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Outline
Theme of the Talk
Combinatorial algebraic geometry is an emerging area of algebraic
geometry. This lecture is my attempt to give you a sense of the field.
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1. On the Edge 1.1. Quantum Computing

A Quantum Computer

Here is a diagram from a D-Wave adiabatic quantum computer:
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1. On the Edge 1.1. Quantum Computing

Polytopes are Involved

A Polytope
The complete bipartite graph Kn,n has vertices q1, . . . ,q2n and edges
qiqj , i = 1, . . . ,n, j = n + 1, . . . ,2n. Consider the 22n points

(q1, ...,q2n,q1qn+1, ...,qnq2n) ∈ R2n+n2
= Rn(n+2)

as q1, . . . ,q2n independently range over {0,1}. The convex hull of
these points is a polytope with 22n vertices.

When n = 4, each facet of this polytope gives an Ising model that can
be implemented on the D-Wave computer. The idea is to sample from
states associated to the Ising model and check if the states returned
are ground states of roughly comparble probability.

How Many Facets?
36,391,264, as computed by Mathieu Dutour
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1. On the Edge 1.1. Quantum Computing

A (Slight) Toric Connection

Toric Varieties
These are algebraic varieties with strong connections to lattice
polytopes and polyehdral fans. Toric geometry is an important part of
combinatorial algebraic geometry.

Denny Dahl, a physicist at D-Wave, knew about toric varieties from the
book I wrote with John Little and Hal Schenck. So he asked me about
these polytopes. With help from Greg Smith, I was able to connect
Denny with people like Mathieu Dutour, Komei Fukuda and David Avis.

Email from Denny Dahl to David Avis
Our most pressing problem concerns how to construct facets of
similar systems in a way that captures logical constraints arising
from combinatorial optimization problems.
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1. On the Edge 1.2. A Secant Variety

An Interesting Secant Variety
The d-th Veronese map vd : Pn → PN−1 is the projective
embedding given by all N =

(n+d
n

)
monomials of degree d .

The k -th secant variety of vd (Pn) ⊆ PN−1, denoted σk (vd (Pn)), is
the Zariski closure of the union of all (k−1)-planes formed by k
points of vd (Pn).
In 1995, Alexander and Hirschowitz computed the codimension of
σk (vd (Pn)) in PN−1.

σ7(v3(P4)) ⊆ P34

This secant variety has codimension 1 and degree 15, so it is given by
a single equation of degree 15. There are(

34+15
15

)
= 1,575,580,702,584

monomials of degree 15 in 35 variables.
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1. On the Edge 1.2. A Secant Variety

16,051 Formulas

In 2009, Ottaviani showed the defining equation F = 0 of
σ7(v3(P4)) ⊆ P34 is SL5-invariant, so the number of monomials
reduces to

317,881,154

He also showed that F 3 is the determinant of a 45× 45 determinant
with linear entries.

A Recent Preprint
16,051 formulas for Ottaviani’s invariant of cubic threefolds by
Abdesselam, Ikenmeyer and Royle gives many descriptions of F .
They use certain bipartite graphs to encode the information needed
to compute the polynomial F .
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1. On the Edge 1.2. A Secant Variety

The Bipartite Graph

The Veronese map v3 : P4 → P34 uses the 35 monomials
yα = xα = xa1

1 · · · x
a5
5 with |α| = 3. Fix a bipartite graph

15 vertices, all degree 3

9 vertices, all degree 5

with oriented edges on the bottom. Color the edges using 1, . . . ,5. A
vertex • with edges colored i1, i2, i3 gives xα(•) = xi1xi2xi3 , hence a
coordinate yα(•). A vertex • with edges colored i1, i2, i3, i4, i5 gives

ε(•) =

{
0 ij not distinct
±1 ij distinct
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1. On the Edge 1.2. A Secant Variety

The Formula

Then a 5-coloring of the edges gives a term of degree 15∏
9 •

ε(•) ·
∏
15 •

yα(•)

The sum of these terms for all 5-colorings of the edges gives a
polynomial F of degree 15 in the 35 variables yα.

Theorem (Abdesselam, Ikenmeyer and Royle)
Fix a bipartite graph as above with no 7-coloring of the vertices and
F 6= 0. Then:

F = 0 is the defining equation of σ7(v3(P4)).
There are 16,051 such bipartite graphs.

