Heating the sphere

Carlos Beltrán

Universidad de Cantabria, Santander

Foundations of Computational Mathematics 2014, Montevideo

1/38 C. Beltrán Heating the sphere

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ◆ ●

Gimme points

Pollen particles: *stellaria holostea* and *iris decora*. Rob Kesseler and Madeline Harley

・ロト ・回ト ・モト ・モト

Little history and incomplete list of researchers involved.



3/38 C. Beltrán Heating the sphere

Little history and incomplete list of researchers involved.

- Thomson's problem. J. J. Thomson, 1904. Energy minimization and more: see references in next slices.
- Tammes problem (1930). Habicht, Schutte, van der Waerden, Danzer, Fejes Toth, Cohn, Jiao, Kumar, Torquato, Brauchart, Dick, Saff, Sloan, Wang, Womersley,
- Quadrature formulas (spherical *N*-designs), spherical harmonics and interpolation. Hesse, Sloan, Womersley, Aistleitner, Brauchart,Dick, Bondarenko, Radchenko, Viazovska
- Maximal distance sums. Alexander, Beck, Stolarski.
- Number Theory and Arakelov Theory. Elkies, Baker.
- One component plasma Coulomb gases at zero temperature. Sandiers, Serfaty.

Points satisfying some "extremal" property A frequent choice

Look for N points x_1, \ldots, x_N in the sphere S such that the logarithmic energy (aka logarithmic potential)

$$\mathcal{E}(x_1, \dots, x_N) = \log \prod_{i < j} \|x_i - x_j\|^{-1} = -\sum_{i < j} \log \|x_i - x_j\|$$

is minimized.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Points satisfying some "extremal" property A frequent choice

Look for N points x_1, \ldots, x_N in the sphere S such that the logarithmic energy (aka logarithmic potential)

$$\mathcal{E}(x_1, \dots, x_N) = \log \prod_{i < j} \|x_i - x_j\|^{-1} = -\sum_{i < j} \log \|x_i - x_j\|$$

is minimized.

A set of N points in S minimizing \mathcal{E} (i.e. maximizing the product of their mutual distances) is called a set of **Elliptic Fekete Points**.

(ロ) (同) (目) (日) (日) (の)

Early works by Fekete, Szegö, Whyte, Hille, Tsuji, etc.

For $X = (x_1, \ldots, x_N) \in \mathbb{S}^N$ where $x_i \in \mathbb{S}$, $1 \le i \le N$, ellipic Fekete points minimize the logarithmic energy

$$\mathcal{E}(X) = \mathcal{E}(x_1, ..., x_N) = \log \prod_{i < j} ||x_i - x_j||^{-1} = -\sum_{i < j} \log ||x_i - x_j||$$

Equivalently, they maximize the product of their mutual distances.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Early works by Fekete, Szegö, Whyte, Hille, Tsuji, etc.

For $X = (x_1, \ldots, x_N) \in \mathbb{S}^N$ where $x_i \in \mathbb{S}$, $1 \le i \le N$, ellipic Fekete points minimize the logarithmic energy

$$\mathcal{E}(X) = \mathcal{E}(x_1, ..., x_N) = \log \prod_{i < j} ||x_i - x_j||^{-1} = -\sum_{i < j} \log ||x_i - x_j||$$

Equivalently, they maximize the product of their mutual distances. Let

$$m_N = \min\{\mathcal{E}(X) : X \in \mathbb{S}^N\}.$$

Smale's 7th problem: can one find $X \in \mathbb{S}^N$ such that

$$\mathcal{E}(X) - m_N \leq c \log N?$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Early works by Fekete, Szegö, Whyte, Hille, Tsuji, etc.

For $X = (x_1, \ldots, x_N) \in \mathbb{S}^N$ where $x_i \in \mathbb{S}$, $1 \le i \le N$, ellipic Fekete points minimize the logarithmic energy

$$\mathcal{E}(X) = \mathcal{E}(x_1, \dots, x_N) = \log \prod_{i < j} ||x_i - x_j||^{-1} = -\sum_{i < j} \log ||x_i - x_j||$$

Equivalently, they maximize the product of their mutual distances. Let

$$m_N = \min\{\mathcal{E}(X) : X \in \mathbb{S}^N\}.$$

Smale's 7th problem: can one find $X \in \mathbb{S}^N$ such that

$$\mathcal{E}(X) - m_N \leq c \log N?$$

"Can one find" means...

