Multipliers and contraints for spline-based methods

Annalisa Buffa

IMATI 'E. Magenes' - Pavia Consiglio Nazionale delle Ricerche

Co-authors:

P. Antolín, E. Brivadis, G. Sangalli, B. Wohlmuth, L. Wunderlich

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

imati

Introduction

- The framework of applications
- Constraints and multipliers

2 Spline-based methods

3 Non conforming interfaces

- Choice of multipliers
- Numerical validation

Incompressibility

- Choice of multipliers
- Numerical validation

Final remarks

3

- 4 同 6 4 日 6 4 日 6

$$\nabla \cdot (\mathbf{u} \otimes \mathbf{u}) - \nu \Delta \mathbf{u} + \nabla p = \mathbf{f}$$

div $\mathbf{u} = \mathbf{0}$

+ boundary conditions

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

3

ヘロト ヘ部ト ヘヨト ヘヨト

$$\sigma = 2 \mu \varepsilon + \lambda \nabla \cdot \mathbf{u} \mathbf{1}$$
$$\varepsilon = \nabla^{s} \mathbf{u}$$
$$\operatorname{div} (\sigma) = \mathbf{f}$$

 $\lambda \rightarrow \infty$ incompressible limit

+ boundary conditions

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

$$\operatorname{curl} \mathbf{H} = i \,\omega \, \mathbf{D} + \mathbf{J}$$
 $\operatorname{curl} \mathbf{E} = -i \,\omega \, \mathbf{B}$ $\mathbf{B} = \mu \mathbf{H}$ $\mathbf{D} = \varepsilon \mathbf{E}$ $\operatorname{div} (\mathbf{B}) = 0$ $\operatorname{div} (\mathbf{D}) = 0$

+ boundary conditions

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

э

・ロト ・四ト ・ヨト ・ヨト

$$\begin{aligned} \operatorname{div}\left(\boldsymbol{\sigma}\right) &= \mathbf{f} & \boldsymbol{\sigma} = \mathbb{C}\varepsilon(\mathbf{u}) \\ \operatorname{div}\left(\mathbf{u}\right) &= \mathbf{0} & \boldsymbol{\mathfrak{g}}(\mathbf{u}) \geq \mathbf{0} \quad \text{contact} \end{aligned}$$

+ boundary conditions

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

3 / 35

э

< 日 > < 同 > < 三 > < 三 > :

Constraints and Multipliers

Find $u \in V$ and $p \in M$ such that:

$$\begin{aligned} a(u,v) + b(v,p) &= \langle f, v \rangle & \forall u \in V \\ b(u,q) - \varepsilon(p,q) &= 0 & \forall q \in M \end{aligned}$$

where the bilinear form $\varepsilon(p,q)$ is "small" when the constraint is almost verified as in the case of quasi-incompressible materials.

Constraints and Multipliers

Find $u \in V$ and $p \in M$ such that:

$$egin{aligned} & a(u,v)+b(v,p)=\langle f,v
angle & \forall u\in V \ & b(u,q)-arepsilon(p,q)=0 & \forall q\in M \end{aligned}$$

where the bilinear form $\varepsilon(p,q)$ is "small" when the constraint is almost verified as in the case of quasi-incompressible materials.

Variational framework: Galerkin methods Find $u_h \in V_h$ and $p_h \in M_h$ such that:

$$\begin{aligned} a_h(u_h, v_h) + b(v_h, p_h) &= \langle f, v \rangle & \forall u \in V_h \\ b(u_h, q_h) - \varepsilon(p_h, q_h) &= 0 & \forall q \in M_h \end{aligned}$$

A. Buffa (IMATI-CNR Italy)

The Galerkin method

Find $u_h \in V_h$ and $p_h \in M_h$ such that:

$$\begin{aligned} & a_h(u_h, v_h) + b(v_h, p_h) = \langle f, v \rangle & \forall u \in V_h \\ & b(u_h, q_h) - \varepsilon(p_h, q_h) = 0 & \forall q \in M_h \end{aligned}$$

A. Buffa (IMATI-CNR Italy)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

The Galerkin method

Find $u_h \in V_h$ and $p_h \in M_h$ such that:

$$egin{aligned} &a_h(u_h,v_h)+b(v_h,p_h)=\langle f,v
angle &orall u\in V_h\ &b(u_h,q_h)-arepsilon(p_h,q_h)=0 &orall u\in M_h \end{aligned}$$

It is well known (Brezzi 1974 ...) that the stability depends upon

•
$$a_h(u_h, u_h) \ge \|u_h\|_V^2 \quad \forall u_h \in \operatorname{Ker}(B_h)$$

• $\inf_{p_h \in M_h} \sup_{u_h \in V_h} \frac{b(u_h, p_h)}{\|u_h\|_V \|p_h\|_M} \ge \alpha > 0$

The Galerkin method

Find $u_h \in V_h$ and $p_h \in M_h$ such that:

$$egin{aligned} & a_h(u_h,v_h)+b(v_h,p_h)=\langle f,v
angle & \forall u\in V_h\ & b(u_h,q_h)-arepsilon(p_h,q_h)=0 & \forall q\in M_h \end{aligned}$$

It is well known (Brezzi 1974 ...) that the stability depends upon

•
$$a_h(u_h, u_h) \ge ||u_h||_V^2 \quad \forall u_h \in \operatorname{Ker}(B_h)$$

• $\inf_{p_h \in M_h} \sup_{u_h \in V_h} \frac{b(u_h, p_h)}{||u_h||_V ||p_h||_M} \ge \alpha > 0$

There is a **huge** literature for finite elements!!