David A. Cox (Amherst College) Combinatorial Algebraic Geometry FoCM’14, Montevideo 9 / 24



1. On the Edge 1.2. A Secant Variety

The Formula

Then a 5-coloring of the edges gives a term of degree 15∏
9 •

ε(•) ·
∏
15 •

yα(•)

The sum of these terms for all 5-colorings of the edges gives a
polynomial F of degree 15 in the 35 variables yα.

Theorem (Abdesselam, Ikenmeyer and Royle)
Fix a bipartite graph as above with no 7-coloring of the vertices and
F 6= 0. Then:

F = 0 is the defining equation of σ7(v3(P4)).
There are 16,051 such bipartite graphs.

David A. Cox (Amherst College) Combinatorial Algebraic Geometry FoCM’14, Montevideo 9 / 24



1. On the Edge 1.2. A Secant Variety

The Formula

Then a 5-coloring of the edges gives a term of degree 15∏
9 •

ε(•) ·
∏
15 •

yα(•)

The sum of these terms for all 5-colorings of the edges gives a
polynomial F of degree 15 in the 35 variables yα.

Theorem (Abdesselam, Ikenmeyer and Royle)
Fix a bipartite graph as above with no 7-coloring of the vertices and
F 6= 0. Then:

F = 0 is the defining equation of σ7(v3(P4)).
There are 16,051 such bipartite graphs.

David A. Cox (Amherst College) Combinatorial Algebraic Geometry FoCM’14, Montevideo 9 / 24



1. On the Edge 1.2. A Secant Variety

Final Comments

Question

σ7(v3(P4)) is combinatorial (it is a secant variety of the toric variety of
the polytope 3∆4). The same is true for the bipartite graphs used to
create the defining equation F = 0. How are these related?

Two Remarks:
For a parametrized hypersurface, methods from tropical geometry
can be used to describe the Newton polytope (i.e., exponent
vectors) of the defining equation.
The methods used by Abdesselam, Ikenmeyer and Royle involve
the representation theory of SL5. The bipartite graphs encode
contractions of tensors from

⊗45 C5 to
⊗15(Sym3(C5)).
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2. Closer to the Center 2.1. Strand Symmetric Model

The Strand Symmetric Model

The SSM
This phylogenetic model encodes the symmetry of the double-
stranded structure of DNA.

Let the phylogenetic tree be the complete bipartite graph K1,3
(a claw /|\). Each of the three edges has four Fourier coordinates. This
gives coordinates x i

j , yk
l , zm

n for i , j , k , l ,m,n ∈ {0,1}.

The Parametrization
The SSM model is parametrized by

qikm
jln = x i

0jy
k
0lz

m
0n + x i

1jy
k
1lz

m
1n

for all i , j , k , l ,m,n ∈ {0,1} with i + k + m ≡ 0 mod 2.
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2. Closer to the Center 2.1. Strand Symmetric Model

Translate to Algebraic Geometry

The x i
j , yk

l , zm
n are homogenoeous coordinates on 3 copies of P3, and

P3 × P3 × P3 −→ P63, (x i
j , y

k
l , z

m
n ) 7−→ (x i

j y
k
l zm

n )

is the Segre map (the toric variety of ∆3 ×∆3 ×∆3). Then

(1) qikm
jln = x i

0jy
k
0lz

m
0n + x i

1jy
k
1lz

m
1n

parametrizes the secant variety of the Segre variety of (P3)3.

The SSM
The SSM uses (1) for the 32 coordinates that satisfy the congruence
i + k + m ≡ 0 mod 2. Thus the SSM is a coordinate projection of the
secant variety of Segre variety of (P3)3!
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2. Closer to the Center 2.1. Strand Symmetric Model

The SSM Claw Equations

The SSM claw variety lives in P31 and has the parametrization

qikm
jln = x i

0jy
k
0lz

m
0n + x i

1jy
k
1lz

m
1n, i + k + m ≡ 0 mod 2.

Well-know Gröbner basis algorithms will compute the defining
equations of this variety. However, the time required for the
computation would be enormous.

