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Let us start with 3
objects to play with



PADE APPROXIMANTS

Let o0
fle) =

k=0

Ak
<k

represent an analytic germ at infinity.

We can approximate it by a (Laurent) polynomial,
n

(L) %) =
Zk
k=0
or we can do much better using rational functions: find P,,, (),,
of degree < n, such that

P
the expansion of —"(2) matches the expansion of f(z)

n

ag

to the highest possible order.

This is a non-linear problem on the coefficients of P, and @),.
Existence of a solution?




PADE APPROXIMANTS

Let 00
f&= 7

>
Ry ol

represent an analytic germ at infinity.

e

T'he linearized version 1is:

Find F,, and @),,, @), Z 0, such that

(O =Bz = <z“1+1) )

Then 7w, = P,/Q.,, is the (unique) [n/n| Padé approximant to f
at oo.

The analytic theory of these approximants (and their generaliza-
tions) has blossomed in the 1980-ies.

In particular, what is the behavior (as n — oo) of the poles of 7,
— obstacles for convergence = zeros of (),,”



PADE APPROXIMANTS

The most interesting case is when f is a germ of a multivalued
(algebraic) function.

Example: e z2)1/3

(2 — 0.4 + 0.8)2/3

fz) =

Here are the poles of m150:
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PADE APPROXIMANTS

The most interesting case is when f is a germ of a multivalued
(algebraic) function.

Example:
¥ (Gl — 22 (8 2 ) <

flz) = (z — 0.4 + 0.8i)3/5

Here are the poles of m150:
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PADE APPROXIMANTS

Key observation: use the Cauchy formula and the definition of
the residue,

(0.7~ P.) 0 (Z?}H) )

4
7{ 25O f = Bl
C

k'=10,1, s

7{ 2*Qn(2)f(2)dz =0
C



PADE APPROXIMANTS

Key observation: use the Cauchy formula and the definition of
the residue,

(0.7~ P.) 0 (z”1+1> )

4
’/F{/. 7{ 2" (Qnf — Pn)(2)dz =0
C
PR b

o,n—1

7{ 2*Qn(2)f(2)dz =0

%. Non-her mitian
orthogonality

or even / 2°Qn(2)Af(2)dz =0
I




CLASSICAL POLYNOMIALS: LAGUERRE

iore=5 (17) G - e () e

k=0

For o > —1 they form a well-known family of orthogonal polyno-
mials on [0, 4+00):

iR CXD
/ Lf,(f‘)(:c)a?kJro‘e_xdx — 0, fork=0,1, "2 nr=ue
0

In consequence, all zeros of L%a) for « > —1 are positive and
simple.



CLASSICAL POLYNOMIALS: LAGUERRE

iore=5 (17) G - e () e

k=0

In this definition, o can be complex.

Z.eros ot L§83+2i)

In particular, if \

lim%:AEC
n n

) — L,%O‘”)(nz) ~o
|J. Math. Anal. Appl. 416, 52—80)]

Lq(f‘) also satisty non-hermitian orthogonality relations, this time
on the plane. Besides, they are polynomial solutions of degree n of

2y"(2) + (@ +1—-2)y'(z) + ny(z) =0



LAME ODE

Generalized Lamé (or Heun) ODE (in an algebraic form):

1=0

y"<x>+(2$f’iai)y’<x> ZE; y(@) =0, A)=[]@-a),

where V' is a polynomial of degree < p — 1.

rI—Ieine (1878): for every N € N there exist at most (NJF]\Z;_l)‘
different polynomials V' (Van Vleck polynomials) such that this
equation has a polynomial solution of degree N (Heine-Stieltjes

kpolynomial) . 4
r A
55 o <

Stieltjes, 1885: electrostatic interpretation for ag < a1 <
a, and all p; > 0:

po/2 p1/2 p2/2 ﬂp./2

 r— — 9 — @—

R




LAME ODE (P=2)
Zeros of H-S polynomials for p=2 (three finite singularities):

A(2)y"(2) + B(2)y'(2) — V(2)y(z) =0

Explanation and asymptotics?



LOGARITHMIC POTENTIAL

How can we study the behavior of polynomials?