• triangulation of the domain

< ロ > < 同 > < 回 > < 回 > < □ > <

- piecewise polynomials
- C⁰ global continuity

What happens for methods based on splines?

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

6 / 35

What happens for methods based on splines?

B-Splines are defined by the Cox-DeBoor formulae:

$$N_{i,0}(\zeta) = \begin{cases} 1 & \text{if } \xi_i \le \zeta < \xi_{i+1}, \\ 0 & \text{otherwise}, \end{cases}$$
$$N_{i,p}(\zeta) = \frac{\zeta - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p-1}(\zeta) + \frac{\xi_{i+p+1} - \zeta}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p-1}(\zeta).$$

What happens for methods based on splines?

B-Splines are defined by the Cox-DeBoor formulae:

$$N_{i,0}(\zeta) = \begin{cases} 1 & \text{if } \xi_i \leq \zeta < \xi_{i+1}, \\ 0 & \text{otherwise}, \end{cases}$$
$$N_{i,p}(\zeta) = \frac{\zeta - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p-1}(\zeta) + \frac{\xi_{i+p+1} - \zeta}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p-1}(\zeta).$$
$$(\xi) = \sum_i \mathbf{C}_i N_{i,p}(\xi) :$$

< ロ > < 同 > < 回 > < 回 >

F

Constraints and spline-based methods

Isogeometric methods

Thomas J.R. Hughes et al 2005 + 650 papers since then

 The geometry Ω and its splines parametrization F is "given" by CAD general geometry: unstructured collection of "patches".

A. Buffa (IMATI-CNR Italy)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Isogeometric methods

Thomas J.R. Hughes et al 2005 + 650 papers since then

 The geometry Ω and its splines parametrization F is "given" by CAD general geometry: unstructured collection of "patches".

• The discrete space on Ω is the *push-forward* of Splines

A. Buffa (IMATI-CNR Italy)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General geometries are multi-patch

Globally unstructured Locally structured

A. Buffa (IMATI-CNR Italy)

イロト 不得 トイヨト イヨト 二日

General geometries are multi-patch

Globally unstructured Locally structured

A. Cottrell

イロト 不得 トイヨト イヨト 二日

V. Skytt

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

General geometries are multi-patch

Globally unstructured Locally structured

A. Cottrell

V. Skytt

Question: How to enhance flexibility? **Question**: Can these methods be applied in the engineering practise?

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

8 / 35

Three main methodologies are needed

Break tensor product structure: Hierarchical splines, T-splines, LR splines ... [Workshop A5]

Mortar Method: gluing subdomains with non-matching grids

Treatment of quasi incompressibility : to simulate e.g., rubber.

Constraints and spline-based methods

Mortar Method

in the spirit of the mortar method by Bernardi, Maday and Patera '91

Mortar Method

in the spirit of the mortar method by Bernardi, Maday and Patera '91

Let Ω be a computational domain in \mathbb{R}^n , we want to solve the Laplace problem (or linear elasticity with minor changes)

$$-\operatorname{div}\left(\mathbf{A}\nabla u\right)=f$$

with boundary conditions $\partial \Omega = \overline{\Gamma}_D \cup \overline{\Gamma}_N$.

$$u = 0$$
 on Γ_D and $(\mathbf{A} \nabla u) \cdot \mathbf{n} = h$ on Γ_N

We suppose that

$$\Omega = \bigcup_{i}^{N} \Omega_{i}, \ \Omega_{i} = \mathbf{F}_{i}(\widehat{\Omega}), \ \mathsf{\Gamma}_{ij} = \partial \Omega_{i} \cap \Omega_{j},$$

• **F**_i are splines

non compatible meshes at the interfaces Γ_{ij}

A. Buffa (IMATI-CNR Italy)

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

About the admissible partition of the domain

- Decomposition can be conforming or non-conforming
- The interface Γ_{ij} is a face of either Ω_i or Ω_j .

A. Buffa (IMATI-CNR Italy)

About the admissible partition of the domain

- Decomposition can be conforming or non-conforming
- The interface Γ_{ij} is a face of either Ω_i or Ω_j .
- Non compatible geometries interfaces

A. Buffa (IMATI-CNR Italy)

Non conforming interfaces and mortaring

Let $S_p(\widehat{T}_j)$ be the space of tensor product splines of degree p, on the knot mesh \widehat{T}_j .

