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The framework of applications

∇ · (u⊗ u)− ν∆u +∇ p = f
div u = 0

+ boundary conditions
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The framework of applications

σ = 2µ ε+ λ∇ · u 1
ε = ∇su
div (σ) = f

λ→∞ incompressible limit

+ boundary conditions

A. Buffa (IMATI-CNR Italy) Constraints and spline-based methods 3 / 35



The framework of applications

curl H = i ωD + J curl E = −i ωB
B = µH D = εE
div (B) = 0 div (D) = 0

+ boundary conditions
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The framework of applications

Pavia, 16.10.2012 L. De Lorenzis 

EXAMPLES - IV: large deformation, large sliding 

•  3D examples 

div (σ) = f σ = Cε(u)
div (u) = 0 g(u) ≥ 0 contact

+ boundary conditions
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Constraints and Multipliers

Find u ∈ V and p ∈ M such that:

a(u, v) + b(v , p) = 〈f , v〉 ∀u ∈ V

b(u, q)− ε(p, q) = 0 ∀q ∈ M

where the bilinear form ε(p, q) is “small” when the constraint is almost
verified as in the case of quasi-incompressible materials.

Variational framework: Galerkin methods
Find uh ∈ Vh and ph ∈ Mh such that:

ah(uh, vh) + b(vh, ph) = 〈f , v〉 ∀u ∈ Vh

b(uh, qh)− ε(ph, qh) = 0 ∀q ∈ Mh

A. Buffa (IMATI-CNR Italy) Constraints and spline-based methods 4 / 35



Constraints and Multipliers

Find u ∈ V and p ∈ M such that:

a(u, v) + b(v , p) = 〈f , v〉 ∀u ∈ V

b(u, q)− ε(p, q) = 0 ∀q ∈ M

where the bilinear form ε(p, q) is “small” when the constraint is almost
verified as in the case of quasi-incompressible materials.

Variational framework: Galerkin methods
Find uh ∈ Vh and ph ∈ Mh such that:

ah(uh, vh) + b(vh, ph) = 〈f , v〉 ∀u ∈ Vh

b(uh, qh)− ε(ph, qh) = 0 ∀q ∈ Mh

A. Buffa (IMATI-CNR Italy) Constraints and spline-based methods 4 / 35



The Galerkin method
Find uh ∈ Vh and ph ∈ Mh such that:

ah(uh, vh) + b(vh, ph) = 〈f , v〉 ∀u ∈ Vh

b(uh, qh)− ε(ph, qh) = 0 ∀q ∈ Mh

It is well known (Brezzi 1974 ...) that the stability depends upon

ah(uh, uh) ≥ ‖uh‖2
V ∀ uh ∈ Ker(Bh)

inf
ph∈Mh

sup
uh∈Vh

b(uh, ph)

‖uh‖V ‖ph‖M
≥ α > 0

There is a huge literature for finite elements!!

FEM and IGM on a toy problem 
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What happens for methods based on splines?

B-Splines are defined by the Cox-DeBoor formulae:

Ni ,0(ζ) =

{
1 if ξi ≤ ζ < ξi+1,
0 otherwise,

Ni ,p(ζ) =
ζ − ξi
ξi+p − ξi

Ni ,p−1(ζ) +
ξi+p+1 − ζ
ξi+p+1 − ξi+1

Ni+1,p−1(ζ).

F(ξ) =
∑

i CiNi ,p(ξ) :

6/18/12 

2 

B-Splines 

B-spline Basis Functions 

Ni,0 (ξ) =
1 if ξi ≤ ξ < ξi+1,
0 otherwise

⎧
⎨
⎩

Ni, p (ξ) =
ξ − ξi

ξi+ p − ξi
Ni, p−1(ξ) +

ξ i+ p+1−ξ
ξi+ p+1 − ξi+1

Ni+1, p−1(ξ)

B-spline basis functions 
of order 0, 1, 2 for a 
uniform knot vector: 
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Isogeometric methods
Thomas J.R. Hughes et al 2005 + 650 papers since then

F−−−−−−−→

The geometry Ω and its splines parametrization F is “given” by CAD
general geometry: unstructured collection of “patches”.

The discrete space on Ω is the push-forward of Splines
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General geometries are multi-patch

G(i)
G(i,k) Ω(i,k)

Ω(i)

Q(i,k)

Q

Q

Figure 5: Embedding smaller subdomains Q(i,k) into the original
parameter domain Q(i).

5.3. Substructuring and primal DOF

When we refine by substructuring, we introduce situa-
tions where the vertex of one subdomain coincides with the
edge of another subdomain. Such cases are illustrated in
Fig. 3(c) and Fig. 6(a). We call such a subdomain vertex a
hanging subdomain vertex (or short hanging vertex ). Note
that not every T-shaped subdomain vertex is a hanging
vertex, as illustrated in the example in Fig. 6(b).

Ω(1)

Ω(2)

Ω(3)

(a) Hanging subdomain vertex
marked by dashed circle.

Ω(1)

Ω(2)

Ω(3)

(b) T-shaped, but not hanging
subdomain vertex.

Figure 6: Examples for hanging and not hanging subdomain vertices.

The choice of primal DOF in substructured subdo-
mains, where we have hanging vertices, is not as straight-
forward as in the fully matching case. In the example of
a hanging vertex in Fig. 6(a), there is exactly one DOF
on Ω(2) that is associated with the hanging vertex marked
by the dashed circle (cf. the discussion at the beginning of
Section 4.3). While the same applies to Ω(3), this is not
true on Ω(1), where we have several NURBS basis functions
which are nonzero at the marked hanging vertex. Instead
of incorporating a special treatment of hanging vertices,
we choose to omit primal DOF at hanging vertices and
discuss under which conditions this is possible.

For the scalar elliptic problem (I), the kernel of the
stiffness matrix of a floating subdomain is spanned by the
constant function, i.e. the kernel has dimension one. In
this case, it is sufficient to have at least one primal DOF on
each subdomain. This is easily guaranteed, if we start from
a fully matching setting, apply substructuring by cross-
insertion as described in Section 5.2, and select primal
DOF at all subdomain vertices which are not hanging.

The example in Fig. 7(a) shows the positions of primal
DOF after two cross insertions.

(a) Cross-insertion results
in at least one primal DOF
on each subdomain.

(b) 1-level refinement re-
sults in at least two primal
DOF on each subdomain.

Figure 7: Subdomains refined by substructuring. Positions of primal
DOF marked by ©.

