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CONTEXT — Data increasingly massive,

high-dimensional...

Images
> 1M pixels

Compression
De-noising
Super-resolution
Recognition...

?2?

'k+*

Videos 3
\U/ > 1B voxels User data

ll > 1B users

Clustering
Classification

Streaming
Tracking
Stabilization...

Collaborative filtering...

U.S. COMMERCE'S ORTNER SAYS YEN UNDERVALUED

Commerce Dept. undersecretary of economic a®airs Robert Ortner said that
he believed the dollar at current levels was fairly priced against most E uropean
currencies.

In a wide ranging address sponsored by the Export-Import Bank, Ortner,
the bank's senior economist also said he believed that the yen was undervalued
and could go up by 10 or 15 pct.

"I do not regard the dollar as undervalued at this point against the yen,"
he said.

On the other hand, Ortner said that he thought that “the yen is still a
little bit undervalued,"” and "could go up another 10 or 15 pct."

In addition, Ortner, who said he was speaking personally, said he thought
that the dollar against most E uropean currencies was "fairly priced."

Ortner said his analysis of the various exchange rate values was based on
such economic particulars as wage rate di®erentiations.

Ortner said there had been little impact on U.S. trade de” cit by the decline
of the dollar because at the time of the Plaza Accord, the dollar was extremely
overvalued and that the ~rst 15 pct decline had little impact.

He said there were indications now that the trade de” cit was beginning to
level 0®.

Turning to Brazil and Mexico, Ortner made it clear that it would be
almost impossible for those countries to earn enough foreign exchange to pay
the service on their debts. He said the best way to deal with this was to use
the policies outlined in Treasury Secretary James Baker's debt initiative.

Web data

Il » 100B webpages

Indexing
Ranking
Search...

How to extract low-dim structures from such high-dim data?




CONTEXT - Low dimensional structures in visual data

Visual data exhibit low-dimensional structures
due to rich local regularities, global symmetries,
repetitive patterns, or redundant sampling.




If we view the data (image) as a matrix
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Principal Component Analysis (PCA) via singular value decomposition (SVD):

« Optimal estimate of A under iid Gaussian noise D = A + Z

» Efficient and scalable computation

* Fundamental statistical tool, with huge impact in image processing,
vision, web search, bioinformatics...

But... PCA breaks down under even a single corrupted observation.




CONTEXT — But life is not so easy...

Real application data often contain missing observations, corruptions,
or subject to unknown deformation or misalignment.

Classical methods (e.g., PCA, least square regression) break down...



Everything old ...

A long and rich history of robust estimation with error correction and

missing data imputation:

R. J. Boscovich. De calculo probailitatum que respondent
diversis valoribus summe errorum post plures observationes

..., before 1756

A. Legendre. Nouvelles methodes pour la determination des
orbites des cometes, 1806

C. Gauss. Theory of motion of heavenly bodies, 1809

A. Beurling. Sur les integrales de Fourier absolument

Lz +

over-determined
+ dense, Gaussian

convergentes et leur application a une transformation
functionelle, 1938

B. Logan. Properties of High-Pass Signals, 1965

underdetermined
+ sparse, Laplacian



... IS new again

Today, robust estimation in high dimension is more urgent and

increasingly better understood.

Theory — high-dimensional geometry & statistics, L T + <>

measure concentration, combinatorics, coding theory...

underdetermined
+ sparse, Laplacian
Algorithms — large scale convex optimization, l

geometric convergence rate, parallel and distributed

computing ... min [|z[|; + [le]|:

Applications — big data driven methods, sensing and
hashing, denoising, superresolution, MRI,
bioinformatics, image classification, recognition ...

Tukey, Bickel, Huber, Hampel, Tibishirani, Donoho, ... Candes and Tao 2004 ...

and many more | will mention later...



CONTEXT — Recent related progress

Sparse recovery: Given y = Lxg, L € R™*" m < n, recover .
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Impossible in general (m < n)

Well-posed if 2¢ is structured (sparse), but still NP-hard

Tractable via convex optimization; min ||z||; s.t. y = Lz
... if L is “nice” (random, incoherent, RIP)

Hugely active area: Donoho+Huo °01, Elad+Bruckstein ‘03, Candes+Tao ‘04,05,
Tropp 04, ‘06, Donoho ‘04, Fuchs ‘05, Zhao+Yu ‘06, Meinshausen+Buhlmann
‘06, Wainwright ‘09, Donoho+Tanner ‘09 ... and many others




CONTEXT — Recent related progress

Robust recovery: Given y = Lz + ¢, L € R™*™, m < n, recover x(y and e.
Y ; ;
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Impossible in general (m < n+m )

Well-posed if x( is sparse, errors ¢; not too dense, but still NP-hard

Tractable: via convex optimization: min ||z||; + ||e||1 s.t. y = Lz + ¢
... if L is “nice” (cross and bouquet)

Hugely active area: Candes+Tao ‘05, Wright+Ma ’10, Nguyen+Tran ‘11, Li ’11,
also Zhang, Yang, Huang’11, etc...




EXPERIMENTS — Varying Level of Random Corruption

Extended Yale B Database Training: subsets 1 and 2 (717 images)
(38 subjects) Testing: subset 3 (453 images)
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Wright, Yang, Ganesh, Sastry, and Ma. Robust Face Recognition via Sparse Representation, TPAMI 2009




ROBUST RECOGNITION - L, versus L, Solution

argmin [lz{[1 + [[e]|1.

A

) 100 200 300 400 500 600 700 800

v

To = argming ||y — Ax||>.

