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Gimme points

Pollen particles: stellaria holostea and iris decora. Rob Kesseler
and Madeline Harley
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Little history and incomplete list of researchers involved.
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Little history and incomplete list of researchers involved.

• Thomson’s problem. J. J. Thomson, 1904. Energy
minimization and more: see references in next slices.

• Tammes problem (1930). Habicht, Schutte, van der Waerden,
Danzer, Fejes Toth, Cohn, Jiao, Kumar, Torquato, Brauchart,
Dick, Saff, Sloan, Wang, Womersley,

• Quadrature formulas (spherical N–designs), spherical
harmonics and interpolation. Hesse, Sloan, Womersley,
Aistleitner, Brauchart,Dick, Bondarenko, Radchenko,
Viazovska

• Maximal distance sums. Alexander, Beck, Stolarski.

• Number Theory and Arakelov Theory. Elkies, Baker.

• One component plasma Coulomb gases at zero temperature.
Sandiers, Serfaty.

• ESI Programme http://www.math.tugraz.at/ESI2014/
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Points satisfying some “extremal” property
A frequent choice

Look for N points x1, . . . , xN in the sphere S such that the
logarithmic energy (aka logarithmic potential)

E(x1, . . . , xN) = log
∏
i<j

‖xi − xj‖−1 = −
∑
i<j

log ‖xi − xj‖

is minimized.

A set of N points in S minimizing E (i.e. maximizing the product
of their mutual distances) is called a set of Elliptic Fekete Points.
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Elliptic Fekete points
Early works by Fekete, Szegö, Whyte, Hille, Tsuji, etc.

For X = (x1, . . . , xN) ∈ SN where xi ∈ S, 1 ≤ i ≤ N, ellipic Fekete
points minimize the logaritmic energy

E(X ) = E(x1, . . . , xN) = log
∏
i<j

‖xi − xj‖−1 = −
∑
i<j

log ‖xi − xj‖

Equivalently, they maximize the product of their mutual distances.

Let
mN = min{E(X ) : X ∈ SN}.

Smale’s 7th problem: can one find X ∈ SN such that

E(X )−mN ≤ c log N?

“Can one find” means...can one describe a polynomial time
algorithm (BSS model)?
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The minimal value of the energy.

Theorem (Elkies,Wagner,Rakhmanov–Saff–Zhou, Dubickas,
Brauchart, Sandiers–Serfaty, Bétermin)

For the radius 1/2 sphere, we have:

mN =
N2

4
− N ln(N)

4
+ CNN + o(N),

where
−0.4593423... ≤ lim

N→∞
CN ≤ −0.40217...

Conjecture [Brauchart, Hardin, Saff; Serfaty et al]:

limN 7→∞ CN = 2 log 2 + 1
2 log 1

3 + 3 log
√
π

Γ(1/3) = −0.40217...
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Approximation to 1000 elliptic Fekete points by Bendito,
Carmona, Encinas, Gesto, Gómez, Mouriño, Sánchez
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We do know some things
Separation distance for the sphere of radius 1/2

• Theorem (Toth, Habicht– van der Waerden)

For the Tammes problem (maximize separation distance)

dsep(XTammes) ≈ 1.9046...√
N

.

• Theorem (Rakhmanov–Saff–Zhou,Dubickas,Dragnev)

For the elliptic Fekete points,

1√
N − 1

≤ dsep(XFekete) ≤ 1.9046...√
N

.
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We do know some things
Baricenter [Bergersen-Boal-Palffy Muhoray], [Dragnev-Legg-Townsend]. True for any
critical point of E . [Brauchart] for the discrepancy, [Leopardi] for the comparison to

s–energy.

Let x1, . . . , xN be a set of elliptic Fekete points.

• The baricenter of x1, . . . , xN is the center of the sphere.

• For each i ,∑
j 6=i

xi − xj
‖xi − xj‖2

= 2(N − 1)xi ,
∑
j 6=i

‖xi − xj‖2 =
N

2
.

• Spherical cap discrepancy cN−1/4 (see later).

