r_c$
(weak) closedness	no	yes	yes
ALS (1site DMRG)	yes - but slow	yes	yes
H (O) SVD	no	yes	yes
embedded manifold	no	yes	yes
Dirac Frenkel	no	yes	yes
algebraic var. $\mathcal{M}_{\leq \mathbf{r}}$	no	yes	yes
recovery	??	yes	yes
quasi best approx.	no	yes	yes
best approx.	no	exist	exist
		but NP hard	but NP hard

Uncertainty quantification - Stochastic Galerkin

- D: L-shaped domain, joint work with M. Eigel (WIAS), M. Pfeffer (TUB)
 - ► *u*_{TT} ALS approximation, fixed grid,
 - ► ||r_{TT}||_{L2} norm of residual of tensor approximation, is computable by HSVD
 - error in $e_{TT} := ||u_h u_{TT}||_{H^1} \lesssim ||r_{TT}||_{L_2}$
 - ndof number of total degrees of freedom (FEM + TT)

▶ ,
$$n_i = 2, 4, 6$$
, $d = 25$, $r = 1, ..., 25$

Uncertainty quantification, with a posteriori error bounds

each step increase rank and refine mesh.

- spatial error of $e_{H^1} := \|\overline{u} \overline{u_h}\|_{H^1} \approx \|\overline{u} \overline{u_{TT}}\|_{H^1}$,
- ▶ spatial error estimator $\eta := ||r_h||_{H^{-1} \otimes L_2}$ (FEM)
- tensor approximation error in

$$e_{TT} := \|u_h - u_{TT}\|_{H^1} \le \|r_{TT}\|_{L_2} \le e_{H^1}$$

 u_{TT} - TT solution, $||r_{TT}||_{L_2}$ is computable by *hierarchical SVD (HSVD)*

 $\sigma_{\ell}^{KL} \sim \ell^{-4}$ (Fast decay) versus $\sigma_{\ell}^{KL} \sim \ell^{-2}$ (Slow decay)

Transfer operator for MD simulation

Transfer operator at time $\tau > 0$

$$T\rho(\mathbf{x},\tau) = \int_{\mathbb{R}^d} P(\mathbf{x},\mathbf{y},\tau) \rho(\mathbf{y},\tau) \pi(\mathbf{y}), \ x_i \in \mathcal{I} = [0,2\pi]$$

 $P(\mathbf{x}, \mathbf{y}, \tau)$ transition probability at time τ , $\pi \sim e^{-\frac{k}{T}V(\mathbf{x})}$, V potential (classical molecular dynamics)

$$T: L^2(\mathcal{I}^d, \pi) \to L^2(\mathcal{I}^d, \pi) \ , \ Tp_i = \lambda_i \pi_i$$

symmetric generalized eigenvalue problem ALS with Kressner & Steinlechner & Uschmajew D = 4, N = 3, $r_{max} = 4$ (first 3 (2) eigenfunctions)

Transfer operator for MD simulation

Ongoing joint work with Feliks Nüsken & Frank Noe (FU Berlin), in preparation,

We look for the first 3(2) eigenfunctions corresponding to the largest N eigenvectors (the largest $\lambda_0 = 1$ is known) ALS variant Kressner & Steinlechner & Uschmajew Dimension d = 18 rotational vibrations, N = 2, $r_{max} = 2!$

We can compute only $\langle \Psi_i, T\Psi_j \rangle$ by Monte-Carlo sampling over all trajectories from MD simulation.

QC-DMRG for HT - tree tensor networks

recent joint paper with Legeza, Murg, Nagy, Verstraete (in preparation) dissoziation of a diatomic molecule *LiF* - first eigenvalues - tree tensor networks (HT)

Dissoziation of a diatomic molecules

Dissoziation of a diatomic molecules N_2 , F_2 , CsH,

- Budapest DMRG program of O Legeza, computations performed in the group of M. Reiher (ETH Zurich)
- Basis ets H: (6s3p2d)! [4s3p2d]; N and F: (11s6p3d2f)! [5s4p3d2f]).
- For the Cs atom, QZP ANO-RCC basis set ((26s22p15d4f2g)! [9s8p7d3f2g])
- 4 positions: equilibrium position, 2 intermediate distances, and far distance (~ diss. limit)
- blue MCSCF(CAS); cyan: CCSD(red) CCSD (all), red DMRG Ê ,
- CC Coupled Cluster method fails except for F₂ due to presence of strong correlation!

Conclusions

- ► tree tensor networks hierarchical tensors provides a stable parametrization with O(d(nr² + r³)) parameters
- curse of dimension -curse of nonlinearity curse of non convexity can be widely circumvented
- tree structure reduces most tasks to matrix analysis
- geometric optimization techniques can be applied
- HSVD allows a posteriori control
- model order reduction by a factor (compression rate) 10³ - 10¹⁰ Khoromskij & Oseledets et al. have model computation with a factor up to 10²⁰ and more!
- formally the complexity is reduced $\mathcal{O}(N) \Rightarrow \mathcal{O}(\log^{\alpha} N)$
- we need either a priory error analysis or a posteriori error control to justify the (somehow astronomical) rates

Historical comparison of related topics

statistics: Hidden Markov Models (60s) ???

condensed matter physics: renormalization group: Wilson (70s) Nobel price Spin systems (AKLT 87)

quantum lattice (spin) systems: DMRG White (91) and Ostlund & Rommer (94)

finitely correlated states: Fannes, Nachtergale & Werner (92)

molecular quantum dynamics: Meyer, (Cederbaum) et al., Thoss & Wang (2003)

quantum computing: Vidal, Cirac, Verstraete, (2003)

hierarchical Tucker format: Hackbusch & Kühn (HT) (2009)

tensor trains: Oseledets & Tyrtyshnikov (TT) (2009)

High dimensional PDEs and signal analysis

spin systems and quantum information theory: Cirac, Verstraete, Schollwöck,

Fokker Planck, chemical master equation: Oseledets & Khoromskij & Dolgov , Kazeev & Schwab,

quantum-chemistry: G. Chan (Princeton), Reiher & Legeza & Verstraete (& S.) , Yanai \ldots

uncertainty quantification: Falco & Nouy, Ehrlacher

machine learning etc.: Laathawer, Kolda, Cichocki et al. ...

Contributions about hierarchical tensors

- HT Hackbusch & Kühn (2009), TT Oseledets & Tyrtyshnikov (2009)
- MPS- Affleck et al. AKLT (Affleck, Kennnedy, Lieb, Takesaki 1987), Fannes, Nachtergale & Werner (92), DMRG- S: White (91),
- HOSVD-Laathawer et.al. (2001), HSVD Vidal (2003), Oseledets (09), Grasedyck (2010), Kühn (2012)
- Riemannian optimization Absil et al. (2008), Lubich, Koch, Conte, Rohwedder, S. Uschmajew, Vandereycken, Kressner, Steinlechner, Arnold, Jahnke, ...
- Oseledets, Khoromskij, Savostyanov, Dolgov, Kazeev, ...
- Grasedyck, Ballani, Bachmayr, Dahmen, Kressner, ...
- Falco, Nouy, Ehrlacher
- Physics: Cirac, Verstraete, Schollwöck, Legeza, G. Chan, Eisert, Hastings, Kitaev, ...

Thank you for your attention.