
Mathematical aspects of
tumor growth and therapy
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A public health problem

In 1971, U.S. President Richard Nixon, signed the The National
Cancer Act, called ’the war on cancer’

• 1600 Americans die every day from cancer

• since 2004, cancer is the first cause of mortality in France (34%
among men, 25% among women)

• In developed countries, cancer is the second cause of mortality
after hearth deseases
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Many faces of the problem

Solid and liquid tumors

From molecules to entire organ

Cell cycle/Circadian rhythms/Chronotherapeutics

Angiogenesis (new vasculature brings nutrients)

Immune system

Metastasis

Resistance to treatment



Organisation of the talk

1. Cell density models

2. Free boundary problem

3. The Hele-Shaw asymptotics

4. Resistance and Darwinian evolution

5. Dynamic of Dirac concentrations



Models of cell densities

Mechanical only model :

n(x , t) = population density of tumor cells{ ∂
∂t n + div

(
nv
)

= nG
(
p(x , t)

)
, x ∈ Rd , t ≥ 0,

v = −∇p(x , t), p(x , t) ≡ Π(n) := nγ , γ > 1

Image based predictions : Swanson, Ayache, Colin-Iollo-Saut,

Cristini-Wang

Modeling : Benamar, Byrne, Chaplain, Drasdo, Joanny-Prost-Jülicher...

’homeostatic pressure’ pM



Models of cell densities


∂
∂t n + div

(
nv
)

= nG
(
p(x , t)

)
, x ∈ Rd , t ≥ 0,

v = −∇p(x , t), p(x , t) ≡ Π(n) := nγ , γ > 1

Properties : e−GM tn(x , t) ∈ L∞t (L1
x), p(x , t) ≤ pM

e−GM t ∂n(x , t)

∂xi
∈ L∞t (L1

x),

∂

∂t
n0 ≥ 0 ⇒ ∂

∂t
n(t) ≥ 0 (BV estimate)

Growing with stability

More generally : ∂
∂t n(t) ≥ −K

t e
−γrG t
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Models of cell densities

Active cells

Nutrients

Quiescent, necrotic cells

Models of mixture, multiphase flows (L. Preziosi et al,
Titi-Lowengrub-Zhao)

Healthy cells

Extra-cellular matrix

Angiogenesis

Result of our method

• Simulation of second and 
third scans.

• Second and third scans.

Real case

System identification in tumour growth modeling Lyon, 9-10 avril

Simulations of 
the second 
and third scan

second and 
third scan

• Introduction;

• Procedure;

• Real case;

• Conclusion;

Tuesday, April 7, 2009

Real case

System identification in tumour growth modeling Lyon, 9-10 avril
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Volume history:
- Simulation (continuous line);
- scan (circle)

Errors:
Simulations reach the volume of the  
third scan a little bit after;

Why?
1) We have only 2D partial information;
2) The model is approximated, not 
explicitly designed for a lung;
3) We do not have considered 
angiogenesis.

• Introduction;

• Procedure;

• Real case;

• Conclusion;

Tuesday, April 7, 2009

Credit for pictures : INRIA team MC2 (Bordeaux)



Models of cell densities

effect of nutrient consumption

∂
∂t n + div

(
nv
)
−

active movement︷︸︸︷
ν∆n = nG

(
p(x , t), c(x , t)︸ ︷︷ ︸

nutrient

)
,

−ν∆v + v = −∇p, visco-elastic fluid,

∂
∂t c −∆c + R(n)c = cB︸ ︷︷ ︸

nutrient consumption/release

Necrotic core, instabilities

Incompatible with ∂
∂t n(t) ≥ 0



Free boundary models

Spatial domain Ω(t)

Evolve ∂Ω(t) with Darcy’s law

v(x , t) = −∇p(x , t).

using the pressure{
−∆p = G (p) x ∈ Ω(t)

p = 0 on ∂Ω(t)

Surface tension is often included

p(x , t) = ηκ(x , t), on ∂Ω(t) κ = the mean curvature

Greenspan 1972,
Lowengrub,..., Cristini, Nonlinearity 2010
Roose, Maini, Chapman (SIAM review 2007),
Friedman, DCDS(B) 2004



From cell densities to free boundary

How to relate these two approaches
cell densities and free boundary ?


