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Smale’s Problems for the next century, 1998

I Problem 3: Does P=NP?

I ”Hilbert’s Nullstellensatz”: Does a system of m equations in n
complex (or real) unknowns have a solution?

Hilbert’s Nullstellensatz is NP-Complete (over any field). So
P=NP if and only Hilbert’s Nullstellensatz is in P. The model of
computations is a BSS-machine (see
Blum,L.,F.Cucker,M.Shub,S.Smale Complexity and Real
Computation) Branching is on = or 6= for unordered fields as C
and on ≥ or < for ordered fields as R Complexity theory measures
the cost of finding a solution for a problem instance in terms of the
input size. The class of problems P are those problems for which
there is an algorithm which solves the problem in polynomial cost.
The input size is the dimension and the cost the number of
arithmetic operations and comparisons.
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NP-Complete and NP-Hard Problems

We need a big list of NP-Complete or Hard problems. Here are a
few trivial ones to get started. I will restrict myself to C for the
moment.

I Hilbert’s Nullstellensatz for n quadratic equations in n
complex unknowns is NP-Complete.

I Let f : Cn −→ Cn be a polynomial mapping. Does f have a
fixed point? or a point of period k for some fixed integer k?
Both are NP-Complete problems.

I Is H0 of an algebraic set 0. This is NP-Hard. So computing
homology groups of algebraic sets should be difficult.

These are trivial. Here is one more interesting.
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Homogeneous Hilbert’s Nullstellengsatz

Problem: ”Homogeneous Hilbert’s Nullstellensatz” (HHN) Does a
system of m homogeneous equations in n complex unknowns have
a non-zero solution?

Question: Is HHN NP-Complete over C?
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Some references

I Basu,S., A Complexity Theory of Constructible Functions and
Sheaves, Found.Comp. Math. OnLine

I Basu,S. and T.Zell, Polynomial Hierarchy, Betti Numbers and
a Real Analogue of Toda’s Theorem, Found.Comp.Math. 10
(2010),429-454

I Basu,S., A Complex Analogue of Toda’s Theorem,
Found.Comp.Math. 12 (2012) 327-362.

I Cucker,F., A Theory of Complexity, Condition and Roundoff
(Arxiv)

I Heintz,J., B. Kuijpers and A.R.Paredes,Software Engineering
and Complexity in Effective Algebraic Geometry, Journal of
Complexity, 29 (2013), 92-138.

I Mulmuley,K., The GCT Program Towards the P vs NP
Problem, Communications of the ACM 55 (2012), 98-107.
In the next section on Smale’s Problem 4. There will be more
connections with the P,NP problem.
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The Tau Conjecture

Problem 4: Integer zeros of a polynomial of one variable.

A straight line program to compute a polynomial f εZ[t] of one
variable with integer coefficients is the sequence of elements
u0, u1, u2, .....uk ∈ Z[t] such that u0 = 1, u1 = t, ul = uj ∗ uk for all
l ≥ 2 where j , k < l , uk = f and ∗ is a ring operation in Z[t] i.e.
+,−, x . Let τ(f ) be the minimum k for all straight line programs
to compute f .

For f ∈ Z[t] let N(f ) be the number of distinct integer zeros of f .

Tau Conjecture. There is a constant c > 0 such that
N(f ) ≤ τ(f )c for any f ∈ Z[t].
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The Tau Conjecture II

If the Tau conjecture is true then P 6= NP over C (Shub-Smale)
and the Permanent is hard to compute (Koiran-Buergisser).

Buergisser,P, On Defining Integers and Proving Arithmetic Circuit
Lower Bounds, comput.complex. 18(2009),81-103.
Other versions of the Tau conjecture appear in
Koiran,P.,N.Portier, S. Tavenas, S. Thomasse, A τ -Conjecture for
Newton Polygons, Found. Comp. Math. Online
Koiran,P., Shallow circuits with high powered inputs, in Proc.
Second Symposium on Innovations in Computer Science (ICS2011)
2011
with similar results.
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Tau Conjecture III

If we allow arbitrary constant in the definiton of τ
u−l , ...., u0, u1, u2, .....uk ∈ Z[t] where u−l , ...., u0 are integer
constants then we define L(f ) as the minimum k of such a
computation of f . Clearly L(f ) ≤ τ(f ). Comparable theorems
concerning P vs NP or the permanent are not known nor
conjectured about L(f ). L(f ) was considered by Strassen and its
relation to the number of zeros was raised by him.
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Growth of N(f) with L(f)

A potential method to produce exponentially many zeros:
Let Fi ∈ Z[t] have degree di , i = 1, ..., n then evaluating the
composition is O(

∑
di ) while the number of complex roots is

∏
di

If we can make a large fraction of
∏

di integer roots by judicious
selection of Fi we would get exponential growth of zeros with
respect to L(f ). Are there such judicious selections?