For the two-dimensional linearized elasticity problem
(II), where the kernel is spanned by the three rigid body
modes, we need at least two primal DOF per subdomain.
As illustrated in Fig. 7(a), this is not guaranteed if we
apply substructuring by cross-insertion without additional
considerations.

For linearized elasticity problems, we introduce refine-
ment levels and we assign refinement level 0 to every sub-
domain in the initial setting. When a subdomain is split
into four smaller subdomains by cross insertion, the levels
of the new, smaller subdomains are increased by 1 (see
Fig. 8 for an illustration). We call the refinement a 1-
level substructuring, if the refinement levels of any two
subdomains with an edge as their interface differ by at
most 1. If we start from a fully matching setting, apply
1-level substructuring by cross-insertion, and choose all
non-hanging vertices as primal DOF, then it is guaranteed
that there are at least two primal DOF on each subdo-
main. The example in Fig. 7(b) illustrates the positions
of primal DOF after two such 1-level substructuring steps.
Note that, depending on the location of the refined area, 1-
level substructuring can effect neighbouring subdomains.
This disadvantage is accepted as a trade-off for avoiding
an involved treatment of hanging vertices.

00
1 1

11

1

2

Figure 8: Refinement levels of subdomains (initial stetting as in
Fig. 3(a)).

Note that the discretization is only C0-continuous along
subdomain interfaces. By substructuring a subdomain,
new interfaces are introduced, and thereby the discretiza-
tion is changed.

5.4. Preconditioning in the presence of hanging knots

As mentioned in Section 5.1, when we have hanging
knots, the coupling matrix B(i) is not a signed Boolean

11

Globally unstructured
Locally structured

A. Cottrell
 
FOCUS K3D CONFERENCE ON SEMANTIC 3D MEDIA AND CONTENT 
February 11-12 2010, INRIA Sophia Antipolis - Méditerranée, France 
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B. Direct modeling of volumes in the IsogeometricModel 

The isogeometric representation is based on NURBS, and 
consequently elementary shapes (cylinder, sphere, cones, 
torus, …) can be represented exactly. Compositions of such 
exact elementary volumes, however, cannot in general have an 
exact representation. E.g., in the general case the intersection 
curve between two cylinders cannot be represented exactly by 
NURBS, see Figure 5. The process of producing a sufficiently 
accurate approximation of such compositions will typically 
include a number of steps to reach a description fulfilling the 
analysis requirements. Consequently the IsogeometricModel 
has to include information about model quality and tolerances, 
just as in the case of boundary structures for CAD. 

C. Creating the IsogeometricModel from a CAD-model 
As isogeometric analysis employs NURBS, it might seem 

that creating an IsogeometricModel from a CAD-model is 
simple. However, the patch structure of CAD-models reflects 
the design approach, and will most often be very different 
from the NURBS-block structure required for analysis, as 
shown in Figure 6. Consequently an isogeometric block 
structure has to be designed by only using the shape of the 
CAD-model and in most cases disregarding the CAD-model’s 
segmentation of the shape into surface elements. 

 

 

D. An example of an isogeometric data structure 
As we want to be able to build the IsogeometricModel 

starting from CAD-models, coherence with STEP-type CAD-
models is essential. Figure 7 depicts an attempt of creating 
such a structure.  

 
Remarks:  
x In the figure we have used the concept of rational 

splines to both include rational descriptions such as 
NURBS as well as the emerging Locally Refined 
Splines such as T- Splines [10],  and the LR-Splines 
currently being investigated by the authors of this 
paper. 

x The boundary structure has to be non-manifold 
following the ideas in [13], as more than two volumes 
can meet along a common edge. Consequently the data 
structure has to be much more flexible than the 
boundary structures of current CAD-systems. When 
only using the curve and surface part of the structure, 
however, one requirement should be that current CAD-

 

 
Fig. 6. The patch structure of a CAD-model from the automotive industry. It 
contains many small trimmed surfaces, and a patch structure not suited for 
the IsogeometricModel.

Solid

Shell
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Loop

Edge

Vertex
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Spline Surface
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Point
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Fig. 7. An example of an extension of the traditional surface oriented 
boundary structure to also support volumetric isogeometric analysis. 

Fig. 5. The intersection between two tubes cannot be represented by a 3D 
NURBS curve; consequently also the trivariate transition in the isogeometric 
NURBS representation will have to be approximated. To ensure that vertices 
match and fulfill the analysis requirement, the large tube has to be 
segmented into a number of subvolumes.  

V. Skytt

Question: How to enhance flexibility?
Question: Can these methods be applied in the engineering practise?
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The example in Fig. 7(a) shows the positions of primal
DOF after two cross insertions.

(a) Cross-insertion results
in at least one primal DOF
on each subdomain.

(b) 1-level refinement re-
sults in at least two primal
DOF on each subdomain.

Figure 7: Subdomains refined by substructuring. Positions of primal
DOF marked by ©.

For the two-dimensional linearized elasticity problem
(II), where the kernel is spanned by the three rigid body
modes, we need at least two primal DOF per subdomain.
As illustrated in Fig. 7(a), this is not guaranteed if we
apply substructuring by cross-insertion without additional
considerations.

For linearized elasticity problems, we introduce refine-
ment levels and we assign refinement level 0 to every sub-
domain in the initial setting. When a subdomain is split
into four smaller subdomains by cross insertion, the levels
of the new, smaller subdomains are increased by 1 (see
Fig. 8 for an illustration). We call the refinement a 1-
level substructuring, if the refinement levels of any two
subdomains with an edge as their interface differ by at
most 1. If we start from a fully matching setting, apply
1-level substructuring by cross-insertion, and choose all
non-hanging vertices as primal DOF, then it is guaranteed
that there are at least two primal DOF on each subdo-
main. The example in Fig. 7(b) illustrates the positions
of primal DOF after two such 1-level substructuring steps.
Note that, depending on the location of the refined area, 1-
level substructuring can effect neighbouring subdomains.
This disadvantage is accepted as a trade-off for avoiding
an involved treatment of hanging vertices.
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Figure 8: Refinement levels of subdomains (initial stetting as in
Fig. 3(a)).

Note that the discretization is only C0-continuous along
subdomain interfaces. By substructuring a subdomain,
new interfaces are introduced, and thereby the discretiza-
tion is changed.