• in each subdomain Ω_j ,

$$V_j = \{v_j \in H^1(\Omega_j) : v \circ \mathbf{F}_j \in \mathcal{S}_p(\widehat{\Upsilon}_j)\}$$

Non conforming interfaces and mortaring

Let $S_p(\widehat{T}_j)$ be the space of tensor product splines of degree p, on the knot mesh \widehat{T}_j .

• in each subdomain Ω_j ,

$$V_{j} = \{ v_{j} \in H^{1}(\Omega_{j}) : v \circ \mathbf{F}_{j} \in S_{\rho}(\widehat{\mathfrak{T}}_{j}) \}$$
$$V = \{ v \in L^{2}(\Omega) : v_{|\Omega_{j}} \in V_{j}, v_{|\Gamma_{D}} = 0 \} \quad \|v\|_{V}^{2} = \sum_{i=1}^{N} \|v\|_{H^{1}(\Omega_{j})}^{2}.$$

Non conforming interfaces and mortaring

Let $S_p(\widehat{T}_j)$ be the space of tensor product splines of degree p, on the knot mesh \widehat{T}_j .

• in each subdomain Ω_j ,

$$V_{j} = \{ v_{j} \in H^{1}(\Omega_{j}) : v \circ \mathbf{F}_{j} \in S_{\rho}(\widehat{\mathfrak{T}}_{j}) \}$$
$$V = \{ v \in L^{2}(\Omega) : v_{|\Omega_{j}} \in V_{j}, v_{|\Gamma_{D}} = 0 \} \quad \|v\|_{V}^{2} = \sum_{i=1}^{N} \|v\|_{H^{1}(\Omega_{j})}^{2}.$$

Interface numbering and spaces

$$\Sigma_0 = igcup_{\ell=1}^{n_l} \Gamma_\ell \,, \qquad orall \ell \quad \exists (i_\ell, j_\ell) \ : \Gamma_\ell = \partial \Omega_{i_\ell} \cap \Omega_{j_\ell}.$$

Continuity across Σ_0 imposed via Lagrange multipliers:

$$M = \{\lambda \in L^2(\Sigma_0) : \lambda_\ell = \lambda_{|\Gamma_\ell} \in M_\ell\}$$

 M_{ℓ} to be chosen properly!

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

Variational formulation of the problem

Find $u_h \in V_h$, $\lambda_h \in M_h$ such that

$$egin{aligned} \mathsf{a}(u_h,v_h)+\mathsf{b}(\lambda_h,v_h)&=\mathsf{R}(v_h) & \forall v_h\in V_h\ \mathsf{b}(\mu_h,u_h)&=0 & \forall \mu_h\in M_h \end{aligned}$$

where

$$m{a}(u,v) = \sum_i \int_{\Omega_i} m{A}
abla u \cdot
abla v \qquad b(\lambda,v) = \sum_\ell \int_{\Gamma_\ell} \lambda_\ell[u] \qquad [u] = u_{i_\ell} - u_{j_\ell}$$

R(v) is the RHS taking into account also Neumann BC...

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Variational formulation of the problem

Find $u_h \in V_h$, $\lambda_h \in M_h$ such that

$$egin{aligned} \mathsf{a}(u_h,v_h)+\mathsf{b}(\lambda_h,v_h)&=\mathsf{R}(v_h) & \forall v_h\in V_h\ \mathsf{b}(\mu_h,u_h)&=0 & \forall \mu_h\in M_h \end{aligned}$$

where

$$a(u,v) = \sum_{i} \int_{\Omega_{i}} \mathbf{A} \nabla u \cdot \nabla v \qquad b(\lambda,v) = \sum_{\ell} \int_{\Gamma_{\ell}} \lambda_{\ell}[u] \qquad [u] = u_{i_{\ell}} - u_{j_{\ell}}$$

R(v) is the RHS taking into account also Neumann BC...

Wellposedness and approximation depends only upon the choice of Lagrange multipliers!

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Variational formulation of the problem

Find $u_h \in V_h$, $\lambda_h \in M_h$ such that

$$egin{aligned} \mathsf{a}(u_h,v_h)+\mathsf{b}(\lambda_h,v_h)&=\mathsf{R}(v_h) & \forall v_h\in V_h\ \mathsf{b}(\mu_h,u_h)&=0 & \forall \mu_h\in M_h \end{aligned}$$

where

$$a(u,v) = \sum_{i} \int_{\Omega_{i}} \mathbf{A}
abla u \cdot
abla v \qquad b(\lambda,v) = \sum_{\ell} \int_{\Gamma_{\ell}} \lambda_{\ell}[u] \qquad [u] = u_{i_{\ell}} - u_{j_{\ell}}$$

R(v) is the RHS taking into account also Neumann BC...

