Multipliers and contraints for spline-based
methods

Annalisa Buffa

IMATI "E. Magenes' - Pavia
Consiglio Nazionale delle Ricerche

Co-authors:
P. Antolin, E. Brivadis, G. Sangalli, B. Wohlmuth, L. Wunderlich

@ imati

A. Buffa (IMATI-CNR ltaly) Constraints and spline-based methods 1/35



© Introduction
@ The framework of applications
@ Constraints and multipliers

Spline-based methods

© Non conforming interfaces
@ Choice of multipliers
@ Numerical validation

e Incompressibility

@ Choice of multipliers

@ Numerical validation

e Final remarks

A. Buffa (IMATI-CNR ltaly) Constraints and spline-based methods

2/35



The framework of applications

+ boundary conditions
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The framework of applications

oc=2pue+AV-ul
e =V?u
div(e)=f

A — 0o incompressible limit

+ boundary conditions
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The framework of applications

culH=/wD+J curlE=—-/wB
B=uH D=c¢E
div(B) =0 div(D)=0

+ boundary conditions
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The framework of applications

f o =Ce(u)
=0 g(u) >0 contact

+ boundary conditions
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Constraints and Multipliers

Find v € V and p € M such that:

a(u,v)+ b(v,p) = (f,v) YueV
b(u,q) —e(p,q) =0 Yge M

where the bilinear form ¢(p, q) is “small” when the constraint is almost
verified as in the case of quasi-incompressible materials.
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Constraints and Multipliers

Find v € V and p € M such that:

a(u,v)+ b(v,p) = (f,v) YueV
b(u,q) —e(p,q) =0 Yge M

where the bilinear form ¢(p, q) is “small” when the constraint is almost
verified as in the case of quasi-incompressible materials.

Variational framework: Galerkin methods
Find up € V}, and pp € My, such that:

an(un, vn) + b(vh, pn) = (f, v) Vu € Vy
b(un, qn) — e(pn, qn) = 0 Vg € My
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The Galerkin method
Find up € V}, and pp € M, such that:

an(un, vi) + b(vh, pn) = (f,v) Yu eV
b(un, qn) — (pn, qn) =0 Vg € My
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The Galerkin method
Find up € V}, and pp € M, such that:
an(un, v) + b(vh, pn) = (f, v) Yu eV
b(un, qn) — €(pn,qn) =0 Vg € My
It is well known (Brezzi 1974 ...) that the stability depends upon
e an(up, up) > ||uh||%/ Y up € Ker(By)

e inf sup M>a>0

PheMy upe v, |lunllvIlpallm —
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The Galerkin method
Find up € V}, and pp € M, such that:
an(un, v) + b(vh, pn) = (f, v) Yu eV
b(un, qn) — €(pn,qn) =0 Vg € My
It is well known (Brezzi 1974 ...) that the stability depends upon
e an(up, up) > ||uh||%/ Y up € Ker(By)

e inf sup M>a>0

PheMy upe v, |lunllvIlpallm —

There is a huge literature for finite elements!!

FEM
@ triangulation of the domain

A
@ piecewise polynomials

Q o CP global continuity
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What happens for methods based on splines?
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What happens for methods based on splines?
B-Splines are defined by the Cox-DeBoor formulae:

Ni,O(C) — { 1 If é.l' S C < £i+17

0 otherwise,

Niy(C) = =S

Sivp —&i Sivpr1 —&it1
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What happens for methods based on splines?
B-Splines are defined by the Cox-DeBoor formulae:

Ni,O(C) — { 1 If é.l' S C < é.l'—‘rla

0 otherwise,
C—&i Sivpr1 —C
N; =—="N;,_ Nit1p-1(C).
»(¢) L 1(¢) + Erpi1 — g e 1(¢)
F(§) =2 CilNip(8) :

0?0,0 05 1 15 2 25 3 35 44 45555
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Isogeometric methods

Thomas J.R. Hughes et al 2005 + 650 papers since then

@ The geometry Q and its splines parametrization F is “given” by CAD

general geometry: unstructured collection of “patches”
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Isogeometric methods
Thomas J.R. Hughes et al 2005 + 650 papers since then

@ The geometry Q and its splines parametrization F is “given” by CAD
general geometry: unstructured collection of “patches”.

