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Let us start with 3 
objects to play with



PADÉ APPROXIMANTS

f(z) =
1X

k=0

ak
zk

Let

represent an analytic germ at infinity.

We can approximate it by a (Laurent) polynomial,

Pn(1/z) =
nX

k=0

ak
zk

or we can do much better using rational functions: find Pn, Qn,

of degree  n, such that

the expansion of

Pn

Qn
(z) matches the expansion of f(z)

to the highest possible order.

This is a non-linear problem on the coe�cients of Pn and Qn.

Existence of a solution?



PADÉ APPROXIMANTS

f(z) =
1X

k=0

ak
zk

Let

represent an analytic germ at infinity.

The linearized version is:

Find Pn and Qn, Qn 6⌘ 0, such that

(Qnf � Pn)(z) = O
✓

1

zn+1

◆
, z ! 1.

Then ⇡n = Pn/Qn is the (unique) [n/n] Padé approximant to f
at 1.

The analytic theory of these approximants (and their generaliza-

tions) has blossomed in the 1980-ies.

In particular, what is the behavior (as n ! 1) of the poles of ⇡n

= obstacles for convergence = zeros of Qn?



PADÉ APPROXIMANTS
The most interesting case is when f is a germ of a multivalued

(algebraic) function.

Example:

f(z) =
(1� z2)1/3

(z � 0.4 + 0.8i)2/3

Here are the poles of ⇡150:



PADÉ APPROXIMANTS
The most interesting case is when f is a germ of a multivalued

(algebraic) function.

Example:

Here are the poles of ⇡150:

f(z) =
(1� z2)1/5(z + 0.8 + 0.4i)1/5

(z � 0.4 + 0.8i)3/5



PADÉ APPROXIMANTS

Key observation: use the Cauchy formula and the definition of

the residue,

(Qnf � Pn)(z) = O
✓

1

zn+1

◆
, z ! 1.

I

C
zk(Qnf � Pn)(z) dz = 0

k = 0, 1, . . . , n� 1

+

C
I

C
zkQn(z)f(z) dz = 0

+
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Key observation: use the Cauchy formula and the definition of

the residue,

(Qnf � Pn)(z) = O
✓
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zn+1

◆
, z ! 1.

I

C
zk(Qnf � Pn)(z) dz = 0

k = 0, 1, . . . , n� 1
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I

C
zkQn(z)f(z) dz = 0

+

�

Z

�
zkQn(z)�f(z) dz = 0or even Non-hermitian 

orthogonality



L(↵)
n (z) =

nX

k=0

✓
n+ ↵

n� k

◆
(�z)k

k!
=

(�1)n

n!
z�↵ez

✓
d

dz

◆n ⇥
zn+↵e�z

⇤

For ↵ > �1 they form a well-known family of orthogonal polyno-

mials on [0,+1):

Z +1

0
L

(↵)
n

(x)x

k+↵

e

�x

dx = 0, for k = 0, 1, . . . , n� 1.

In consequence, all zeros of L(↵)
n for ↵ > �1 are positive and

simple.

CLASSICAL POLYNOMIALS: LAGUERRE



L(↵)
n (z) =

nX

k=0

✓
n+ ↵

n� k

◆
(�z)k

k!
=

(�1)n

n!
z�↵ez

✓
d

dz

◆n ⇥
zn+↵e�z

⇤

In this definition, ↵ can be complex.

−3 −2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

0
+'

Zeros of L(�3+2i)
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CLASSICAL POLYNOMIALS: LAGUERRE

L(↵)
n also satisfy non-hermitian orthogonality relations, this time

on the plane.

zy00(z) + (↵+ 1� z)y0(z) + ny(z) = 0

Besides, they are polynomial solutions of degree n of

In particular, if

lim
n

↵n

n
= A 2 C

pn(z) = L(↵n)
n (nz) ⇠ ?

[J. Math. Anal. Appl. 416, 52–80]



LAMÉ ODE



LAMÉ ODE (P=2)
Zeros of  H-S polynomials for p=2 (three finite singularities):

Explanation and asymptotics?

A(z)y00(z) +B(z)y0(z)� V (z)y(z) = 0

A(z) =
2Y

k=0

(z � ak), V (z) = c(z � ), y(z) =
Y

(z � )



LOGARITHMIC POTENTIAL

How can we study the behavior of polynomials?

Trivial observation: if P (z) = (z � a1)(z � a2) . . . (z � an), then

� log |P (z)| =
nX

k=1

log

1

|z � ak|



LOGARITHMIC POTENTIAL

How can we study the behavior of polynomials?

