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Electrowetting on Dielectric: Modeling (w. A. Bonito and S. Walker)

Mixed Formulation (u velocity, p pressure, H curvature, λ multiplier)

α
∂u

∂t
+ βu +∇p = 0 in Ω

div u = 0 in Ω

p = H + E|{z}
electric actuation

+ P0sign (u · ν)| {z }
λ(contact line pinning)

+ Dviscu · ν| {z }
viscous damping

on Γ

Interface Motion
u · ν = ∂tX · ν on Γ
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Electrowetting on Dielectric: Experiments vs Simulations

Moving droplet stirred around by varying voltages
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Electrowetting on Dielectric: Experiments vs Simulations

Splitting of glycerin droplet due to voltage actuation
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Biomembranes: Modeling (w. A. Bonito and M.S. Pauletti)

• Bending (Willmore) energy: J(Γ) = 1
2

R
Γ

H2, H mean curvature

• Geometric Gradient Flow (with area and volume constraint):

v = −δΓJ = −
“
∆ΓH +

1

2
H3 − 2κH

”
ν −

“
λHν + pν

”
where ∆Γ is the Laplace-Beltrami operator on Γ.

• Fluid-Membrane Interaction (with area constraint):

ρDtv − div (−pI + µD(v)| {z }
Σ

) = b in Ωt,

div v = 0 in Ωt,

[Σ]ν = δΓJ on Γt

AFEM for the Laplace-Beltrami Operator: Convergence Rates Ricardo H. Nochetto
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Biomembrane: Geometric vs Fluid Red Blood Cell

play
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Mesh Smoothing: Comparison between P 1 and P 2 Elements
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The Laplace-Beltrami Operator and Curvature

I Vector curvature: H = Hν = −∆ΓX, X = identity on Γ (Dziuk’ 91)

I Semi-implicit Time Discretization (tn → tn+1): explicit geometry
(Γ = Γn, ∇Γ = ∇Γn , ν = νn)Z

Γn

Hn+1 ·Ψ =

Z
Γn

∇ΓnXn+1 : ∇ΓnΨ, Xn+1 = Xn + τnVn+1

I
R
Γn Hn+1 ·Ψ− τn

R
Γn ∇ΓnVn+1 : ∇ΓnΨ =

R
Γn ∇ΓnXn : ∇ΓnΨ

I Mixed Method: operator splitting

• Velocity (gradient flow or Navier-Stokes)
• Curvature (Laplace-Beltrami)

AFEM for the Laplace-Beltrami Operator: Convergence Rates Ricardo H. Nochetto
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Surface Representation

• Polyhedral surface: Γ0 =
SM

i=1 Γ
i
0 is made of M (closed) facets Γ

i
0;

• Globally Lipschitz homeomorphism: P0 : Γ0 → γ ⊂ Rd+1, γi := P i
0(Γ

i
0);

• Local parametric domain Ω ⊂ Rd: X
i
0 : Ω→ Γ

i
0 affine map;

• Non-overlapping parametrization: χi := P i
0 ◦X

i
0 : Ω→ γi

Ω

X
i
0

Γi
0 P i

0

γi

Figure: Representation of each component γi when d = 2 as a parametrization from a flat

triangle Γ
i
0 ⊂ R3 as well as from the master simplex Ω ⊂ R2. The map X

i
0 : Ω → Γ

i
0 is affine.

AFEM for the Laplace-Beltrami Operator: Convergence Rates Ricardo H. Nochetto
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Surface Approximation

• Conforming graded bisection meshes: T ∈ T = T(T 0), bT i = bT i(Ω);

• Finite element space: bVi := bV( bT i) space C0-elements of degree n ≥ 1;

• Surface interpolant: XibT i := I bT iχ
i Lagrange interpolant of χi in bVi,

Γi := XibT i(Ω) is the piecewise polynomial interpolation of γi

Ω = bT bT1 bT2

X0

X bT
T1 T2

P0

T 1 T 2

χ

Figure: Effect of one bisection of the macro-element X0(Ω) when d = 2 and n = 1; the

superscript i is omitted for simplicity. (Left) A triangle T ∈ T 0 is split into two triangles T 1,

T2 ⊂ R3. (Bottom) Equivalently, via the affine map X
−1
0 , the corresponding triangle bT ∈ bT is

split into two triangles bT1, bT2 ⊂ R2, whereas (Right) γ is interpolated by a new piecewise
linear surface Γ := X bT (Ω), with X bT = I bT χ the piecewise linear interpolant of the

parametrization χ defined in Ω and subordinate to the new triangulation bT . The images via

X bT of bT1 and bT2 are denoted T1 and T2 respectively; they are affine when n = 1.