∂
∂t nγ + div

(
nγvγ

)
= nγG

(
pγ(x , t)

)
, x ∈ Rd

vγ = −∇pγ(x , t), pγ(x , t) ≡ Π(nγ) := nγ ,

The Hele-Shaw limit is the limit γ →∞
Stiff pressure law

Benilan, Igbida, Gil, Quiros, Vazquez, X. Chen et al, Caffarelli,
Friedman, Escher...etc
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From cell densities to free boundary


∂
∂t nγ + div

(
nγvγ

)
= nγG

(
pγ(x , t)

)
, x ∈ Rd

vγ = −∇pγ(x , t), pγ(x , t) ≡ Π(nγ) := nγ ,

Theorem (Hele-Shaw limit) : As γ →∞

nγ → n∞ ≤ 1, pγ → p∞ ≤ pM

∇pγ ⇀ ∇p∞ L2-w
∂
∂t n∞ − div

(
n∞∇p∞

)
= n∞G

(
p∞
)
,

p∞ = 0 for n∞(x , t) < 1.

Remarks

1. Unique solution to the equation on n∞ (Oleinik, Crowley)

2. This is a weak formulation of the geometric problem

n

Π(n)



From cell densities to free boundary

{ ∂
∂t n∞ − div

(
n∞∇p∞

)
= n∞G

(
p∞
)
,

p∞ = 0 for n∞(x , t) < 1.

Theorem (complementary relation) : We also have

p∞
[

∆p∞ + G (p∞)
]

= 0,

∇pγ → ∇p∞ strongly in L2
(
(0,T )× Rd

)
,

Remark

1. More difficult to establish, proof uses ∂n
∂t ≥ 0

2. However the equation on p∞ does not predict the set

Ω(t) = { p∞(x , t) > 0} ∼ { n∞(x , t) = 1}

3. Not an obstacle problem

4. There is a notion of viscosity solution (I. Kim)



From cell densities to free boundary

Proof :

∂

∂t
pγ − nγp

′(nγ)∆pγ − |∇pγ |2 = nγp
′(nγ)G

(
pγ(x , t)

)
∂

∂t
pγ − |∇pγ |2 = γ pγ

[
∆pγ + G

(
pγ(x , t)

)]
(i) Uniform L∞, BV estimates for nγ , pγ

(ii) L2
x estimates for pγ

(iii) |∇pγ |2 → |∇p∞|2 strongly

is equivalent to establishing the relation

p∞
(
∆p∞ + G (p∞)

)
= 0.

This follows from ∂
∂t n∞ ≥ 0.



From cell densities to free boundary

The geometric form of the Hele-Shaw problem follows when

n0(x) = 1I{Ω0}, Ω0 = { p0 > 0}.

As long as one can define a smooth set Ω(t) such that

n(x , t) = 1I{Ω(t)}, Ω(t) = { p(t) > 0},

the equation on n∞ is equivalent to say that ∂Ω(t) is moving with
the normal velocity v = −∇p∞, and{

−∆p∞ = G
(
p∞
)

x ∈ Ω(t),

p∞ = 0 on ∂Ω(t).



From cell densities to free boundary

Left : γ = 4 Right : γ = 40{
∂
∂t n∞ − div

(
n∞∇p∞

)
= n∞G

(
p∞
)
,

p∞ = 0 for n∞(x , t) < 1.

In the region {0 < n∞ < 1}, p∞ = 0 and

∂

∂t
n∞ = n∞G (0)
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From cell densities to free boundary
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Cell culture data in vitro at two different times. From N. Jagiella PhD

thesis, INRIA and UPMC (2012)
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Resistance to therapy : Motivations

40% of cancers escape to therapy

cells adapt and become resistant to drug(s)

Tumor as an ecological system

http ://www.darevcan.univ-montp2.