Wright, Yang, Ganesh, Sastry, and Ma. Robust Face Recognition via Sparse Representation, TPAMI 2009




EXPERIMENTS — Extension to Single Gallery Image Case

y = L&+ Ab+ e FERET Dataset

General training: 1,002 images of 429 people

A: a common dictionary Gallery training: 1,196 images of 1,196 people
for intraclass variabilities:

L . Probe sets:
illumination, expression, , o
and pose. fb (1,195, express:on), fc (194, lighting),
x, b, e are sparse dup1 (722, dlffel’ent tlme), dUp2 (234, a yeal’)
TABLE 3
Comparative Recognition Rates of SRC and ESRC on the FERET Database Using the FERET'96 Testing Protocol
| Dsampled Pixel- : Gabor- _ L.LBP-
Feature Image Rfaces Pixel Rfaces Gabor Rfaces LEBP
Probe set | Dim 24 %24 540 16384 540) 10240 540) 15104
b SRC 86.4 82.4 85.3 895 92.8 91.5 96.7
ESRC 94.8(+8.4) | 91.5(+9.1) Q2.8(+7.5) | 94.1(+4.6) 97.3(+4.5) | 95.2(+3.7) | 97.3(+0.6)
fe SRC 69.6 758 76.3 96.4 074 727 03.3
ESRC 67.5(-2.1) TRO(+3.1) 79.4(+3.1) | 96.9(+0.5) 99.0(+1.6) | 71.1{-1.6) | 95.4(+2.1)
dunl SRC 62.7 6.9 63.7 63.0 72.7 75.2 87.7
P ESRC T36(+12.9) | T3 1(+12.2) | 77.0(+13.3) | 7T3.5(+10.5) | 85.0(+12.3) | BL.O{+5.8) | 93.8(+6.1)
dun? SRC 32.6 33.0 33.6 70.1 76.5 69.7 83.8
p& ESRC 62.4(+9.8) | 59.8(+6.8) 66.2(+10.6) | T2.6(+2.5) 85.9(+9.4) | T1L.4i+1.7) | 92.3(+8.5)

Deng, Hu, and Guo, Extended SRC, Undersampled Face Recognition, TPAMI, 09/2012



CONTEXT — Recent related progress

Low-rank recovery: Given = E[A()], L RmXn _y R?, recover Ap.

eRpl —

_1 E Rntx n

Impossible in general (p < mn)

Well-posed if A is structured (low-rank), but still NP-hard

Tractable via convex optimization: min || A||. s.t. y = L(A)
.. if L is “nice” (random, rank-RIP)

Hugely active area: Recht+Fazel+Parillo ‘07, Candes+Plan 10, Mohan+Fazel
‘10, Recht+Xu+Hassibi 11, Chandrasekaran+Recht+Parillo+Willsky ‘11,
Negahban+Wainwright 11 ...




CONTEXT — Recent related progress

Matrix completion: Given y = Pq|Ay], Q@ C [m] x [n], recover Aj.

H B B H
% * R i
o 27 A € Rmxn
' Ky * *
'

Impossible in general (|Q2] < mn)
Well-posed if A is structured (low-rank), but still NP-hard
Tractable via convex optimization: min || A||, s.t. y = Pg(A)

... if Qis “nice” (random subset) ...

...and Ay interacts “nicely” with Pq ( Ao incoherent — not “spiky”).

Hugely active area: Candes+Recht ‘08, Keshevan+Oh+Montonari ‘09, Candes+Tao ‘09,
Gross ‘10, Recht ‘10, Negahban+Wainwright ‘10




CONTEXT — Recent related progress

|

.....
/

Yn] C S1,..., Sk, recover the subspaces.

axis 3

Y (with outliers)

Impossible in general (solutions highly ambiguous)

Well-posed if { S; } are few and structured (low-dim), but still combinatorial
Tractable via convex optimization: min || X ||, + || £

18.t.Y =YX + E.
... for random samples Y

... X and outliers E are sparse (or low-rank, column-wise sparse).

Hugely active area: Rao, Tron, Ma, Vidal’08, Elhamifar and Vidal’2010, Liu, Lin, Sun, Yan,
Ma et. al.”’ 2011, Soltanolkotabi and Candes’ 2011




CONTEXT — Recent related progress

Bayesian Face Verification:

Impossible to learn the covariance matrices in general case.
Well-posed if they are structured (low-dim), but still high-dimensional
Tractable via rank-regularized optimization:

Hugely active area: non-convex, Bayesian sparsity or low-rank regularization, Wipf 2004,
2011, 2012...

Bayesian Face Revisited: A Joint Formulation, Chen et. al., ECCV 2012.




CONTEXT — Recent related progress

 LFW dataset: 13,000 images, 2,000+ subjects

« Training and testing using the same
LFW unconstraint protocol

« Using the same open source feature*

Methods | Accuracy

Bayesian (MSRA) 87.5%
PLDA(2012) 86.2%
LDML(2009) 83.2%
DML-eig(2012) 81.3%

Prince, S., Li, P, Fu, Y., Mohammed, U., Elder, J.: Probabilistic models for inference about identity. PAMI 34 (2012) 144-157

Bayesian Face Revisited: A Joint Formulation, Chen et. al., ECCV 2012.




CONTEXT — Recent related progress

MSRA WDRef
« 99,773 images
« 2,995 subjects
 Wide & Deep

Methods | Accuracy _

Bayesian (MSRA) 92.4%
(2011) 91.3%
combined PLDA, funneled & aligned(2012) 90.07%
Associate-Predict(2011) 90.57%
our previous work
Combined multishot, aligned(2010) 89.50%
LDML-MKNN, funneled(2009) 87.50%
Attribute and Simile classifiers(2009) 85.29%

A&J 8 3. ﬁ.ﬂ

D P

ot f

Billions of data

3D face model

Bayesian Face Revisited: A Joint Formulation, Chen et. al.,

ECCV 2012.