• Asymptotically optimal s–energy in relative error (see later).
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Facility location problems
A modern classical subject on Optimization

Thanks to Giuseppe Buttazzo for a comment in the ADORT’10
meeting (Barcelona)
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Facility location problems
A modern classical subject on Optimization

Choose N points in the 2 dimensional sphere S in such a way that
the average temperature in S is the greatest possible.

Here, the temperature u = u(x , t) is assumed to satisfy the
standard diffusion equation ut = ∆u− λ, where λ is a cooling rate,
constant in S, and the heat sources are assumed to be “infinite”.
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The logarithm function in the sphere
The graphic corresponds to the function x 7→ − log ‖x − (0, 0, 1)‖

Recall that S is the Riemann sphere, that is the sphere of radius
1/2 centered at (0, 0, 1/2). Let

Fq : S \ {q} → R
p 7→ log ‖p − q‖−1
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The logarithm function in the sphere
Harmonic properties of the logaritmic energy

Recall that S is the Riemann sphere, that is the sphere of radius
1/2 centered at (0, 0, 1/2). Let

Fq : S \ {q} → R
p 7→ log ‖p − q‖−1

The (Riemannian) Laplacian of this function is constant:

∆Fq(p) = 2 ∀ p ∈ S \ {q}.
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Facility location problems
A modern classical subject on Optimization

Choose N points in the 2 dimensional sphere S in such a way that
the average temperature in S is the greatest possible.

Here, the temperature u = u(x , t) is assumed to satisfy the
standard diffusion equation ut = ∆u− λ, where λ is a cooling rate,
constant in S, and the heat sources are assumed to be “infinite”.

After some assumptions on the rate of growth near the sources, the
following stationary solution is found:

u(x) = u(x , t) =
λ

2N

N∑
i=1

log ‖xi − x‖−1 + u0.
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A new integral formula for the logarithmic energy [B. 2014]

Let X = (x1, . . . , xN) be the center of the balls. Then, E(X ) is up
to a constant the integral in the grey part of a certain function.
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A new integral formula for the logarithmic energy [B. 2014]

Let X = (x1, . . . , xN) ∈ SN .
Assume that caps of radius arcsin

√
δ/N do not overlap.

Let
B0 = the grey area

.
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A new integral formula for the logarithmic energy [B. 2014]

Let X = (x1, . . . , xN) ∈ SN .
Assume that caps of radius arcsin

√
δ/N do not overlap.

Let
B0 = the grey area

Then

E(X ) = Constant(N, δ)− 1− δ
2δ

N−
∫
x∈B0

N∑
i=1

log ‖x − xi‖−1 dx . (1)
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An immediate consequence
Elliptic Fekete Points vs. Heat sources

Corollary

The following problems are equivalent:

• The N–tuple X = (x1, . . . , xN) is a set of elliptic Fekete
points.

• For any δ ∈ (0, 1) and r = arcsin
√
δ/N such that

dR(xi , xj) ≥ 2r for i 6= j , heat sources located at the points
x1, . . . , xN maximize the average temperature out of a safety
radius r around the sources.

Moreover... the total average temperature in S is independent of
the location of the sources.
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Spherical cap discrepancy
Definition and theorems by Beck, Aistleitner, Brauchart, Dick, Gotz

DC (X ) = sup
x∈S,r∈[0,π/2]

∣∣∣∣](i : xi ∈ B(x , r))

N
− Area(B(x , r))

π

∣∣∣∣ .

cN−3/4 ≤ min
X

DC (X ) ≤ CN−3/4 log N.

If X is a set of Elliptic Fekete points,

DC (X ) ≤ O(N−1/4).
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Spherical cap discrepancy
This follows from our main theorem

Theorem
Let X ∈ SN , N ≥ 2 and let δ ∈ (0, 1) be such that
dR(xi , xj) ≥ 2 arcsin

√
δ/N for i 6= j . Then,

E(X ) ≤ mN +
N2

4
DC (X ) log

N

2δ
+

N log(8πδ)

4
.

Wagner proved a similar result for the case that we have the unit
circle instead of S.