@ The discrete space on € is the push-forward of Splines
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General geometries are multi-patch

Globally unstructured
Locally structured
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General geometries are multi-patch

A. Cottrell

Globally unstructured
Locally structured

V. Skytt
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General geometries are multi-patch

A. Cottrell

Globally unstructured
Locally structured

V. Skytt
Question: How to enhance flexibility?
Question: Can these methods be applied in the engineering practise?
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Three main methodologies are needed

Break tensor product structure: Hierarchical splines, T-splines, LR
splines ... [Workshop A5]

Mortar Method: gluing subdomains
with non-matching grids

Rubber
Rubber

Rubber

Treatment of quasi incompressibility :
to simulate e.g., rubber.

_ Revolution axis
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Mortar Method

in the spirit of the mortar method by Bernardi, Maday and Patera '91

A. Buffa (IMATI-CNR ltaly) Constraints and spline-based methods 10 /35



Mortar Method

in the spirit of the mortar method by Bernardi, Maday and Patera '91

Let Q be a computational domain in R”, we want to solve the Laplace
problem (or linear elasticity with minor changes)

—div(AVu) =f
with boundary conditions 9Q = Fp U T y.
u=0onTpand (AVu)-n=hon 'y
We suppose that

Q=UNQ, Qi =Fi(Q), I; =00 nQ;,

o F; are splines

@ non compatible meshes at the interfaces I';;
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About the admissible partition of the domain

0y Qs
' Qm(l)
Qs
LGH HY
Qy V2 B 0
o
1 1 2
Q5(2)(_|. 1 e
U

@ Decomposition can be conforming or non-conforming

@ The interface ['j; is a face of either ; or ;.
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About the admissible partition of the domain

0y Qs
' Qm(l)
Qs
LGH HY
Qy V2 B 0
o
1 1 2
Q5(2)(_|. 1 e
U

@ Decomposition can be conforming or non-conforming
@ The interface ['j; is a face of either ; or ;.

@ Non compatible geometries interfaces
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Non conforming interfaces and mortaring
Let S,(7;) be the space of tensor product splines of degree p, on the knot

~

mesh T;.

@ in each subdomain Q;,

Vi ={v; € H{(Q) : voF; e Sy(T))}

A. Buffa (IMATI-CNR ltaly) Constraints and spline-based methods 12 /35



Non conforming interfaces and mortaring
Let S ( ;) be the space of tensor product splines of degree p, on the knot
mesh ‘J'

@ in each subdomain Q;,

Vi={vyeH(Q) : voF;eS§ (?T-)}

V={vel¥Q) :vqg €V, vr, =0} HVH\/—ZHVHHl(m
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Non conforming interfaces and mortaring

Let S ( ;) be the space of tensor product splines of degree p, on the knot
mesh ‘J'

@ in each subdomain Q;,

Vi = {v; € H{(Q;)) - voF-es(?r-)}
V={vel*Q) :vq €V, vr, =0} HvHv—ZHvHHl(g)

Interface numbering and spaces

ny
o= U [y, W24 H(I'g,jg) Ty = 89,-2 N Qje‘
Continuity across Yo imposed via Lagrange multipliers:

M={X€L*(Zo) : A=A\, € M}
My to be chosen properly!
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Variational formulation of the problem
Find up € Vi, Ap € My, such that

a(uh, Vh)—i—b()\h, Vh) = R(Vh) Vv, € Vp
b(pth, up) =0 Vin € My

where

a(u,v) = Z/Q, AVu-Vv b(A,v) = zg:/rg Aefu] [u] = uj, —

R(v) is the RHS taking into account also Neumann BC...
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Variational formulation of the problem
Find up € Vi, Ap € My, such that

a(uh, Vh)—i—b()\h, Vh) = R(Vh) Vv, € Vp
b(pth, up) =0 Vin € My

where

a(u,v) = Z/Q, AVu-Vv b(A,v) = zg:/rg Aefu] [u] = uj, — uj,

R(v) is the RHS taking into account also Neumann BC...

Wellposedness and approximation depends only upon the choice of
Lagrange multipliers!
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Variational formulation of the problem
Find up € Vi, Ap € My, such that

a(uh, Vh)—i—b()\h, Vh) = R(Vh) Vv, € Vp
b(pth, up) =0 Vin € My

where

a(u,v) = Z/Q, AVu-Vv b(A,v) = zg:/rg Aefu] [u] = uj, — uj,

R(v) is the RHS taking into account also Neumann BC...

Wellposedness and approximation depends only upon the choice of
Lagrange multipliers!

n
M={AeL(E0) i M=Ar, €M) IR = Do M2,
/=1
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Choice of the Langrange multiplier space

@ ... | want to have the largest possible set of multipliers such that
the form b(\, v) = frz A¢[u] remains uniformly stable

Favorite choice: if i is the one side, we want My ~ V|, !
It contraints all functions on one side !