Wellposedness and approximation depends only upon the choice of Lagrange multipliers!

$$M = \{\lambda \in L^{2}(\Sigma_{0}) : \lambda_{\ell} = \lambda_{|\Gamma_{\ell}} \in M_{\ell}\} \qquad \|\lambda\|_{M}^{2} = \sum_{\ell=1}^{n_{\ell}} \|\lambda_{\ell}\|_{(H^{1/2}_{00})'}^{2}$$

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

• ... I want to have the largest possible set of multipliers such that the form $b(\lambda, v) = \int_{\Gamma_{\ell}} \lambda_{\ell}[u]$ remains uniformly stable

Favorite choice: if i_{ℓ} is the one side, we want $M_{\ell} \sim V_{i_{\ell}}|_{\Gamma_{\ell}}$! It contraints **all** functions on one side !

But .. stability fails! We need:

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

• ... I want to have the largest possible set of multipliers such that the form $b(\lambda, v) = \int_{\Gamma_{\ell}} \lambda_{\ell}[u]$ remains uniformly stable

Favorite choice: if i_{ℓ} is the one side, we want $M_{\ell} \sim V_{i_{\ell}}|_{\Gamma_{\ell}}$! It contraints **all** functions on one side !

But .. stability fails! We need:

$$\dim(M_{\ell}) \leq \dim\{v \in V_{i_{\ell}}|_{\Gamma_{\ell}} : v|_{\partial \Gamma_{\ell}} = 0\}$$

A. Buffa (IMATI-CNR Italy)

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

• ... I want to have the largest possible set of multipliers such that the form $b(\lambda, \mathbf{v}) = \int_{\Gamma_{\ell}} \lambda_{\ell}[u]$ remains uniformly stable

Favorite choice: if i_{ℓ} is the one side, we want $M_{\ell} \sim V_{i_{\ell}}|_{\Gamma_{\ell}}$! It contraints **all** functions on one side !

But .. stability fails! We need:

$$\dim(M_{\ell}) \leq \dim\{v \in V_{i_{\ell}}|_{\Gamma_{\ell}} : v|_{\partial \Gamma_{\ell}} = 0\}$$

Cross point reduction (Bernardi Maday Patera 91)

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

Each Γ_{ℓ} is a face of a subdomain Ω_i (the slave side)

- Γ_ℓ inherits a spline mapping $\mathbf{F}_\ell: (0,1)^{d-1} \to \Gamma_\ell$
- and a parametric mesh on $\widehat{\Gamma} = (0,1)^{d-1}$ denoted as $\widehat{\mathfrak{T}}_{\ell}$.

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Choice of the Langrange multiplier space Each Γ_{ℓ} is a face of a subdomain Ω_i (the slave side)

- Γ_ℓ inherits a spline mapping $\mathbf{F}_\ell: (0,1)^{d-1} o \Gamma_\ell$
- and a parametric mesh on $\widehat{\Gamma} = (0,1)^{d-1}$ denoted as $\widehat{\mathfrak{T}}_{\ell}$.

Let us start with choices in the parametric space, and then we will map !

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Choice of the Langrange multiplier space Each Γ_{ℓ} is a face of a subdomain Ω_i (the slave side)

- Γ_ℓ inherits a spline mapping $\mathbf{F}_\ell: (0,1)^{d-1} \to \Gamma_\ell$
- and a parametric mesh on $\widehat{\Gamma} = (0,1)^{d-1}$ denoted as $\widehat{\mathfrak{T}}_{\ell}$.

Let us start with choices in the parametric space, and then we will map ! Choice 1: same degree, cross point reduction

$$\widehat{M}^1_\ell = \widetilde{S}_p(\widehat{\mathbb{T}}_\ell)$$

Choice of the Langrange multiplier space Each Γ_{ℓ} is a face of a subdomain Ω_i (the slave side)

- Γ_ℓ inherits a spline mapping $\mathbf{F}_\ell: (0,1)^{d-1} \to \Gamma_\ell$
- and a parametric mesh on $\widehat{\Gamma} = (0,1)^{d-1}$ denoted as $\widehat{\mathfrak{T}}_{\ell}$.

Let us start with choices in the parametric space, and then we will map ! Choice 2: degree reduction

$$\widehat{M}_{\ell}^2 = S_{p-2}(\widehat{\mathfrak{T}}_{\ell})$$

Indeed, it is true that

$$\dim(\widehat{M}_{\ell}^2) = \{ \widehat{\boldsymbol{\nu}} \in \mathcal{S}_{\boldsymbol{\rho}}(\widehat{\mathbb{T}}_{i_\ell})|_{\boldsymbol{\Gamma}_\ell} \ : \ \widehat{\boldsymbol{\nu}}|_{\partial \boldsymbol{\Gamma}_\ell} = 0 \}$$

- No need for degree reduction or other manipulation
- If stable, it will deliver a slightly suboptimal order : 1/2 suboptimal