Trivial observation: if P(z) =(z —a1)(z —a2)...(z — an), then

& 1
—log|P(z)| = ) log P
e Z

Since u(z) = log(1/|z|) satisfies
—2mAu(z) = dp(2)

we can say that

—log|P(z)| = ) log :

k=1

1

_ak|

= the logarithmic potential of the positive charge v(P),

V(R — Z O,



LOGARITHMIC POTENTIAL

How can we study the behavior of polynomials?

Trivial observation: if P(z) =(z —a1)(z —a2)...(z — an), then

& 1
] :

Since u(z) = log(1/|z|) satisfies
—2mAu(z) = dg(2)

we can say that

—log|P(z)| = ) log :

k=1

1

_ak|

= the logarithmic potential of the positive charge v(P),

V(R — Z O,

Hence, we should consider zeros as charged particles interacting
according to the logarithmic law!



LOGARITHMIC POTENTIAL

= the logarithmic potential of the positive charge v(P),
=%,
k=1

Continuous analogue: given a (in general, signed) measure u, its
logarithmic potential is

s )= /log du(t) .

_Intuitive arguments ]

1

|z — |

e

orthogonality OD]

L? norm mlnlmlzatlon gradlent of a potentlal —1#

§ Proceed at your own r|sk

an extremal problem for potentlals (equﬂlbrlum)



EQUILIBRIUM FOR A LOGARITHMIC POTENTIAL

The (continuous) logarithmic energy of a measure u is defined as

0= [ [ 1og = dut)du) = [ Vi) dut)

For K C C compact let M (K) = {probability measures with supp C
K}. The Robin constant of K is

H f 7 S = 7_|_ 9
T (1) € (—00, +00]

and cap(K) = e~ " is the logarithmic capacity of K.

The unique pux € M1(K) such that I(ux) = & is the equilibrium
measure of K.

Characterization: V#¥ =k on K (equilibrium condition).

Also, VFK(2) = k —gp(z,0), where g(-, K) is the Green function
of D = C\ K with pole at oc.



ASYMPTOTICS FOR STANDARD OP

In the case of the “standard” (Hermitian) orthogonality,

/ @Rz duz)—0 "k — 0 .
K

our intuition can be rigorously justified:

e when K has no interior, and measure pu is reasonable;

e when K has non-empty interior, and measure p is very nice
(“Bergman polynomials”),. ..

More precisely, if
1
Un = V(Qn) ST E Z 53}
Qn(x)=0

is the (normalized) zero-counting measure for @), then v, — ug
in the weak-* sense.

Observe that conjugation “fixes” the geometry.



A THEOREM OF H. STAHL (1985-1986)

Assume that [ is an algebraic function, with branch points at
E ={ax}, and @), is a polynomial of degree n such that

%szn(z)f(z)dz:O k=0, 1 el
C

Where do the zeros of (),, go when n — 00

In other words, if v(Q,) — i, as n — oo,
who is pu?

By the Padé-based intuition, p is such
that f has a holomorphic branch in C\
supp(4)-



A THEOREM OF H. STAHL (1985-1986)

Assume that [ is an algebraic function, with branch points at
E ={ax}, and @), is a polynomial of degree n such that

%szn(z)f(z)dz:O k=0, 1 el
C

Where do the zeros of (),, go when n — 00

In other words, if v(Q,) — i, as n — oo,
who is pu?

By the Padé-based intuition, p is such
that f has a holomorphic branch in C\

Supp(i)-

Answer: take the set K of minimal capacity such that f is single-
valued in D = C\ K. This is the attractor of the zeros of Q),,.

Moreover, v(Q,) — [tk as n — 0O,



SETS OF MINIMAL CAPACITY

Observe that
mincap(K) < maxk

where k is both the equilibrium constant AND the equilibrium
energy of K, so that min cap(K') is equivalent to

max min [I(u), | or
K peMi(K) (,U)

max max minV#(2).
K peMq(K)zeK

Characterization (Stahl): on the extremal compact K,

S-propert
dgc\k (7, ) _3QC\K(2700‘)/ gl
87?/_ e 6’n+
or equivalently,
OV HK OV HK
an_ (Z) S 8n+ (Z)



WHAT ABOUT THE LAME ODE?

We need to generalize the
notion of the set of minimal |
capacity...