Trivial observation: if P (z) = (z � a1)(z � a2) . . . (z � an), then

� log |P (z)| =
nX

k=1

log

1

|z � ak|



LOGARITHMIC POTENTIAL

Continuous analogue: given a (in general, signed) measure µ, its
logarithmic potential is

ODE

gradient of a potential = 0

Warning!  
Intuitive arguments

Proceed at your own risk



EQUILIBRIUM FOR A LOGARITHMIC POTENTIAL

The (continuous) logarithmic energy of a measure µ is defined as

Also, V µK
(z) = �gD(z,1), where g(·,K) is the Green function

of D = C \K with pole at 1.



ASYMPTOTICS FOR STANDARD OP

In the case of the “standard” (Hermitian) orthogonality,
Z

K
Qn(z)z

k dµ(z) = 0, k = 0, 1, n� 1,

our intuition can be rigorously justified:

• when K has no interior, and measure µ is reasonable;

• when K has non-empty interior, and measure µ is very nice

(“Bergman polynomials”),. . .

More precisely, if

⌫
n

= ⌫(Q
n

) =
1

n

X

Qn(x)=0

�
x

is the (normalized) zero-counting measure for Qn, then ⌫n ! µK

in the weak-* sense.

Observe that conjugation “fixes” the geometry.



A THEOREM OF H. STAHL (1985-1986)

C In other words, if ⌫(Qn) ! µ, as n ! 1,

who is µ?

By the Padé-based intuition, µ is such

that f has a holomorphic branch in C \
supp(µ).

Assume that f is an algebraic function, with branch points at

E = {ak}, and Qn is a polynomial of degree n such that

k = 0, 1, . . . , n� 1

I

C
zkQn(z)f(z) dz = 0



A THEOREM OF H. STAHL (1985-1986)

In other words, if ⌫(Qn) ! µ, as n ! 1,

who is µ?

By the Padé-based intuition, µ is such

that f has a holomorphic branch in C \
supp(µ).

Assume that f is an algebraic function, with branch points at

E = {ak}, and Qn is a polynomial of degree n such that

k = 0, 1, . . . , n� 1

I

C
zkQn(z)f(z) dz = 0

�

Answer: take the set K of minimal capacity such that f is single-

valued in D = C \K. This is the attractor of the zeros of Qn.

Moreover, ⌫(Qn) ! µK as n ! 1.



SETS OF MINIMAL CAPACITY

S-property
Characterization (Stahl): on the extremal compact K,

@gC\K(z,1)

@n�
=

@gC\K(z,1)

@n+



WHAT ABOUT THE LAMÉ ODE?

We need to generalize the 
notion of the set of minimal 

capacity…



CRITICAL MEASURES



CRITICAL MEASURES

)
@gC\K(z,1)

@n�
=

@gC\K(z,1)

@n+
(S-property)

d

dt
I(µt)

��
t=0

= 0, 8h
��
A = 0

If A = {a0, a1, . . . , ap}, a measure µ is called A-critical if



LAMÉ ODE

        

                                                                                 

Any weak limit of a zero counting measure of the polynomial
solutions of the generalized Lamé ODE

A(z)y00(z) +B(z)y0(z)� Vn(z)y(z) = 0, A(z) =
pY

j=0

(z � aj)

is an A-critical measure, and viceversa.

AMF & E.A. Rakhmanov, Commun. Math. Phys. 302,

53–111 (2011):



THE S-PROPERTY

Trajectory of  
a quadratic 
differential



This is just the 
first level…

Non-hermitian OP
and Lamé ODE
with fixed A and B

In order to describe more complex constructions (Lamé ODE with
varying coe�cients, OP with the weight depending on the de-
gree,. . . ), we must expand the notion of equilibrium.



EQUILIBRIUM IN AN EXTERNAL FIELD



S-PROPERTY FOR THE LOG ENERGY

If  is harmonic,  = Re , then µ satisfies a variational identity

on C of the form



VARIATIONAL IDENTITY

Trajectory of  
a quadratic 
differential



VARIATIONAL IDENTITY
Example: two fixed points (�1± 2i), external field  (z) = Re z.

• its only poles are �1± 2i

•
p
R is holomorphic in C \K, K joins �1± 2i

We can recover the measure µ if we know its support: the trajec-

tory Re

R z p
R(t)dt = const



THEOREM OF GONCHAR-RAKHMANOV

1

2n
log

1

|fn(z)|
!  (z)

Assume that Qn of degree n satisfy

I

C
zkQn(z)fn(z) dz = 0, k = 0, 1, . . . , n� 1,

where fn are analytic,

with  harmonic.

Let also K be such that the support of µK( ) has the S-property
in the external field  .