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

Stability: Proof of the inf-sup condition the p/p - 2 case

We consider \widehat{M}_{ℓ}^2 and can prove that:

$$\inf_{\widehat{\mu}\in S_{p-2}}\sup_{\widehat{\nu}\in S_p\cap H_0^1}\frac{\int_{\widehat{\Gamma}}\widehat{\mu}\,\widehat{\nu}}{\|\widehat{\nu}\|_{L^2}\|\widehat{\mu}\|_{L^2}}\geq \alpha_0$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Stability: Proof of the inf-sup condition the p/p - 2 case

We consider \widehat{M}_{ℓ}^2 and can prove that:

$$\inf_{\widehat{\mu}\in \mathcal{S}_{p-2}}\sup_{\widehat{\nu}\in \mathcal{S}_p\cap H_0^1}\frac{\int_{\widehat{\Gamma}}\widehat{\mu}\,\widehat{\nu}}{\|\widehat{\nu}\|_{L^2}\|\widehat{\mu}\|_{L^2}}\geq \alpha_0$$

Proof

In 2D:

•
$$S_p \cap H_0^1 \xrightarrow{\partial_x} S_{p-1} \cap L_0^2 \xrightarrow{\partial_x} S_{p-2}$$
 is exact

• choose $\hat{v} \in S_p \cap H^1_0$ such that $\partial^2_{xx} \hat{v} = \hat{\mu}$ and the work with Sobolev norms.

In 3D, basically the same applies...

A. Buffa (IMATI-CNR Italy)

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Stability: Proof of the inf-sup condition the p/p - 2 case

We consider \widehat{M}_{ℓ}^2 and can prove that:

$$\inf_{\widehat{\mu}\in \mathcal{S}_{p-2}}\sup_{\widehat{\nu}\in \mathcal{S}_p\cap H_0^1}\frac{\int_{\widehat{\Gamma}}\widehat{\mu}\,\widehat{\nu}}{\|\widehat{\nu}\|_{L^2}\|\widehat{\mu}\|_{L^2}}\geq \alpha_0$$

Proof

In 2D:

•
$$S_p \cap H_0^1 \stackrel{\partial_x}{\longrightarrow} S_{p-1} \cap L_0^2 \stackrel{\partial_x}{\longrightarrow} S_{p-2}$$
 is exact

• choose $\hat{v} \in S_p \cap H_0^1$ such that $\partial_{xx}^2 \hat{v} = \hat{\mu}$ and the work with Sobolev norms.

In 3D, basically the same applies...

It is stable! ... we need now to go to physical space

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

17 / 35

 $\int_{\Gamma_{\ell}} \mu \, \mathbf{v} = \int_{\widehat{\Gamma}} \rho \, \widehat{\mu} \, \widehat{\mathbf{v}} \quad \rho = \text{weight, area change..}$

A. Buffa (IMATI-CNR Italy)

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

 $\int_{\Gamma_{\ell}} \mu \, v = \int_{\widehat{\Gamma}} \rho \, \widehat{\mu} \, \widehat{v} \quad \rho = \text{weight, area change..}$ and by super-convergence results à la Wahlbin:

$$\Pi: L^{2}(\widehat{\Gamma}) \to \widehat{M}_{\ell}^{2} \quad \Rightarrow \quad \|\rho\widehat{\mu} - \Pi(\rho\widehat{\mu})\|_{L^{2}(\widehat{\Gamma})} \leq Ch\|\widehat{\mu}\|_{L^{2}(\widehat{\Gamma})}$$

A. Buffa (IMATI-CNR Italy)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

 $\int_{\Gamma_{\ell}} \mu \, \mathbf{v} = \int_{\widehat{\Gamma}} \rho \, \widehat{\mu} \, \widehat{\mathbf{v}} \quad \rho = \text{weight, area change..}$ and by super-convergence results à la Wahlbin:

$$\Pi: L^{2}(\widehat{\Gamma}) \to \widehat{M}^{2}_{\ell} \quad \Rightarrow \quad \|\rho\widehat{\mu} - \Pi(\rho\widehat{\mu})\|_{L^{2}(\widehat{\Gamma})} \leq Ch\|\widehat{\mu}\|_{L^{2}(\widehat{\Gamma})}$$

For h small enough the stability holds in physical space!

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

Back to our variational problem

Find $u_h \in V_h$, $\lambda_h \in M_h$ such that

$$egin{aligned} & \mathsf{a}(u_h,v_h) + \mathsf{b}(\lambda_h,v_h) = \mathsf{R}(v_h) & & \forall v_h \in V_h \ & \mathsf{b}(\mu_h,u_h) = 0 & & \forall \mu_h \in M_h \end{aligned}$$

A. Buffa (IMATI-CNR Italy)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Back to our variational problem

Find $u_h \in V_h$, $\lambda_h \in M_h$ such that

$$egin{aligned} & \mathsf{a}(u_h,v_h) + \mathsf{b}(\lambda_h,v_h) = \mathsf{R}(v_h) & & orall v_h \in V_h \ & \mathsf{b}(\mu_h,u_h) = 0 & & orall \mu_h \in M_h \end{aligned}$$

It is well-posed and verifies the following error estimate: if $u \in H^{r}(\Omega)$:

$$\|u - u_h\|_{V} \le C \inf_{v_h \in V} \|u - v_h\|_{V} + \inf_{\mu_h \in M} \|\lambda - \mu_h\|_{M}$$
(1)
$$\le Ch^t + Ch^s \qquad t = \min\{p, r - 1\}$$
(2)

$$\|u-u_h\|_V \leq C \inf_{v_h \in V \cap \operatorname{Ker}(B)} \|u-v_h\|_V \leq C \dots$$

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

3

Multipliers' degree does not affect the order for the primal unknown!

