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A public health problem
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B In 1971, U.S. President Richard Nixon, signed the The National
Cancer Act, called 'the war on cancer’




A public health problem Jil

B In 1971, U.S. President Richard Nixon, signed the The National
Cancer Act, called 'the war on cancer’

m 1600 Americans die every day from cancer

m since 2004, cancer is the first cause of mortality in France (34%
among men, 25% among women)

B In developed countries, cancer is the second cause of mortality
after hearth deseases



Many faces of the problem Jil

m Solid and liquid tumors

B From molecules to entire organ

m Cell cycle/Circadian rhythms/Chronotherapeutics
m Angiogenesis (new vasculature brings nutrients)
B Immune system
B Metastasis

B Resistance to treatment ! -
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Organisation of the talk

1. Cell density models
2. Free boundary problem

3. The Hele-Shaw asymptotics

4. Resistance and Darwinian evolution

5. Dynamic of Dirac concentrations
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Models of cell densities Jil

Mechanical only model :

n(x, t) = population density of tumor cells
{ %” + div(nv) = nG(p(x, t)), xeRI t>0,
V= Vol t),  plot)=N(n) = n, 4> 1

Image based predictions : Swanson, Ayache, Colin-lollo-Saut,
Cristini-Wang

Modeling : Benamar, Byrne, Chaplain, Drasdo, Joanny-Prost-Jiilicher...
'homeostatic pressure’ py




Models of cell densities

%n + div(nv) = nG(p(x, t)), xeRI t>0,
V= Voo t),  plxt)=MN(n) =, 4> 1
Properties : e %Mtn(x, t) € L3°(LL), p(x,t) < pm

t
oot ) ¢ (1),

9 o 0 :
—n’ > — >
5" 2 0= 8tn(t) >0 (BV estimate)

Growing with stability

More generally : 2-n(t) > —Keret

JiL



Models of cell densities

2 n+div(nv) = nG(p(x, 1)),

xeRY t>0,

v=—Vp(xt),  plxt)=MN(n) =7, 5> 1




Models of cell densities Jil

B Models of mixture, multiphase flows (L. Preziosi et al,
Titi-Lowengrub-Zhao)

m Active cells

m Nutrients

B Quiescent, necrotic cells

B Healthy cells

m Extra-cellular matrix

Credit for pictures : INRIA team MC2 (Bordeaux)

B Angiogenesis



Models of cell densities Jil

effect of nutrient consumption

active movement

~ =~

%neriv(nv) - vAn = nG(p(x,t),c(x,t)),
——
nutrient

—vAv +v =-Vp, visco-elastic fluid,

%C—ACJr R(n)c = cg

————
nutrient consumption/release

Necrotic core, instabilities

Incompatible with %n(t) >0



Free boundary models

Spatial domain Q(t)

Evolve 0Q(t) with Darcy's law
v(x, t) = —=Vp(x,t).
using the pressure
{ —Ap=G(p)  xeQ(t)
p=0 on 99(t)
Surface tension is often included
p(x,t) =nr(x,t), on JQ(t) k = the mean curvature

W Greenspan 1972,

M Lowengrub,..., Cristini, Nonlinearity 2010

B Roose, Maini, Chapman (SIAM review 2007),
B Friedman, DCDS(B) 2004

JiL



From cell densities to free boundary Jil

How to relate these two approaches
cell densities and free boundary ?

gy + div(nyvy) = ny G (py(x, 1)),
Vy = _Vp’)’(xﬂ t), p’Y(Xv t) = n(nﬁ) =

The Hele-Shaw limit is the limit v — oo
Stiff pressure law




From cell densities to free boundary Jil

How to relate these two approaches
cell densities and free boundary ?

%nv + div(nyvy) = nyG(py(x, 1)), x €RY
vy = =Vpy(x, t), py(x,t) = M(ny) :=n",

The Hele-Shaw limit is the limit v — oo
Stiff pressure law

Benilan, Igbida, Gil, Quiros, Vazquez, X. Chen et al, Caffarelli,
Friedman, Escher...etc



From cell densities to free boundary Jil

%nW +div(nyvy) = nyG(py(x, 1)), x € RY

vy = =Vpy(x, t), py(x,t) = M(ny) :=n",
M(n)

Theorem (Hele-Shaw limit) : As v — oo
Ny = Noo <1, py = Pooc < Pm
Vp, = Vps [2-w
%noo — div (N VPos) = Moo G (pso) s