AFEM for the Laplace-Beltrami Operator: Convergence Rates Ricardo H. Nochetto
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Geometric Estimator

• Geometric indicator: for 1 ≤ i ≤M and bT ∈ bT i

λ bT i( bT ) := ‖b∇(χi −XibT i)‖L∞( bT );

• Geometric estimator: λ bT := maxi=1,...,M max bT∈ bT i λ bT i( bT );

• Quasi-monotonicity: There exists a constant Λ0 > 1, solely depending on
T 0, the polynomial degree n, and dimension d, such that

λ bT∗ ≤ Λ0λ bT
for any bT , bT∗ ∈ bT with bT∗ ≥ bT .

• Shape-regularity: The forest T := T(T0) is shape-regular provided

λ bT0
≤ 1

2Λ0L
,

where L > 1 is the non-degeneracy constant in

L−1|x̂− ŷ| ≤ |χi(x̂)− χi(ŷ)| ≤ L|x̂− ŷ|, ∀x̂, ŷ ∈ Ω,

and T0 ∈ T is the subdivision corresponding to bT0 ∈ bT.

AFEM for the Laplace-Beltrami Operator: Convergence Rates Ricardo H. Nochetto
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Basic Differential Geometry

• Tangent vectors: The matrix of tangent vectors has rank d

T := [b∂1χ, . . . , b∂dχ] ∈ R(d+1)×d;

• First fundamental form:

G =
`
gγ,ij

´
1≤i,j≤d

:=
`b∂iχ

T b∂jχ
´
1≤i,j≤d

= TT T;

• Area element:
q :=

√
detG;

• Tangent gradient: b∇v̂ = ∇γv T;

• Weak form of Laplace-Beltrami operator:Z
γ

∇γu∇T
γ v =

MX
i=1

Z
Ω

b∇ûG−1
i

b∇v̂T q;

• Strong form of Laplace-Beltrami operator:

∆γv =
1

q
cdiv

`
q b∇v̂G−1´

.

AFEM for the Laplace-Beltrami Operator: Convergence Rates Ricardo H. Nochetto
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Variational Formulation

• Data assumptions: f ∈ L2(γ), γ ∈W 1
∞

• Weak formulation: H1
#(γ) = H1 space with zero meanvalue functions

u ∈ H1
#(γ) :

Z
γ

∇γu ∇T
γ v| {z }

=
PM

i=1
R
Ω

b∇û G−1
i

b∇vT qi

=

Z
γ

f v| {z }
=

PM
i=1

R
Ω f̂ v̂qi

∀v ∈ H1
#(γ);

• Discrete geometric quantities: TΓ,GΓ, qΓ;

• Galerkin formulation: seek U : Γ→ R

U ∈ V(T ) :

Z
Γ

∇ΓU ∇T
ΓV| {z }

=
PM

i=1
R
Ω

b∇Û G−1
Γi

b∇V T qΓi

=

Z
Γ

F V| {z }
=

PM
i=1

R
Ω F̂ V̂ qΓi

∀V ∈ V(T ).

Multiplicative structure qΓi
b∇bUG−1

Γi : this quantity is piecewise constant for
polynomial degree n = 1 but is rational for n > 1.