CONTEXT - Low-dimensional Models

The data should be low-dimensional (low-rank):

A=la; | ---|a,] e R™*"  rank(A) < m.




CONTEXT - Low-dimensional Models

.. but some of the observations are grossly corrupted.:
A+ F, |Eijl

E;; arbitrarily large, but most are zero.




CONTEXT - Low-dimensional Models

.. and some of them can be missing too:
D = "Pq [:1 -+ .E],

() C [m] x [n] the set of observed entries.




CONTEXT - Low-dimensional Models

... Special cases of a more general problem:

D =L(A)+ Ly(E)+ Z A, E either sparse or low-rank



CONTEXT: Learning Graphical Models

X = (X,, Xp) ~ N(0,%)

X
h Z:[ZO EOh]jZ_:L:[JO Joh]

>,
X, ho 2R

X,;, X, cond.indep. given other variables < (Z_l)ij =0

Separation Principle:

! Jo = Jondy “ho
observed = sparse + low-rank

* sparse pattern - conditional (in)dependence
 rank of second component - number of hidden variables

Chandrasekharan, Parrilo, and Wilsky of MIT, Annual of Statistics, 2012




THIS TALK

Given observations D = Pq|A + E + Z], with
A low-rank,
E sparse,
Z small, dense noise,

recover a good estimate of A and I .

0 Theory and Algorithm
* Provably Correct and Tractable Solution
* Provably Optimal and Efficient Algorithms
0 Potential Applications
« Visual Data (Restoration, Reconstruction, Recognition)
* Other Data

O Conclusions




ROBUST PCA — Problem Formulation

D - observation A — low-rank E— sparse

L

Problem: GivenD = Ay + Ej, recover Ay and £y .

Low-rank component Sparse component (gross errors)

Numerous approaches in the literature:

. Multivariate trimming [Gnanadesikan and Kettering 72]

. Power Factorization [Wieber’70s]

. Random sampling [Fischler and Bolles ‘81]

. Alternating minimization [Shum & Ikeuchi’96, Ke and Kanade ‘03]
. Influence functions [de la Torre and Black ‘03]

'Key question: can guarantee correctness with an efficient algorithm?




ROBUST PCA — Convex Surrogates for Sparsity and Rank

Seek the lowest-rank A that agrees with the data up to some sparse error F:
min rank(A) + v||Ellg subj] A4+ E = D.
But INTRACTABLE! Relax with convex surrogates:
|Ello =#{Ei; #0}  —  [[Elli =22 [Eiyl- L norm

rank(A) = #{0;(4) #0} — ||A]|x =>_,0i(A).  Nuclear norm

n Y
>

Convex envelope over B 2 X B o




ROBUST PCA — By Convex Optimization

Seek the lowest-rank A that agrees with the data up to some sparse error F:
min rank(A) + v||Ellg subj] A4+ E = D.
But INTRACTABLE! Relax with convex surrogates:
|Ello =#{Ei; #0}  —  [[Elli =22 [Eiyl- L norm

rank(A) = #{0;(4) #0} — ||A]|x =>_,0i(A).  Nuclear norm

min |A|l« + A||F]|1 subj A+ F = D.

Semidefinite program, solvable in polynomial time




ROBUST PCA — When the Convex Program Works?

D= A+ FE D =PqlA]
0.5 0.5
0.4} 0.4}
0.3} 0.3
(\m AO‘)

0.2} 0.2}
0.1} 0.1}

0’1 L 1 1 0’1 1 1 1 1

0 01 02 03 04 05 0 01 02 03 04 05

rank(L,) / n rank(Lg) / n
Robust PCA, Random Signs Matrix Completion

White regions are instances with perfect recovery.

Correct recovery when A is indeed low-rank and E is indeed sparse?



MAIN THEORY — Exact Solution by Convex Optimization

Theorem 1 (Principal Component Pursuit). If Ay € R™*"™ m > n has

rank
m

Non-adaptive weight factor
and FEy has Bernoulli support with error wa P < p., then with very high

probability

(Ao,EQ) = argmin ||A||* |E||1 SU.bj A + F = AQ + EQ,

and the minimizer 1s unique.

GREAT NEWS: “Convex optimization recovers almost any matrix of
rank O (—) from errors corrupting O (mn) of the observations!”

m
log? n

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.




MAIN THEORY - Corrupted, Incomplete Matrix

D="Pq|l Ao + Eov |, Q~ uni([m]x[”])

mn

Theorem 2 (Matrix Completion and Recovery). If Ay, Fy € R™*" m >

n, with
n

plog®(m)

and we observe only a random subset of size

entries, then with very high probability, solving the convexr program

rank(Ag) < C

, and ||[Eollo < p*mmn,

min || Al + \/%HEHl subj Po[A+ E] = D,

uniquely recovers (Ao, Ey).

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.



MAIN THEORY — With Dense Errors and Noise

Theorem 3 (Dense Error Correction). If Ay has rank r < p, and
Ey has random signs and Bernoulli support with error probabz'len
with very high probability

(Ao,E0> - argm1n||A||*—|—)\||E||1 SUbj A+E:A0+E0,

and the minimizer is unique.