Poo =0 for neo(x,t) <1

Remarks n

1. Unique solution to the equation on ny (Oleinik, Crowley)

2. This is a weak formulation of the geometric problem



From cell densities to free boundary

{ %”oo - diV(noovPoo) = nOOG(pOO)7
Poo =0 for ne(x,t) <1

Theorem (complementary relation) : We also have
poo[ Apoo + G(poo)] =0,

Vpy, = Vpso strongly in L2((0, T) x Rd),
Remark
1. More difficult to establish, proof uses % >0
2. However the equation on py, does not predict the set
Q(t) = { poo(x; 1) > 0} ~ { noo(x, 1) =1}
3. Not an obstacle problem

4. There is a notion of viscosity solution (I. Kim)

JiL



From cell densities to free boundary Jil

Proof :

0
5P = P () Apy = [Vpy[? = nyp (1) G (py(x, 1)
0
5P = 1VPy > =7 py[Bpy + G (py(x,1))]
(i) Uniform L*°, BV estimates for n,, py
(i) L2 estimates for p,
(iii) V2 = |Vpso? strongly

is equivalent to establishing the relation

This follows from %noo > 0.



From cell densities to free boundary Jil

The geometric form of the Hele-Shaw problem follows when
n’(x) = ILigoy,  Q°={p°>0}
As long as one can define a smooth set (t) such that
n(x, t) = Loy, Q(t) ={ p(t) > 0},

the equation on ny is equivalent to say that 0Q(t) is moving with
the normal velocity v = —Vp,, and

—Aps = G(poo) X € Q(t),
Poc =0 on oQ(t).



From cell densities to free boundary

Left: y=4 Right : v =40

{ %noo - diV(nooVPoo) = nooG(poo)a

Poo =0 for ne(x,t) <1

In the region {0 < ny < 1}, pso = 0 and

d
5 = N G(0)

JiL

W =


file:///Users/perthame/Ex-Powerbook/images_bio/talk_HeleShaw/Hele_Shaw_movie.gif

From cell densities to free boundary Jil
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Cell culture data in vitro at two different times. From N. Jagiella PhD
thesis, INRIA and UPMC (2012)
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1. Cell density models
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5. Dynamic of Dirac concentrations



Resistance to therapy : Motivations Jil

m 40% of cancers escape to therapy
m cells adapt and become resistant to drug(s)

B Tumor as an ecological system

Darwinian Evolution
of Cancer Consortium

http ://www.darevcan.univ-montp2.



Resistance to therapy : Motivations

Question 1. Heterogeneity Ecological models are compatible
with the 'competitive exclusion principle’

The NEW ENGLAND
JOURNAL o MEDICINE

MARCH 8, 2012 VoL 366 NO. 10

Intratumor Heterogeneity and Branched Evolution Revealed
by Multiregion Sequencing
Stu

Question 2. Adaptive therapy 7 Use competition to optimize
therapy

JiL



Resistance to therapy JiL

reproduction rate  competition, apoptosis  effect of drug

0 ~ —— ——
)= ) - dWe® - dOu) | aly.1)
o(t) = /n(y, t)dy total number of cells

e y = genetic expression for a 'resistance phenotype’
e y =0 high proliferation in a normal environment,
e y =1 high resistance (lower reproduction without drug)

/

r'<0, d <0, < 0.



Resistance to therapy JiL

reproduction rate  competition, apoptosis  effect of drug

0 —— ——
)= ) - dWe® - dOu) | aly.1)
o(t) = /n(y, t)dy total number of cells

e y = genetic expression for a 'resistance phenotype’
e y =0 high proliferation in a normal environment,
e y =1 high resistance (lower reproduction without drug)

/

r'<0, d <0, < 0.

0 r(y)
_ _ RAYY _ A
ot n(y. 1) 1+ cs(t) d(y)e(t) \_CT(t)“(y), n(y,t)+ ¢ n

v cytotoxic drug mutations

cytostatic drug



Resistance to therapy

No therapy

With Therapy
This is compatible with the competitive exclusion principle




Resistance to therapy JiL

Scallo Scalhi

No therapy With Therapy

This is compatible with the competitive exclusion principle

Day16 Day13 Dayi0 Day6 Day5 Dayd Day0

Scad

Pina et al, Nature CellBiology 2012

»

Numberofeels

Levchenko et al, PNAS 2005. In vitro. Expression of P-gp measured by fluorescence



Resistance to therapy JiL

To explain this observation we rescale

e ne(y,t) = [% — d(y)o(t) — cr p(y) ] n-(y,t) + e An.