Resistance to therapy : Motivations

Question 1. Heterogeneity Ecological models are compatible
with the ’competitive exclusion principle’

Question 2. Adaptive therapy ? Use competition to optimize
therapy



Resistance to therapy

∂

∂t
n(y , t) =

[ reproduction rate︷ ︸︸ ︷
r(y) −

competition, apoptosis︷ ︸︸ ︷
d(y)%(t) −

effect of drug︷ ︸︸ ︷
c(t)µ(y)

]
n(y , t)

%(t) =

∫
n(y , t)dy total number of cells

• y = genetic expression for a ’resistance phenotype’
• y = 0 high proliferation in a normal environment,
• y = 1 high resistance (lower reproduction without drug)

r ′ < 0, d ′ < 0, µ′ < 0.

∂

∂t
n(y , t) =

[ r(y)

1 + cS(t)︸ ︷︷ ︸
cytostatic drug

− d(y)%(t)− cT (t)µ(y)︸ ︷︷ ︸
cytotoxic drug

]
n(y , t) + ε∆n︸︷︷︸

mutations
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Resistance to therapy

No therapy With Therapy
This is compatible with the competitive exclusion principle
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Figure 1 Individual self-renewing cells do not express transcriptome-wide
lineage programs. (a) Reconstitution of the bulk Sca1 profile of EML cells
from Sca1lo- (red) and Sca1hi- (blue) initiated cultures as analysed by
flow cytometry. Corresponding growth plots are shown in Supplementary
Fig. S1e; data are representative of two independent experiments. (b) The
micrographs show immunostaining of EML Sca1hi (left) and Sca1lo (right)
cells for GATA1 protein; the GATA1 signal is nuclear and present in a fraction
of Sca1lo cells (top); control panels (bottom) are secondary antibody alone
and show surface detection of the Sca1 antibody used for sorting; scale
bars, 15 µm. The histogram summarizes two independent experiments
scored by three independent observers (mean+ s.e.m., n = 3). (c) Clonal
analysis of the culture-reconstituting potential of Sca1lo EML cells. The
detached column represents sorting of 1 cell per well; the subsequent
columns represent scoring time points; rows represent progeny of single
cells deposited at day 0. The plot summarizes two independent experiments.
Large clones (>100 cells) reconstitute a broad Sca1 distribution. (d) Flow
cytometry plot highlighting CD34+ and CD34� populations within the

Sca1lo compartment. Sca1lo encompasses the 15% lowest-staining cells;
the 15% highest-staining Sca1hi cells are almost exclusively CD34+.
(e) GATA1 immunostaining of Sca1lo CD34+ (top micrograph) and Sca1lo
CD34� (bottom micrograph) cells and their respective quantification
(histogram), plotted as in b; scale bars, 15 µm. The histogram summarizes
two independent experiments scored by three independent observers
(mean+ s.e.m., n = 3). (f) Clonal analysis of the culture-reconstituting
potential of Sca1lo CD34+ (left) and Sca1lo CD34� (right) cells; set-up as
in c. The data summarize two independent experiments. The three colonies
of >100 cells resulting from Sca1lo CD34� cells were obtained in only
one of the two experiments and did not reconstitute the original culture
profile along the CD34 axis (data not shown). (g) Heat-map representation
of the expression of genes in the erythroid-associated Sca1lo signature as
per previously published microarray data7 in Sca1hi, Sca1lo CD34+ and
Sca1lo CD34� EML cells. Differentials are defined as twofold up in Sca1lo
versus Sca1hi at a B value >2; non-differential probes of genes differential
in ref. 7 were excluded; the full gene list is given in Supplementary File S1.
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for flow cytometry 30 h after transfection. Equal initial numbers of
sorted and untransfected cells were cocultured for !30 h at the
confluence of !70%. The methods for creating stable transfection
are described in Supporting Methods.