But .. stability fails! We need:
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@ ... | want to have the largest possible set of multipliers such that
the form b(\, v) = frz A¢[u] remains uniformly stable

Favorite choice: if i is the one side, we want My ~ V|, !
It contraints all functions on one side !

But .. stability fails! We need:

dlm(Mé) S dlm{V € \/ie||—g : V|aré = 0}
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Choice of the Langrange multiplier space

@ ... | want to have the largest possible set of multipliers such that
the form b(\, v) = frz A¢[u] remains uniformly stable

Favorite choice: if i is the one side, we want My ~ V|, !
It contraints all functions on one side !

But .. stability fails! We need:

dlm(Mé) S dlm{V € \/I'e||—g : V|ar€ = 0}

NN\

Cross point reduction (Bernardi Maday Patera 91)
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Choice of the Langrange multiplier space
Each Iy is a face of a subdomain Q; (the slave side)

o I, inherits a spline mapping F, : (0,1)971 = T,

e and a parametric mesh on T = (0,1)9=1 denoted as Ty

A. Buffa (IMATI-CNR ltaly) Constraints and spline-based methods 15 / 35



Choice of the Langrange multiplier space
Each Iy is a face of a subdomain Q; (the slave side)

o I, inherits a spline mapping F, : (0,1)971 = T,

e and a parametric mesh on T = (0,1)9=1 denoted as Ty

Let us start with choices in the parametric space, and then we will map !
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Choice of the Langrange multiplier space
Each Iy is a face of a subdomain Q; (the slave side)

o I, inherits a spline mapping F, : (0,1)971 = T,
e and a parametric mesh on T = (0,1)9"! denoted as Ty

Let us start with choices in the parametric space, and then we will map !

Choice 1: same degree, cross point reduction

M} = Sp(T2)

0 h 2h 3h
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Choice of the Langrange multiplier space
Each Iy is a face of a subdomain Q; (the slave side)

o I, inherits a spline mapping F, : (0,1)971 = T,

e and a parametric mesh on T = (0,1)9=1 denoted as Ty

Let us start with choices in the parametric space, and then we will map !

Choice 2: degree reduction
M; = Sp-2(T2)
Indeed, it is true that
dim(M) = {V € Sp(T)Ir, * Vlor, =0}

@ No need for degree reduction or other manipulation

o If stable, it will deliver a slightly suboptimal order : 1/2 suboptimal
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Stability: Proof of the inf-sup condition
the p/p — 2 case

We consider /%2 and can prove that:

v

~ — — > g
HESp—2 VES,NHE HVHL2HMHL2
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Stability: Proof of the inf-sup condition
the p/p — 2 case

We consider /%2 and can prove that:

N
_inf  sup ,\frilt > o
552 ey 1912 7l
Proof
(]
o
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Stability: Proof of the inf-sup condition
the p/p — 2 case

We consider /%2 and can prove that:

: Jeiiv
R inf sup  ————=— = Qp
HESp—29es,NH} VI 2|l 2
Proof
o
o
It is stable! ... we need now to go to physical space
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Stability in the physical space

the p/p — 2 case

SOV
_inf  sup ,\frilt > o
M65p72/\}65pﬂH(} VI 2|72l .2
14
inf sup fre s > ag

peMy VEV,'ZZVEH(}(FK) HV”LQHMHL2
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Stability in the physical space
the p/p — 2 case

SOV
_inf  sup Afrilt > o
M65p72/\765pﬂH(} VI 2|72l .2
14
inf sup fre s > ag

peMy VEV,'ZZVEH(}(FK) HV”LQHMHL2

fre pv = [cp AV p=weight, area change..
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Stability in the physical space
the p/p — 2 case

. Jeiiv
R inf sup  ————=— = Qp
38 e o Tolall
1%
inf sup fre > ag

peMy VEV,'ZZVEH(}(FK) HV”LQHMHB

fre pv = [cp AV p=weight, area change..
and by super-convergence results a la Wahlbin:

N2 M = o~ N0i) | < Chlll
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Stability in the physical space
the p/p — 2 case

SOV
_inf  sup Afrilt > o
M65p72/\765pﬂH(} VI 2|72l .2
14
inf sup fre s > ag

peMy VEV,'ZZVEH(}(FK) HV”LQHMHL2

fre pv = [cp AV p=weight, area change..
and by super-convergence results a la Wahlbin:

