
On the characterization of approximation
spaces in Nonlinear Approximation

Pencho Petrushev

University of South Carolina

with Gerard Kerkyacharian and Martin Lind

FoCM 2014 Conference
Montevideo - December, 2014

P. Petrushev (USC) Nonlinear Approximation



Outline

1. Nonlinear n-term approximation from orthonormal
bases

2. Nonlinear spline approxmation in dimention d = 1

3. Nonlinear spline approxmation in dimention d ≥ 2

4. Nonlinear n-term approximation from dilations and
shifts of smooth and well localized functions

5. Rational approximation on R
6. General scheme for construction of bases and frames

7. Construction of holomorphic rational bases on the
unit disk with application to rational approximation

8. Nonlinear n-term approximation from frames

P. Petrushev (USC) Nonlinear Approximation



Objectives

Characterize the rate of approximation
(Approximation spaces) in various settings in
Nonlinear Approximation
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Nonlinear n-term approximation from orthonormal
bases in Hilbert spaces

Suppose H is a separable Hilbert space and {ψm}m≥1 is an
orthonormal basis for H.
Denote by Ωn is the set of all functions g of the form

g =
n∑

ν=1

aνψmν ,

Let
σn(f ) := inf

g∈Ωn
‖f − g‖H .

“Besov” spaces. Let s > 0 and 1/τ := s + 1/2. The Besov
space Bs

τ is defined as the set of all f ∈ H s.t.

‖f‖Bs
τ

:=
( ∞∑

m=1

|〈f , ψm〉|τ
)1/τ

<∞.
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Nonlinear n-term approximation from bases (Cont.)

Jackson estimate: If f ∈ Bs
τ , then

σn(f ) ≤ n−s‖f‖Bs
τ
, n ≥ 1.

Proof. Given f ∈ H let |〈f , ψm1〉| ≥ |〈f , ψm2〉| ≥ · · ·
Then

σn(f ) =
∥∥∥f−

n∑
ν=1

〈f , ψmν 〉ψmν

∥∥∥
H

=
( ∞∑
ν=n+1

|〈f , ψmν 〉|2
)1/2

≤ n−s‖f‖Bs
τ
.

Bernstein estimate: If g ∈ Ωn, n ≥ 1, then

‖g‖Bs
τ
≤ ns‖g‖H .

These estimates allow to characterize the rates of nonlinear
n-term approximation from {ψm} in H.
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Approximation spaces

Approximation spaces: ‖f‖As
q(H) := ‖f‖H + |f |As

q(H), where

|f |As
q(H) :=


( ∞∑

n=1

[nsσn(f )]q
1
n

)1/q

, 0 < q <∞,

supn≥1 nsσn(f ), q =∞.

K -functional: Suppose Y ↪→ X . Then the K -functional for
f ∈ X is defined by

K (f , t) := inf
g∈Y
{‖f − g‖X + t |g|Y}, t ≥ 0.

Interpolation spaces: For 0 < q ≤ ∞ and 0 < θ < 1, the
interpolation space (X ,Y )θ,q consists of all f ∈ X for which

|f |(X ,Y )θ,q :=


(∫ ∞

0
[t−θK (f , t)]q

dt
t

)1/q

, 0 < q <∞

sup0≤t<∞ t−θK (f , t), q =∞.
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Characterization of Approximation spaces

Norm: ‖ · ‖(X ,Y )θ,q := ‖ · ‖X + | · |(X ,Y )θ,q .

Claim: The Jackson inequality implies

σn(f ) ≤ cK (f ,n−s), f ∈ H, K (f , t) := K (f , t ; H,Bs
τ )

Claim: The Bernstein inequality implies (if τ ≤ 1)

K (f ,2−ms) ≤ c2−ms
( m∑

j=0

[2jsσ2j (f )]τ+‖f‖τH
)1/τ

, f ∈ H, m ≥ 0.

Characterization: Aγq(H) = (H,Bs
τ )γ/s,q, 0 < γ < s,

0 < q ≤ ∞, with equivalent norms.

In particular, σn(f ) = O(n−γ) iff K (f , t) = O(tγ/s), 0 < γ < s.
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Nonlinear Spline Approximation in dimension d = 1

Nonlinear approximation from piecewise poynomials in
Lp(R) or Lp(a,b), 1 ≤ p <∞ (Free knot spline approximation)
Denote by S(k ,n), k ≥ 1, the set of all functions S of the form

S =
n∑

ν=1

Pν1Iν ,

where Pν is a polynomial of degree ≤ k − 1 and 1Iν is the
characteristic functiuon of the compact interval Iν . Assume that
{Iν} have disjoint interiors.
Denote

Sk
n (f )p := inf

S∈S(k ,n)
‖f − S‖Lp .