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

< ロ > < 同 > < 回 > < 回 >

but it affects the convergence of the multiplier!

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

23 / 35

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Linear elasticity

Strong form problem

$$\nabla \cdot \boldsymbol{\sigma} + \mathbf{f} = \mathbf{0} \quad \text{in } \Omega$$
$$\mathbf{u} = \bar{\mathbf{u}} \quad \text{on } \Gamma_D$$
$$\boldsymbol{\sigma} \cdot \mathbf{n} = \mathbf{t} \quad \text{on } \Gamma_N$$

A. Buffa (IMATI-CNR Italy)

э

ヘロン 人間 とくほと 人 ほとう

Linear elasticity

Isotropic linear elasticity

Strong form problem $\nabla \cdot \boldsymbol{\sigma} + \mathbf{f} = \mathbf{0} \quad \text{in } \Omega$ $\mathbf{u} = \bar{\mathbf{u}} \quad \text{on } \Gamma_D$ $\boldsymbol{\sigma} \cdot \mathbf{n} = \mathbf{t} \quad \text{on } \Gamma_N$

$$\sigma = 2 \mu \varepsilon + \lambda \nabla \cdot \mathbf{u} \mathbf{1}$$
$$\varepsilon = \nabla^{s} \mathbf{u}$$
$$\lambda = \frac{\nu E}{(1 + \nu) (1 - 2\nu)}$$
$$\mu = \frac{E}{2 (1 + \nu)}$$
$$\nu \to 1/2, \quad \lambda \to \infty$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

24 / 35

Linear elasticity

Isotropic linear elasticity

Strong form problem $\nabla \cdot \boldsymbol{\sigma} + \mathbf{f} = \mathbf{0} \quad \text{in } \Omega$ $\mathbf{u} = \bar{\mathbf{u}} \quad \text{on } \Gamma_D$ $\boldsymbol{\sigma} \cdot \mathbf{n} = \mathbf{t} \quad \text{on } \Gamma_N$

$$\sigma = 2 \mu \varepsilon + \lambda \nabla \cdot \mathbf{u} \mathbf{1}$$
$$\varepsilon = \nabla^{s} \mathbf{u}$$
$$\lambda = \frac{\nu E}{(1 + \nu) (1 - 2\nu)}$$
$$\mu = \frac{E}{2 (1 + \nu)}$$
$$\nu \to 1/2, \quad \lambda \to \infty$$

Weak form

$$\underbrace{\int_{\Omega} \mu \, \nabla^{s} \mathbf{w} : \nabla^{s} \mathbf{u} \mathrm{d}\Omega + \int_{\Omega} \lambda \, \nabla \cdot \mathbf{w} \, \nabla \cdot \mathbf{u} \, \mathrm{d}\Omega}_{\mathbf{a}(\mathbf{w},\mathbf{u})} = L(\mathbf{w})$$

A. Buffa (IMATI-CNR Italy)

Linear elasticity

Isotropic linear elasticity

Strong form problem $\nabla \cdot \boldsymbol{\sigma} + \mathbf{f} = \mathbf{0} \quad \text{in } \Omega$ $\mathbf{u} = \bar{\mathbf{u}} \quad \text{on } \Gamma_D$ $\boldsymbol{\sigma} \cdot \mathbf{n} = \mathbf{t} \quad \text{on } \Gamma_N$

$$\sigma = 2 \mu \varepsilon + \lambda \nabla \cdot \mathbf{u} \mathbf{1}$$
$$\varepsilon = \nabla^{s} \mathbf{u}$$
$$\lambda = \frac{\nu E}{(1 + \nu) (1 - 2\nu)}$$
$$\mu = \frac{E}{2 (1 + \nu)}$$
$$\nu \to 1/2, \quad \lambda \to \infty$$

Weak form

$$\underbrace{\int_{\Omega} \mu \, \nabla^{s} \mathbf{w} : \nabla^{s} \mathbf{u} \mathrm{d}\Omega + \int_{\Omega} \lambda \, \nabla \cdot \mathbf{w} \, \nabla \cdot \mathbf{u} \, \mathrm{d}\Omega}_{\mathbf{a}(\mathbf{w}, \mathbf{u})} = L(\mathbf{w})$$