AFEM for the Laplace-Beltrami Operator: Convergence Rates Ricardo H. Nochetto
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A Posteriori Error Analysis: Geometric Estimates

• References:
I A posteriori estimates: Demlow-Dziuk (n = 1, 2007), Demlow (n > 1, 2009);
I Convergence and optimality n = 1: Mekchay-Morin-Nochetto (2011),

Bonito-Cascón-Morin-Nochetto (2013);

• Consistency error: EΓ := 1
q
T(qΓG

−1
Γ − qG−1)TT error matrixZ

Γ

∇Γv∇T
Γw −

Z
γ

∇γv∇T
γ w =

Z
γ

∇γvEΓ∇T
γ w;

• Estimate of EΓ: If λ bT0
≤ 1

6Λ0L3 , then

‖EΓ‖L∞( bT ) . λ bT i( bT ) ∀ bT ∈ bT i, 1 ≤ i ≤M ;

• Estimate of q,G, ν: If λ bT0
≤ 1

6Λ0L3 , then for all T ∈ T

maxbT∈ bT
“
‖q − qΓ‖L∞( bT ) + ‖G−GΓ‖L∞( bT ) + ‖ν − νΓ‖L∞( bT )

”
. λT .

AFEM for the Laplace-Beltrami Operator: Convergence Rates Ricardo H. Nochetto
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A Posteriori Error Analysis: Upper and Lower Bounds

• Interior and jump residuals:

R(U) := FΓ|T + ∆ΓU |T ∀T ∈ T ,

J (U) := ∇ΓU+|S · n+
S +∇ΓU−|S · n−S ∀S ∈ ST ;

• A posteriori error estimator:

ηT (U, T )2 := h2
T ‖R(U)‖2L2(T ) + hT ‖J (U)‖2L2(∂T ) ∀T ∈ Γ;

• Upper bound: there exist constants C1, Λ1 > 0 such that

‖∇γ(u− U)‖2L2(γ) ≤ C1ηT (U)2 + Λ1λ
2bT ;

• Lower bound: there exists constant C2 > 0 such that

C2ηT (U)2 ≤ ‖∇γ(u− U)‖2L2(γ) + osc bT (U, f)2 + Λ1λ
2bT ;

Note that ∆ΓU = 0 for n = 1 but is a rational function for n > 1;

• Localized upper bound: for T∗ ≥ T there holds

‖∇γ(U∗ − U)‖2L2(γ) ≤ C1ηT (U,R)2 + Λ1λ
2bT .

AFEM for the Laplace-Beltrami Operator: Convergence Rates Ricardo H. Nochetto
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Standard AFEM (for flat domains)

SOLVE : Compute the solution Uk ∈ Vk := V(Tk) of the discrete problem.

ESTIMATE : Compute a local estimator ηk(Uk, K), K ∈ Tk, for the error
in terms of the discrete solution Uk and given data.

MARK : Use the estimator to mark a subset Mk ⊂ Tk for refinement
ηk(Uk,Mk)2 ≥ θ2ηk(Uk, Tk)2 (Dörfler marking).

REFINE : Refine the marked subset Mk to obtain Tk+1, conforming or with
hanging nodes, increment k and go to step SOLVE.

Quasi-Optimal Algorithm: If f is piecewise polynomial and the decay rate for
the best approximation of u is

inf
#T −#T0≤N

inf
V ∈V(T )

‖∇γ(u− V )‖L2(γ) ≤ C1N
−s 0 < s ≤ n/d,

then the finite element method delivers the same rate

||∇γ(u− Uk)||L2(γ) ≤ C2(#Tk)−s.

AFEM for the Laplace-Beltrami Operator: Convergence Rates Ricardo H. Nochetto
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Quasi-optimality of AFEM

• Main references:
I Babuska, Vogelius, 1986 (1D problem).
I Binev, Dahmen, DeVore, 2004 (2D problem, coarsening).
I Stevenson, 2006 (marking by oscillation).
I Kreuzer, Cascon, Nochetto, Siebert, 2008.
I Bonito, Nochetto, 2010 (dG).
I Cohen, DeVore, Nochetto, 2011 (H−1 data and approximation classes).
I Diening, Kreuzer, Stevenson, 2013 (maximum strategy).

• Sufficient Condition: for best approximation of u ∈ B1+sd
p (Lp(Ω)) with

graded meshes to decay with rate N−s/d with 0 < s ≤ n/d (n ≥ 1
polynomial degree)

s >
1

p
− 1

2
⇒ B1+sd

p (Lp(Ω)) ↪→ H1(Ω)

I Binev, Dahmen, DeVore, Petrushev, 2002 (n = 1)
I Gaspoz, Morin, 2014 (n ≥ 1).