N2 M = o~ N0i) | < Chlll

For h small enough the stability holds in physical space!
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Back to our variational problem
Find up € Vi, Ap € My, such that

a(uh, Vh)—i-b()\h, Vh) = R(Vh) Vv, € Vp
b(pn, up) =0 Vi € Mp
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Back to our variational problem
Find up € Vi, Ap € My, such that

a(uh, Vh)—i-b()\h, Vh) = R(Vh) Vv, € Vp
b(pn, up) =0 Vi € Mp

It is well-posed and verifies the following error estimate: if u € H"(Q):
— < C inf |lu— inf |\ — 1
lu = unlly < € inf fJu—vally+ inf 1A= nllm (1)
< Ch* + Ch* t = min{p,r — 1} (2)
e s=min{p+1/2,r — 1} for Choice 1: same degree,

@ s=min{p—1/2,r — 1} for Choice 2: degree reduction
Or, indeed:

llu—upllv < C inf llu—wp|lv < C...
vhe VNKer(B)
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Numerical validation:

problem 1
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Numerical validation: problem 1

107 10° ‘
—a&— Mortar P4-P4 Q Mortar P3-P3
—E— Mortar P4-P2 —E— Mortar P3-P1
A - A - Conform P4 A - A - Conform P3
N - - -omd) S - - -om')

[lu = unll12(0)
3

° 0 10 ? 10 10
primal dof number

10 1
primal dof number

Multipliers’ degree does not affect the order for the primal unknown!
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Numerical validation: problem 1

1072} 1
=
=
=107 1
=
|
cig —B— Mortar P4-P4
10° | —e—Mortar P4-P2 1
Mortar P3-P3
—e— Mortar P3-P1
~ o _ A2 3 4 5
109 o(h%), O(r®), O(h).0(n°) |
10° 10° 10*

primal dof number

but it affects the convergence of the multiplier!
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Numerical validation: problem 2




Numerical validation: problem 2

10
—B— Mortar P4-P4
—&— Mortar P4-P2
Mortar P3-P3 =
—— Mortar P3-P1| | °
-~ - o(h?% g
<
|
28 — Mortar P4-P4
= —e— Mortar P4-P2
Mortar P3-P3
] —e— Mortar P3-P1
)
3
10
! 10° 10*

10
primal dof number

A. Buffa (IMATI-CNR ltaly)

primal dof number

1/6+1/2=2/3
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Treatment of incompressibility

Linear elasticity

Strong form problem

V-o+f=0 inQ
u=u onlp

o-n=t only
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Treatment of incompressibility
Linear elasticity
Isotropic linear elasticity

Strong form problem o=2ue+AV-ul
e=Vtu
Vio+f=0 inQ A= vE

(1+v)(1-2v)
u=u onlp E

o-n=t only u:2(1—|—1/)

v—=1/2, A= o0
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Treatment of incompressibility

Linear elasticity Isotropic linear elasticity

Strong form problem oc=2pue+AV-ul
e =Vu
V-o+f=0 inQ A= vE

u=u onlp E

o-n=t only u:2(1—|—l/)

v—1/2, A= o0

(1+v) (1-2v)

Weak form

/,LLVSW:VsudQ-I-/)\V-wv-udQ:L(w)
Q Q

~~

a(w, u)
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Treatment of incompressibility

Linear elasticity Isotropic linear elasticity

Strong form problem oc=2pue+AV-ul
e =Vu
V-o+f=0 inQ A= vE

u=u onlp E

o-n=t only u:2(1—|—l/)

v—1/2, A= o0

(1+v) (1-2v)

Weak form

/,LLVSWZVSUdQ-l-/)\V-Wv-udQ:L(w)
Q Q

~~

a(w, u)

A. Buffa (IMATI-CNR ltaly) Constraints and spline-based methods

24 /35




The effect of quasi-incompressibility

Exact versus computed solution

Y
Exact traction imposed - THEORY
- OF
ELASTICITY
g g T.=10MPa
3 > -

B g— R=1mm B

<« . —_—
.5 «— L=4mm g
3 .2 >
st E-wwmpa g [FF o
SuNE ] B R

«— t,‘ Q
N 2 Kr 0

<« \l

- é

T Symmetry S

Ty R? R? Rr*
O'TT(’I‘,G):7 171"72+ 174T—2+3r—4 cos 20| ,

Ty

2

2 R4
oge(r, 0) = [ + — - <1+37> cosQQ] ,
T T
P R* LR\
org (T, )—*? 1+2r72737‘74 sin 26 ,
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Exact versus computed solution