CRITICAL MEASURES

Any h: C — C € C! and t € C create a local variation @ — u! by

[ F@dut ) = [ 1+ th)duce)




CRITICAL MEASURES

Any h : C = C € C! and ¢t € C create a local variation 1 — u! by

[ F@dut ) = [ 1+ th)duce)

' (K) :
pu(EK")
If A={ag,a1,...,a,}, a measure y is called A-critical if
i1( =y - —
dt R Al

=9 a.g(C\[((Z? OO) i agC\K(*Z? OO) (S—property)
on_ 8n+




LAME ODE

AMF & E.A. Rakhmanov, Commun. Math. Phys. 302,
53—111 (2011):

r s . N
Any weak limit of a zero counting measure of the polynomial
solutions of the generalized Lamé ODE

A(2)y"(2) + B(2)y' (2) = Va(2)y(z) =0, A(z) =][(z - a;)

7=0
is an A-critical measure, and viceversa.

= -



THE S-PROPERTY

Assume that K is given by analytic arcs and D = C \ K is con-
nected.

Let GG(z) be the complex Green function, ReG = gp(-,00). Since
gp(-,00) =0 on K, we see that

dgp(z,00)  9gp(z,o0) : o /
T o & (G'(2), (2) =—(G'(2))_(2)

and we conclude that H = (G’)? is analytic.

In other words,

G(z) = / V H (t)dt Trajectory of
a quadratic
and K lies on the level line / differential

Re/ v H(t)dt = const




This is just the f'
}  first level... {

Non-hermitian OP
and Lamé ODE
with fixed A and B

In order to describe more complex constructions (Lamé ODE with
varying coefficients, OP with the weight depending on the de-
gree,. .. ), we must expand the notion of equilibrium.



EQUILIBRIUM IN AN EXTERNAL FIELD

We can add to the picture an external field v : K — R and
consider the extremal problem inf y(, (k) Ly (15 %), with

I(u; ) = I() +2 / (2)du(z)

The unique solution k(1)) is characterized by

VrE®) 4 o) = w(K') = const on supp(pk(¥)),
> w(K) =const on K.



S-PROPERTY FOR THE LOG ENERGY
Let K be a compact set, D = C\ K connected.

Assume that K is made of analytic arcs,

so that we can define normal derivatives
on each side.

Let 1 = pur(v) be again the logarith-
mic equilibrium measure on K in the
external field .

K has the S-property if

o(VF+1) O(VF 4+ 1)
== on Supp,u
8n+ 5’n_

If v/ is harmonic, vy = Re V¥, then pu satisfies a variational identity
on C of the form

</ g ‘I’/(Z))Q = R{z).  ales @}

e ive




VARIATIONAL IDENTITY

Let 1 be a measure, A = {ag,aq,.. .,ap} a set of points on C,
1 = Re W, such that there exists an analytic function R such that

(/ ). ‘I’/(Z)>2 = R(2), aw. inC.

Wt <

We assume that points in A are poles of R, and p satisfies the
equilibrium conditions.

What can we say about u? Trajectory of
e supp() is a union of of analytic arcs, satisfying a quadratic

z differential
Re/ v R(t)dt = const

e Under suitable conditions on ¥ (e.g., v = V2, o > 0), u is
uniquely determined, and D = C \ supp(u) is connected.

e The S-property holds,

OWVE+y) _d(VE+y)
o G pp H

3n+



VARIATIONAL IDENTITY

Example: two fixed points (—1 + 27), external field ¥(z) = Re z.
Variational identity:

(/ i“_(xz : 1>2:R(z)

e its only poles are —1 £ 21

Properties of R:

e /R is holomorphic in C\ K, K joins —1 4 2i

./iu—(xz) =R(2)—1= /R(2) =1-240(5) as z = oc

— ¢)? 2 1
Conclusion: R(z) = e ! it T o
z—|—1—2@)(z—|—1—|—2@) %
E = / z4+1/2
c——— |
15— Vi(z+1—=20)(z + 1+ 26)

We can recover the measure p if we know its support: the trajec-

tory Re [~ /R(t)dt = const



THEOREM OF GONCHAR-RAKHMANOV

Assume that (),, of degree n satisty

7{ PO = T =L =1
@

where f,, are analytic,

1 1
L)

with 1 harmonic.