AFEM for the Laplace-Beltrami Operator: Convergence Rates Ricardo H. Nochetto
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Standard AFEM: C1,0.4 Surface with Lipschitz Boundary

Re-entrant Corner

C1,0.4 Surface

�
�

�	

�
��
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Standard AFEM: Decay Rates for n = 1

• Error indicator: η2
T (U, T ) = h2

T ||f ||2L2(T ) + hT ||J (U)||2L2(∂T )

• Dörfler parameter in MARK: θ = 10% (quite conservative)

• Decay rate:

 0.01

 0.1

 1

 100  1000  10000

Energy Error
Optimal Order -1/2

Order -1/4

⇒ suboptimal decay rate

AFEM for the Laplace-Beltrami Operator: Convergence Rates Ricardo H. Nochetto



Motivation Parametric Surfaces Laplace-Beltrami AFEM for LB Convergence Rates of AFEM Discontinuous Coefficients Conclusions

AFEM for the Laplace-Beltrami Operator

• AFEM: Given T0, maps {P i
0}Li=1 parametrizing the surface γ from T0, and

parameters ε0 > 0, 0 < ρ < 1, and ω > 0, set k = 0.

1. T +
k = ADAPT SURFACE(Tk, ωεk)

2. Tk+1 = ADAPT PDE(T +
k , εk)

3. εk+1 = ρεk; k = k + 1; goto 1.

• T + = ADAPT SURFACE(T , τ)

whileM := {T ∈ T i, 1 ≤ i ≤M |λ bT i( bT ) > τ} 6= ∅
T = REFINE(T ,M)

end while
return T

• [T , U ] = ADAPT PDE(T , ε)
do

U = SOLVE(T )
{ηT (U, T )}T∈T = ESTIMATE(T , U)
M := MARK(T , {ηT (U, T )}T∈T )
T := REFINE(T ,M)

while ηT (U) > ε
return(T , U)

AFEM for the Laplace-Beltrami Operator: Convergence Rates Ricardo H. Nochetto
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Conditional Contraction Property of Module PDE

• Theorem. If λ(Tj) ≤ Λ0ωη(Uj , Tj) for ω ≤ ω∗, then there exists constants
0 < α < 1 and β > 0 such that the inner iterates of the module PDE satisfy

‖∇γ(u−Uj+1)‖2L2(γ)+βη(Uj+1, Tj+1)
2 ≤ α2

“
‖∇γ(u−Uj)‖2L2(γ)+βη(Uj , Tj)

2
”
.

Moreover, the number J of inner iterates of PDE is uniformly bounded.

• Idea of proof: it proceeds as in Cascón, Kreuzer, Nochetto, and Siebert
(2008) and Bonito and Nochetto (2010), with the additional information

λ(T ) ≤ 2ωη(U, T )

in the inner loops of PDE for ω ≤ ω∗ sufficiently small.

• Reduction of error estimator: there exist constants 0 < ξ < 1 and
Λ2, Λ3 > 0 such that for all δ > 0 and T∗ conforming refinement of T

η(U∗, T∗)2 ≤ (1 + δ)
`
η(U, T )2 − ξη(U,M)2

´
+ (1 + δ−1)

`
Λ3‖∇γ(U∗ − U)2‖L2(γ) + Λ2λ(T )2

´
.

AFEM for the Laplace-Beltrami Operator: Convergence Rates Ricardo H. Nochetto
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Contracting Quantities of AFEM (in flat domains)

• Energy error: |||Uk − u|||Ω is monotone, but not strictly monotone (e.g.
Uk+1 = Uk).

Ω = (0, 1)2, A = I, f = 1 ⇒ U0 = U1 =
1

12
φ0, U2 6= U1

• Residual estimator: ηk(Uk, Tk) is not reduced by AFEM, and
is not even monotone. But, if Uk+1 = Uk, then ηk(Uk, Tk) decreases strictly

η2
k+1(Uk+1, Tk+1) = η2

k+1(Uk, Tk+1) ≤ η2
k(Uk, Tk)− ξη2

k(Uk,Mk)

• Heuristics: the quantity |||Uk − u|||2Ω + βη2
k(Uk, Tk) might contract!