5.4. Preconditioning in the presence of hanging knots

As mentioned in Section 5.1, when we have hanging
knots, the coupling matrix B(i) is not a signed Boolean
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B. Direct modeling of volumes in the IsogeometricModel 

The isogeometric representation is based on NURBS, and 
consequently elementary shapes (cylinder, sphere, cones, 
torus, …) can be represented exactly. Compositions of such 
exact elementary volumes, however, cannot in general have an 
exact representation. E.g., in the general case the intersection 
curve between two cylinders cannot be represented exactly by 
NURBS, see Figure 5. The process of producing a sufficiently 
accurate approximation of such compositions will typically 
include a number of steps to reach a description fulfilling the 
analysis requirements. Consequently the IsogeometricModel 
has to include information about model quality and tolerances, 
just as in the case of boundary structures for CAD. 

C. Creating the IsogeometricModel from a CAD-model 
As isogeometric analysis employs NURBS, it might seem 

that creating an IsogeometricModel from a CAD-model is 
simple. However, the patch structure of CAD-models reflects 
the design approach, and will most often be very different 
from the NURBS-block structure required for analysis, as 
shown in Figure 6. Consequently an isogeometric block 
structure has to be designed by only using the shape of the 
CAD-model and in most cases disregarding the CAD-model’s 
segmentation of the shape into surface elements. 

 

 

D. An example of an isogeometric data structure 
As we want to be able to build the IsogeometricModel 

starting from CAD-models, coherence with STEP-type CAD-
models is essential. Figure 7 depicts an attempt of creating 
such a structure.  

 
Remarks:  
x In the figure we have used the concept of rational 

splines to both include rational descriptions such as 
NURBS as well as the emerging Locally Refined 
Splines such as T- Splines [10],  and the LR-Splines 
currently being investigated by the authors of this 
paper. 

x The boundary structure has to be non-manifold 
following the ideas in [13], as more than two volumes 
can meet along a common edge. Consequently the data 
structure has to be much more flexible than the 
boundary structures of current CAD-systems. When 
only using the curve and surface part of the structure, 
however, one requirement should be that current CAD-

 

 
Fig. 6. The patch structure of a CAD-model from the automotive industry. It 
contains many small trimmed surfaces, and a patch structure not suited for 
the IsogeometricModel.
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Fig. 7. An example of an extension of the traditional surface oriented 
boundary structure to also support volumetric isogeometric analysis. 

Fig. 5. The intersection between two tubes cannot be represented by a 3D 
NURBS curve; consequently also the trivariate transition in the isogeometric 
NURBS representation will have to be approximated. To ensure that vertices 
match and fulfill the analysis requirement, the large tube has to be 
segmented into a number of subvolumes.  

V. Skytt

Question: How to enhance flexibility?
Question: Can these methods be applied in the engineering practise?
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General geometries are multi-patch
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Figure 5: Embedding smaller subdomains Q(i,k) into the original
parameter domain Q(i).
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Note that the discretization is only C0-continuous along
subdomain interfaces. By substructuring a subdomain,
new interfaces are introduced, and thereby the discretiza-
tion is changed.

5.4. Preconditioning in the presence of hanging knots
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Fig. 7. An example of an extension of the traditional surface oriented 
boundary structure to also support volumetric isogeometric analysis. 

Fig. 5. The intersection between two tubes cannot be represented by a 3D 
NURBS curve; consequently also the trivariate transition in the isogeometric 
NURBS representation will have to be approximated. To ensure that vertices 
match and fulfill the analysis requirement, the large tube has to be 
segmented into a number of subvolumes.  
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Three main methodologies are needed

Break tensor product structure: Hierarchical splines, T-splines, LR
splines ... [Workshop A5]

Mortar Method: gluing subdomains
with non-matching grids

a. B-spline surfaces b. T-splines

Figure 3: A gap between two B-spline surfaces, fixed with a
T-spline.

ence between adjacent triangles. For quadrilateral subdivi-
sion meshes, it is considered difficult to generate a locally
refinable crack-free tessellation [Zorin and Schröder 2000].
With T-NURCCs, local refinement away from extraordinary
points has no notion of “level.” Hence, it is possible for local
refinement to produce an edge that has one face on one side,
and any number of faces on the other side.

T-NURCCs are a modification of cubic NURSSes [Seder-
berg et al. 1998]), augmented by the local refinement capa-
bility of T-splines. T-NURCCs and cubic NURSSes are the
only subdivision surfaces that generalize non-uniform cubic
B-spline surfaces to control grids of arbitrary topology and
(equivalently) that generalize Catmull-Clark surfaces [Cat-
mull and Clark 1978] to non-uniform knot vectors. How-
ever, cubic NURSSes have complicated, non-stationary re-
finement rules whereas NURCCs have stationary refinement
rules. Furthermore, cubic NURSSes do not provide local
refinement whereas T-NURCCs do.

The literature on local control refinement of B-spline sur-
faces (a single control point can be inserted without pro-
pogating an entire row or column of control points) was
initiated by Forsey and Bartels. Their invention of Hier-
chical B-splines [Forsey and Bartels 1988] introduced two
concepts: local refinement using an efficient representation,
and multi-resolution editing. These notions extend to any re-
fineable surface such as subdivision surfaces. T-splines and
T-NURCCs involve no notion of hierarchy: all local refin-
ment is done on one control grid on a single hierarchical
“level” and all control points have similar influence on the
shape of the surface.

Hierarchical B-splines were also studied by Kraft [Kraft
1998]. He constructed a multilevel spline space which is a
linear span of tensor product B-splines on different, hierar-
chically ordered grid levels. His basic idea is to provide a
selection mechanism for B-splines which guarantees linear
independence to form a basis. CHARMS [Grinspun et al.
2002] focuses on the space of basis functions in a similar
way, but in a more general setting and hence with more ap-
plications. Weller and Hagen [Weller and Hagen 1995] stud-
ied spaces of piecewise polynomials with an irregular, locally
refinable knot structure. They considered the domain parti-
tion with knot segments and knot rays in the tensor-product
B-spline domain. Their approach is restricted to so-called
“semi-regular bases.”

Our derivations make use of polar form [Ramshaw 1989],
and we assume the reader to be conversant with polar labels
for tensor-product B-spline surfaces.

1.2 Overview

T-splines and T-NURCCs use knot intervals to convey knot
information. This is reviewed in §2.

T-splines are an enhancement of NURBS surfaces that al-
low the presence of T-junction control points. We describe

T-splines by introducing in §3 a less structured form of the
idea, that we call point-based B-splines, or PB-splines. T-
splines are then discussed in §4, and local refinement is ex-
plained in §5. The application of using T-splines for merging
two or more B-splines into a gap-free model is presented in
§6.