Early works by Fekete, Szegö, Whyte, Hille, Tsuji, etc.

For $X = (x_1, ..., x_N) \in \mathbb{S}^N$ where $x_i \in \mathbb{S}$, $1 \le i \le N$, ellipic Fekete points minimize the logarithmic energy

$$\mathcal{E}(X) = \mathcal{E}(x_1, \dots, x_N) = \log \prod_{i < j} ||x_i - x_j||^{-1} = -\sum_{i < j} \log ||x_i - x_j||$$

Equivalently, they maximize the product of their mutual distances. Let

$$m_N = \min\{\mathcal{E}(X) : X \in \mathbb{S}^N\}.$$

Smale's 7th problem: can one find $X \in \mathbb{S}^N$ such that

$$\mathcal{E}(X) - m_N \leq c \log N?$$

"Can one find" means...can one describe a polynomial time algorithm (BSS model)?

The minimal value of the energy.

Theorem (Elkies, Wagner, Rakhmanov–Saff–Zhou, Dubickas, Brauchart, Sandiers–Serfaty, Bétermin)

For the radius 1/2 sphere, we have:

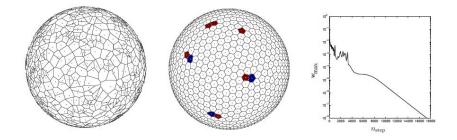
$$m_N = \frac{N^2}{4} - \frac{N \ln(N)}{4} + C_N N + o(N),$$

where

$$-0.4593423... \le \lim_{N \to \infty} C_N \le -0.40217...$$

Conjecture [Brauchart, Hardin, Saff; Serfaty et al]: $\lim_{N \mapsto \infty} C_N = 2 \log 2 + \frac{1}{2} \log \frac{1}{3} + 3 \log \frac{\sqrt{\pi}}{\Gamma(1/3)} = -0.40217...$

Approximation to 1000 elliptic Fekete points by Bendito, Carmona, Encinas, Gesto, Gómez, Mouriño, Sánchez



We do know some things Separation distance for the sphere of radius 1/2

• Theorem (Toth, Habicht- van der Waerden) For the Tammes problem (maximize separation distance)

$$d_{
m sep}(X_{Tammes}) pprox rac{1.9046...}{\sqrt{N}}.$$

• Theorem (Rakhmanov–Saff–Zhou,Dubickas,Dragnev) For the elliptic Fekete points,

$$rac{1}{\sqrt{N-1}} \leq d_{ ext{sep}}(X_{ extsf{Fekete}}) \leq rac{1.9046...}{\sqrt{N}}.$$

・ロト ・四ト ・ヨト ・ヨト - ヨ

We do know some things

Baricenter [Bergersen-Boal-Palffy Muhoray], [Dragnev-Legg-Townsend]. True for any critical point of \mathcal{E} . [Brauchart] for the discrepancy, [Leopardi] for the comparison to *s*-energy.

Let x_1, \ldots, x_N be a set of elliptic Fekete points.

- The baricenter of x_1, \ldots, x_N is the center of the sphere.
- For each *i*,

$$\sum_{j\neq i}\frac{x_i-x_j}{\|x_i-x_j\|^2}=2(N-1)x_i, \quad \sum_{j\neq i}\|x_i-x_j\|^2=\frac{N}{2}.$$

- Spherical cap discrepancy $cN^{-1/4}$ (see later).
- Asymptotically optimal s-energy in relative error (see later).

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

We do know some things

Baricenter [Bergersen-Boal-Palffy Muhoray], [Dragnev-Legg-Townsend]. True for any critical point of \mathcal{E} . [Brauchart] for the discrepancy, [Leopardi] for the comparison to *s*-energy.

Let x_1, \ldots, x_N be a set of elliptic Fekete points.

- The baricenter of x_1, \ldots, x_N is the center of the sphere.
- For each *i*,

$$\sum_{j\neq i}\frac{x_i-x_j}{\|x_i-x_j\|^2}=2(N-1)x_i, \quad \sum_{j\neq i}\|x_i-x_j\|^2=\frac{N}{2}.$$

- Spherical cap discrepancy $cN^{-1/4}$ (see later).
- Asymptotically optimal s-energy in relative error (see later).