The effect of quasi-incompressibility

A. Buffa (IMATI-CNR ltaly)

Constraints and spline-based methods
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Mixed formulation

Mixed formulation
/ wVew : VsudQ-i-/ V- -wpdQ=L(v)
Q Q

)\/qV~udQ—/pqu:0
Q Q

where we can solve for p: p = ATy (V - u)

Y eV

Vge M

A. Buffa (IMATI-CNR ltaly) Constraints and spline-based methods
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Mixed formulation

Mixed formulation

/,usz:VsudQ+/V~wde:L(v) YveV
Q Q
)\/qV~udQ—/pqu:0 Vge M
Q Q

where we can solve for p: p= ATy(V - u)

Primal formulation

/,U,VSW:VSUdQ—{—/)\HM(V-W)HI\//(V-U)dQ:L(W)
Q Q

Unlocked solution (M “small") + incompressible (M “large”)
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Mixed formulation

Mixed formulation

/,usz:VsudQ—{—/V~wde:L(v) YveV
Q Q
)\/qV~udQ—/pqu:0 Vge M
Q Q

where we can solve for p: p= ATy(V - u)

Primal formulation

/,usz:VsudQ—{—/AHM(V-W)HM(V-u)dQ:L(w)
Q Q

Unlocked solution (M “small”) + incompressible (M “large”)
Sparse (M “discontinuous” or My modified )
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Choice of multipliers

Primal formulation

ah(w,u)—/ﬂuvsw:VsudQ—i—/Q/\l'lM(V-w)l'lM(V-u)dQ_L(w)

Unlocked solution (M “small”) + incompressible (M “large”)
Sparse (M “discontinuous” or Ny, modified )
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Choice of multipliers

Primal formulation

ah(w,u)—/ﬂuvsw:VsudQ—i—/Q/\l'lM(V-w)l'IM(V-u)dQ_L(w)

Unlocked solution (M “small”) + incompressible (M “large”)
Sparse (M “discontinuous” or Ny, modified )

s Br Bs DY

B1 B, Bj By Bs B
UW € ) o o X
+
B B3

(¥ -0, (¥ ow) € >Tore ot

V= 55_1(9;,), M = Sf;l(Qp*h) (subgrid pressure).

The matrix representing ap(+,) is “almost” as sparse as the one
representing a(-, -)
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Choice of multipliers

N N
= — = =——1
BesPt Mux) =) Bix)|> M,
i=1 j=1
§1 By Bg
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Choice of multipliers

N N
BesPt Mu(x)=> Bix) ngl /Ej(x) f(x)dQ
i—1 =1 Q
B _ By B3 _ Bs
Bo By

M = P
p3
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Choice of multipliers

N N
BesPt Mu(x)=> Bix) Zm;l /Ej(x) f(x)dQ
i—1 =1 Q
B _ By B3 _ Bs
Bo By
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Choice of multipliers

N N
Be s My(x)=> Bi(x) Zm;l /Qsj(x) f(x)dQ
i=1 j=1
By _ By B3 _ Bs
Bo By

@ the proof of inf-sup when the mesh for pressure is coarse enough
Bressan-Sangalli 2010

@ the method is used with the richest possible pressures i.e. Sf;l(Qp*h).
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Numerics

o« for with and without subgrids :
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Numerics

10
100
107"
1072
1073
1074

5
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Relative error L; norm of uw
Relative error L, norm of o
vl ol ol ol ol

|
0.11 0.29 057 1.102.04355 1" 0.29 057 1.102.04 355

Mesh size h Mesh size h

O [ s

dashed = reference solution with dense matrices
continuous = plain primal formulation
color = our solution for degree 2,3, 4.
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Incompressibility treatment and Mortar

Isotropic linear elasticity

o=2pue+AV-ul

e =Vu
\o___ VE
(1+v)(1-2v)
_ E
F=oa+y)

v—1/2, A= o0

[m] = -
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Incompressibility treatment and Mortar

0 |III10 20
T
- .

0.6 30
&

Mortar

-
Mortar + Subgrid
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Final remarks

Surveys and Codes
@ New Acta Numerica survey paper with several math results:

L. Beirdo Da Veiga, A. Buffa, G. Sangalli, R. Vazquez,
Mathematical analysis of variational isogeometric methods

@ We have two codes available to public :
» GeoPDEs library is a GNU licensed software available here:

www.imati.cnr.it/geopdes R. Vazquez
» |GATools is a C++ dimension independent library
http://code.google.com/p/igatools S. Pauletti, M. Martinelli ...

igatools
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