NURCCs are obtained by placing a restriction on the def-
inition of cubic NURSSes (introduced in [Sederberg et al.
1998]) which gives NURCCs stationary refinement rules.T-
NURCCs add to NURCCs the local refinement capability of
T-splines. This is discussed in §7.

While the notion of T-splines extends to any degree, we
restrict our discussion to cubic T-splines. Cubic T-splines
are C2 in the absence of multiple knots.

2 Knot Intervals

A knot interval is a non-negative number assigned to each
edge of a T-spline control grid for the purpose of conveying
knot information. This notion was introduced in [Sederberg
et al. 1998]. In the cubic B-spline curve shown in Figure 4,
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d0=1
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d2=2

d3=3
d4=1

d5=1
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t=9

Knot Vector = [1,2,3,4,6,9,10,11]

Figure 4: Sample cubic B-spline curve

the di values that label each edge of the control polygon are
knot intervals. Note how each knot interval is the difference
between two consecutive knots in the knot vector. For a non-
periodic curve, end-condition knot intervals are assigned to
“phantom” edges adjacent to each end of the control polygon
(in this case d−1 and d5). For all but the first and last edges
of the control polygon, the knot interval of each edge is the
parameter length of the curve segment to which the edge
maps. Any constant could be added to the knots in a knot
vector without changing the knot intervals for the curve.
Thus, if we are given the knot intervals and we wish to infer
a knot vector, we are free to choose a knot origin.

Edges of T-spline and T-NURCC control grids are like-
wise labeled with knot intervals. Since T-NURCC control
meshes are not rectangular grids, knot intervals allow us to
impose local knot coordinate systems on the surface. Fig-
ure 5.a shows a regular subgrid of a NURCC control grid.
We can impose a local knot coordinate system on this re-
gion, and therewith determine local polar labels for the con-
trol points, as follows. First, (arbitrarily) assign P00 the
local knot coordinates of (d0, e0). The local knot vectors
for this regular subgrid are then {d} = {0, d̄0, d̄1, . . .} and
{e} = {0, ē0, ē1, . . .} where

d̄i =

i∑

j=0

dj ; ēi =

i∑

j=0

ej
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Mortar Method
in the spirit of the mortar method by Bernardi, Maday and Patera ’91

Let Ω be a computational domain in Rn, we want to solve the Laplace
problem (or linear elasticity with minor changes)

−div (A∇u) = f

with boundary conditions ∂Ω = Γ̄D ∪ Γ̄N .

u = 0 on ΓD and (A∇u) · n = h on ΓN

We suppose that

Ω =
⋃N

i Ωi , Ωi = Fi (Ω̂), Γij = ∂Ωi ∩ Ωj ,

Fi are splines

non compatible meshes at the interfaces Γij
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About the admissible partition of the domain
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Figure 1: Geometrical conforming case (left) and slave conforming case (right).

Under these assumptions, we are not necessarily in a geometrically conforming135

situation, but we call it a slave conforming situation, see the right setting in

Figure 1. If we also assume that the pull-back with respect to the master domain

is a whole face of the unit d-cube, we are in a fully geometrically conforming

situation, see the left picture of Figure 1.

3.2. The variational problem140

In the following, we recall main functional analysis properties to introduce

our abstract framework and then set the variational problem.

We use standard Lebesgue and Sobolev spaces on a bounded Lipschitz do-

main D µ Rd≠1 or D µ Rd. L2(D) denotes the Lebesgue space of square

integrable functions, endowed with the norm ÎfÎL2(D) = (
s
D

|f |2 dx)1/2. For145

l œ N, H l(D) denotes the Sobolev space of functions f œ L2(D) such that their

weak derivatives up to the order l are also in L2(D). For fractional indices

s > 0, Hs(D) denotes the fractional Sobolev spaces as defined in [34]. Let us

mention that H1/2(ˆD) is the trace space of H1(D).

The Sobolev space of order one with vanishing trace is H1
0 (D) = {v œ150

H1(D), tr(v) = 0}. Working on subsets of the boundary “ µ ˆD, special

care has to be taken about the values on the boundary of “. We define by

H
1/2
00 (“) µ H1/2(“) the space of all functions that can be trivially extended

on ˆD \ “ by zero to an element of H1/2(ˆD). The dual space of H
1/2
00 (“)

is denoted H≠1/2(“). Note that on closed surfaces, i.e., “ = ˆD, it holds155
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Decomposition can be conforming or non-conforming

The interface Γij is a face of either Ωi or Ωj .

Non compatible geometries interfaces

Numerical validation: problem 1
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Fig. 9. The internal load and the boundary conditions are manufactured to
have for analytical solution

u(x,y,z) = cos(2�x)cos(2�y)sin(2�z).

Note that due to the curved interface, the normal derivative has a compli-

x

yz

Fig. 9 Meshes at refinement level one (left) and the slave domain(right) illustrating the
curved interface

cated form, but is still explicitly computable. Neumann conditions are applied
such that no cross point modification is necessary. The initial master mesh
has 8 uniform elements, while the initial slave mesh has 8 elements given by
the breakpoint vector {0,�/5,1} in each direction. In the following, we pro-
vide some numerical error studies, considering the slave integration approach
as well as the non-symmetric approach.

The obtained results are in accordance with the two-dimensional results
for both approaches. In Fig. 10, the disturbance for the slave integration
approach is shown for the P4�P4 pairing. Although not shown here, we note
that the results for the P2�P2 and P3�P3 pairing have a similar behavior.
The non-symmetric approach does not lead to reduced rates considering equal
order pairing, i.e., Mh = M0

h , on the refinement levels we considered. As
previously, using a lower order dual space, e.g., Mh =M2

h , a di�erence to the
exact integration case can be seen. See Figure 11 for the disturbance in the
primal variable of the P3�P1 pairing.
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Note that due to the curved interface, the normal derivative has a compli-

x

yz

Fig. 9 Meshes at refinement level one (left) and the slave domain(right) illustrating the
curved interface

cated form, but is still explicitly computable. Neumann conditions are applied
such that no cross point modification is necessary. The initial master mesh
has 8 uniform elements, while the initial slave mesh has 8 elements given by
the breakpoint vector {0,�/5,1} in each direction. In the following, we pro-
vide some numerical error studies, considering the slave integration approach
as well as the non-symmetric approach.