Casanellas and Sullivant, 2005: Found 32 degree 3 equations and
18 degree 4 equations that vanish on the SSM claw model. Do
these equations define the variety?
Long and Sullivant, October 2014: Proved that these 50 equations
define the variety. The proof uses a mix of computational and
theoretical methods.
A key element of the proof is tropical geometry (based on work of
Draisma), which is used to compute the dimension of the SSM
claw variety.
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2. Closer to the Center 2.2. Likelihood Geometry

Likelihood Geometry

In June 2013, Bernd Sturmfels lectured on Likelihood Geometry at the
CIME-CIRM summer course on Combinatorial Algebraic Geometry.
The lecture notes, written with June Huh, are available on arXiv.

From the Abstract
We study the critical points of monomial functions over an algebraic
subset of the probability simplex. The number of critical points on the
Zariski closure is a topological invariant of that embedded projective
variety, known as its maximum likelihood degree.

We present an introduction to this theory and its statistical motivations.
Many favorite objects from combinatorial algebraic geometry are
featured: toric varieties, A-discriminants, hyperplane arrangements,
Grassmannians, and determinantal varieties. Several new results are
included, especially on the likelihood correspondence and its bidegree.
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3. Moduli and Tropical Geometry 3.1 A Classical Moduli Space

M0,n and M0,n

M0,n

M0,n is the moduli space of rational curves with n ≥ 3 marked points.
This is an irreducible variety of dimension n − 3. It is not compact.

We compactify M0,n using the following curves:

Stable Curves of Genus 0 with n Marked Points

Such a curve consists of a tree of P1’s such that
No three P1’s intersect.
When two P1’s meet, they intersect transversely.
For each P1, the number of marked points plus the number of
intersection points is ≥ 3

This gives the compact moduli space M0,n. The boundary M0,n \M0,n
has a wonderful combinatorial stratification.
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3. Moduli and Tropical Geometry 3.1 A Classical Moduli Space

Two Examples when n = 6

Here are two genus 0 stable curves with n = 6, together with their dual
graphs:

dual to

dual to

1

2

3

6

5

4

1

2

3

4

5

6

1

2

3 4

5

6

1 3

2

5

4 6
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3. Moduli and Tropical Geometry 3.2 The Tree Connection

Metric Trees and a Fan

Consider a tree with n labeled leaves and internal vertices have degree
≥ 3. Edges are ends if connected to a leaf and bounded otherwise.

Metric Trees
In a metric tree C, the n ends have length∞ and bounded edges have
length in R>0. T trop

0,n is the set of such trees up to isomorphism.

Let C be a metric tree. Given leaves i , j , let

dij = distance between vertices adjacent to i , j .

Then C gives a point (dij) ∈ R(n
2)/L, L = {(xi + xj) : (x1, . . . , xn) ∈ Rn}.

T trop
0,n is a Fan

Via the map C 7→ (dij), we can regard T trop
0,n as a fan ∆ in R(n

2)/L. Each
cone of ∆ consists of combinatorially equivalent trees.
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3. Moduli and Tropical Geometry 3.2 The Tree Connection

Constructing M0,n

The fan ∆ in R(n
2)/L ' R(n

2)−n gives the toric variety X∆ with torus

(C∗)(n
2)−n ⊆ X∆.

Torus orbits stratify X∆ and correspond to cones of ∆.

Theorem (Gibney-Maclagan)

There is an embedding M0,n ⊆ (C∗)(n
2)−n such that:

1 M0,n is the Zariski closure of M0,n in X∆.
2 The stratification of M0,n \M0,n is induced by the torus orbit

stratification of X∆.

Furthermore, if a stratum Y ⊆ M0,n \M0,n is induced by the torus orbit
corresponding to σ ∈ ∆, then:

C ∈ Y ⇒ trees ∈ σ are combinatorially equivalent to dual graph of C.
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3. Moduli and Tropical Geometry 3.2 The Tree Connection

Consequences

The toric variety X∆ has global coordinates determined by rays of the
fan ∆. Using these coordinates, Gibney and Maclagan give explicit
equations for M0,n ⊆ X∆.

However, there are lots of variables since

variables←→ rays of ∆←→ graphs

Taking labels into account, there are 2n−1 − n − 1 variables.