For all di = 2 can one find n quadratics with 2n integer zeros of
the composite? Yes, n = 1, 2, 3, 4 (Richard Bumby, Carlos
DiFiore). 5 and bigger?
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Finding Hay in the Haystack

Let f = (f1, . . . , fn) be a system of homogeneous complex
polynomial equations with unknowns X0, . . . ,Xn and degrees
d1, . . . , dn. Denote by H(d) the vector space of such systems by
IP(H(d)) the associated projective space.

Note N = dimH(d) =
∑(

n + di
n

)
While the number of solutions is given by the Bezóut number
D =

∏
di .

For all di = 2, N ∼ n3 while D = 2n. Let

µ(f , ζ) = ‖f ‖
∥∥∥(Df (ζ) |ζ⊥

)−1
Diag

(
d

1/2
i ‖ζ‖

di−1
)∥∥∥

and
µ(f ) = maxζ|f (ζ)=0µ(f , ζ)
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Finding Hay in the Haystack II

On IP(H(d)) we put the probabilty structure given by the
Fubini-Study Riemannian structure defined by the Bombieri-Weyl
(L2) Hermitian structure on H(d) ,

∑
< fi , gi >=

∑∫
fi ḡi

(normalized so that ‖zdi0 ‖ = 1.)

Problem Find an algorithm and a polynomial P which on input
(d1, . . . , dn) outputs f ∈ H(d) with µ(f ) ≤ P(n,N,D)

With Probability greater than 1/2 in IP(H(d)),

µ(f ) ≤ 2n2N1/2D1/4.
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Distribution of points on the two sphere

Even for n = 1 and d > 2, µ(f ) < d with probability 1/2. But we
don’t know an algorithm and a polynomial P which outputs f of
degree d and µ(f ) < P(d).

We can express the problem in terms of the roots of the
polynomial which are points on the Riemann sphere S2, which is
the sphere in CxR with center (0, 1

2 ) and radius 1
2 .
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Distribution of points on the two sphere

Let ζi = (wi , si ) ∈ S2, i = 1, . . . , d , g(x , y) =
∏

(six − wiy) and
ĝ : S2 → R, ĝ(z) =

∏
i=1,...,d |z − ζi |.

In terms of the roots ζi µ(g , ζi ) = (d(d+1))1/2

Π1/2

||ĝ ||L2∏
j 6=i |ζi−ζj |

.

So our problem becomes to find

(∗)(ζ1, . . . , ζd) such that maxi
||ĝ ||L2∏
j 6=i |ζi−ζj |

< P(d)

Smale’s 7th problem is to find points satisfying a more classical
inequality.
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Elliptic Fekete Points

Let V : (S2)d → R
V (ζ1, . . . , ζd) =

∏
1≤i<j≤d ||ζi − ζj ||

and Vd the max value of V .
Smale’s 7th Problem is:

Find an algorithm and a constant c > 0 which on input d outputs
(ζ1, . . . , ζd) such that Vd

V (ζ1,...,ζd ) < dc .

There has been a lot of progress recently on Smale’s problem, see

references below. We know that maxi
||ĝ ||L2∏

j 6=i ||ζi−ζj ||
≤ π1/2 Vd

V (ζ1,...,ζd )

so a solution to Smale’s problem is a solution to (∗) but (∗) may
be easier.
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References Smale’s 7th

I Shub,S. and S.Smale, Complexity of Bezout’s Theorem III:
Condition Number and Packing, Journal of Complexity Vol. 9
(1993), pp. 4-14.

I Beltrán,C. The State of the Art in Smale’s 7th Problem, in
F.Cucker et al, Foundations of Computational mathematics,
Budapest 2011, LMS Lecture Notes 403, Cambridge, 1-15

I Borodachov,S.V.,Hardin,D.P. and E.B. Saff, Low Complexity
Methods for Discretizing Manifolds Via Riesz Energy
Minimization, Foundations of Computational Math. 14 (2014)
1173-1208.

I Brauchart, J.S., Hardin,D.P. and E.B. Saff, The next-order
term for optimal Riesz and logarithmic energy asymptotics on
the sphere, preprint
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More references

I Bétermin,L., Renormalized Energy and Asmptotic Expansion
of Optimal Logarithmic Energy on the Sphere, preprint

I Serfaty,S., Ginzburg-Landau Vortices, Coulomb Gases, and
Renormalized Energies,Journal of Statistical Physics, 154
(2013), 660-680.