The obtained results are in accordance with the two-dimensional results
for both approaches. In Fig. 10, the disturbance for the slave integration
approach is shown for the P4�P4 pairing. Although not shown here, we note
that the results for the P2�P2 and P3�P3 pairing have a similar behavior.
The non-symmetric approach does not lead to reduced rates considering equal
order pairing, i.e., Mh = M0

h , on the refinement levels we considered. As
previously, using a lower order dual space, e.g., Mh =M2

h , a di�erence to the
exact integration case can be seen. See Figure 11 for the disturbance in the
primal variable of the P3�P1 pairing.
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Non conforming interfaces and mortaring
Let Sp(T̂j) be the space of tensor product splines of degree p, on the knot

mesh T̂j .

in each subdomain Ωj ,

Vj = {vj ∈ H1(Ωj) : v ◦ Fj ∈ Sp(T̂j)}

V = {v ∈ L2(Ω) : v|Ωj
∈ Vj , v|ΓD

= 0} ‖v‖2
V =

N∑

i=1

‖v‖2
H1(Ωj )

.

Interface numbering and spaces

Σ0 =

nI⋃

`=1

Γ` , ∀` ∃(i`, j`) : Γ` = ∂Ωi` ∩ Ωj` .

Continuity across Σ0 imposed via Lagrange multipliers:

M = {λ ∈ L2(Σ0) : λ` = λ|Γ`
∈ M`}

M` to be chosen properly!
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Variational formulation of the problem
Find uh ∈ Vh, λh ∈ Mh such that

a(uh, vh)+b(λh, vh) = R(vh) ∀vh ∈ Vh

b(µh, uh) = 0 ∀µh ∈ Mh

where

a(u, v) =
∑

i

∫

Ωi

A∇u · ∇v b(λ, v) =
∑

`

∫

Γ`

λ`[u] [u] = ui` − uj`

R(v) is the RHS taking into account also Neumann BC...

Wellposedness and approximation depends only upon the choice of
Lagrange multipliers!

M = {λ ∈ L2(Σ0) : λ` = λ|Γ`
∈ M`} ‖λ‖2

M =

nI∑

`=1

‖λ`‖2

(H
1/2
00 )′
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Choice of the Langrange multiplier space

... I want to have the largest possible set of multipliers such that
the form b(λ, v) =

∫
Γ`
λ`[u] remains uniformly stable

Favorite choice: if i` is the one side, we want M` ∼ Vi` |Γ`
!

It contraints all functions on one side !

But .. stability fails! We need:

dim(M`) ≤ dim{v ∈ Vi` |Γ`
: v |∂Γ`

= 0}

Cross point reduction (Bernardi Maday Patera 91)
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Choice of the Langrange multiplier space
Each Γ` is a face of a subdomain Ωi (the slave side)

Γ` inherits a spline mapping F` : (0, 1)d−1 → Γ`

and a parametric mesh on Γ̂ = (0, 1)d−1 denoted as T̂`.

Let us start with choices in the parametric space, and then we will map !
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Γ` inherits a spline mapping F` : (0, 1)d−1 → Γ`

and a parametric mesh on Γ̂ = (0, 1)d−1 denoted as T̂`.

Let us start with choices in the parametric space, and then we will map !

Choice 1: same degree, cross point reduction

M̂1
` = S̃p(T̂`)

0 h 2h 3h

−1

0

1

2

B̃
2 i

ζ
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Choice of the Langrange multiplier space
Each Γ` is a face of a subdomain Ωi (the slave side)

Γ` inherits a spline mapping F` : (0, 1)d−1 → Γ`

and a parametric mesh on Γ̂ = (0, 1)d−1 denoted as T̂`.

Let us start with choices in the parametric space, and then we will map !

Choice 2: degree reduction

M̂2
` = Sp−2(T̂`)

Indeed, it is true that

dim(M̂2
` ) = {v̂ ∈ Sp(T̂i`)|Γ`

: v̂ |∂Γ`
= 0}

No need for degree reduction or other manipulation

If stable, it will deliver a slightly suboptimal order : 1/2 suboptimal
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Stability: Proof of the inf-sup condition
the p/p − 2 case

We consider M̂2
` and can prove that:

inf
µ̂∈Sp−2

sup
v̂∈Sp∩H1

0

∫
Γ̂
µ̂ v̂

‖v̂‖L2‖µ̂‖L2

≥ α0

Proof
In 2D:

Sp ∩ H1
0

∂x−→ Sp−1 ∩ L2
0

∂x−→ Sp−2 is exact

choose v̂ ∈ Sp ∩ H1
0 such that ∂2

xx v̂ = µ̂ and the work with Sobolev
norms.

In 3D, basically the same applies...

It is stable! ... we need now to go to physical space
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Stability in the physical space
the p/p − 2 case

inf
µ̂∈Sp−2

sup
v̂∈Sp∩H1

0

∫
Γ̂
µ̂ v̂

‖v̂‖L2‖µ̂‖L2

≥ α0

inf
µ∈M`

sup
v∈Vi`

:v∈H1
0 (Γ`)

∫
Γ`
µ v

‖v‖L2‖µ‖L2

≥ α0

∫
Γ`
µ v =

∫
Γ̂
ρ µ̂ v̂ ρ = weight, area change..

and by super-convergence results à la Wahlbin:

Π : L2(Γ̂)→ M̂2
` ⇒ ‖ρµ̂− Π(ρµ̂)‖

L2(Γ̂)
≤ Ch‖µ̂‖

L2(Γ̂)

For h small enough the stability holds in physical space!
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Back to our variational problem
Find uh ∈ Vh, λh ∈ Mh such that

a(uh, vh)+b(λh, vh) = R(vh) ∀vh ∈ Vh

b(µh, uh) = 0 ∀µh ∈ Mh

It is well-posed and verifies the following error estimate: if u ∈ H r (Ω):

‖u − uh‖V ≤ C inf
vh∈V

‖u − vh‖V + inf
µh∈M

‖λ− µh‖M (1)

≤ Cht + Chs t = min{p, r − 1} (2)

s = min{p + 1/2, r − 1} for Choice 1: same degree,

s = min{p − 1/2, r − 1} for Choice 2: degree reduction

Or, indeed:

‖u − uh‖V ≤ C inf
vh∈V∩Ker(B)

‖u − vh‖V ≤ C ...
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Numerical validation: problem 1
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Fig. 9. The internal load and the boundary conditions are manufactured to
have for analytical solution

u(x,y,z) = cos(2fix)cos(2fiy)sin(2fiz).