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Facility location problems A modern classical subject on Optimization

Thanks to Giuseppe Buttazzo for a comment in the ADORT'10 meeting (Barcelona)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Facility location problems A modern classical subject on Optimization

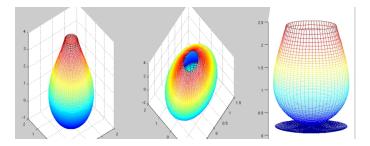
Choose *N* points in the 2 dimensional sphere S in such a way that the average temperature in S is the greatest possible.

Here, the temperature u = u(x, t) is assumed to satisfy the standard diffusion equation $u_t = \Delta u - \lambda$, where λ is a cooling rate, constant in \mathbb{S} , and the heat sources are assumed to be "infinite".

The logarithm function in the sphere The graphic corresponds to the function $x \mapsto -\log ||x - (0, 0, 1)||$

Recall that S is the Riemann sphere, that is the sphere of radius 1/2 centered at (0,0,1/2). Let

$$egin{array}{rcl} {\mathcal F}_q: & {\mathbb S}\setminus\{q\} & o & {\mathbb R} \ & p & \mapsto & \log \|p-q\|^{-1} \end{array}$$



▲ □ ► ▲ □ ►

The logarithm function in the sphere

Harmonic properties of the logaritmic energy

Recall that S is the Riemann sphere, that is the sphere of radius 1/2 centered at (0,0,1/2). Let

$$egin{array}{rcl} {F_q}: & \mathbb{S}\setminus\{q\} & o & \mathbb{R} \ & p & \mapsto & \log \|p-q\|^{-1} \end{array}$$

The (Riemannian) Laplacian of this function is constant:

$$\Delta F_q(p) = 2 \quad \forall p \in \mathbb{S} \setminus \{q\}.$$

Facility location problems A modern classical subject on Optimization

Choose *N* points in the 2 dimensional sphere S in such a way that the average temperature in S is the greatest possible.

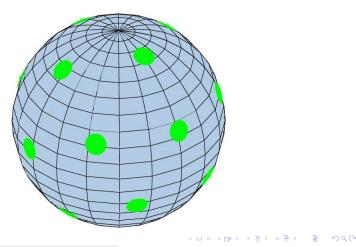
Here, the temperature u = u(x, t) is assumed to satisfy the standard diffusion equation $u_t = \Delta u - \lambda$, where λ is a cooling rate, constant in \mathbb{S} , and the heat sources are assumed to be "infinite".

After some assumptions on the rate of growth near the sources, the following stationary solution is found:

$$u(x) = u(x, t) = \frac{\lambda}{2N} \sum_{i=1}^{N} \log ||x_i - x||^{-1} + u_0.$$

A new integral formula for the logarithmic energy [B. 2014]

Let $X = (x_1, ..., x_N)$ be the center of the balls. Then, $\mathcal{E}(X)$ is up to a constant the integral in the grey part of a certain function.



A new integral formula for the logarithmic energy [B. 2014]

Let $X = (x_1, ..., x_N) \in \mathbb{S}^N$. Assume that caps of radius $\operatorname{arcsin} \sqrt{\delta/N}$ do not overlap. Let

.

 $B_0 =$ the grey area

(ロ) (回) (三) (三) (三) (三) (○)

A new integral formula for the logarithmic energy [B. 2014]

Let $X = (x_1, ..., x_N) \in \mathbb{S}^N$. Assume that caps of radius $\operatorname{arcsin} \sqrt{\delta/N}$ do not overlap. Let

 $B_0 =$ the grey area

Then

$$\mathcal{E}(X) = Constant(N, \delta) - \frac{1-\delta}{2\delta} N \oint_{x \in B_0} \sum_{i=1}^N \log \|x - x_i\|^{-1} dx.$$
(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

An immediate consequence

Elliptic Fekete Points vs. Heat sources

Corollary

The following problems are equivalent:

- The N-tuple X = (x₁,...,x_N) is a set of elliptic Fekete points.
- For any $\delta \in (0, 1)$ and $r = \arcsin \sqrt{\delta/N}$ such that $d_R(x_i, x_j) \ge 2r$ for $i \ne j$, heat sources located at the points x_1, \ldots, x_N maximize the average temperature out of a safety radius r around the sources.