Let also K be such that the support of ux (1) has the S-property
in the external field .

If C\ supp g (1) is connected, then

@)= 3 b ()

OFENE =0



j It has been mentioned that such i
; measures live on trajectories of §
| quadratic differentials :

| Time to discuss )'
{ quadratic differentials }



QUADRATIC DIFFERENTIALS

To keep it simple, let speak only about trajectories of a quadratic
differential (q.d.) associated to an analytic (meromorphic) func-
tion ().

A trajectory arc of a q.d. Q(2)dz* is a curve « : (a,b) — D that

satisfies
Re / v/ Q(t) dt = const \\\

\ Simple zero

=y —

The global structure of the quadratic differentials can be very
complicated: we might have closed trajectories, critical trajecto-
ries and recurrent trajectories.




QUADRATIC DIFFERENTIALS

To keep it simple, let speak only about trajectories of a quadratic
differential (q.d.) associated to an analytic (meromorphic) func-
tion ().

A trajectory arc of a q.d. Q(z2)dz* is a curve v : (a,b) — D that
satisfies 5
Re / v/ Q(t) dt = const

The q.d. is closed if all its trajec-
tories are either closed or critical.

o (C

doancie (0 )

Example:
3
==t

The global structure of the quadratic differentials can be very
complicated: we might have closed trajectories, critical trajecto-
ries and recurrent trajectories.



QUADRATIC DIFFERENTIALS

To keep it simple, let speak only about trajectories of a quadratic
differential (q.d.) associated to an analytic (meromorphic) func-
tion ().

A trajectory arc of a q.d. Q(2)dz* is a curve « : (a,b) — D that

satisfies 5
Re / v/ Q(t) dt = const
R
The q.d. is closed if all its trajec- / AN
L \
tories are either closed or critical. / - \
| ] e
i AR i i ‘ /
Example: dz*, c € (—2,2). \
| L\ /
.

The global structure of the quadratic differentials can be very
complicated: we might have closed trajectories, critical trajecto-
ries and recurrent trajectories.



QUADRATIC DIFFERENTIALS

The relation of the symmetric measures with the trajectories shows
that we are interested in closed differentials, and in their short or
critical trajectories, namely those either closed or starting and
ending at critical points (= zeros and poles) of the q.d.

We need tools to study the global structure of the trajectories.

There are not so many tools:

e the local structure of trajectories

e Jenkins’ 3 pole theorem

e teichmuller’s lemma

e possibility to associate the trajectories with level curves of a
harmonic function on a Riemann surtace

Also valid for quadratic differentials on an algebraic curve!



QUADRATIC DIFFERENTIALS

The relation of the symmetric measures with the trajectories shows
that we are interested in closed differentials, and in their short or
critical trajectories, namely those either closed or starting and
ending at critical points (= zeros and poles) of the q.d.

We need tools to study the global structure of the trajectories.

The study of the global structure of trajectories of quadratic dif-
ferentials on compact Riemann surfaces is an ongoing project,
with ramifications also in the geometric function theory, random
matrix models, dynamical systems. ..



Hermite-Padé approximation
Multiple orthogonality
Fourier-Padé approximation
= Green equilibrium. . .

Varying non-hermitian
orthogonality

Non-hermitian OP
and Lamé ODE
with fixed A and B

Other approximation schemes or problems in inverse scattering
require more sophisticated equilibria. . .



HERMITE-PADE APPROXIMANTS

Now we have two analytic germs at infinity,

SR R
=S - )= =
<k Lk

k=0 k=0

For n € N we seek a vector of Hermite—Padé polynomials of the
first kind, Qn.0, Qn,1, and @y 2, such that for z — oo,

Rn(z) = (Qno+Qnifi +Qnafe)(2) =0 (Z2i+2>

Again, for algebraic f; we can derive several non-hermitian or-
thogonality relations, now involving both f; and fy; (multiple or-
thogonality).