The goal is to characterize the associated approximation
spaces.
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Nonlinear Spline Approximation in dimension d = 1

Let s > 0, 1 ≤ p <∞, and 1/τ = s + 1/p.

Besov space:

|f |Bs,k
τ

:=
(∫ ∞

0

(
t−sωk (f , t)τ

)τ dt
t

)1/τ
, ωk (f , t)τ := sup

|h|≤t
‖∆k

hf (·)‖Lτ (Ω).

Jackson estimate: If f ∈ Bs
τ , s > 0, then

Sk
n (f )p ≤ cn−s|f |Bs,k

τ
.

Bernstein estimate: If S ∈ S(k ,n), s > 0, then

|S|Bs,k
τ
≤ cns‖S‖Lp .
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Nonlinear Spline Approximation in dimension d = 1

Approximation spaces: ‖f‖As
q(Lp) := ‖f‖Lp + |f |As

q(Lp), where

|f |As
q(Lp) :=


( ∞∑

n=1

[nsSk
n (f )p]q

1
n

)1/q

, 0 < q <∞,

supn≥1 nαSk
n (f )p, q =∞.

Characterization: Aγq(Lp) = (Lp,Bs,k
τ )γ/s,q, 0 < γ < s,

0 < q ≤ ∞.

In particular: For f ∈ Lp we have

Sk
n (f )p = O(n−γ) iff K (f , t) = O(tγ/s), 0 < γ < s.

Here K (f , t) := infg∈Bs,k
τ

{
‖f − g‖Lp + t |g|Bs,k

τ

}
.
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Nonlinear Spline Approximation in dimensions d ≥ 2

Nonlinear Spline Approximation in dimensions d = 2 over
multilevel nested triangulations.

Besov type spaces are introduced and companien Jackson and
Bernstein estimates are established, which allow to
characterize the associated approximation spaces.

B. Karaivanov, PP, Nonlinear piecewise polynomial
approximation beyond Besov spaces. Appl. Comput. Harmon.
Anal. 15 (2003), no. 3, 177-223

O. Davydov, PP, Nonlinear approximation from differentiable
piecewise polynomials. SIAM J. Math. Anal. 35 (2003), no. 3,
708-758.
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Nonlinear Spline Approximation in dimension d ≥ 2

Nonlinear approximation from piecewise constants on a
polygonal domain Ω ⊂ R2 or Ω = R2 (the nonnested case).
Denote by Σn the set of all functions S of the form

S =
n∑

ν=1

aν1Rν ,

where Rν = Qν \ Q̃ν , Q̃ν ⊂ Qν , Qν , Q̃ν are convex isotropic
polygonal subdomains (Q̃ν = ∅ is Okay). We assume that {Rν}
are with disjoint interiors and no “thin” rings Rν are allowed.

Example. Qν , Q̃ν can be rectangles with sides parallel to the
coordinate axes (or triangles), but no “thin” rectangles or rings
are allowed.
Denote

σn(f )p := inf
S∈Σn

‖f − S‖Lp(Ω).
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Nonlinear piecewise constant approximation (d ≥ 2)

Let s > 0, 1 ≤ p <∞, and 1/τ = s/2 + 1/p.
Besov space:

|f |Bs
τ

:=
(∫ ∞

0

(
t−sω(f , t)τ

)τ dt
t

)1/τ
, ω(f , t)τ := sup

|h|≤t
‖∆hf (·)‖Lτ (Ω).

Jackson estimate: If f ∈ Bs
τ , where 0 < s < 2/p, then

σn(f )p ≤ cn−s/2|f |Bs
τ
.

In general, S1 − S2 6∈ Σcn if S1,S2 ∈ Σn, and

|S1 − S2|Bs
τ
6≤ cns/2‖S1 − S2‖Lp , S1,S2 ∈ Σn.

Example: |f |Bs
τ
∼ ε−s/2‖f‖Lp for f = 1[0,ε]×[0,1], 0 < s < 2/p.
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Bernsten estimate

New Bernstein estimate: If 0 < s < 2/p and τ ≤ 1, then

|S1|τBs
τ
≤ |S2|τBs

τ
+ cnsτ/2‖S1 − S2‖τLp , S1,S2 ∈ Σn.