An immediate consequence

Elliptic Fekete Points vs. Heat sources

Corollary

The following problems are equivalent:

- The N-tuple X = (x₁,...,x_N) is a set of elliptic Fekete points.
- For any $\delta \in (0, 1)$ and $r = \arcsin \sqrt{\delta/N}$ such that $d_R(x_i, x_j) \ge 2r$ for $i \ne j$, heat sources located at the points x_1, \ldots, x_N maximize the average temperature out of a safety radius r around the sources.

Moreover... the *total average temperature in* \mathbb{S} is independent of the location of the sources.

Definition and theorems by Beck, Aistleitner, Brauchart, Dick, Gotz

$$D_C(X) = \sup_{x \in \mathbb{S}, r \in [0, \pi/2]} \left| \frac{\sharp(i \colon x_i \in B(x, r))}{N} - \frac{Area(B(x, r))}{\pi} \right|.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Definition and theorems by Beck, Aistleitner, Brauchart, Dick, Gotz

$$D_C(X) = \sup_{x \in \mathbb{S}, r \in [0, \pi/2]} \left| \frac{\sharp(i \colon x_i \in B(x, r))}{N} - \frac{Area(B(x, r))}{\pi} \right|.$$

$$cN^{-3/4} \leq \min_{X} D_{C}(X) \leq CN^{-3/4} \log N.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition and theorems by Beck, Aistleitner, Brauchart, Dick, Gotz

$$D_C(X) = \sup_{x \in \mathbb{S}, r \in [0, \pi/2]} \left| \frac{\sharp(i \colon x_i \in B(x, r))}{N} - \frac{Area(B(x, r))}{\pi} \right|.$$

$$cN^{-3/4} \leq \min_{X} D_{C}(X) \leq CN^{-3/4} \log N.$$

If X is a set of Elliptic Fekete points,

$$D_C(X) \leq O(N^{-1/4}).$$

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

This follows from our main theorem

Theorem

Let $X \in \mathbb{S}^N$, $N \ge 2$ and let $\delta \in (0, 1)$ be such that $d_R(x_i, x_j) \ge 2 \arcsin \sqrt{\delta/N}$ for $i \ne j$. Then,

$$\mathcal{E}(X) \leq m_N + rac{N^2}{4} D_C(X) \log rac{N}{2\delta} + rac{N \log(8\pi\delta)}{4}$$

21/38 C. Beltrán Heating the sphere

This follows from our main theorem

Theorem Let $X \in \mathbb{S}^N$, $N \ge 2$ and let $\delta \in (0,1)$ be such that $d_R(x_i, x_j) \ge 2 \arcsin \sqrt{\delta/N}$ for $i \ne j$. Then, $\mathcal{E}(X) \le m_N + \frac{N^2}{4} D_C(X) \log \frac{N}{2\delta} + \frac{N \log(8\pi\delta)}{4}$.

Wagner proved a similar result for the case that we have the unit circle instead of $\mathbb{S}.$

This follows from our main theorem

Theorem
Let
$$X \in \mathbb{S}^N$$
, $N \ge 2$ and let $\delta \in (0, 1)$ be such that
 $d_R(x_i, x_j) \ge 2 \arcsin \sqrt{\delta/N}$ for $i \ne j$. Then,
 $\mathcal{E}(X) \le m_N + \frac{N^2}{4} D_C(X) \log \frac{N}{2\delta} + \frac{N \log(8\pi\delta)}{4}$

Wagner proved a similar result for the case that we have the unit circle instead of $\mathbb{S}.$

This is somehow a reciprocal of the known result that Elliptic Fekete points have small discrepancy [Brauchart] and are well–separated [Rakhmanov–Saff–Zhou, Dubickas, Dragnev].

This follows from our main theorem

Theorem

Let $X \in \mathbb{S}^N$, $N \ge 2$ and let $\delta \in (0, 1)$ be such that $d_R(x_i, x_j) \ge 2 \arcsin \sqrt{\delta/N}$ for $i \ne j$. Then,

$$\mathcal{E}(X) \leq m_N + rac{N^2}{4} D_C(X) \log rac{N}{2\delta} + rac{N \log(8\pi\delta)}{4}.$$

So... Small discrepancy plus not too small separation implies small energy.