• Laplace-Beltrami: additional term λ(Tk) but λ(Tk) ≤ 2ωηk(Uk, Tk).
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Approximation Class

• Total error: Given γ ∈W 1
∞, v ∈ H1

#(γ), f ∈ L2(γ) and V ∈ V(T ) let

ET (V ; v, f, γ) := ‖∇γ(v − V )‖L2(γ) + osc bT (V, f) + ω−1λ bT .

• Approximation class As: We say that (u, f, γ) ∈ As for 0 < s ≤ n/d if
given ε > 0 there exists a conforming partition Tε with Tε ≥ T0 and a
discrete function Uε ∈ V(Tε) so that

ETε(Uε; u, f, γ) ≤ ε, and #Tε −#T0 ≤ C(u, f, γ, s)ε−
1
s .

• Besov regularity: sufficient conditions for (u, f, γ) ∈ As?
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Besov Regularity of γ, u and Greedy Algorithm

• Greedy algorithm:

T +
= GREEDY({gi}Mi=1, T , δ)

whileM := {T ∈ T i
, 1 ≤ i ≤M | ζ bT i(g

i, bT ) > δ} 6= ∅
T := REFINE(T ,M)

end while
return(T )

• Constructive approximation of γ: Let γ be of class B1+td
q (Lq(Ω)), with

tq > 1, 0 < q ≤ ∞ and td ≤ n, and globally of class W 1
∞. Then GREEDY

with ζ bT i(g
i, bT ) = λ bT i( bT ) implies

#M+ . |γ|1/t

B1+td
p (Lp(Ω))

τ−1/t.

• Constructive approximation of u: Let u ∈ H1(γ) be such that, for
i = 1, ..., M , ui := u|γi ◦ χi ∈ B1+sd

p (Lp(Ω)) with s− 1/p + 1/2 > 0,

0 < p ≤ ∞ and 0 < sd ≤ n. Then GREEDY with ζ bT i(g, bT ) =

‖b∇(ui −Πnui)‖L2( bT ) implies

inf
V ∈V(T )

‖∇γ(u− V )‖L2(γ) . |u|
B1+sd

p (Lp(Ω))

`
#T −#T0

´−s
.
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Besov Regularity of γ, f and Greedy Algorithm

• Constructive approximation of f : Let the oscillation of f be

osc bT i(f, bT )2 := h2
T ‖(id−Π2n−2)( bf iqΓ)‖L2( bT ).

If f ∈ L2(γ) is such that, for i = 1, ..., M , f i := f |γi ◦ χi ∈ Bsd
p (Lp(Ω))

with s− 1/p + 1/2 > 0, 0 < p ≤ ∞ and sd ≤ 2n− 1, then GREEDY gives

osc bT (f) . |f |Bsd
p (Lp(Ω))

`
#T −#T0

´−(s+ 1
d );

• Decay rate of oscillation: Let the oscillation associated to U be

osc bT i(U, bT )2 := h2
T ‖(id−Π2n−2)cdiv

`
qΓ

b∇bU iG−1
Γ

´
‖2

L2( bT )

+ hT ‖(id−Π2n−1)
“
qΓ(b∇(bU i)+(G+

Γ )−1 − b∇(bU i)−(G−
Γ )−1)bn”

‖2
L2(∂ bT )

.

If γ is of class B1+td
q (Lq(Ω)), with tq > 1, td ≤ n, and globally of class

W 1
∞, then GREEDY with tolerance δ > 0 gives for t ≤ t′ < 2t

osc bT (U) . δ‖∇γU‖L2(γ), #T −#T0 . C(γ, t, q)δ−
1
t′ .

Multiplicative structure: osc bT i(U) 6= 0 for n > 1.
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Optimal Decay Rates

• Membership in As: Let γ ∈ B1+td
q (Lq(Ω)) with tq > 1, 0 < q ≤ ∞ and

td ≤ n, and globally of class W 1
∞. Let u ∈ H1

#(γ) and f ∈ L2(γ) such that

ui := u ◦ χi ∈ B1+sd
p (Lp(Ω)) and f i := f ◦ χi ∈ Bsd

p (Lp(Ω)) for
i = 1, ..., M , with ds− d/p + d/2 > 0, 0 < p ≤ ∞ and 0 < sd ≤ n. Then,

(u, f, γ) ∈ Amin{s,t},

In addition,

sup
V ∈V(TN )

osc bTN
(V )

‖∇V ‖L2(T )

and osc bT (f)

decay faster than N−min(s,t) and osc bTN
(V, f) ≤ osc bTN

(V ) + osc bTN
(f) can

be asymptotically discarded in the definition of E bTN
(V ; u, f, γ).