If C \ suppµK( ) is connected, then

⌫(Qn) =
1

n

X

Qn(z)=0

�z ! µK( )



Time to discuss 
quadratic differentials

It has been mentioned that such 
measures live on trajectories of 

quadratic differentials



QUADRATIC DIFFERENTIALS
To keep it simple, let speak only about trajectories of a quadratic

di↵erential (q.d.) associated to an analytic (meromorphic) func-

tion Q.

Simple pole

Simple zero



QUADRATIC DIFFERENTIALS
To keep it simple, let speak only about trajectories of a quadratic

di↵erential (q.d.) associated to an analytic (meromorphic) func-

tion Q.

Trajectories of quadratic di�erentials
The global structure of the quadratic di�erentials can be very complicated:
we might have closed trajectories, critical trajectories and recurrent trajec-
tories.
A quadratic di�erential is called closed if all its trajectories are either closed
or critical.

Example:
z � 1/2

z3 � 1
dz2

A. M.-F., E. Rakhmanov () HS polynomials & Co. UC3M, April 2, 2009 18 / 1



QUADRATIC DIFFERENTIALS
To keep it simple, let speak only about trajectories of a quadratic

di↵erential (q.d.) associated to an analytic (meromorphic) func-

tion Q.



QUADRATIC DIFFERENTIALS

 



QUADRATIC DIFFERENTIALS

 

The study of the global structure of trajectories of quadratic dif-

ferentials on compact Riemann surfaces is an ongoing project,

with ramifications also in the geometric function theory, random

matrix models, dynamical systems. . .



Non-hermitian OP
and Lamé ODE
with fixed A and B

Varying non-hermitian

orthogonality

Other approximation schemes or problems in inverse scattering
require more sophisticated equilibria. . .

Fourier-Padé approximation

) Green equilibrium. . .

Hermite-Padé approximation
Multiple orthogonality



HERMITE-PADÉ APPROXIMANTS

f1(z) =
1X

k=0

ak
zk

, f2(z) =
1X

k=0

bk
zk

,

Now we have two analytic germs at infinity,

Rn(z) = (Qn,0 +Qn,1f1 +Qn,2f2) (z) = O
✓

1

z2n+2

◆

For n 2 N we seek a vector of Hermite–Padé polynomials of the
first kind, Qn,0, Qn,1, and Qn,2, such that for z ! 1,

Again, for algebraic fj we can derive several non-hermitian or-

thogonality relations, now involving both f1 and f2 (multiple or-

thogonality).



HERMITE-PADÉ APPROXIMANTS
One example: with a± = ±1 + 0.4i, b± = �0.65� 0.4i,

f1(z) =
1p

(z � a�)(z � a+)

f2(z) =
1p

(z � b�)(z � b+)

Rn(z) = (Qn,0 +Qn,1f1 +Qn,2f2) (z) = O
✓

1

z2n+2

◆

Zeros of Q180,0

Zeros of Q180,1

Zeros of Q180,2

(Picture of S. P. Suetin)



ANALOGUE OF GONCHAR-RAKHMANOV?

Main ingredients:

⇠ 2/z

⇠ �1/z

⇠ �1/z

• a meromorphic di↵erential u(z)dz on

R with prescribed behavior at 1(j)

• a natural ordering of the sheets,

�(z(0)) > �(z(1)) > �(z(2))

and such that

�(z) = Re

Z z

u(z)dz

is single-valued on R,

• a compact 3-sheeted Riemann surface R associated with the

problem

R(0)

R(1)

R(2)

Then we look at the curves on

R where �(z(i)) = �(z(j)), some-

thing like this:



ANALOGUE OF GONCHAR-RAKHMANOV?

Then we look at the curves on

R where �(z(i)) = �(z(j)), some-

thing like this:

Projections of these curves on C
are our analogues of S-curves.

But we still don’t have

any analogue of Gonchar-

Rakhmanov theorem!

We can use them for the

asymptotic analysis of some

specific cases.

Again, they are trajectories of

a quadratic di↵erential on R.

[Picture from a work in progress

with G. Silva]



Non-hermitian OP
and Lamé ODE
with fixed A and B

Varying non-hermitian

orthogonality

Fourier-Padé approximation

) Green equilibrium. . .

Hermite-Padé approximation
Multiple orthogonality
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with fixed A and B

Varying non-hermitian

orthogonality
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Non-hermitian OP
and Lamé ODE
with fixed A and B

Varying non-hermitian

orthogonality

Fourier-Padé approximation

) Green equilibrium. . .