HERMITE-PADE APPROXIMANTS
One example: with a4 = +1+ 0.47, b4+ = —0.65 — 0.4z,

I =~ (Picture of S. P. Suetin) fl (Z) o

f2(2) =
/\ V(z—b-)(z —bs)

Zeros of (Q180.1

05 F "\§ Zeros of (1502

Nl Zeros of ()150.0

1 | 1 :

-1 -0.5 0 0.5 1

Ro(2) = (@not+Qni1fi+Qnaf2)(2)=0 ( 1 )

ZQn—I—Q



ANALOGUE OF GONCHAR-RAKHMANOV?

Main ingredients:

e a compact 3-sheeted Riemann surface R associated with the

problem et .
e a meromorphic differential u(z)dz on

/ R with prescribed behavior at oo/
~ —1/z

and such that

»(z) = Re ; u(z)dz
. /

is single-valued on R,

e a natural ordering of the sheets,

$(z9) > ¢(21) > ¢(21?)

~ —1/z

Then we look at the curves on
R where ¢(2)) = ¢(2Y)), some-
thing like this:



ANALOGUE OF GONCHAR-RAKHMANOV?

Projections of these curves on C
are our analogues of S-curves.

Again, they are trajectories of
a quadratic differential on R.

We can use them for the
asymptotic analysis of some
specific cases.

But we still don’t have
any analogue of Gonchar-

z \ Rakhmanov theorem!
, \ Then we look at the curves on
| . R where ¢(2\9) = ¢(2\9)), some-
[Picture from a work in progress A TR
with G. Silva] Mg ke thIs.




Hermite-Padé approximation
Multiple orthogonality
Fourier-Padé approximation
= Green equilibrium. . .

Varying non-hermitian
orthogonality

Non-hermitian OP
and Lamé ODE
with fixed A and B
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Hermite-Padé approximation
Multiple orthogonality
Fourier-Padé approximation
= Green equilibrium. . .

Varying non-hermitian
orthogonality

Non-hermitian OP
and Lamé ODE
with fixed A and B

T

Let us look more carefully here, at the bottom



Hermite-Padé approximation
Multiple orthogonality
Fourier-Padé approximation
= Green equilibrium. . .

Varying non-hermitian
orthogonality

Non-hermitian OP
and Lamé ODE
with fixed A and B

T

Let us look more carefully here, at the bottom



A SIMPLE PROBLEM

Let us consider a final example: orthogonal polynomials (),, sat-

istying

/ O e dy — (), kNS
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

The zeros of (),, will accumulate at the curve with the S-property
for the log potential in the external field ¢(z) = a Re z.

We can use the Gonchar-Rakhmanov theorem

TR

Clearly, for a« = 0 the S-curve is just the segment |aq, as].



A SIMPLE PROBLEM

Let us consider a final example: orthogonal polynomials (),, sat-

istying

/ O e dy — (), kNS
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

The zeros of (),, will accumulate at the curve with the S-property
for the log potential in the external field ¢(z) = a Re z.

We can use the Gonchar-Rakhmanov theorem

Clearly, for a« = 0 the S-curve is just the segment |aq, as].

For small values of o, the min-max curve C' is the short trajectory
of the quadratic differential
1

(2_5)2 dZQ, 5:_1_|__

(z —a1)(z — asg) o
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Let us consider a final example: orthogonal polynomials (),, sat-
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where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

The zeros of (),, will accumulate at the curve with the S-property
for the log potential in the external field (z) = a Re z.

For small values of o, the min-max curve C'is the short trajectory
of the quadratic differential 2 — (3)2 1
Sl dz?, B=—11

(z—a1)(z —as) o




A SIMPLE PROBLEM

Let us consider a final example: orthogonal polynomials (),, sat-
istying
/ O e dy — (), kNS
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

The zeros of (),, will accumulate at the curve with the S-property
for the log potential in the external field (z) = a Re z.

For small values of o, the min-max curve C'is the short trajectory
of the quadratic differential 2 — (3)2 1
Sl dz?, B=—11

a=0.001 (Z o al)(Z = CL2) @84

As o grows, the double zero [
moves towards the curve.



A SIMPLE PROBLEM

Let us consider a final example: orthogonal polynomials (),, sat-
istying
/ O e dy — (), kNS
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

The zeros of (),, will accumulate at the curve with the S-property
for the log potential in the external field (z) = a Re z.