Note that due to the curved interface, the normal derivative has a compli-

x

yz

Fig. 9 Meshes at refinement level one (left) and the slave domain(right) illustrating the
curved interface

cated form, but is still explicitly computable. Neumann conditions are applied
such that no cross point modification is necessary. The initial master mesh
has 8 uniform elements, while the initial slave mesh has 8 elements given by
the breakpoint vector {0,fi/5,1} in each direction. In the following, we pro-
vide some numerical error studies, considering the slave integration approach
as well as the non-symmetric approach.

The obtained results are in accordance with the two-dimensional results
for both approaches. In Fig. 10, the disturbance for the slave integration
approach is shown for the P4≠P4 pairing. Although not shown here, we note
that the results for the P2≠P2 and P3≠P3 pairing have a similar behavior.
The non-symmetric approach does not lead to reduced rates considering equal
order pairing, i.e., Mh = M0

h , on the refinement levels we considered. As
previously, using a lower order dual space, e.g., Mh =M2

h , a di�erence to the
exact integration case can be seen. See Figure 11 for the disturbance in the
primal variable of the P3≠P1 pairing.
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Numerical validation: problem 1
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Multipliers’ degree does not affect the order for the primal unknown!
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Numerical validation: problem 1
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but it affects the convergence of the multiplier!
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Numerical validation: problem 2
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Numerical validation: problem 2
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1/6 + 1/2 = 2/3
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Treatment of incompressibility
Linear elasticity

Strong form problem

∇ · σ + f = 0 inΩ

u = ū on ΓD

σ · n = t on ΓN

Isotropic linear elasticity

σ = 2µ ε+ λ∇ · u 1

ε = ∇su

λ =
ν E

(1 + ν) (1− 2 ν)

µ =
E

2 (1 + ν)

ν → 1/2, λ→∞

Weak form
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The effect of quasi-incompressibility
Exact versus computed solution
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The effect of quasi-incompressibility
Exact versus computed solution
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Mixed formulation

Mixed formulation

∫

Ω
µ∇sw : ∇sudΩ +

∫

Ω
∇ ·w p dΩ = L(v) ∀v ∈ V

λ

∫

Ω
q∇ · udΩ−

∫

Ω
p q dΩ = 0 ∀q ∈ M

where we can solve for p: p = λΠM(∇ · u)

Primal formulation

∫

Ω
µ∇sw : ∇sudΩ +

∫

Ω
λΠM(∇ ·w) ΠM(∇ · u) dΩ = L (w)

Unlocked solution (M “small”) + incompressible (M “large”)
Sparse (M “discontinuous” or ΠM modified )
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Choice of multipliers

Primal formulation

ah(w,u) =
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∫

Ω
λΠM(∇ ·w) ΠM(∇ · u) dΩ = L (w)

Unlocked solution (M “small”) + incompressible (M “large”)
Sparse (M “discontinuous” or ΠM modified )

u,w ∈

New possible solutions
Discontinuous subgrid B̄

Discontinuous subgrid B̄

a (w, u) =

Z

⌦
µrsw : rsud⌦ +

Z
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�⇡ (r · w) ⇡ (r · u) d⌦

B 2 Si�1
�1 ⇡(f)(x) =
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V = Sp

p−1(Qh), M = Sp−1
−1 (Qp∗h) (subgrid pressure).

The matrix representing ah(·, ·) is “almost” as sparse as the one
representing a(·, ·)
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Choice of multipliers

B ∈ S
p−1
−1 ΠM(x) =

N∑

i=1

B i (x)




N∑
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M
−1
ij
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M =

the proof of inf-sup when the mesh for pressure is coarse enough
Bressan-Sangalli 2010

the method is used with the richest possible pressures i.e. Sp−1
−1 (Qp∗h).
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In this work, we propose an isogeometric method for solving the linear nearly-
incompressible elasticity problem. The method is similar to the B̄ formulation [4] where the
volumetric strain is projected on a lower degree spline space in order to prevent volumetric
locking. In our method, we adopt a local projection onto macro-elements, that are chosen
in order to guarantee optimal convergence. Moreover the locality of the projector allow
to maintain the sparsity of the stiffness matrix, that is, the efficiency of the method. The
analysis of the method is based on the inf-sup stability of the associated mixed formulation
via a macro-element technique for spline functions. The numerical tests confirm the theory
of the method.

Introduction

The elastic behaviour of a body in a space domain Ω ⊂ R� (for � ∈ [1� 2� 3]), is governed
by the weak mixed problem: given � : Ω → R�, � : ΓN → R� and � : ΓD → R�, where
Γ = ∂Ω, ΓN ∪ ΓD = Γ and ΓN ∩ ΓD = ∅, find � ∈ � and � ∈ � such that

�
Ω µ ∇��̃ : ∇��dΩ +

�
Ω ∇ · �̃ � dΩ =

L(�̃)� �� ��
Ω �̃ · � dΩ +

�
ΓN

�̃ · � dΓ ∀�̃ ∈ �0 (1a)
�

Ω ∇ · � �̃ dΩ = λ−1
�

Ω � �̃ dΩ ∀�̃ ∈ � (1b)

where � = {��}, for � = 1� � � � � �, being �� = ��� | �� ∈ H1(Ω)� ��|ΓD = ��
�; �0 = ��0��

�,
with �0�� = ��̃� | �̃� ∈ H1(Ω)� �̃�|ΓD = 0�; and � = {� ∈ L2(Ω)}. ��, �̃� and �� are the �-th
components of the vectorial quantities �, �̃ and �, respectively, being � = 1� � � � � �.
λ is the first Lamé parameter that is λ = (ν E) / (1 + ν) (1 − 2 ν), where E and ν are the
Young and Poisson coefficients. In a mixed form, the stress for linear isotropic materials
can be expressed as σ = 2 µ ∇�� + � 1. For quasi–incompressible materials the Poisson
ratio ν → 1/2 and consequently λ → ∞, that leads to a locking problem.

Variational mixed problem

We construct now a discretization of the mixed problem (1). For that purpose, we introduce
the NURBS space N�(Ξ� ω), being Ξ = (Ξ1� � � � �Ξ�) the cartesian grid of the domain Ω,
where Ξ� is the open knot vector in the �-th direction; � is the degree; and ω is the
denominator of the rational functions, built as linear combination of spline functions and
their associated weights. We refer the reader to [3] for all details.
Given Ξ, refinement may be applied and generate a family of meshes that we call Ξ�. We
need to consider two open knot vectors generated from Ξ�: one will be used to discretize
the displacement and the other to discretize the pressure.
• The refined knot vectors Ξ�� (� stands for refined) are

obtained from Ξ� subdividing each knot span in � ele-
ments per direction, by inserting � − 1 single knots in
each non-empty knot span (� = � in the right picture).