One can also work locally, since X∆ is covered by affine toric varieties
Uσ for σ ∈ ∆ a maximal cone. However,

maximal cones of ∆←→ phylogenetic trees

Taking labels into account, there are

(2n − 5)!! = (2n − 5)(2n − 3) · · · 5 · 3 · 1 maximal cones.
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3. Moduli and Tropical Geometry 3.3 The Tropical Connection

Tropical Geometry

In tropical geometry, one uses R ∪ {∞} with operations

addition : a⊕ b = min(a,b)

multiplication : a� b = a + b.

R ∪ {∞} is a semiring under these operations with∞ as additive
identity and 0 as multiplicative identity

Example

If p = a� x2 ⊕ b� xy ⊕ c � y2 ⊕ d � x ⊕ e� y ⊕ f , then p = R2 → R is
given by

p = min(a + 2x ,b + x + y , c + 2y ,d + x ,e + y , f ).

The tropical curve V(p) ⊆ R2 is the locus of all points in R2 where p
fails to be linear.
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3. Moduli and Tropical Geometry 3.3 The Tropical Connection

Tropical Varieties

For various choices of coefficients a, . . . , f in the previous example, the
tropical curve V(p) ⊆ R2 looks like

The edges ending in red go to infinity, i.e., have infinite length, and the
other edges are bounded. Look familiar?
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3. Moduli and Tropical Geometry 3.3 The Tropical Connection

Tropicalization

Given a field K with a non-archimedean valuation and a variety
Y ⊆ (K ∗)n, one gets trop(V ) ⊆ Rn.
If Y ⊆ (C∗)n and C has the trivial valuation, then trop(V ) ⊆ Rn is
the underlying space of a fan.
M0,n ⊆ (C∗)(n

2)−n tropicalizes to

trop(M0,n) = T trop
0,n , (1)

where T trop
0,n is the set of metric trees with n ends defined earlier.

T trop
0,n is the moduli space of abstract rational tropical curves with n

marked infinite edges.
The fan ∆ coming from (1) satisfies

M0,n = Zariski closure of M0,n in X∆.

This is an example of tropical compactification, a.k.a geometric
tropicalization.

David A. Cox (Amherst College) Combinatorial Algebraic Geometry FoCM’14, Montevideo 22 / 24



3. Moduli and Tropical Geometry 3.3 The Tropical Connection

Tropicalization

Given a field K with a non-archimedean valuation and a variety
Y ⊆ (K ∗)n, one gets trop(V ) ⊆ Rn.
If Y ⊆ (C∗)n and C has the trivial valuation, then trop(V ) ⊆ Rn is
the underlying space of a fan.
M0,n ⊆ (C∗)(n

2)−n tropicalizes to

trop(M0,n) = T trop
0,n , (1)

where T trop
0,n is the set of metric trees with n ends defined earlier.

T trop
0,n is the moduli space of abstract rational tropical curves with n

marked infinite edges.
The fan ∆ coming from (1) satisfies

M0,n = Zariski closure of M0,n in X∆.

This is an example of tropical compactification, a.k.a geometric
tropicalization.

David A. Cox (Amherst College) Combinatorial Algebraic Geometry FoCM’14, Montevideo 22 / 24



3. Moduli and Tropical Geometry 3.3 The Tropical Connection

Tropicalization

Given a field K with a non-archimedean valuation and a variety
Y ⊆ (K ∗)n, one gets trop(V ) ⊆ Rn.
If Y ⊆ (C∗)n and C has the trivial valuation, then trop(V ) ⊆ Rn is
the underlying space of a fan.
M0,n ⊆ (C∗)(n

2)−n tropicalizes to

trop(M0,n) = T trop
0,n , (1)

where T trop
0,n is the set of metric trees with n ends defined earlier.

T trop
0,n is the moduli space of abstract rational tropical curves with n

marked infinite edges.
The fan ∆ coming from (1) satisfies

M0,n = Zariski closure of M0,n in X∆.

This is an example of tropical compactification, a.k.a geometric
tropicalization.