A. Buffa (IMATI-CNR Italy)

The effect of quasi-incompressibility

Exact versus computed solution

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

25 / 35

The effect of quasi-incompressibility

Exact versus computed solution

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

26 / 35

<ロ> <同> <同> < 同> < 同>

Mixed formulation

Mixed formulation

$$\int_{\Omega} \mu \, \nabla^{s} \mathbf{w} : \nabla^{s} \mathbf{u} \mathrm{d}\Omega + \int_{\Omega} \nabla \cdot \mathbf{w} \, p \, \mathrm{d}\Omega = \mathbf{L}(\mathbf{v}) \qquad \quad \forall \mathbf{v} \in \mathbf{V}$$
$$\lambda \, \int_{\Omega} q \, \nabla \cdot \mathbf{u} \mathrm{d}\Omega - \int_{\Omega} p \, q \, \mathrm{d}\Omega = 0 \qquad \quad \forall q \in M$$

where we can solve for $p: p = \lambda \prod_{M} (\nabla \cdot \mathbf{u})$

A. Buffa (IMATI-CNR Italy)

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

Mixed formulation

Mixed formulation

$$\int_{\Omega} \mu \, \nabla^{s} \mathbf{w} : \nabla^{s} \mathbf{u} \mathrm{d}\Omega + \int_{\Omega} \nabla \cdot \mathbf{w} \, p \, \mathrm{d}\Omega = \mathbf{L}(\mathbf{v}) \qquad \quad \forall \mathbf{v} \in \mathbf{V}$$
$$\lambda \, \int_{\Omega} q \, \nabla \cdot \mathbf{u} \mathrm{d}\Omega - \int_{\Omega} p \, q \, \mathrm{d}\Omega = 0 \qquad \quad \forall q \in M$$

where we can solve for $p: p = \lambda \prod_{M} (\nabla \cdot \mathbf{u})$

Primal formulation

$$\int_{\Omega} \mu \, \nabla^{s} \mathbf{w} : \nabla^{s} \mathbf{u} \mathrm{d}\Omega + \int_{\Omega} \lambda \, \Pi_{M} (\nabla \cdot \mathbf{w}) \, \Pi_{M} (\nabla \cdot \mathbf{u}) \, \mathrm{d}\Omega = L \left(\mathbf{w} \right)$$

Unlocked solution (M "small") + incompressible (M "large")

A. Buffa (IMATI-CNR Italy)

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Mixed formulation

Mixed formulation

$$\int_{\Omega} \mu \, \nabla^{s} \mathbf{w} : \nabla^{s} \mathbf{u} \mathrm{d}\Omega + \int_{\Omega} \nabla \cdot \mathbf{w} \, p \, \mathrm{d}\Omega = \mathbf{L}(\mathbf{v}) \qquad \quad \forall \mathbf{v} \in \mathbf{V}$$
$$\lambda \, \int_{\Omega} q \, \nabla \cdot \mathbf{u} \mathrm{d}\Omega - \int_{\Omega} p \, q \, \mathrm{d}\Omega = 0 \qquad \quad \forall q \in M$$

where we can solve for p: $p = \lambda \prod_{M} (\nabla \cdot \mathbf{u})$

Primal formulation

$$\int_{\Omega} \mu \, \nabla^{s} \mathbf{w} : \nabla^{s} \mathbf{u} \mathrm{d}\Omega + \int_{\Omega} \lambda \, \Pi_{M} (\nabla \cdot \mathbf{w}) \, \Pi_{M} (\nabla \cdot \mathbf{u}) \, \mathrm{d}\Omega = L (\mathbf{w})$$

Unlocked solution (M "small") + incompressible (M "large")Sparse $(M \text{ "discontinuous" or } \Pi_M \text{ modified })$

A. Buffa (IMATI-CNR Italy)

・ロ ・ ・ ヨ ・ ・ ヨ ・ ・ ・ 日 ・ う へ つ ・

Primal formulation

$$a_{h}(\mathbf{w},\mathbf{u}) = \int_{\Omega} \mu \, \nabla^{s} \mathbf{w} : \nabla^{s} \mathbf{u} d\Omega + \int_{\Omega} \lambda \, \Pi_{M}(\nabla \cdot \mathbf{w}) \, \Pi_{M}(\nabla \cdot \mathbf{u}) \, d\Omega = L(\mathbf{w})$$

Unlocked solution (M "small") + incompressible (M "large")Sparse $(M \text{ "discontinuous" or } \Pi_M \text{ modified })$

イロト 不得 トイヨト イヨト 二日

Primal formulation

$$a_{h}(\mathbf{w},\mathbf{u}) = \int_{\Omega} \mu \, \nabla^{s} \mathbf{w} : \nabla^{s} \mathbf{u} d\Omega + \int_{\Omega} \lambda \, \Pi_{M}(\nabla \cdot \mathbf{w}) \, \Pi_{M}(\nabla \cdot \mathbf{u}) \, d\Omega = L(\mathbf{w})$$

Unlocked solution (M "small") + incompressible (M "large")Sparse $(M \text{ "discontinuous" or } \Pi_M \text{ modified })$

 $\mathbf{V} = S_{p-1}^{p}(\mathfrak{Q}_{h}), \ M = S_{-1}^{p-1}(\mathfrak{Q}_{p*h})$ (subgrid pressure).