• Ξ�� (� stands for multiple) are obtained from Ξ� by
repeating all internal knots � times in each space di-
rection.

[0 0 0 0 1/6 2/6 3/6 4/6 5/6 1 1 1 1]

[0 0 0 3/6 1 1 1]

[0 0 0 3/6 3/6 3/6 1 1 1]

Ξ�� =
Ξ =

Ξ�� =
Considering the NURBS parametrization F : �Ω → Ω (being �Ω = (0� 1)�) and the two
meshes introduced above, we set the discrete spaces

�� = {� ∈ H1(Ω)� : �|Ω ◦ F ∈ N�(Ξ��� ω) �|ΓD = h} (2)
�0�� = {� ∈ H1(Ω)� : �|Ω ◦ F ∈ N�(Ξ��� ω) �|ΓD = 0} (3)
�� = {� ∈ L2(Ω) : �|Ω ◦ F ∈ S�−1(Ξ�� )} (4)

where we denote by S�−1(Ξ�� ) the space of splines defined over Ξ�� and of degree � − 1.
Based on these spaces the discretization of the mixed problem (1) is constructed as: find
�� ∈ �� and �� ∈ �� such that:

�
Ω µ ∇��̃� : ∇���dΩ +

�
Ω ∇ · �̃� �� dΩ = L(�̃�) ∀�̃� ∈ �0�� (5a)�
Ω ∇ · �� �̃� dΩ = λ−1

�
Ω �� �̃� dΩ ∀�̃� ∈ ��� (5b)

This problem can either be solved in mixed form, or the pressure variable can be eliminated.
Indeed, from (5b), denoting by π : L2(Ω) → �� the L2 projector onto the space of splines
��, we can compute the pressure �� as �� = λ π(∇ · ��) and, replacing in (5a), we obtain
the following problem: find �� ∈ �� such that

�
Ω µ ∇��̃� : ∇���dΩ +

�
Ω λ π(∇ · �̃�) π(∇ · ��) dΩ = L(�̃�) ∀ �̃� ∈ �0�� (6)

Being � the ratio of the number of intervals of Ξ�� and Ξ�� in each direction, it can be
proved that for � ≥ � + 1 the mixed formulation (5a)–(5b) is inf-sup stable and optimal
(see [1, 2]). The same hold then for (6).

Discretization

The second addend of the left hand side of (6) can be expressed in index notation as
(implicit summation applies):

�
Ω λ π(∇ · �̃�) π(∇ · ��) dΩ =

�
Ω ∇ · �̃�B��p−1dΩ M−1���p−1

�
Ω B��p−1∇ · ��dΩ � (7)

being B��p−1 the spline functions associated to the space ��. The components of M are
computed as: M���p−1 = �

Ω λ B��p−1 B��p−1dΩ �
Due to the choice of the space ��, M is a block diagonal matrix, which leads to two
important properties:
• It is easily invertible, in addition the size of the block is small compared to the

dimension of the space.
• Preserves the sparse structure of the stiffness matrix.

Matrix form of the problem
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The proposed formulation is tested nu-
merically in the case of an infinite plate
with a circular hole under tension [5].
The relative errors in the L2 norm of
the displacement � and the stress σ are
shown in the plots below. The results
of the proposed formulation (��/��) for
� = � + 1 are compared to the stan-
dard formulation (��), for which no treat-
ment of the locking is perform, and the B
method [4]. As expected from the theory,
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this choice converges optimally in
both errors. On the left side, the dis-
tribution of the component σ�� can
be seen for the proposed formulation
(left) and the standard one (right).
The spurious oscillations (visible in
the norm of σ ) caused by the locking
phenomenon vanished for the pro-
posed method.

Test case: infinite plate with hole problem

• A new formulation for quasi-incompressible problems is proposed. It is based on the use
of a discontinuous pressure space of a lower degree, defined over a coarser mesh with
respect to the displacement mesh. The pressure degrees of freedom can be eliminated.

• For a ratio � ≥ �+1 between the number of elements on the displacement and pressure
grids the method can be proved to be optimal and inf-sup stable.

• The stiffness matrix of the formulation is sparse and computationally cheap.

Conclusions
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In this work, we propose an isogeometric method for solving the linear nearly-
incompressible elasticity problem. The method is similar to the B̄ formulation [4] where the
volumetric strain is projected on a lower degree spline space in order to prevent volumetric
locking. In our method, we adopt a local projection onto macro-elements, that are chosen
in order to guarantee optimal convergence. Moreover the locality of the projector allow
to maintain the sparsity of the stiffness matrix, that is, the efficiency of the method. The
analysis of the method is based on the inf-sup stability of the associated mixed formulation
via a macro-element technique for spline functions. The numerical tests confirm the theory
of the method.

Introduction

The elastic behaviour of a body in a space domain Ω ⊂ R� (for � ∈ [1� 2� 3]), is governed
by the weak mixed problem: given � : Ω → R�, � : ΓN → R� and � : ΓD → R�, where
Γ = ∂Ω, ΓN ∪ ΓD = Γ and ΓN ∩ ΓD = ∅, find � ∈ � and � ∈ � such that

�
Ω µ ∇��̃ : ∇��dΩ +

�
Ω ∇ · �̃ � dΩ =

L(�̃)� �� ��
Ω �̃ · � dΩ +

�
ΓN

�̃ · � dΓ ∀�̃ ∈ �0 (1a)
�

Ω ∇ · � �̃ dΩ = λ−1
�

Ω � �̃ dΩ ∀�̃ ∈ � (1b)

where � = {��}, for � = 1� � � � � �, being �� = ��� | �� ∈ H1(Ω)� ��|ΓD = ��
�; �0 = ��0��

�,
with �0�� = ��̃� | �̃� ∈ H1(Ω)� �̃�|ΓD = 0�; and � = {� ∈ L2(Ω)}. ��, �̃� and �� are the �-th
components of the vectorial quantities �, �̃ and �, respectively, being � = 1� � � � � �.
λ is the first Lamé parameter that is λ = (ν E) / (1 + ν) (1 − 2 ν), where E and ν are the
Young and Poisson coefficients. In a mixed form, the stress for linear isotropic materials
can be expressed as σ = 2 µ ∇�� + � 1. For quasi–incompressible materials the Poisson
ratio ν → 1/2 and consequently λ → ∞, that leads to a locking problem.