Theorem 4 (Robust PCA with Noise) Given D € Ag + Eo + Z for any
| Z||r < n, if Ay has rank r < p, TlosZ(y ond Eo has Bermowmitrsapport with

error probability p < p%, then with very high probability

(4, ) = argmin |[A]. + —=|E[: subj |D—A-E|<n,

sastisfies ||(A, E) — (Ao, Eo)|| < Cn for some constant C > 0.

Ganesh, Zhou, Li, Wright , Ma, Candes, ISIT, 2010.



FIRST RESULTS OF THIS TYPE

Example: for D = Ay + Ey,

Previous Best Result [Chandrasekharan, Parrilo, Wilsky’11]:

Deterministic error models, success when || {|g < Cm1'5/r'5 logm.

Does not guarantee to correct nonzero fractions of errors, even with r = 1.




FIRST RESULTS OF THIS TYPE

Example: for D = Ay + Ey,

Previous Best Result [Chandrasekharan et. al.]:
Success when || Fl|o < Cm!-/r°>logm.

Does not guarantee to correct nonzero fractions of errors, even with r = 1.

Our results:

Corrects nonzero fractions of errors, even with r = O (m / log2 n),

Considers corruption, missing elements and noise: Po| Ao + £y + Z |




BIG PICTURE - Landscape of Theoretical Guarantees

What people have known so far in the past 3-4 years:

Matrix Recovery (RPCA)
D= A+ FE

/‘ 1

Classical PCA

0 rank(Ap)
m

D. Gross

E. Candes (Stanford)

B. Recht (UC Berkeley)

J. Wright (Columbia)

J. Tropp (Caltech) 1
Chandrasekharan (Caltech)

Matrix Completion
D =PqlA]

log? n

rank = O ( i )
B. Hassibi (Caltech)

P. Parrilo (MIT)

A. Willsky (MIT)

B. Hastie (Stanford)

C. Montanari (Stanford)
M. Jordan (Berkeley)

M. Wainwright (Berkeley)
B. Yu (Berkeley)

A. Singer (Princeton)

T. Tao (UCLA)

S. Osher (UCLA) 0
O. Milenkovic (UIUC) 0
Y. Bresler (UIUC) m

Y. Ma (UIUC)

M. Fazel (U Wash.)

| Eo|lo

TR

This phase transition landscape has been precisely understood! (Tropp et. al.)



ALGORITHMS — Are scalable solutions possible?

Seemingly BAD NEWS: Our optimization problem

min ||All, + A|E|: subj A+ E=D. W

is high-dimensional and non-smooth.

Convergence rate of solving a generic convex program: min f ()
X

Second-order Newton method, # of iterations: O(log(1/¢)), but not scalable!
First-order methods depend strongly on the smoothness of f:

Function class F Suboptimality f(xx) — f(x*)

smooth [ convex, differentiable

: : Clizoze'I’ — @ ()
— |[Vf(x)- V@) < L]z - K2 %
smooth + structured nonsmooth: F=f+g oLl . ,,
— f. g convex, — ‘wi’fw | (S (AL—)
IVf(z) - Vf(z')| < L|x - |

nonsmooth f convex

N/ @ -f@)<Mlz-=|

CMnc\c/%—m*u _ @(L)

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, 2003.




ALGORITHMS — Why are scalable solutions possible?

GOOD NEWS: The objective function has special structures
min [[Al|« + A||F]|1 subj A+ E = D.

KEY OBSERVATION: Simple solutions for the proximal operations, given by

soft-thresholding the entries or singular values of the matrix, respectively.
A

, 1
S:(Q) = argminy ef| Xl + [l X - Qi

: 1 ‘
D.(Q) = argming | X]. + 51X - QI /

For composite functions F = f + g, with f smooth,
if g has an efficient proximal operator, we achieve
the same (optimal) rate as if F was smooth.

\/




ALGORITHMS — Evolution of scalable algorithms

GOOD NEWS: Scalable first-order gradient-descent algorithms:
Proximal Gradient [Osher, Mao, Dong, Yin ‘09, Wright et. al.’09, Cai et. al.’09].

* Accelerated Proximal Gradient [Nesterov’83, Beck and Teboulle ‘09]:
* Augmented Lagrange Multiplier [Hestenes ‘69, Powell '69]:
« Alternating Direction Method of Multipliers [Gabay and Mercier ‘76].

A scalable algorithm: alternating direction method (ADMoM) for ALM:

(A EY)=[Al« + MBI +{Y,D-A-E)+ 4D - A-E|%

’Ak+1 — Du,jl (D — By + ch/,uk), Shrink singular values
SAM; (D — Apy1 + Yi/pr), Shrink absolute values
Yii + pr(D — Apv1 — Erya).

repeat Et1
RS

Cost of each iteration is a classical PCA, i.e. a (partial) SVD.

Lin, Chen, and Ma, UILU-ENG-09-2214, 2010.




ALGORITHMS - Evolution of fast algorithms (around 2009)

For a 1000x1000 matrix of rank 50, with 10% (100,000) entries

randomly corrupted: min ||Al|. + A||E||1 subj A+ E = D.
Algorithms Accuracy Rank ||IE||_O # iterations | time (sec)
IT 5.99e-006 |50 101,268 8,550 119,370.3
DUAL 8.65e-006 | 50 100,024 822 1,855.4 10,000
APG 5.85e-006 | 50 100,347 134 1,468.9 times
APG,, 5.91e-006 | 50 100,347 134 82.7 speedup!
EALM, 2.07e-007 |50 100,014 34 37.5
IALM; 3.83e-007 |50 99,996 23 11.8 !

Provably Robust PCA at only a constant factor (=20)
more computation than conventional PCA!