Quantitative Flow Cytometry and FACS. The mAb MRK-16, directed
against P-gp, was used in binding studies (a gift of T. Tsuruo,
University of Tokyo, Tokyo). Quantitative flow cytometry assays
were performed, following a slightly modified method of Ferrand
et al. (11). Fluorescein and red fluorescent tagged phycoerythrin
(PE)-conjugated goat anti-mouse Ab (Jackson ImmunoResearch)
was used for MRK-16 labeling. The FACS experiments were
performed with FACSVantage SE (Becton Dickinson). In the
study of functionality of P-gp transfer, Rhodamine 123 (Sigma) was
added to cells in the final concentration of 0.5 !g!ml, followed by
incubation at 37°C for 1 h. In addition, in some experiments, cells
were incubated with 100 !M verapamil for 6 h before Rhodamine
123 experiments. In all coincubation experiments, controls of
mixing cell lines just before the experiment and by using irrelevant
Abs were also performed.

RT-PCR. RT-PCR was performed by following the Noonan et al. (12)
protocol. For positive control to ensure the efficiency of RNA
extraction, "-actin specific sequence was amplified. A negative
control was achieved by application of an irrelevant RNA template,
pAW 109 (PerkinElmer). PCR was carried out in a GeneAmp PCR
System 9600 (PerkinElmer).

Confocal Microscopy. For microscopy, cells were collected by treat-
ment with trypsin, washed twice with PBS, and mounted on
microscope slides. Immediately after this procedure, cells were
imaged with a confocal Leica DM IBRE microscope. Digital
images were obtained with Leica TCS software and stored in TIFF
format.

Animal Experiments. Immunosuppressed BALB!c mice (20–25 g of
body weight) received s.c. injections of 107 cells to initiate xenograft
tumor growth. When tumors reached 15–20 mm [!2 weeks after
injection, the mice were killed by carbon dioxide inhalation and
tumors were excised for obtaining primary cell cultures by following
the standard protocol (see, for example, ref. 13)]. The isolated cells
(in suspension) were allowed to settle at the bottom of the flask and
grow for 1–2 days. After this step, the cells were collected and
quantitative fluorescence cytometry was performed as described.

Supporting Information. Further results are shown in Figs. 7–16,
which are published as supporting information on the PNAS web
site.

Results
Characterization of Intercellular P-gp Transfer. To investigate
whether coincubation of P-gp-positive cells with P-gp-negative cells
affects their P-gp content, we analyzed mixtures of human neuro-
blastoma BE (2)-C cells with their MDR counterparts selected for
resistance to colchicine. Two cell lines with intrinsic MDR: BE
(2)-C!CHC (0.2) (IC50 ! 100 ng!ml) and BE (2)-C!CHC (1) (IC50
" 375 ng!ml) were cocultured with the parental sensitive line at
equal proportions. Before the experiment, all of the intrinsically
resistant cell lines exhibited stable P-gp expression levels when
grown in the absence of any drug as a selection agent. P-gp
expression in cocultures was measured by quantitative fluorescence
cytometry using MRK-16 mAb and fluorescein-labeled secondary
Ab, allowing simultaneous analysis of several cell subpopulations
(Fig. 1a). Within several hours, the histogram peak of the sensitive
subpopulation shifted toward new higher fluorescence values,
reflecting an increased amount of P-gp and then continued to shift
much more slowly over a period of 2–3 days. (see Supporting
Methods for further quantification) A relatively stable position of

Fig. 1. Transfer of P-gp expression between resistant and sensitive variants
of the BE (2)-C human neuroblastoma cell line. (a) Evolution of P-gp transfer
with graphs showing histograms of a 50!50 mixture of sensitive and BE
(2)-C!CHC (0.2) cells measured at 0 (3 h), 2, 4, 6, and 8 days after coincubation.
MRK-16 Ab was used in a sandwich assay with fluorescein labeled secondary
Abs. (b) Dependence of the transferred P-gp expression on the P-gp levels in
resistant cells. Scatter histograms were obtained by gating cells according to
PE and GFP emission spectra. One day cocultures of sensitive cells with BE
(2)-C!CHC(0.2) (Left Lower) and BE (2)-C!CHC (1) (Right Lower) are compared
with controls of pure sensitive (Left Upper) and pure BE (2)-C!CHC (0.2) (Right
Upper) cells. (c) Coincidence of the AqMDR population (the first peak in the
mixed population histogram, gray; see text) with the population gated for
GFP expression (black). In these and all other experiments, medium was free
of colchicine. Coincubation was for 10 days with BE (2)-C!CHC(0.2) cells. A
control showing mixture of BE (2)-C!CHC (1) and BE (2)-C with no coincubation
is shown in Fig. 16.