I Erwin Schrodinger International Institute for Mathematical
Physics, Programme ”Minimal Energy Point Sets, Lattices,
and Designs”, October-November, 2014
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Smale’s 17th Problem

Can a zero of n complex polynomial equations in n unknowns be
found approximately, on the average, in polynomial time with a
uniform algorithm?

Here we will take an approximate zero to mean one for which
Newton’s method is quadratically converging, so:
d(Nk

f (z), ζ) ≤ ( 1
2 )2k−1d(z , ζ)

We let H(d) and IP(H(d)) be as above and IP(Cn+1) be the
projective space of Cn+1.
And average means with respect to the probabilty induced on the
space of systems, IP(H(d)),by the Fubini-Study Riemannian
structure as above.
Recent Progress by Beltrán-Pardo and Buergisser-Cucker.
Homotopy methods play a big role.
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Elimination theory

N is our input size. When d >> n symbolic techniques can be
used to reduce the problem to solving a univariate polynomial of
degree D in polynomial time. (Elimination theory, Groebner bases,
Resultants- Renegar, Grigoriev-Vorobjov, Heintz-Pardo-Roy,
Canny,...) Then the univariate polynomial may be solved in
polynomial time by many methods (Renegar, Pan, Neff, Manning,
Hubbard-Schleicher-Sutherland, Shub-Smale,Kim...) But Caveat!!!
Moreover, when n >> d as in quadratic system the Bezout
number is exponential in N so these techniques seem to be
intrinsically exponential in the general case.
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Homotopy method I

I Let f1 be a system you want to solve, and let f0 be a system
you can solve.

I Construct a path of systems ft joining f0 and f1.

I Choose some solution ζ0 of f0. Let z0 = ζ0 or a close enough
approximation to it.

I Choose a small step size t0. Apply Newton’s projective
method

z1 = Nft0
(z0) = z0 − (Dft0 |z⊥0 )−1f (z0)

I Continue the process until you are close to f1. Generate
z2, z3, ....

I Output the last value zj .
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Homotopy method II
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Homotopy method III
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Homotopy method IV
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V as Double Fibration
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Solution variety and condition number

Let
V = {(f , ζ) ∈ IP(H(d))× IP(Cn+1) : f (ζ) = 0}

the solution variety. and let

W = {(f , ζ) ∈ V : Df (ζ) is of maximal rank },

and

µ(f , ζ) = ‖f ‖
∥∥∥(Df (ζ) |ζ⊥

)−1
Diag

(
d

1/2
i ‖ζ‖

di−1
)∥∥∥

be the condition number, defined for (f , ζ) ∈W .
An important point is that for the Hermitian structure on the
solution variety V and W the unitary group acts by isometries and
preseves µ, (f , ζ)→ (f ◦ U−1,U(ζ)).
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Condition number and number of homotopy steps

[S.]
The number of Newton homotopy steps necessary to follow a
homotopy path Γt = (ft , ζt), 0 ≤ t ≤ 1 is bounded by

Constant d3/2

∫ 1

0
µ(ft , ζt)‖(ḟt , ζ̇t)‖ dt,

that is the length of the path Γt in the condition metric.
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Choice of (f0, ζ0)

Now we take the simplest paths possible. Let (f0, ζ0) be a known
pair of system-solution. For any system f1, define the path

ft = (1− t)f0 + tf1.

Then, define the complexity measure:

A(f0, ζ0) = Ef system

[∫ 1

0
µ(ft , ζt)‖(ḟt , ζ̇t)‖ dt

]
.

We say that (f0, ζ0) is a good starting pair for the homotopy if
A(f0, ζ0) is “small”.
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Choice of (f0, ζ0)

[Beltrán & Pardo]
A randomly chosen initial pair is indeed a good starting point.
That is,

Eg a system

 1

D
∑

ζ:g(ζ)=0

A(g , ζ)

 ≤ 16πnN,

where N is the number of monomials of a generic system and
D = d1 · · · dn is the number of solutions of a generic system.

Moreover, the variance is also small
[Beltrán & S.] the variance of the number of steps is at most
O(d3n2N2 ln(

∏
(di ))).
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The Theorem of Buergisser-Cucker

Let ε > 0.

I There is a deterministic starting point for the homotopy
algorithm with the following property. Let D = max(di ). If

D ≤ n
1

1+ε then the average cost of the algorithm is polynomial
in the input size N.

I If D ≥ n1+ε, the algorithm is polynomial cost (here it is based
on Renegar’s u-resultant based algorithm).