ALGORITHMS — Convergence rate with strong convexity

GREAT NEWS: Geometric convergence for gradient algorithms!

f restricted strong convex: O(lOg(1/€)) [Agarwal, Negahban, Wainwright, NIPS 2010]
f smooth, V f Lipschitz: O(e~1/2)
f differentiable: O(e™1)
O(

f non-smooth:

= _ Q 1£.30 v 3 )
= r
s =
s [
5 z
= =
~ -
= -

n) b)

Figure 1. Convergence rates of projected gradient descent in application to Lasso programs (£;-

comstruined least-squares). Each pancl shows the log cptimization error log [|6° — 9] versus the itera-

tice number {. Panel (a) shows throe curves, corresponding to dimensicns d € {5000, 10000, 20000},

SpaArsily s [Vd], and all with the same sample siz m 2500. All cases show goometrnic con-

vergence, bet the rate for larger problems becomes progresswely slower. (b) For an appropaately

rescaled sample sxe (a —~ 5g). all three coavergonce rates should be roughly the same, as prodicte
¥y LS Lhoory.



ALGORITHMS — Recap and Conclusions

Key challenges of nonsmoothness and scale can be mitigated by using
special structure in sparse and low-rank optimization problems:

Efficient proximity operators =» proximal gradient methods
Separable objectives = alternating directions methods

Efficient moderate-accuracy solutions for very large problems.
Special tricks can further improve specific cases (factorization for low-rank)

Techniques in this literature apply quite broadly.
Extremely useful tools for creative problem formulation / solution.

Fundamental theory gtudmg engineering practice:

What are the basic principles and limitations?
What specific structure in my problem can allow me to do better?



APPLICATIONS

1 Repairing Images and Videos
« Image Repairing, Background Extraction, Street Panorama
1 Reconstructing 3D Geometry
« Shape from Texture, Featureless 3D Reconstruction
1 Registering Multiple Images
« Multiple Image Alignment, Video Stabilization
1 Recognizing Objects
* Faces, Texts, etc

[ Other Data and Applications



Implications: Highly Compressive Sensing of Structured Information!

Recover low-dimensional structures from a fraction of missing
measurements with structured support.

compressive samples Low-rank Structures Sparse Structures




Repairing Images: Highly Robust Repairing of Low-rank Textures!

Low-rank Texture A Corruptions £

Liang, Ren, Zhang, and Ma, in ECCV 2012.
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Structured Texture Completion and Repairing
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Repairing Multiple Correlated Images

58 images of one person
under varying lighting:

Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.



Repairing Images: robust photometric stereo

Q¢ ~ shadow(20.7%)
E ~ specularities(13.6%)

Deg.

5.5

min ||All« + A||E]|1 subj D =Pq(A+ F).

b
45
4
3.5
3
25

15
1
0.5

(a) Ground truth | (b) Our method | (c) Least Squares | (d) Error map (>e) Error map (LS)

(our method)
Mean error 0.014c° 0.96°
Max error 0.20° 8.0°

Wu, Ganesh, Li, Matsushita, and Ma, in ACCV 2010.




Repairing Video Frames: background modeling from video

Surveillance video

200 frames,
144 x 172 pixels,

Significant foreground
motion

Candes, Li, Ma, and Wright, JACM, May 2011.



Implications: Highly Compressive Sensing of Structured Information!

Recover low-dimensional structures from diminishing fraction of
corrupted measurements.

compressive samples Low-rank Structures Sparse Structures




Repairing Video Frames: Street Panorama




Repairing Video Frames: Street Panorama

Low-rank

AutoStitch

Photoshop



Repairing Video Frames: Street Panorama

Low-rank

AutoStitch
. , ;4 / “é ! \\ ,“ “
Photoshop b e ST “



Street Panorama: Highly Compressive Sensing of Low-dim Structures!

®)

nipsl? video.mpd



Sensing or Imaging of Low-rank and Sparse Structures

Fundamental Problem: How to recover low-rank and sparse structures from

corrupted data Low-rank Structures Sparse Structures

subject to either nonlinear deformation T or linear compressive sampling P ?
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Reconstructing 3D Geometry and Structures

D — deformed observation A — low-rank structures FE — sparse errors

BT ART T T 4

A TATAA TS
ZNENINLNLNS
e S SR

=  #3e e e 1
PRI RS
ESEEENSE
L-ﬁ-+-h-+-’r++++t
ettt

Problem: GivenD o7 = Ay + Ej, recover 7, Ag and E, simultaneously.

Low-rank component Sparse component
(regular patterns...) (occlusion, corruption, foreground...)

Parametric deformations
(affine, projective, radial distortion, 3D shape...)



Transform Invariant Low-rank Textures (TILT)

D — deformed observation A — low-rank structures FE — sparse errors

X9 X9 X9 S9 X9 N
et ettt
ILJP+JI‘+'J(‘+-‘P+’JP+.
ENENENLNLNA
'LJP+JP+J‘_+J‘_+JF+.

=  #Heeen 1
LJ‘_+J‘_+J‘_+J‘_+J‘_+.
ENENENENLNA
FRFNINININS
PN PR PP KPS

Objective: Transformed Principal Component Pursuit:

min ||All. + A||Z]

1 subj A+ E=Dor

Solution: Iteratively solving the linearized convex program:

ﬁmin A Ely subj A+ E=Dot+J- At
N

Or reduced version: subj PglA+ E] =Pg|[D o 1], PolJ] =0

l« + A

Zhang, Liang, Ganesh, Ma, ACCV’10, IJCV’12




THEORY — Compressive Robust PCA

Theorem 5 (Compressive Principal Component Pursuit). Let Ay €

R™*"™ m > n have rank r < p, #g%n), and Ey have a Bernoulli support

with error probability p < p*. Let Q+ be a random subspac of R™*™ of dimen-

S10M
dim(@) > Co(pmn + mriCog” m

distributed according to the Haar measure, independent of the support of Ejy.
Then with very high probability

1
(Ao, Eo) = argminllAHﬁ\/—mHEHl subj  PolA + E] = PglAo + Lo,

for some numerical constant p,, C, and p*, and the minimizer is unique.