David A. Cox (Amherst College) Combinatorial Algebraic Geometry FoCM’14, Montevideo 22 / 24



3. Moduli and Tropical Geometry 3.3 The Tropical Connection

Tropicalization

Given a field K with a non-archimedean valuation and a variety
Y ⊆ (K ∗)n, one gets trop(V ) ⊆ Rn.
If Y ⊆ (C∗)n and C has the trivial valuation, then trop(V ) ⊆ Rn is
the underlying space of a fan.
M0,n ⊆ (C∗)(n

2)−n tropicalizes to

trop(M0,n) = T trop
0,n , (1)

where T trop
0,n is the set of metric trees with n ends defined earlier.

T trop
0,n is the moduli space of abstract rational tropical curves with n

marked infinite edges.
The fan ∆ coming from (1) satisfies

M0,n = Zariski closure of M0,n in X∆.

This is an example of tropical compactification, a.k.a geometric
tropicalization.

David A. Cox (Amherst College) Combinatorial Algebraic Geometry FoCM’14, Montevideo 22 / 24



3. Moduli and Tropical Geometry 3.3 The Tropical Connection

Tropicalization

Given a field K with a non-archimedean valuation and a variety
Y ⊆ (K ∗)n, one gets trop(V ) ⊆ Rn.
If Y ⊆ (C∗)n and C has the trivial valuation, then trop(V ) ⊆ Rn is
the underlying space of a fan.
M0,n ⊆ (C∗)(n

2)−n tropicalizes to

trop(M0,n) = T trop
0,n , (1)

where T trop
0,n is the set of metric trees with n ends defined earlier.

T trop
0,n is the moduli space of abstract rational tropical curves with n

marked infinite edges.
The fan ∆ coming from (1) satisfies

M0,n = Zariski closure of M0,n in X∆.

This is an example of tropical compactification, a.k.a geometric
tropicalization.

David A. Cox (Amherst College) Combinatorial Algebraic Geometry FoCM’14, Montevideo 22 / 24



3. Moduli and Tropical Geometry 3.3 The Tropical Connection

Tropicalization

Given a field K with a non-archimedean valuation and a variety
Y ⊆ (K ∗)n, one gets trop(V ) ⊆ Rn.
If Y ⊆ (C∗)n and C has the trivial valuation, then trop(V ) ⊆ Rn is
the underlying space of a fan.
M0,n ⊆ (C∗)(n

2)−n tropicalizes to

trop(M0,n) = T trop
0,n , (1)

where T trop
0,n is the set of metric trees with n ends defined earlier.

T trop
0,n is the moduli space of abstract rational tropical curves with n

marked infinite edges.
The fan ∆ coming from (1) satisfies

M0,n = Zariski closure of M0,n in X∆.

This is an example of tropical compactification, a.k.a geometric
tropicalization.

David A. Cox (Amherst College) Combinatorial Algebraic Geometry FoCM’14, Montevideo 22 / 24



3. Moduli and Tropical Geometry 3.4 Related Work

Lots of Papers!

M0,n and Tropical Curves:
Gibney and Maclagan, 2007: Equations for Chow and Hilbert Quotients.
Gathmann, Kerber and Markwig, 2007: Tropical fans and the moduli
spaces of tropical curves.

Tropical Compactification/Geometric Tropicalization:
Cueto, 2009: Implicitization of surfaces via geometric tropicalization.
Katz and Payne, 2009: Realization spaces for tropical fans.

Combinatorial Moduli Spaces:
Ren, Sam and Sturmfels, 2013: Tropicalization of classical moduli spaces.
Cavalieri, Hampe, Markwig, and Ranganathan, April 2014: Moduli spaces
of rational weighted stable curves and tropical geometry.
Ulirsch, May 2014: Tropical geometry of moduli spaces of weighted stable
curves.
Gross, June 2014: Correspondence Theorems via Tropicalizations of
Moduli Spaces.
Cavalieri, Markwig, and Ranganathan, October 2014: Tropical
compactification and the Gromov–Witten theory of P1.
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4. Conclusion The End!

What is Combinatorial Algebraic Geometry?

Definition
Combinatorial algebraic geometry is the study of varieties with an
explicit combinatorial structure.

This definition is incomplete (what is a “combinatorial structure”?). The
whole subject is a work-in-progress. In this talk, we have seen:

some rich examples, and
some themes that run deep.

Upcoming Event
Thematic Program on Combinatorial Algebraic Geometry
July–December 2016
Fields Institute, Toronto
combalggeom.wordpress.com/
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