1934 " www.pnas.org!cgi!doi!10.1073!pnas.0401851102 Levchenko et al.

Levchenko et al, PNAS 2005. In vitro. Expression of P-gp measured by fluorescence



Resistance to therapy

To explain this observation we rescale

ε
∂

∂t
nε(y , t) =

[ r(y)

1 + cS
− d(y)%ε(t)− cT µ(y)

]
nε(y , t) + ε2∆nε

Theorem With technical assumptions

nε(y , t) −→
ε→0

%̄(t)δ
(
y − ȳ(t)

)
.

And there is no easy characterization of %̄(t), ȳ(t)

Method of proof : WKB (Barles, Evans, Fleming, Souganidis, level

set : for reaction-diffusion equations)

nε(y , t) = e
uε(y,t)

ε

Remark Similar to a Gaussian concentrating to a Dirac mass

1
√

2π
d
e−
|y−ȳ|2

2ε → δ(y − ȳ)
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)
, then

nε(y , t) −→
ε→0

%̄(t)δ
(
y − ȳ(t)
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.
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Resistance to therapy

In the limit uε → u, ρε → ρ (uniformly locally) .

We obtain the ‘Constrained Hamilton-Jacobi Equation’ on (u, ρ)
∂

∂t
u =

r(y)

1 + cS
− d(y)%(t)− cT µ(y) +

∣∣∇u∣∣2
max
y

u(y , t) = 0

max
y

u(y , t) = 0 = u(ȳ(t), t)
Remarks

1. ρ(t) is the Lagrange multiplier (belongs to L∞).

2. The dynamics of ȳ(t) depends on the solution u to the
constrained Hamilton-Jacobi equation

3. Uniqueness is known for THIS specific case



Resistance to therapy

Conclusion 1. Spatial organization generates heterogeneity

Let 0 < r < 1 the radius of a spherical tumor
ε∂tnε(r , y , t) =

[
r(y)cε(r , t)− d(y)%ε(r , t)− cTµ(y)

]
nε(r , y , t)

−∆rcε(r , t) + %ε(r , t) cε(r , t) = 0, c(r = 1, t) = cB

%ε(r , t) =
∫
nε(r , y , t)dy

Theorem : As ε→ 0, we have

nε(r , y , t)→ ρ(r , t)δ
(
y − Y (r , t)

)
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r(y)cε(r , t)− d(y)%ε(r , t)− cTµ(y)

]
nε(r , y , t)

−∆rcε(r , t) + %ε(r , t) cε(r , t) = 0, c(r = 1, t) = cB

%ε(r , t) =
∫
nε(r , y , t)dy

0 0.5 10

4

8

x

0 n(t,r,x) dr / lT(t) at t=T

0 0.5 10

4

8

x

0 n(t,r,x) dr / lT(t) at t=T

Without therapy With therapy

High heterogeneity Lower heterogeneity



Resistance to therapy

Conclusion 2. Optimal scheduling ?

constant cytotoxic, periodic cytostatic

constant cytostatic, periodic cytotoxic



Conclusions

Sophisticated mathematical models are effectively used in
medicine

They lead to various mathematical questions

Asymptotic analysis arises naturally because of the many scales

Directions

Systems of PDEs (unstable traveling waves,

Hele-Shaw asymptotics)

Interaction space/Darwinian evolution ;

accelarating fronts (V. Calvez, E. Bouin)
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