A nearly optimal lower bound on minimum # of measurements!

Wright, Ganesh, Min, and Ma, ISIT’12



TILT: Shape from texture

Input (red window D)

Zhang, Liang, Ganesh, Ma, ACCV’10, IJCV’12



TILT: Shape and geometry from textures
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Zhang, Liang, and Ma, in ICCV 2011



TILT: Shape and geometry from textures

a3 & RS
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Zhang, Liang, and Ma, in ICCV 2011
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TILT: Camera Calibration with Radial Distortion

PR—

[ . " ; - . \ . -
Py = \'.xa +v5.f(r) = 1+ ke(1)r? + kc(2)r* + ke(5)r®

()= (ﬂ:r) %o+ 2ke(3)xoyo + ke(H)(r* + 2.x'§}‘)
¥ f ‘:’r)yo + 2kc (:4)_x'0}.-0 4 kC(3){T’2 + 2}02)

Zhang, Matsushita, and Ma, in CVPR 2011



TILT: Camera Calibration with Radial Distortion

min Z,\Zl | A;

« T )‘”E/”l subj] A+ FE;, =Do (7-0_37—'1'.)
o= (K.K,), 7 =(R.T)

Previous approach Low-rank method

Zhang, Matsushita, and Ma, in CVPR 2011



TILT: Holistic 3D Reconstruction of Urban Scenes

min || Al|« + || £

1 S.t.

A+ FE = [Dl o 7'1,D2 o 7'2]

1.55

1.35

Mobahi, Zhou, and Ma, in ICCV 2011




TILT: Holistic 3D Reconstruction of Urban Scenes

From one input image From four input images

Mobahi, Zhou, and Ma, in ICCV 2011



TILT: Holistic 3D Reconstruction of Urban Scenes

From eight input images

3D Model vs Real Building

Mobahi, Zhou, and Ma, in ICCV 2011




Virtual reality in urban scenes




Registering Multiple Images: Robust Alignment

D — corrupted & misaligned A — aligned low-rank FE — sparse errors
observatlon ~ signals
.- R-Rl
§ \“ S

Problem: GivenD o1 = Ay + Ey, recover 7, Ap and Ey.

/

Parametric deformations Low-rank component  Sparse component
(rigid, affine, projective...)

Solution: Robust Alignment via Low-rank and Sparse (RASL) Decomposition

Iteratively solving the linearized convex program:

ﬁ min |A|l« + A|F]|1 subj A+ FEF=Dom,+ JAT
S (or QA+ E)=QD oy, QJzO)



RASL.: Aligning Face Images from the Internet
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*48 images collected from internet




RASL.: Faces Detected

Input: faces detected by a face detector (D)
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Average

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11




RASL: Faces Aligned

Output: aligned faces (D oT)

....E. Py

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11




RASL.: Faces Repaired and Cleaned

Output: clean low-rank faces (A)
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Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11



RASL.: Sparse Errors of the Face Images

Output: sparse error images (F)

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11




RASL: Video Stabilization and Enhancement

Original video ( D ) Aligned video (D o 1) Low-rankpart( A) Sparse part (F)

-

;,é" ,;;.4.‘ ,_.4.‘

Peng, Ganesh, Wright, Ma, CVPR’10, TPAMI’11
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Object Recognition: Rectifying Pose of Objects

Input (red window D)

I 4

A ‘...E\ ‘.“.‘ .

Zhang, Liang, Ganesh, Ma, ACCV’10 and IJCV’12




Object Recognition: Regularity of Texts at All Scales!

s o

Output (rectified green window A )

e m

Input (red window D )
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Zhang, Liang, Ganesh, Ma, ACCV’10 and IJCV’12



Recognition: Character/Text Rectification

Dort

= rank-obj
DCT-obj
—— Tv_obj

-0.6 -0.4

Xin Zhang, Zhouchen Lin, and Ma, ICDAR 2013




Recognition: Character/Text Rectification

TILT

versus
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Recognition: Street Sign Rectification

4
min Y [|Ai]l. + AllEi|

1=1
SU.bj Dot = [A1A4]+[E1E4]

Xin Zhang, Zhouchen Lin, and Ma, ICDAR 2013



Recognition: Character Rectification and Recognition

Microsoft OCR for rotated characters
(2,500 common Chinese characters)

Microsoft OCR for skewed characters
(2,500 common Chinese characters)
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Xin Zhang,

Zhouchen Lin, and Ma, ICDAR 2013




Take-home Messages for Visual Data Processing:

1. (Transformed) low-rank and sparse structures are central to visual data
modeling, processing, and analyzing;

2. Such structures can now be extracted correctly, robustly, and efficiently,
from raw image pixels (or high-dim features);

3. These new algorithms unleash tremendous local or global information from
single or multiple images, emulating or surpassing human capability;

4. These algorithms start to exert significant impact on image/video processing,
3D reconstruction, and object recognition.

But try not to abuse or misuse them...



Other Applications: Upright orientation of man-made objects

TILT for 3D: Unsupervised upright orientation of man-made 3D objects

3
min Z | As|l« + A E;]1

=1

N st Dot = [Al,AQ,A:g]+[E1,E2,E;3].