This is somehow a reciprocal of the known result that Elliptic
Fekete points have small discrepancy [Brauchart] and are
well–separated [Rakhmanov–Saff–Zhou, Dubickas, Dragnev].

21/38 C. Beltrán Heating the sphere



Spherical cap discrepancy
This follows from our main theorem

Theorem
Let X ∈ SN , N ≥ 2 and let δ ∈ (0, 1) be such that
dR(xi , xj) ≥ 2 arcsin

√
δ/N for i 6= j . Then,

E(X ) ≤ mN +
N2

4
DC (X ) log

N

2δ
+

N log(8πδ)

4
.

Wagner proved a similar result for the case that we have the unit
circle instead of S.

This is somehow a reciprocal of the known result that Elliptic
Fekete points have small discrepancy [Brauchart] and are
well–separated [Rakhmanov–Saff–Zhou, Dubickas, Dragnev].

21/38 C. Beltrán Heating the sphere



Spherical cap discrepancy
This follows from our main theorem

Theorem
Let X ∈ SN , N ≥ 2 and let δ ∈ (0, 1) be such that
dR(xi , xj) ≥ 2 arcsin

√
δ/N for i 6= j . Then,

E(X ) ≤ mN +
N2

4
DC (X ) log

N

2δ
+

N log(8πδ)

4
.

Wagner proved a similar result for the case that we have the unit
circle instead of S.

This is somehow a reciprocal of the known result that Elliptic
Fekete points have small discrepancy [Brauchart] and are
well–separated [Rakhmanov–Saff–Zhou, Dubickas, Dragnev].

21/38 C. Beltrán Heating the sphere



Spherical cap discrepancy
This follows from our main theorem

Theorem
Let X ∈ SN , N ≥ 2 and let δ ∈ (0, 1) be such that
dR(xi , xj) ≥ 2 arcsin

√
δ/N for i 6= j . Then,

E(X ) ≤ mN +
N2

4
DC (X ) log

N

2δ
+

N log(8πδ)

4
.

So... Small discrepancy plus not too small separation implies small
energy.
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Relation to other sets of points
A consequence of the last theorem

Corollary

Fix s ∈ (0, 2). If XN minimizes the Riesz s–energy∑
1≤i<j≤N

‖(XN)i − (XN)j‖−s

for N ≥ 2, then limN→∞ E(XN)/mN = 1.

This is a reciprocal to a result by P. Leopardi.
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Relation to other sets of points
Schiffmann; Sloan, Womersley; Marzo, Ortega–Cerdá, Weymar

Optimal interpolation points: xj which maximise detφi (xj) where
φi form an o.n. basis of spherical harmonics of degree L.

Corollary

For every L ≥ 2, let XπL = (x1, . . . , xπL) be a set of (non–elliptic)
Fekete points. Then

lim
L→∞

E(XL)

mπL

= 1.

I do not want to cheat you: this is not so good.

24/38 C. Beltrán Heating the sphere



Relation to other sets of points
Schiffmann; Sloan, Womersley; Marzo, Ortega–Cerdá, Weymar
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The critical set of E
Laplacian and Maximum Principle

Recall: for X = (x1, . . . , xN) ∈ SN , where SN has the product
Riemannian structure,

E(x1, . . . , xN) = log
∏
i<j

‖xi − xj‖−1 = −
∑
i<j

log ‖xi − xj‖.

Then:

• ∆E = 2N(N − 1).
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The critical set of E
Laplacian and Maximum Principle

Recall: for X = (x1, . . . , xN) ∈ SN , where SN has the product
Riemannian structure,

E(x1, . . . , xN) = log
∏
i<j

‖xi − xj‖−1 = −
∑
i<j

log ‖xi − xj‖.

Then:

• ∆E = 2N(N − 1).

• Thus, there exist no local maxima of E .
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The critical set of E
A concept from game theory

A “Nash equilibrium” is a tuple X = (x1, . . . , xN) such that E(X )
cannot be improved if only one of the xi is moved.