• Theorem. If (u, γ, f) ∈ As for 0 < s ≤ n/d, and 0 < θ ≤ θ∗ and
0 < ω ≤ ω∗, then the sequence of iterates (Γk, Tk, Uk}k≥0 generated by
AFEM satisfy

e(Uk) + osc bTk
(Uk, f) + ω−1λ bTk

≤ C(u, f, γ, s)
`
#Tk −#T0

´−s
.
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Ingredients of the Proof

• Localized upper bound (to the refined set)

• Minimality of set M in Dörfler marking

• Explicit restriction of Dörfler parameter θ < θ∗ < 1

• Explicit restriction of surface parameter ω ≤ ω∗ < 1

• Conditional contraction property of PDE

• Complexity of REFINE (Binev-Dahmen-DeVore (d = 2), Stevenson (d > 2),
for conforming meshes, and Bonito-Nochetto for non-conforming meshes
(d ≥ 2).
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The Role of ω for Convergence Rates

• Example: Let

−∆γu = 1, in γ, u = 0, on ∂γ,

where γ is the graph of class C1,α given by

χ(x, y) =
`
0.75− x2 − y2´1+α

+
,

over the flat domain Ω = (0, 1)2.

• Besov regularity: It turns out that t = 1
2
, d = 2, td = 1 and

α = 3/5 : ⇒ χ ∈ B2
q (Lq(Ω))\W 2

∞(Ω) q > 2;

• Polynomial degree and decay rate:

n = 1 ⇒ s = t =
1

2
.
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The Role of ω for Convergence Rates: Case α = 3/5
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Figure: ηk, λk/ω and ηk + λk/ω for ω = 0.1 (left) ω = 1 (middle) and ω = 10 (right).

Figure: Meshes after 10, 20 and 30 refinements have been performed, C1,0.6-surface, with
ω = 1. They are composed of 192, 1216 and 5564 elements, respectively.
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Discontinuous Coefficients (w. A. Bonito and R. DeVore)

Motivation: Lipschitz surfaces with kinks not matched by the partitions.

Model problem: consider elliptic PDE of the form − div(A∇u) = f with

• A = (aij(x))d
i,j=1 uniformly positive definite and bounded

λmin(A)|y|2 ≤ ytA(x)y ≤ λmax(A)|y|2 ∀ x ∈ Ω, y ∈ Rd;

• The discontinuities of A are not match by the sequence of meshes T ;

• The forcing f ∈W−1
p (Ω) for some p > 2.

Goal: Design and study an AFEM able to handle such an A.

Difficulty: PDE perturbation results hinge on approximation of A in L∞

‖u− bu‖H1
0 (Ω) ≤ λ−1

min( bA)
“
‖f − bf‖H−1(Ω) + ‖A− bA‖L∞(Ω)‖f‖H−1(Ω)

”
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Perturbation Argument

Theorem (perturbation). Let p ≥ 2, q = 2p/(p− 2) ∈ [2,∞] and
∇u ∈ Lp(Ω). Then

‖u− bu‖H1
0 (Ω) ≤ λ−1

min( bA)
“
‖f − bf‖H−1(Ω) + ‖A− bA‖Lq(Ω)‖∇u‖Lp(Ω)

”

Question: can we guarantee that ∇u ∈ Lp(Ω) with p > 2 but A ∈ L∞(Ω)?

Proposition (Meyers). Let eK > 0 be so that the solution eu of the Laplacian
satisfies

‖∇eu‖Lp(Ω) ≤ eK‖f‖
W−1

p (Ω)
.