Jin, Wu, and Liu of USTC, China, Graphical Models, 2012.



Other Data/Applications: Web Image/Tag Refinement

Input: images with user-provided tags Output: images with refined tags

A, B 3
fy fl
brd | Tag Refinement,, )
cool I \'> bird
insect |V ’ sky

strong

PROBLEM

tag_Animal

Tag
correlation

lag_Dog

E

User-provided tag matrix Low-rank matrix Sparse error matrix

Zhu, Yan of NUS, Singapore, ACM MM 2010.



Other Data/Applications: Web Document Corpus Analysis

Latent Semantic Indexing: the classical solution (PCA)

Documents D A _I_ Z
T T
CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND —_— U 1 2 1 Vl —|_ U2 Z 2 V2

Chrysler Corp said its board declared a three-for-two stock split in the
form of a 50 pct stock dividend and raised the quarterly dividend by
seven pct.

The company said the dividend was raised to 37.5 cts a share from

35 cts on a pre-split basis, e 25 ct dividend on a post-split Dense, d iﬁicu It to inte rp ret

basis.

Wo rds Chrysler said the stock diyj s payable April 13 to holders
record March 23 while the caSh dividend is payable April 15 to holders
of record March 23. It said cash will be paid in lieu of fractional shares.
With the split, Chrysler said 13.2 mln shares remain to be purchased
in its stock repurchase program that began in late 1984. That program
now has a target of 56.3 mln shares with the latest stock split.
Chrysler said in a statement the actions "reflect not only our out-

n
standing performance over the past few years but also our optimism a bette r m o d e I/S o I u tl o n ?
[]

about the company’s future.”

d;; word frequency (or TF/IDF) D = A —+ L

Low-rank Informative,
“background”  discriminative
topic model “keywords”




Other Data/Applications: Sparse Keywords Extracted

Reuters-21578 dataset: 1,000 longest documents; 3,000 most frequent words

CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND

Chrysler Corp said its board declared a three-for-two stock split in the
form of a 50 pct stock dividend and raised the quarterly dividend by
seven pct.

The company said the dividend was raised to 37.5 cts a share from
35 cts on a pre-split basis, equal to a 25 ct dividend on a post-split
basis.

Chrysler said the stock dividend is payable April 13 to holders of
record March 23 while the cash dividend is payable April 15 to holders
of record March 23. It said cash will be paid in lieu of fractional shares.

With the split, Chrysler said 13.2 mln shares remain to be purchased
in its stock repurchase program that began in late 1984. That program
now has a target of 56.3 mln shares with the latest stock split.

Chrysler said in a statement the actions ”reflect not only our out-
standing performance over the past few years but also our optimism
about the company’s future.”

Min, Zhang, Wright, Ma, CIKM 2010.




Other Data/Applications: Protein-Gene Correlation

Microarray data

X

(Call Specific Genes microarray)

Step 1

Gene Expression for
each cell type Step 3

Regsession

Hand W Y

.  Whole Microarray

Step 2

Update

Fig. 1. The diagram of the workflow of the method presented in this paper

Endothelial Epithelal Fitvotiast Macrophiage

Fig 6. HeatMap of estimaied gene signatures for the sored cell specific
genes afier adjustments based on fold changes. RPCA is used in the first
step. It is chear that this matrix is close to a block diagonal structure.

Wang, Machiraju, and Huang of Ohio State Univ. , Bioinformatics.



Other Data: Time Series Gene Expressions

)

Figure S3. Abstract HER2 overexpressed breast cancer model by Dr. Moasser.
M S
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Figure S4. Separation result: (1., column) raw data (2,,; column) low-rank component and (3,
column) highly corrupted sparse component using threshold (M1: H1047R (kinase domain mutation)
M2: E545K (helical domain mutation). and M3: K111N mutation in PIK3CA).

Chang, Korkola, Amin, Tomlin of Berkeley, BiorXiv, 2014.




Other Data/Applications: Lyrics and Music Separation

Songs (STFT)

Low-rank (music)

Sparse (voices)
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Po-Sen Huang, Scott Chen, Paris Smaragdis, Mark Hasegawa-Johnson of UIUC, ICASSP 2012,




Other Data/Applications: Internet Traffic Anomalies

Network Traffic = Normal Traffic + Sparse Anomalies + Noise

D=L+ RS+ N

yuk

Fig. 2. Network topology graph
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Mardani, Mateos, and Giannadis of Minnesota, Trans. Information Theory, 2013.




Other Data/pplications: View-Invariant Gait Recognition

Same gait from different views Perspective distortion rectified

GTI GTloT E
i .
72° A i .
Bk 72°
gonl-
90°
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il
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Kusakunniran et. al. of STU of Australia, IEEE Trans. on Info. Forensics & Security, 2013




Other Data/Applications: Robust Filtering and System ID

GPS on a Car:
r = Ax+ Bu, AeR"*"
y = Cxr+z+e

O\

gross sparse errors
(due to buildings, trees...)

Robust Kalman Filter: Z;,1 = Az; + K(y; — Cy)

Un Yn—1 Yn—2 e Yo
Yn—1 Yn—-2 e Y-1
Robust System ID: U2 : = OpurXpsn + S
. y—n—|—2
L Yo Yy-1 nee Y-n+2 Y—n+1

\ J
!