Relation to other sets of points

A consequence of the last theorem

Corollary

Fix $s \in (0,2)$. If X_N minimizes the Riesz s-energy

$$\sum_{1 \le i < j \le N} \|(X_N)_i - (X_N)_j\|^{-s}$$

for $N \ge 2$, then $\lim_{N\to\infty} \mathcal{E}(X_N)/m_N = 1$. This is a reciprocal to a result by P. Leopardi.

Relation to other sets of points

Schiffmann; Sloan, Womersley; Marzo, Ortega-Cerdá, Weymar

Optimal interpolation points: x_j which maximise det $\phi_i(x_j)$ where ϕ_i form an o.n. basis of spherical harmonics of degree *L*.

Corollary

For every $L \ge 2$, let $X_{\pi_L} = (x_1, ..., x_{\pi_L})$ be a set of (non–elliptic) Fekete points. Then

$$\lim_{L\to\infty}\frac{\mathcal{E}(X_L)}{m_{\pi_L}}=1.$$

Relation to other sets of points

Schiffmann; Sloan, Womersley; Marzo, Ortega-Cerdá, Weymar

Optimal interpolation points: x_j which maximise det $\phi_i(x_j)$ where ϕ_i form an o.n. basis of spherical harmonics of degree *L*.

Corollary

For every $L \ge 2$, let $X_{\pi_L} = (x_1, ..., x_{\pi_L})$ be a set of (non-elliptic) Fekete points. Then

$$\lim_{L\to\infty}\frac{\mathcal{E}(X_L)}{m_{\pi_L}}=1.$$

I do not want to cheat you: this is **not** so good.

The critical set of $\ensuremath{\mathcal{E}}$

Laplacian and Maximum Principle

Recall: for $X = (x_1, ..., x_N) \in \mathbb{S}^N$, where \mathbb{S}^N has the product Riemannian structure,

$$\mathcal{E}(x_1,...,x_N) = \log \prod_{i < j} ||x_i - x_j||^{-1} = -\sum_{i < j} \log ||x_i - x_j||.$$

Then:

• $\Delta \mathcal{E} = 2N(N-1)$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ◆ ●

The critical set of $\ensuremath{\mathcal{E}}$

Laplacian and Maximum Principle

Recall: for $X = (x_1, ..., x_N) \in \mathbb{S}^N$, where \mathbb{S}^N has the product Riemannian structure,

$$\mathcal{E}(x_1,...,x_N) = \log \prod_{i < j} ||x_i - x_j||^{-1} = -\sum_{i < j} \log ||x_i - x_j||.$$

Then:

- $\Delta \mathcal{E} = 2N(N-1).$
- Thus, there exist no local maxima of \mathcal{E} .

The critical set of ${\ensuremath{\mathcal E}}$

A concept from game theory

A "Nash equilibrium" is a tuple $X = (x_1, \ldots, x_N)$ such that $\mathcal{E}(X)$ cannot be improved if only one of the x_i is moved.

◆□> ◆□> ◆臣> ◆臣> 善臣 のへで

The critical set of $\ensuremath{\mathcal{E}}$

A concept from game theory

A "Nash equilibrium" is a tuple $X = (x_1, \ldots, x_N)$ such that $\mathcal{E}(X)$ cannot be improved if only one of the x_i is moved. This is also called a componentwise minimum.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

The critical set of $\ensuremath{\mathcal{E}}$

A concept from game theory

A "Nash equilibrium" is a tuple $X = (x_1, \ldots, x_N)$ such that $\mathcal{E}(X)$ cannot be improved if only one of the x_i is moved. This is also called a componentwise minimum. A corollary from our main result:

Corollary

Let X be a Nash equilibrium of \mathcal{E} . Then,

$$\mathcal{E}(X) < rac{N^2}{4}.$$
 (optimal to the first order term)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Shub and Smale's condition number

Let $f : \mathbb{C} \to \mathbb{C}$ be a polynomial of degree N and let $\zeta \in \mathbb{C}$ be a zero of f. Let

$$\mu(f,\zeta) = \frac{N^{1/2}(1+\|\zeta\|^2)^{\frac{N-2}{2}}}{|f'(\zeta)|} \|f\|_{B-W}.$$

28/38 C. Beltrán Heating the sphere

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Shub and Smale's condition number

Let $f : \mathbb{C} \to \mathbb{C}$ be a polynomial of degree N and let $\zeta \in \mathbb{C}$ be a zero of f. Let

$$\mu(f,\zeta) = \frac{N^{1/2}(1+\|\zeta\|^2)^{\frac{N-2}{2}}}{|f'(\zeta)|} \|f\|_{B-W}.$$