This is also called a componentwise minimum.
A corollary from our main result:

Corollary

Let X be a Nash equilibrium of E . Then,

E(X ) <
N2

4
. (optimal to the first order term)
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Elliptic Fekete points and the condition number of
polynomials

Shub and Smale’s condition number

Let f : C→ C be a polynomial of degree N and let ζ ∈ C be a
zero of f . Let

µ(f , ζ) =
N1/2(1 + ‖ζ‖2)

N−2
2

|f ′(ζ)|
‖f ‖B−W .

This is the condition number, which actually controls the
sensibility of the zero ζ to perturbations of f . Let

µ(f ) = max(µ(f , ζ) : f (ζ) = 0).

Theorem (Shub–Smale)

For every polynomial f , we have µ(f ) ≥ 1. For random f , with
probability at least 1/2 we have µ(f ) ≤ N.
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials.

So, for many polynomials, µ(f ) ≤ N.

Can we find one f with that
property? not easy! even changing N to Nc , c a constant.

Theorem (Shub–Smale)

Let x1, . . . , xN ∈ S satisfy E(X ) ≤ mN + c log N.
Let z1, . . . , zN ∈ C be the preimage of x1, . . . , xN under the
stereographic projection. Let f be the polynomial which has zeros
z1, . . . , zN . Then,

µ(f ) ≤ Nc+1.

Experiments suggest, for c = 0, µ(f ) ≈
√

N/2.
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials

What about a reciprocal?

Theorem (B. 2014)

Let x1, . . . , xN ∈ S.
Let z1, . . . , zN ∈ C be the preimage of x1, . . . , xN under the
stereographic projection. Let f be the polynomial which has zeros
z1, . . . , zN . Assume that µ(f , zi ) ≤ c for all i .

Then,

E(X ) ≤ N2 log N

2
+

N2

2
log c + O(N2) = O(mN log N).

Experiments suggest, for c = 1, E(X ) ≈ mN = N2/4 + · · · .
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Elliptic Fekete points and the condition number of
polynomials

Best conditioned polynomials

What about a reciprocal?

Theorem (B. 2014)
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Elliptic Fekete points and the condition number of
eigenvectors?

Condition numbers for eigenvalue and eigenvector computations

For the eigenvalue it is a classical. For the eigenvector at least
since Stewart (1971). Recently revisited by Armentano. Assume
Av = λv .

κλ(A, λ, v) =
1

Angle between right and left eigenvector

κv (A, λ, v) = ‖A‖F‖B−1‖,

where B = πv⊥(A− λI ) |v⊥

[Armentano 2013]: Geometric context. κλ ≤ constant × κv .
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Elliptic Fekete points and the condition number of
eigenvectors?

Computing eigenvectors is polynomial time on the average

Theorem (Armentano, B., Burgisser, Cucker, Shub)

A homotopy algorithm can compute approximations a la Smale of
eigenvalues–eigenvectors on Gaussian matrices in average
polynomial time O(n7+2c), where c is an upper bound on the
condition number of the eigenvectors of the initial matrix of the
homotopy.

Currently: c=1 (next slice) hence average time O(n9). Can we do
better?

Previous result for Hermitian matrices by Armentano and Cucker
with randomized algorithm.
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Elliptic Fekete points and the condition number of
eigenvectors?

A diagonal matrix with optimal condition number

Fix n. Take a radius r enough to
put n hexagons of fixed side 1 in
the circle of radius r . The
diagonal matrix with entries
given by the complex coordinates
of the blue dots is at most:

n√
6
.

Which is the actual best?
Packing problem! Concrete
relation to elliptic Fekete points?
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Elliptic Fekete points and the condition number of
eigenvectors?

A diagonal matrix with optimal condition number

Does this collection of points
solve the original problem by
Shub and Smale (find a sequence
of well–conditioned polynomials)?

Certainly not: experimentally,
the condition number grows as
poly(n)en where n is the number
of points.
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Ongoing work

• Understanding the relation between the logarithmic energy
and the condition number of polynomials and eigenvectors.

• Investigating the structure of the critical set of E .

• Juan González Criado del Rey: investigating the topological
properties of the set of minimizers of Tammes problem, which
might give some insight in the dynamical formation of those
pollen grains.
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Japanese art and spherical points
Thank you for your attention.
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