The matrix representing $a_h(\cdot, \cdot)$ is "almost" as sparse as the one representing $a(\cdot, \cdot)$

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

$$\overline{B} \in \mathbb{S}_{-1}^{p-1} \quad \Pi_M(\mathbf{x}) = \sum_{i=1}^N \overline{B}_i(\mathbf{x}) \left[\sum_{j=1}^N \overline{M}_{ij}^{-1} \int_{\Omega} \overline{B}_j(\mathbf{x}) f(\mathbf{x}) d\Omega \right]$$

M =

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

29 / 35

æ

・ロト ・部ト ・モト ・モト

$$\overline{B} \in \mathbb{S}_{-1}^{p-1} \quad \Pi_M(\mathbf{x}) = \sum_{i=1}^N \overline{B}_i(\mathbf{x}) \left[\sum_{j=1}^N \overline{M}_{ij}^{-1} \int_{\Omega} \overline{B}_j(\mathbf{x}) f(\mathbf{x}) d\Omega \right]$$

Constraints and spline-based methods

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\overline{B} \in \mathbb{S}_{-1}^{p-1} \quad \Pi_M(\mathbf{x}) = \sum_{i=1}^N \overline{B}_i(\mathbf{x}) \left[\sum_{j=1}^N \overline{M}_{ij}^{-1} \int_{\Omega} \overline{B}_j(\mathbf{x}) f(\mathbf{x}) d\Omega \right]$$

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

29 / 35

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$\overline{B} \in S_{-1}^{p-1} \quad \Pi_{M}(\mathbf{x}) = \sum_{i=1}^{N} \overline{B}_{i}(\mathbf{x}) \left[\sum_{j=1}^{N} \overline{M}_{ij}^{-1} \int_{\Omega} \overline{B}_{j}(\mathbf{x}) f(\mathbf{x}) d\Omega \right]$$

$$\overbrace{\left(\begin{array}{c} \\ \\ \end{array}\right)}^{\overline{B}_{1}} \xrightarrow{\overline{B}_{2}} \xrightarrow{\overline{B}_{2}} \xrightarrow{\overline{B}_{3}} \xrightarrow{\overline{B}_{4}} \xrightarrow{\overline{B}_{5}} \left(\begin{array}{c} \\ \\ \end{array}\right)^{-1} \left(\begin{array}{c} \\ \end{array}\right)^{-1} \left(\begin{array}{c} \\ \end{array}\right)$$

- the proof of inf-sup when the mesh for pressure is coarse enough Bressan-Sangalli 2010
- the method is used with the richest possible pressures i.e. $S_{-1}^{p-1}(Q_{p*h})$.

A. Buffa (IMATI-CNR Italy)

M =

Constraints and spline-based methods

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ ・ りゅつ

Numerics

 $\sigma_{\scriptscriptstyle X\!X}$ for with and without subgrids :

◆□ > ◆□ > ◆豆 > ◆豆 >

æ

Numerics

dashed = reference solution with dense matrices continuous = plain primal formulation color = our solution for degree 2, 3, 4.

A. Buffa (IMATI-CNR Italy)

э

- ∢ ⊒ →

< □ > < 同 > < 三 >

Incompressibility treatment and Mortar

Isotropic linear elasticity

$$\sigma = 2 \mu \varepsilon + \lambda \nabla \cdot \mathbf{u} \mathbf{1}$$
$$\varepsilon = \nabla^{s} \mathbf{u}$$
$$\lambda = \frac{\nu E}{(1 + \nu) (1 - 2\nu)}$$
$$\mu = \frac{E}{2 (1 + \nu)}$$
$$\nu \to 1/2, \quad \lambda \to \infty$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

э

Incompressibility treatment and Mortar

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

э

・ロット 全部 マイリット キャン

Final remarks

Surveys and Codes

• New Acta Numerica survey paper with several math results:

L. Beirão Da Veiga, A. Buffa, G. Sangalli, R. Vázquez, Mathematical analysis of variational isogeometric methods

• We have two codes available to public :

- GeoPDEs library is a GNU licensed software available here: www.imati.cnr.it/geopdes
- IGATools is a C++ dimension independent library http://code.google.com/p/igatools
 S. Pauletti, M. Martinelli ...

A. Buffa (IMATI-CNR Italy)

R. Vázquez

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

THANKS!

the support of ERC StG 205004 (Buffa), 259229 (Reali), ERC CoG 616563 (Sangalli), of Total SD, Hutchinson SA, Michelin RD, EU 284981 Call FP7-2011-NMP-ICT-FoF is gratefully acknowledged

A. Buffa (IMATI-CNR Italy)

Constraints and spline-based methods

3