For small values of o, the min-max curve C'is the short trajectory
of the quadratic differential 2 — (3)2 1
Sl dz?, B=—11

o = 0.6642 (Z — al)(Z = CLQ) 84

There is a critical value of o™ for
which C crosses the imaginary
axis, and another critical value

o* for which § collides with C'




A SIMPLE PROBLEM

Let us consider a final example: orthogonal polynomials (),, sat-
istying
/ O e dy — (), kNS
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

The zeros of (),, will accumulate at the curve with the S-property
for the log potential in the external field (z) = a Re z.

For small values of o, the min-max curve C'is the short trajectory
of the quadratic differential 2 — (3)2 1
Sl dz?, B=—11

o> 0.6642 (Z = al)(z = &2) oY

\ After the collision, the support of

L splits into 2 pieces, shrinking

/ towards a; as o — oo.




A SIMPLE PROBLEM

Let us consider a final example: orthogonal polynomials (),, sat-
istying
/ O e dy — (), kNS
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

The zeros of (),, will accumulate at the curve with the S-property
for the log potential in the external field (z) = a Re z.

For small values of o, the min-max curve C'is the short trajectory
of the quadratic differential 2 — (3)2 1
Sl dz?, B=—11

s... 2 (Z e CL1)(Z — CLQ) Q0

The zeros of (),, comply.

a=04




A SIMPLE PROBLEM

Let us consider a final example: orthogonal polynomials (),, sat-
istying
/ O e dy — (), kNS
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

The zeros of (),, will accumulate at the curve with the S-property
for the log potential in the external field (z) = a Re z.

For small values of o, the min-max curve C'is the short trajectory
of the quadratic differential 2 — (3)2 1
Sl dz?, B=—11

i W e i y

The zeros of (),, comply.

a=0.0




A SIMPLE PROBLEM

Let us consider a final example: orthogonal polynomials (),, sat-
istying
/ O e dy — (), kNS
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

The zeros of (),, will accumulate at the curve with the S-property
for the log potential in the external field (z) = a Re z.

For small values of o, the min-max curve C'is the short trajectory
of the quadratic differential 2 — (3)2 1
Sl dz?, B=—11

= 1 e e g

The zeros of (),, comply.

a=0..8

Everything is clear, life is nice.



AN APPARENTLY SIMPLE PROBLEM

Let us modify the problem slightly: orthogonal polynomials @),

satistying

/ szn(z)(l -+ 6_”0‘2)0!2 =0, k=0, 1.
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

This orthogonality is connected with the logarithmic equilibrium
in a piecewise-harmonic external field

aRez, Rez <0,
e {0, R 2o

Gonchar-Rakhmanov theorem does not apply always!

——eeteSsespmmmmeStETTTT




AN APPARENTLY SIMPLE PROBLEM

Let us modify the problem slightly: orthogonal polynomials @),
satistying

/ szn(z)(l -+ 6_”0‘2)0!2 =0, k=0, 1.
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

For small values of o, the min-max curve C' is still the short tra-
jectory of the quadratic differential

Z_BY 42 g

(z—a1)(z —as)

8%



AN APPARENTLY SIMPLE PROBLEM

Let us modify the problem slightly: orthogonal polynomials @),
satistying

/ szn(z)(l -+ 6_”0‘2)0!2 =0, k=0, 1.

C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

For small values of o, the min-max curve C' is still the short tra-
jectory of the quadratic differential

o = 0.42626 (Z ~x 5)2
(z—a1)(z —as)

Up to the critical value of «.

1
R — 1
Q

Observe: no S-property at the
v@=aRez | y@=0 vertex:

0
g Wiaar )

s— (V" +y)=a



AN APPARENTLY SIMPLE PROBLEM

Let us modify the problem slightly: orthogonal polynomials @),
satistying

/ szn(z)(l -+ 6_”0‘2)0!2 =0, k=0, 1.
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

For small values of o, the min-max curve C' is still the short tra-
jectory of the quadratic differential

o = 0.42626 (Z 3 5)2 1

dz“. ~ B=HN=s
Q

(z—a1)(z —as)
What happens beyond this o7

What is the asymptotic zeros dis-
tribution of such polynomials?