Hermite-Padé approximation
Multiple orthogonality

Let us look more carefully here, at the bottom



Non-hermitian OP
and Lamé ODE
with fixed A and B

Varying non-hermitian

orthogonality

Fourier-Padé approximation

) Green equilibrium. . .

Hermite-Padé approximation
Multiple orthogonality

Let us look more carefully here, at the bottom



A SIMPLE PROBLEM

We can use the Gonchar-Rakhmanov theorem
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We can use the Gonchar-Rakhmanov theorem
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 _ = 0.6642

A SIMPLE PROBLEM
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A SIMPLE PROBLEM
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AN APPARENTLY SIMPLE PROBLEM

Gonchar-Rakhmanov theorem does not apply always!



 _ = 0.38

 s(z)= _ Re z   s(z)= 0 

AN APPARENTLY SIMPLE PROBLEM



 _ = 0.42626

 s(z)= _ Re z   s(z)= 0 

AN APPARENTLY SIMPLE PROBLEM



AN APPARENTLY SIMPLE PROBLEM

 _ = 0.42626

 s(z)= _ Re z   s(z)= 0 

What happens beyond this ↵?



AN APPARENTLY SIMPLE PROBLEM

 _ = 0.42626

 s(z)= _ Re z   s(z)= 0 

If the S-property no longer

rules, then what does?

Maybe we should go back to the

origin and recall the max-min

property of the energy?



 _ = 0.52644

 s(z)= _ Re z   s(z)= 0 

AN APPARENTLY SIMPLE PROBLEM
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!1.0 !0.5 0.5

!2

!1

1

2

Isn’t that beautiful? 
max-min rules!

AN APPARENTLY SIMPLE PROBLEM
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AN APPARENTLY SIMPLE PROBLEM

The situation is even more puzzling if we see how the distribution

evolves with a fixed parameter ↵ = 0.8, but with C joining �1

with a2, where a2 goes from 1 to �1 + 4i.

a2 = 1

Gap predicted by the theory!



AN APPARENTLY SIMPLE PROBLEM

The situation is even more puzzling if we see how the distribution

evolves with a fixed parameter ↵ = 0.8, but with C joining �1

with a2, where a2 goes from 1 to �1 + 4i.

Gap predicted by the theory!

a2 = 0.8 + 0.4i



AN APPARENTLY SIMPLE PROBLEM

The situation is even more puzzling if we see how the distribution

evolves with a fixed parameter ↵ = 0.8, but with C joining �1

with a2, where a2 goes from 1 to �1 + 4i.

a2 = 0.6 + 0.8i

Oops! Gap gone?



AN APPARENTLY SIMPLE PROBLEM

The situation is even more puzzling if we see how the distribution

evolves with a fixed parameter ↵ = 0.8, but with C joining �1

with a2, where a2 goes from 1 to �1 + 4i.

a2 = 0.2 + 1.6i

Interesting wiggle



AN APPARENTLY SIMPLE PROBLEM

The situation is even more puzzling if we see how the distribution

evolves with a fixed parameter ↵ = 0.8, but with C joining �1

with a2, where a2 goes from 1 to �1 + 4i.

a2 = �0.4 + 2.8i

The max-min solution



AN APPARENTLY SIMPLE PROBLEM

The situation is even more puzzling if we see how the distribution

evolves with a fixed parameter ↵ = 0.8, but with C joining �1

with a2, where a2 goes from 1 to �1 + 4i.

a2 = �0.6 + 3.2i



AN APPARENTLY SIMPLE PROBLEM

The situation is even more puzzling if we see how the distribution

evolves with a fixed parameter ↵ = 0.8, but with C joining �1

with a2, where a2 goes from 1 to �1 + 4i.

Generates additional external field!

a2 = �0.8 + 3.6i



AN APPARENTLY SIMPLE PROBLEM

The situation is even more puzzling if we see how the distribution

evolves with a fixed parameter ↵ = 0.8, but with C joining �1

with a2, where a2 goes from 1 to �1 + 4i.

a2 = �1 + 4i

-1.0 -0.5 0.5 1.0

-1

1

2

3

4



AN APPARENTLY SIMPLE PROBLEM

The situation is even more puzzling if we see how the distribution

evolves with a fixed parameter ↵ = 0.8, but with C joining �1

with a2, where a2 goes from 1 to �1 + 4i.

To-do list for the next FoCM:

• understand the electrostatic model explaining these pictures

• find the mechanism behind the obvious phase transitions

• extend the Gonchar-Rakhmanov theorem to the piece-wise har-

monic external fields

• use the Riemann-Hilbert steepest descent method to find the
strong asymptotics of these polynomials

• exercise more and eat healthy



Thank you!