Hankel matrix

Dynamical System ldentification, Maryan Fazel, Stephen Boyd, 2000




CONCLUSIONS - A unified Theory for Sparsity and Low-Rank

Sparse Vector Low-Rank Matrix
Low-dimensionality of individual signal correlated signals
Measure L, norm ||z|o rank(X)
Convex Surrogate L, norm ||z||1 Nuclear norm || X ||
Compressed Sensing y = Ax Y = A(X)
Error Correction y=Ax +e Y =AX)+FE
Domain Transform yoT = Ax +e Yor=AX)+E
Mixed Structures Y =AX)+B(E)+ Z

Joint NSF Project with Candes and Wright, 2010 - 2014




Compressive Sensing of Low-Dimensional Structures

o 4
nyE

A norm || - || is said to be decomposable at X if there exists a subspace 7" and
a matrix S such that

O - I(X) ={A[Pr(A) =S, [[Pro (A" < 1},

*

where || - ||* is the dual norm of || - ||, and Pr. is nonexpansive w.r.t. || - ||*.

Theorem [Candes, Recht’11] Any low-complexity signal X" can be exactly
recovered from high compressive measurements via convex optimization:

| X||lo subject to Po(X) = Po(X"),

for a decomposable norm || - |[,.




Compressive Sensing and Separation of Low-dim Structures

Suppose (X9,...,X?) = argmin 27 L Ail| Xl gy subj 27 L X 27 X
for decomposable norms || - ||;) that majorize the Frobenius norm.

Theorem 6 (Compressive Sensing of Mixed Low-Comp. Structures).
Let Q+ be a random subspac of R™*™ of dimension

dim(Q) > O(log® m) x intrinsic degrees of freedomof (X1,..., X),

distributed according to the Haar measure, independent of X ;. Then with very
high probability

k k k
(X9,....X}) = argmin Y N[ Xylly subj P Xi]=Po[) X7

1=1 1=1

and the minimizer 1s unique.

Wright, Ganesh, Min, and Ma, ISIT’12, IMA I&I’13




Extension to General Low-Dimensional Structures

Compressive Sensing:
min | X ||, s.t. Po(X) = Po(D)
Multiple-Structure Decomposition:

mmzz >"L||XZ||<>z S.T. Zz Xz =D

Compressive Multiple-Structure Decomposition:
min p ; Al Xillo, s.t. Polro; Xi] = PolD)

Examples: PCP [CLMW’11], outlier pursuit [Xu+Caramanis+Sanghavi],
morphological component analysis [Bobin et. al.], many more ...



A Unified THEORY — A Suite of Powerful Regularizers

For compressive robust recovery of a family of low-dimensional structures:

'
- \ b ‘
NS =N -5
« [Negahban+Yu+Wainwright '10] — geometric analysis of recovery . >
» [Becker+Candes+Grant '10] — algorithmic templates -

« [Xu+Caramanis+Sanghavi “11] column sparse errors L, ; norm

* [Zhou et. al. ‘09] Spatially contiguous sparse errors via MRF

« [Bach ’10] — relaxations from submodular functions

* [Recht+Parillo+Chandrasekaran+Wilsky '11’12] — compressive sensing of various structures
« [Candes+Recht ’11] — compressive sensing of decomposable structures
X% =argmin || X[, s.t. Po(X)="Po(X")

* [McCoy+Tropp’11,Amenlunxen+McCoy+Tropp’13] — phase transition for recovery and
decomposition of structures

(X7, X3) = argmin || X1 (1) + A X2ll2) st. X1+ Xo = X7 + X3

* [Wright+Ganesh+Min+Ma, ISIT'12,1&'13] — compressive superposition of decomposable
structures

Take home message: Let the data and application tell you the structure...



Super Resolution via Transform Invariant Group Sparsity

Aim: Exploiting non-local structures to perform super-resolution at large
upsampling factors by

1. Learning the transformation that reveals the group-sparse structure of
the image gradient (via TILT)

2. Enforcing this structure through group-sparse regularizers (DTV) that
incorporates the transform and is consequently invariant to the transform

Carlos Fernandez and Emmanuel Candes of Stanford, ICCV2013



Super Resolution via Transform Invariant Group Sparsity

TV (x8) Sparse Coding (x4) TI-DTV (x8)

il Tl T8

Carlos Fernandez and Emmanuel Candes of Stanford, ICCV2013



A Perfect Storm...

) Mathematical Theory
(high-dimensional statistics, convex geometry
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BIG DATA Cloud Computing o
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A Perfect Storm...

web video analysis
purchased by Google in June, 2014

Kerui Min, CTO of Bosonnlp.com
web document analysis,
found in Shanghai, 2013

Dr. Allen Yang, CTO of Atheerlabs.com
stereo gargle, object & gesture recognition,
found on Google campus, 2012

Dr. Arvind Ganesh, vision architect of Baarzo.com

CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND

Chrysler Corp said its board declared a three-for-two stock split in the
form of a 50 pct stock dividend and raised the quarterly dividend by
seven pct.

The company said the dividend was raised to 37.5 cts a share from
35 cts on a pre-split basis, equal to a 25 ct dividend on a post-split
basis.

Chrysler said the stock dividend is payable April 13 to holders of
record March 23 while the cash dividend is payable April 15 to holders
of record March 23. It said cash will be paid in lieu of fractional shares.

With the split, Chrysler said 13.2 mln shares remain to be purchased
in its stock repurchase program that began in late 1984. That program
now has a target of 56.3 mln shares with the latest stock split.

Chrysler said in a statement the actions "reflect not only our out-
standing performance over the past few years but also our optimism
about the company’s future.”
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THANK YOU!

Questions, please?
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DorT = A+ F min ||All« + M|E]:

FOCM, Uruguay, December 13, 2014.