No curve with S-property in this
case’



AN APPARENTLY SIMPLE PROBLEM

Let us modify the problem slightly: orthogonal polynomials @),
satistying

/ szn(z)(l -+ 6_”0‘2)0!2 =0, k=0, 1.

C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

For small values of o, the min-max curve C' is still the short tra-
jectory of the quadratic differential

o = 0.42626 (Z =% 5)2 2 Car |
(z—al)(z—az)dz’ P o

If the S-property no longer
rules, then what does?

Maybe we should go back to the
origin and recall the max-min
property of the energy?



AN APPARENTLY SIMPLE PROBLEM

Let us modify the problem slightly: orthogonal polynomials @),
satistying

/ szn(z)(l -+ 6_”0‘2)0!2 =0, k=0, 1.

C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

For small values of o, the min-max curve C' is still the short tra-
jectory of the quadratic differential

o = 0.52644 (Z X 5)2 2 et |
(z—al)(z—az)dz’ P o

For larger a’s, the max-min set
will still lie in the lett half-plane.

The trajectories are no longer as-
socliated with one quadratic dif-
ferential.




AN APPARENTLY SIMPLE PROBLEM

Let us modify the problem slightly: orthogonal polynomials @),
satistying

/ szn(z)(l -+ 6_”0‘2)0!2 =0, k=0, 1.
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

For small values of o, the min-max curve C' is still the short tra-
jectory of the quadratic differential

3 (2—5)2 2 i | 1
(z—al)(z—az)dz’ e Q
! —150az

| Zeros of Q150 for w(z) = e
—————— (small blue dots) ‘and foriEE=

1 + e 1°9%% (medium red dots),
in the pre-critical case,

- a=04



AN APPARENTLY SIMPLE PROBLEM

Let us modify the problem slightly: orthogonal polynomials @),
satistying

/ szn(z)(l -+ 6_”0‘2)0!2 =0, k=0, 1.

C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

For small values of o, the min-max curve C' is still the short tra-
jectory of the quadratic differential

2
o 1
\ T kel ) dZ27 =1
(2 —a1)(z — a2) a
...."\ Zeros of Q159 for w(z) = e 1°V#
B % s (small blue dots) and for w(z) =
....-"’ : 1 + e %% (medium red dots),

immediately after o™,

a = 0.44



AN APPARENTLY SIMPLE PROBLEM

Let us modify the problem slightly: orthogonal polynomials @),
satistying

/ szn(z)(l -+ e_”az)dz =0, k=0, 1.

C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

For small values of o, the min-max curve C' is still the short tra-
jectory of the quadratic differential

(2 — B)° 1

2 ol |
(z—al)(z—az)dz7 P o

- Isn’t that beautiful?
P . max-min rules!

\.,“.‘.‘,".;;;;;;.-.-.- RN :

e Let a grow a little more:

a = 0.6



AN APPARENTLY SIMPLE PROBLEM

Let us modify the problem slightly: orthogonal polynomials @),
satistying

/ szn(z)(l -+ e_”az)dz =0, k=0, 1.
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

Let us concentrate on the zeros of Q159 for w(z) = 1 + e~ 12022,

What happens next?

\.....,“ | a = 0.63

Numerical instability? A riot?




AN APPARENTLY SIMPLE PROBLEM

Let us modify the problem slightly: orthogonal polynomials @),
satistying

/ szn(z)(l -+ e_”az)dz =0, k=0, 1.
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

Let us concentrate on the zeros of Q159 for w(z) = 1 + e~ 12022,
What happens next?

a = 0.64

Numerical instability? A riot?




AN APPARENTLY SIMPLE PROBLEM

Let us modify the problem slightly: orthogonal polynomials @),
satistying

/ szn(z)(l -+ e_”az)dz =0, k=0, 1.
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

Let us concentrate on the zeros of Q159 for w(z) = 1 + e~ 12022,

What happens next?

e a = 0.66

........... ; Numerical instability? A riot?




AN APPARENTLY SIMPLE PROBLEM

Let us modify the problem slightly: orthogonal polynomials @),
satistying

/ szn(z)(l -+ e_”az)dz =0, k=0, 1.
C

where C' is an arc joining points a; = —1 + 27 and ay = —1 — 21,
and o > 0.