This is the *condition number*, which actually controls the sensibility of the zero ζ to perturbations of f. Let

$$\mu(f) = \max(\mu(f,\zeta) : f(\zeta) = 0).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Shub and Smale's condition number

Let $f : \mathbb{C} \to \mathbb{C}$ be a polynomial of degree N and let $\zeta \in \mathbb{C}$ be a zero of f. Let

$$\mu(f,\zeta) = \frac{N^{1/2}(1+\|\zeta\|^2)^{\frac{N-2}{2}}}{|f'(\zeta)|} \|f\|_{B-W}.$$

This is the *condition number*, which actually controls the sensibility of the zero ζ to perturbations of f. Let

$$\mu(f) = \max(\mu(f,\zeta) : f(\zeta) = 0).$$

Theorem (Shub–Smale)

For every polynomial f, we have $\mu(f) \ge 1$. For random f, with probability at least 1/2 we have $\mu(f) \le N$.

Best conditioned polynomials.

So, for many polynomials, $\mu(f) \leq N$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Best conditioned polynomials.

So, for many polynomials, $\mu(f) \leq N$. Can we find one f with that property? **not easy!** even changing N to N^c , c a constant.

Theorem (Shub–Smale)

Let $x_1, \ldots, x_N \in \mathbb{S}$ satisfy $\mathcal{E}(X) \leq m_N + c \log N$. Let $z_1, \ldots, z_N \in \mathbb{C}$ be the preimage of x_1, \ldots, x_N under the stereographic projection. Let f be the polynomial which has zeros z_1, \ldots, z_N .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Best conditioned polynomials.

So, for many polynomials, $\mu(f) \leq N$. Can we find one f with that property? **not easy!** even changing N to N^c , c a constant.

Theorem (Shub–Smale)

Let $x_1, \ldots, x_N \in \mathbb{S}$ satisfy $\mathcal{E}(X) \leq m_N + c \log N$. Let $z_1, \ldots, z_N \in \mathbb{C}$ be the preimage of x_1, \ldots, x_N under the stereographic projection. Let f be the polynomial which has zeros z_1, \ldots, z_N . Then,

$$\mu(f) \leq N^{c+1}$$

(ロ) (同) (目) (日) (日) (の)

Best conditioned polynomials.

So, for many polynomials, $\mu(f) \leq N$. Can we find one f with that property? **not easy!** even changing N to N^c , c a constant.

Theorem (Shub–Smale)

Let $x_1, \ldots, x_N \in \mathbb{S}$ satisfy $\mathcal{E}(X) \leq m_N + c \log N$. Let $z_1, \ldots, z_N \in \mathbb{C}$ be the preimage of x_1, \ldots, x_N under the stereographic projection. Let f be the polynomial which has zeros z_1, \ldots, z_N . Then,

$$\mu(f) \leq N^{c+1}$$

Experiments suggest, for c = 0, $\mu(f) \approx \sqrt{N}/2$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Best conditioned polynomials

What about a reciprocal?

Theorem (B. 2014)

Let $x_1, \ldots, x_N \in \mathbb{S}$. Let $z_1, \ldots, z_N \in \mathbb{C}$ be the preimage of x_1, \ldots, x_N under the stereographic projection. Let f be the polynomial which has zeros z_1, \ldots, z_N . Assume that $\mu(f, z_i) \leq c$ for all i.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Best conditioned polynomials

What about a reciprocal?

Theorem (B. 2014)

Let $x_1, \ldots, x_N \in \mathbb{S}$. Let $z_1, \ldots, z_N \in \mathbb{C}$ be the preimage of x_1, \ldots, x_N under the stereographic projection. Let f be the polynomial which has zeros z_1, \ldots, z_N . Assume that $\mu(f, z_i) \leq c$ for all i. Then,

$$\mathcal{E}(X) \leq \frac{N^2 \log N}{2} + \frac{N^2}{2} \log c + O(N^2) = O(m_N \log N).$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Best conditioned polynomials

What about a reciprocal?