Variational mixed problem

We construct now a discretization of the mixed problem (1). For that purpose, we introduce
the NURBS space N�(Ξ� ω), being Ξ = (Ξ1� � � � �Ξ�) the cartesian grid of the domain Ω,
where Ξ� is the open knot vector in the �-th direction; � is the degree; and ω is the
denominator of the rational functions, built as linear combination of spline functions and
their associated weights. We refer the reader to [3] for all details.
Given Ξ, refinement may be applied and generate a family of meshes that we call Ξ�. We
need to consider two open knot vectors generated from Ξ�: one will be used to discretize
the displacement and the other to discretize the pressure.
• The refined knot vectors Ξ�� (� stands for refined) are

obtained from Ξ� subdividing each knot span in � ele-
ments per direction, by inserting � − 1 single knots in
each non-empty knot span (� = � in the right picture).

• Ξ�� (� stands for multiple) are obtained from Ξ� by
repeating all internal knots � times in each space di-
rection.

[0 0 0 0 1/6 2/6 3/6 4/6 5/6 1 1 1 1]

[0 0 0 3/6 1 1 1]

[0 0 0 3/6 3/6 3/6 1 1 1]

Ξ�� =
Ξ =

Ξ�� =
Considering the NURBS parametrization F : �Ω → Ω (being �Ω = (0� 1)�) and the two
meshes introduced above, we set the discrete spaces

�� = {� ∈ H1(Ω)� : �|Ω ◦ F ∈ N�(Ξ��� ω) �|ΓD = h} (2)
�0�� = {� ∈ H1(Ω)� : �|Ω ◦ F ∈ N�(Ξ��� ω) �|ΓD = 0} (3)
�� = {� ∈ L2(Ω) : �|Ω ◦ F ∈ S�−1(Ξ�� )} (4)

where we denote by S�−1(Ξ�� ) the space of splines defined over Ξ�� and of degree � − 1.
Based on these spaces the discretization of the mixed problem (1) is constructed as: find
�� ∈ �� and �� ∈ �� such that:

�
Ω µ ∇��̃� : ∇���dΩ +

�
Ω ∇ · �̃� �� dΩ = L(�̃�) ∀�̃� ∈ �0�� (5a)�
Ω ∇ · �� �̃� dΩ = λ−1

�
Ω �� �̃� dΩ ∀�̃� ∈ ��� (5b)

This problem can either be solved in mixed form, or the pressure variable can be eliminated.
Indeed, from (5b), denoting by π : L2(Ω) → �� the L2 projector onto the space of splines
��, we can compute the pressure �� as �� = λ π(∇ · ��) and, replacing in (5a), we obtain
the following problem: find �� ∈ �� such that

�
Ω µ ∇��̃� : ∇���dΩ +

�
Ω λ π(∇ · �̃�) π(∇ · ��) dΩ = L(�̃�) ∀ �̃� ∈ �0�� (6)

Being � the ratio of the number of intervals of Ξ�� and Ξ�� in each direction, it can be
proved that for � ≥ � + 1 the mixed formulation (5a)–(5b) is inf-sup stable and optimal
(see [1, 2]). The same hold then for (6).

Discretization

The second addend of the left hand side of (6) can be expressed in index notation as
(implicit summation applies):

�
Ω λ π(∇ · �̃�) π(∇ · ��) dΩ =

�
Ω ∇ · �̃�B��p−1dΩ M−1���p−1

�
Ω B��p−1∇ · ��dΩ � (7)

being B��p−1 the spline functions associated to the space ��. The components of M are
computed as: M���p−1 = �

Ω λ B��p−1 B��p−1dΩ �
Due to the choice of the space ��, M is a block diagonal matrix, which leads to two
important properties:
• It is easily invertible, in addition the size of the block is small compared to the

dimension of the space.
• Preserves the sparse structure of the stiffness matrix.

Matrix form of the problem

�
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The proposed formulation is tested nu-
merically in the case of an infinite plate
with a circular hole under tension [5].
The relative errors in the L2 norm of
the displacement � and the stress σ are
shown in the plots below. The results
of the proposed formulation (��/��) for
� = � + 1 are compared to the stan-
dard formulation (��), for which no treat-
ment of the locking is perform, and the B
method [4]. As expected from the theory,
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this choice converges optimally in
both errors. On the left side, the dis-
tribution of the component σ�� can
be seen for the proposed formulation
(left) and the standard one (right).
The spurious oscillations (visible in
the norm of σ ) caused by the locking
phenomenon vanished for the pro-
posed method.

Test case: infinite plate with hole problem

• A new formulation for quasi-incompressible problems is proposed. It is based on the use
of a discontinuous pressure space of a lower degree, defined over a coarser mesh with
respect to the displacement mesh. The pressure degrees of freedom can be eliminated.

• For a ratio � ≥ �+1 between the number of elements on the displacement and pressure
grids the method can be proved to be optimal and inf-sup stable.

• The stiffness matrix of the formulation is sparse and computationally cheap.

Conclusions
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dashed = reference solution with dense matrices
continuous = plain primal formulation
color = our solution for degree 2, 3, 4.
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Incompressibility treatment and Mortar

Isotropic linear elasticity

σ = 2µ ε+ λ∇ · u 1

ε = ∇su

λ =
ν E

(1 + ν) (1− 2 ν)

µ =
E

2 (1 + ν)

ν → 1/2, λ→∞
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Incompressibility treatment and Mortar

Mortar Mortar + Subgrid
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Final remarks

Surveys and Codes

New Acta Numerica survey paper with several math results:

L. Beirão Da Veiga, A. Buffa, G. Sangalli, R. Vázquez,
Mathematical analysis of variational isogeometric methods

We have two codes available to public :
I GeoPDEs library is a GNU licensed software available here:

www.imati.cnr.it/geopdes R. Vázquez
I IGATools is a C++ dimension independent library

http://code.google.com/p/igatools S. Pauletti, M. Martinelli ...

igatools : A Novel
Dimension-Independent Isogeometric C++11

Library

P. Antoĺın 1, A. Bu↵a 2, N. Cavallini 1, M. Martinelli 2, M. S.
Pauleti 3, G. Sangalli 1 2

igatools

1Università degli Studi di Pavia, Italy

2IMATI, CNR, Italy

3IMAL, CONICET, Argentina

Austin, January 9th 2014

http://code.google.com/p/igatools igatools : Dim-Independent Isogeometric C++11 Library
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