Let us concentrate on the zeros of Q159 for w(z) = 1 + e~ 12022,

After the second phase transi-
W:::;;;;-.-...... 4 ey '2 tion:
s DL a= 0.8

The freedom is complete!




AN APPARENTLY SIMPLE PROBLEM

/ szn(z)(l —- e_”o‘z)dz =0, k=01 "t
C

The situation is even more puzzling if we see how the distribution
evolves with a fixed parameter a« = 0.8, but with C joining —1
with ag, where ay goes from 1 to —1 + 4s.

4 —

&2:1

=G -0.5 : \ 0.5 1.0
1L

Gap predicted by the theory!




AN APPARENTLY SIMPLE PROBLEM

/ szn(z)(l —- e_”o‘z)dz =0, k=01 "t
C

The situation is even more puzzling if we see how the distribution
evolves with a fixed parameter a« = 0.8, but with C joining —1
with ag, where ay goes from 1 to —1 + 4s.

4 —

ag = 0.8 + 0.4

1 J
-1.0 -0.5 - \ 0.5 1.0
e

Gap predicted by the theory!




AN APPARENTLY SIMPLE PROBLEM

/ szn(z)(l —- e_”o‘z)dz =0, k=01 "t
C

The situation is even more puzzling if we see how the distribution
evolves with a fixed parameter a« = 0.8, but with C joining —1
with ag, where ay goes from 1 to —1 + 4s.

4 —

Oops! Gap gone?



AN APPARENTLY SIMPLE PROBLEM

/ szn(z)(l —- e_”o‘z)dz =0, k=01 "t
C

The situation is even more puzzling if we see how the distribution
evolves with a fixed parameter a« = 0.8, but with C joining —1
with ag, where ay goes from 1 to —1 + 4s.

4 —

1 J
1.0

Interesting wiggle



AN APPARENTLY SIMPLE PROBLEM

/ szn(z)(l —- e_”o‘z)dz =0, k=01 "t
C

The situation is even more puzzling if we see how the distribution
evolves with a fixed parameter a« = 0.8, but with C joining —1
with ag, where ay goes from 1 to —1 + 4s.

tipy = s 5= el

1 1 1 l 1 1 1 1 J
\ 0.5 1.0

The max-min solution




AN APPARENTLY SIMPLE PROBLEM

/ szn(z)(l —- e_”o‘z)dz =0, k=01 "t
C

The situation is even more puzzling if we see how the distribution
evolves with a fixed parameter a« = 0.8, but with C joining —1
with ag, where ay goes from 1 to —1 + 4s.

i — D= SR

1 l 1 1 1 1 J
0.5 1.0




AN APPARENTLY SIMPLE PROBLEM

/ szn(z)(l —- e_”o‘z)dz =0, k=01 "t
C

The situation is even more puzzling if we see how the distribution
evolves with a fixed parameter a« = 0.8, but with C joining —1
with ag, where ay goes from 1 to —1 + 4s.

ar = —0.8 4 3.67 T

1 L 1 1 1 1 1 l 1 1 1 1 J
-1.0 -0.5 - 0.5 1.0

Generates additional external field!



AN APPARENTLY SIMPLE PROBLEM

/ szn(z)(l —- e_”o‘z)dz =0, k=01 ey
C

The situation is even more puzzling if we see how the distribution
evolves with a fixed parameter a« = 0.8, but with C joining —1
with ag, where ay goes from 1 to —1 + 4s.

A
A9 = —1 -+ 49 ..”"'Oo.ooo..

0.5 1.0



AN APPARENTLY SIMPLE PROBLEM

/ szn(z)(l —- e_”o‘z)dz =0, k=01 "t
C

The situation is even more puzzling if we see how the distribution
evolves with a fixed parameter a« = 0.8, but with C joining —1
with ag, where ay goes from 1 to —1 + 4s.

To-do list for the next FoCM:

e understand the electrostatic model explaining these pictures
e find the mechanism behind the obvious phase transitions

e extend the Gonchar-Rakhmanov theorem to the piece-wise har-
monic external fields

e use the Riemann-Hilbert steepest descent method to find the
strong asymptotics of these polynomials

e exercise more and eat healthy



Thank you!