Theorem (B. 2014)

Let $x_1, \ldots, x_N \in \mathbb{S}$. Let $z_1, \ldots, z_N \in \mathbb{C}$ be the preimage of x_1, \ldots, x_N under the stereographic projection. Let f be the polynomial which has zeros z_1, \ldots, z_N . Assume that $\mu(f, z_i) \leq c$ for all i. Then,

$$\mathcal{E}(X) \leq \frac{N^2 \log N}{2} + \frac{N^2}{2} \log c + O(N^2) = O(m_N \log N).$$

Experiments suggest, for c=1, $\mathcal{E}(X)pprox m_N=N^2/4+\cdots$.

Condition numbers for eigenvalue and eigenvector computations

For the eigenvalue it is a classical. For the eigenvector at least since Stewart (1971). Recently revisited by Armentano. Assume $Av = \lambda v$.

$$\begin{split} \kappa_{\lambda}(A,\lambda,v) &= \frac{1}{\text{Angle between right and left eigenvector}}\\ \kappa_{v}(A,\lambda,v) &= \|A\|_{F} \|B^{-1}\|, \end{split}$$
 where $B = \pi_{v^{\perp}}(A - \lambda I) \mid_{v^{\perp}}$

[Armentano 2013]: Geometric context. $\kappa_{\lambda} \leq constant \times \kappa_{\nu}$.

Computing eigenvectors is polynomial time on the average

Theorem (Armentano, B., Burgisser, Cucker, Shub)

A homotopy algorithm can compute approximations a la Smale of eigenvalues-eigenvectors on Gaussian matrices in average polynomial time $O(n^{7+2c})$, where c is an upper bound on the condition number of the eigenvectors of the initial matrix of the homotopy.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Computing eigenvectors is polynomial time on the average

Theorem (Armentano, B., Burgisser, Cucker, Shub)

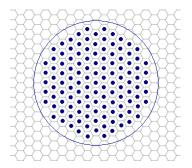
A homotopy algorithm can compute approximations a la Smale of eigenvalues-eigenvectors on Gaussian matrices in average polynomial time $O(n^{7+2c})$, where c is an upper bound on the condition number of the eigenvectors of the initial matrix of the homotopy.

Currently: c=1 (next slice) hence average time $O(n^9)$. Can we do better?

Previous result for Hermitian matrices by Armentano and Cucker with randomized algorithm.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

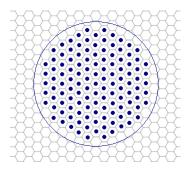
A diagonal matrix with optimal condition number



Fix n. Take a radius r enough to put n hexagons of fixed side 1 in the circle of radius r. The diagonal matrix with entries given by the complex coordinates of the blue dots is at most:

(ロ) (同) (E) (E) (E)

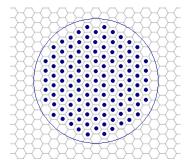
A diagonal matrix with optimal condition number



Fix n. Take a radius r enough to put n hexagons of fixed side 1 in the circle of radius r. The diagonal matrix with entries given by the complex coordinates of the blue dots is at most:

Which is the **actual best?** Packing problem! Concrete relation to elliptic Fekete points?

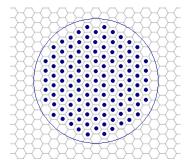
A diagonal matrix with optimal condition number



Does this collection of points solve the original problem by Shub and Smale (find a sequence of well-conditioned polynomials)?

・ロン ・四マ ・ヨマ ・ヨマ

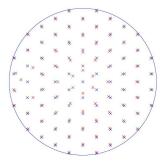
A diagonal matrix with optimal condition number



Does this collection of points solve the original problem by Shub and Smale (find a sequence of well–conditioned polynomials)? **Certainly not:** experimentally, the condition number grows as $poly(n)e^n$ where *n* is the number of points.

(ロ) (同) (E) (E) (E)

A diagonal matrix with optimal condition number



Does this collection of points solve the original problem by Shub and Smale (find a sequence of well–conditioned polynomials)? **Certainly not:** experimentally, the condition number grows as $poly(n)e^n$ where *n* is the number of points.

(4月) (1日) (日)

Ongoing work

- Understanding the relation between the logarithmic energy and the condition number of polynomials and eigenvectors.
- Investigating the structure of the critical set of \mathcal{E} .
- Juan González Criado del Rey: investigating the topological properties of the set of minimizers of Tammes problem, which might give some insight in the dynamical formation of those pollen grains.

Japanese art and spherical points

Thank you for your attention.