Theorem With technical assumptions
n-(y,t) — 2(t)o(y — y(t)).
e—0

And there is no easy characterization of p(t), y(t)



Resistance to therapy JiL

To explain this observation we rescale

e ne(y,t) = [% — d(y)o(t) — cr p(y) ] n-(y,t) + e An.

Theorem With technical assumptions
n-(y,t) — 2(t)o(y — y(t)).
e—0

And there is no easy characterization of p(t), y(t)

Method of proof : WKB (Barles, Evans, Fleming, Souganidis, level
set : for reaction-diffusion equations)

ue(y,t)

n(y,t)=e =



Resistance to therapy JiL

To explain this observation we rescale

NN

5 ()e-(t) = cr u(y) | n-(y. &) + 2.

Theorem With technical assumptions and n? ~ 2%3(y — 7°), then
n-(y,t) — a(t)(y — 7(t)).

And there is no easy characterization of g(t), y(t)

Method of proof : WKB (Barles, Evans, Fleming, Souganidis, level
set : for reaction-diffusion equations)

us(y,t)

ne(y,t)=e =
Remark Similar to a Gaussian concentrating to a Dirac mass

1 _ ly—7l?

e 2= —=dy—y)
oo




Resistance to therapy JiL

In the limit u- — u, p- — p (uniformly locally) .

We obtain the 'Constrained Hamilton-Jacobi Equation’ on (u, p)

9 rly) 2
ot T 1tc d(y)e(t) — cr pu(y) + |Vul
max u(y,t) =0

y

max u(y, t) = 0= u(y(t), t)
Remarks Y

1. p(t) is the Lagrange multiplier (belongs to L*).

2. The dynamics of y(t) depends on the solution u to the
constrained Hamilton-Jacobi equation

3. Uniqueness is known for THIS specific case



Resistance to therapy JiL

Conclusion 1. Spatial organization generates heterogeneity

Let 0 < r < 1 the radius of a spherical tumor
edene(r,y, t) = [r(y)ce(r, t) — d(y)oc(r,t) — cruly)] ne(r,y, t)
—Arc(r,t) + o(r,t) c.(r, t) =0, c(r=1,t)=cp
Qa(ra t) = f ne(ra}/7 t)dy

Theorem : As £ — 0, we have

ne(r,y,t) = p(r,t)(y — Y(r,t))



Resistance to therapy JiL

Conclusion 1. Spatial organization generates heterogeneity

Let 0 < r < 1 the radius of a spherical tumor

edens(r,y,t) = [r(y)es(r. t) — d(y)oe(r, t) — crp(y)]ne(r. v, t)
—Arc(r,t) + oe(r,t) c(r,t) =0, c(r=1,t)=cp

\Qa(n t) = fna(rv)/7 t)dy

05 | : [ 05 I '
Without therapy With therapy
High heterogeneity Lower heterogeneity



Resistance to therapy

Conclusion 2. Optimal scheduling ?

JiL
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constant cytotoxic, periodic cytostatic
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Conclusions JiL
m Sophisticated mathematical models are effectively used in
medicine
B They lead to various mathematical questions
B Asymptotic analysis arises naturally because of the many scales
m Directions

m Systems of PDEs (unstable traveling waves,

Hele-Shaw asymptotics)

B Interaction space/Darwinian evolution ; e ; 0

!‘/

accelarating fronts (V. Calvez, E. Bouin) -ﬁ‘



Thanks to my collaborators Jil

F. Quiros, J.-L. Vazquez, M. Tang, N. Vauchelet, D. Drasdo

0. Diekmann, P.-E. Jabin, St. Mischler,
A. Escargueil, J. Clairambault, T. Lorenzi, A. Lorz

G. Barles, S. Mirrahimi, P. E. Souganidis

Italo Calvino’s novel ‘Palomar’ : ch. ‘Il modello dei modelli’

By definition, there is nothing to be changed in a model,
it works to perfection, while as we can see very well,
it is reality where nothing works and all goes to pieces
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Thanks to my collaborators JiL

F. Quiros, J.-L. Vazquez, M. Tang, N. Vauchelet, D. Drasdo

0. Diekmann, P.-E. Jabin, St. Mischler,
A. Escargueil, J. Clairambault, T. Lorenzi, A. Lorz

G. Barles, S. Mirrahimi, P. E. Souganidis

THANK YOU
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