I The average cost is always ≤ NO(log(logN)).
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Three ways to choose the initial pair (f0, ζ0):

1) Choose (f0, ζ0) at random, which guarantees average number of
Newton steps O(nN).
2) Use the ”most simple” ie best conditioned (system,root) pair:

g =


d

1
2

1 X
d1−1
0 X1 = 0,

· · ·

d
1
2
n X

dn−1
0 Xn = 0,

e0 = (1, 0, . . . , 0)

Conjectured by [S. & Smale] to satisfy A(g , e0) ≤“Small”.
3)

h =


X d1

0 − X d1
1 = 0,

· · ·
X dn

0 − X dn
n = 0,

e0 = (1, 1, . . . , 1)

Experiments (Beltrán and Leykin, 2012) suggest 2) is best.
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Smooth version of µ

Consider the smooth counterpart of the condition number µ:

µF (f , ζ) = ‖f ‖
∥∥∥(Df (ζ) |ζ⊥

)−1
Diag

(
d

1/2
i ‖ζ‖

di−1
)∥∥∥

F
,

so that we take the Frobenius norm instead of the operator norm.
Note that µF is a smooth function defined on W .
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Smooth version of µ

[Beltrán,S.]
µF is a non-degenerate equivariant Morse function with a unique
orbit of non-degenerate minima. This orbit is the orbit of the pair
(g , e0) under the action of the unitary group
(U, (f , ζ)) 7→ (f ◦ U∗,Uζ).

Optimistic Conjecture!

A(f0, ζ0) = Ef system

[∫ 1

0
µ(ft , ζt)‖(ḟt , ζ̇t)‖ dt

]
.

is a non-degenerate equivariant Morse function with a unique orbit
of non-degenerate minima. This orbit is the orbit of the pair (g , e0)
under the action of the unitary group (U, (f , ζ)) 7→ (f ◦ U∗,Uζ).
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Back to the condition metric.

Recall our theorem:
The number of Newton homotopy steps necessary to follow a
homotopy path Γt = (ft , ζt), 0 ≤ t ≤ 1 is bounded by

Constant d3/2

∫ 1

0
µ(ft , ζt)‖(ḟt , ζ̇t)‖ dt,

that is the length of the path Γt in the condition metric.

Understanding geodesics in the condition metric give us some idea
of ”good” homotopies (not necessarily straight lines!) and also (at
least as far as this estimate is concerned) lower bounds for how
well homotopy methods may work!
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Back to the condition metric.

[Beltrán & S.] The distance in the condition metric from the
(g , e0) to any system (f , ζ) is bounded by O(nd3/2 logµ(f , ζ)).
The average number of steps following geodesics for the condition
number, is at most

O(nd3/2 log(N)).

Thus, much faster average than the linear homotopy O(nN).
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Convexity aspects of µ

What are the geodesics like? µ is comparable to the distance in V
to the degenerate (system,root) pairs. Is the condition number
maximized at the endpoints? (Quasi-convexity) or even:
Consider W with the condition metric. Let γ be a geodesic. Is the
function

t 7→ logµ(γ(t))

convex? We shall say “µ is a self-convex function in W ”.

[Beltrán &Dedieu &Malajovich &S.]
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Complexity Implications
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Convexity aspects of µ

I Let GLm,n be linear space of m by n matrices with the
condition metric (here, the condition number of a matrix A is
‖A†‖). Then, the answer to the question above is Yes: ‖A†‖
is self-convex in GLm,n.

I The same is true for the condition number κ(A) = ‖A‖F‖A†‖
in the projective set of matrices IP(GLm,n) .

I The same is true in the solution variety for the linear case, i.e.
W = {(A, ζ) ∈ IP(GLn,n+1)× IP(Cn+1)} .

I Is it true for the non-linear case?
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The Eigenpair Problem

Let Mn,n be the nxn complex matrices, with Hermitian structure
< A,B >= trace(B∗A). The eigenpair problem is: On input
A ∈Mn,n output approximations to one or all eigenvalue,
eigenvector pairs (λ, v) where λ ∈ C and v ∈ IP(Cn). Actually,
because of the bilinear nature of the problem it is convenient to be
redundant and on input A to output ((A, λ), v) so we may consider
A ∈ IP(Mn,n) and ((A, λ), v) ∈ IP(Mn,nxC)xIP(Cn).
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The Bilinear Eigenpair Problem
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Polynomial Time for the Eigenpair Problem

Theorem:(Armentano, Beltrán, Buergisser, Cucker,S.) Homotopy
algorithms provide stable, average polynomial time randomized and
deterministic algorithms to find one or all approximate eigenvalues
for nxn complex matrices.

For more on the eigenpair problem,attend Diego’s talks and
Felipe’s talk!
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Thank you for your attention
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