Then the solution u of − div(A∇u) = f satisfies

‖∇u‖Lp(Ω) ≤ K‖f‖
W−1

p (Ω)

if 2 ≤ p < p∗ and K = 1
λmax(A)

eKη(p)

1− eKη(p)
`
1− λmin(A)

λmax(A)

´ with η(p) =
1
2−

1
p

1
2−

1
p∗

.
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DISC: AFEM for Discontinuous Diffusion Matrices

Given ω > 0 explicit and β < 1, let

DISC(T0, ε1)
k = 1
LOOP

[Tk(f), fk] = RHS(Tk−1, f, ωεk)
[Tk(A), Ak] = COEFF(Tk(f), A, ωεk)
[Tk, Uk] = PDE(Tk(A), Ak, fk, εk/2)
εk+1 = βεk

k ← k + 1
END LOOP

END DISC

• [Tk(f), fk] = RHS(Tk−1, f, ωεk) gives a mesh Tk(f) ≥ Tk−1 and a pw
polynonial approximation fk of f on Tk(f) such that ‖f − fk‖H−1(Ω) ≤ ωεk;

• [Tk(A), Ak] = COEFF(Tk(f), A, ωεk) gives a mesh Tk(A) ≥ Tk(f) and a pw
polynomial approximation Ak of A on Tk(A) such that
‖A−Ak‖Lq(Ω) ≤ ωεk and its eigenvalues satisfy uniformly in k

C−1λmin(A) ≤ λ(Ak) ≤ Cλmax(A).
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Optimality of DISC

Theorem (optimality). Assume that the right side f is in Bsf (H−1(Ω)) with
0 < sf ≤ S, and that the diffusion matrix A is positive definite, in L∞(Ω) and
inMsA(Lq(Ω)) for q := 2p

p−2
and 0 < sA ≤ S. Let T0 be the initial subdivision

and Uk ∈ V(Tk) be the Galerkin solution obtained at the kth iteration of the
algorithm. Then, whenever u ∈ Asu(H1

0 (Ω)) for 0 < su ≤ S, we have for k ≥ 1

‖u− Uk‖H1
0 (Ω) ≤ εk,

and

#Tk −#T0 .
“
|A|1/s∗

Ms∗ (Lq(Ω)) + |f |1/s∗
Bs∗ (H−1(Ω))

+ |u|1/s∗
As∗ (H1

0 (Ω))

”
ε
−1/s∗
k ,

with s∗ = min(su, sA, sf ).

Counterexample: su cannot be achieved if sA, sf < su.
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Checkerboard Example: u ≈ r1.25

 0.001

 0.01

 0.1

 1

 10000  100000  1e+06  1e+07

slope -1/2

Energy error

Figure: Checkerboard: The parameters are chosen so that the solution u ∈ H1+s(Ω),
s < 0.25. (Left) Energy error versus number of degrees of freedom. The optimal rate
of convergence ≈ −0.5 is recovered. (Right) The Galerkin solution together with the
underlying partition after 6 iterations of the algorithm DISC. The discontinuity of A is
never captured by the partitions and the singularities of both A and ∇u drive the
refinements.
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Checkerboard Example: u ≈ r1.25

Figure: Checkerboard: Sequence of partitions (from left to right) generated by DISC
with ω = 0.8. The initial partition (first) is made of four quadrilaterals, The algorithm
refines at early stages only to capture the discontinuity in the diffusion coefficient
(second). Later the singularity of u comes into play and, together with that of A,
drives the refinement (third). The corresponding subdivision consists of 5 million
degrees of freedom. The smallest cell has a diameter of 2−8 which illustrates the
strongly graded mesh constructed by DISC.
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Comments and Conclusions

• Coupling PDE-Geometry: This is a new feature in adaptivity and leads to
separate handling of geometry and PDE resolution with specific relative
tolerances.

• Convergence rates: We show optimal convergence rates in the energy norm

‖∇(u− Uk)‖L2(γ) . (#Tk)−s

provided this is the rate of the best approximation of u in H1 and that of γ
in W 1

∞.

• Weaker conditions on f : We refer to Cohen, DeVore, Nochetto (2011) for
convergence rates of elliptic PDE in flat domains with f ∈ H−1 and A
piecewise constant:

div(A∇u) = f.

We show that approximability of u is sufficient for a complete theory.

• Weaker conditions on γ: We assume γ is W 2
p with p > d, which implies γ

is C1. In the flat case, this corresponds to piecewise continuous A. We
would like to extend to surfaces the results of Bonito, DeVore, Nochetto
(2013) for convergence rates with weaker assumptions on A.
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