Inverse estimate: If 1 ≤ p <∞, 0 < s < 2/p, τ ≤ 1 and
f ∈ Lp, then

K (f ,2−
ms
2 ) ≤ c2−

ms
2

( m∑
k=0

(
2

ks
2 σ2k (f )p

)τ
+ ‖f‖τp

)1/τ
, m ≥ 0,

where K (f , t) := infg∈Bs
τ

{
‖f − g‖Lp + t |g|Bs

τ

}
.

Characterization: Aγq(Lp) = (Lp,Bs
τ )2γ/s,q, 0 < γ < s/2,

0 < q ≤ ∞.
Corollary. For f ∈ Lp we have

σn(f )p = O(n−γ) iff K (f , t) = O(t2γ/s), 0 < γ < s/2 < 1/p.
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Nonlinear approximation from smooth splines (d ≥ 2)

Nonlinear approximation from piecewise linear polynomials
on a polygonal domain Ω or Ω = R2 (the nonnested case).
Denote by Σ1

n the set of all functions S of the form

S =
n∑

ν=1

aνϕθν ,

where ϕθν is the Courant element supported on the polygonal
cell θν . The minimal angle condition is imposed on the
underlying triangles. No “thin” rings are allowed.
Denote

σn(f )p := inf
S∈Σ1

n

‖f − S‖Lp(Ω).
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Nonlinear piecewise linear approximation (d ≥ 2)

Let s > 0, 1 ≤ p <∞, and 1/τ = s/2 + 1/p.
Besov space:

|f |Bs
τ

:=
(∫ ∞

0

(
t−sω2(f , t)τ

)τ dt
t

)1/τ
, ω2(f , t)τ := sup

|h|≤t
‖∆hf (·)‖Lτ (Ω).

Jackson estimate: If f ∈ Bs
τ , where 0 < s/2 < 1/p + 1, then

σn(f )p ≤ cn−s/2|f |Bs
τ
.

In general, S1 − S2 6∈ Σ1
cn if S1,S2 ∈ Σ1

n, and

|S1 − S2|Bs
τ
6≤ cns/2‖S1 − S2‖Lp , S1,S2 ∈ Σ1

n.
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Bernsten estimate

Bernstein estimate: If 0 < s/2 < 1/p + 1 and τ ≤ 1, then

|S1|τBs
τ
≤ |S2|τBs

τ
+ cnsτ/2‖S1 − S2‖τLp , S1,S2 ∈ Σ1

n.

Inverse estimate: If 1 ≤ p <∞, 0 < s/2 < 1/p + 1, τ ≤ 1
and f ∈ Lp, then

K (f ,2−
ms
2 ) ≤ c2−

ms
2

( m∑
k=0

(
2

ks
2 σ2k (f )p

)τ
+ ‖f‖τp

)1/τ
, m ≥ 0,

where K (f , t) := infg∈Bs
τ

{
‖f − g‖Lp + t |g|Bs

τ

}
.

Characterization: Aγq(Lp) = (Lp,Bs
τ )2γ/s,q,

0 < γ < s/2 < 1/p + 1, 0 < q ≤ ∞.
Corollary. For f ∈ Lp we have

σn(f )p = O(n−γ) iff K (f , t) = O(t2γ/s), 0 < γ < s/2 < 1/p+1.
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Nonlinear n-term approximation from dilates and shifts
of smooth localized functions

Suppose Φ ∈ C∞(Rd ) and Φ is well localized. For example,

Φ(x) =
1

(1 + |x |2)N or Φ(x) = exp{−|x |2} or ...

Denote by Ωn the set of all functions of the form

g(x) =
n∑

ν=1

cνΦ(aνx + bν), aν , cν ∈ R,bν ∈ Rd .

Consider

σn(f )p := inf
g∈Ωn

‖f − g‖Lp , f ∈ Lp(Rd ).

The goal is to characterize the associated approximation
spaces.

P. Petrushev (USC) Nonlinear Approximation



Jackson estimate

Theorem. Let s > 0, 1 < p <∞, and 1/τ = s/d + 1/p. If
f ∈ Bs

ττ , then
σn(f )p ≤ cn−s/d‖f‖Bs

ττ
.

Here

‖f‖Bs
pq

:=
(∫ ∞

0

(
t−sωk (f , t)p

)q dt
t

)1/q
, k > s > 0.

Theorem. (d=1) Let s > 0, 1 < p <∞. There exists K and a
function θ of the form

θ(x) =
K∑
ν=1

cνΦ(ax + bν), a, cν ∈ R,bν ∈ Rd ,

s.t. if θj`(x) := 2j/2θ(2jx + `) then B := {θj`} is unconditional
basis for Lp(R) which characterizes the Besov norm Bs

ττ .
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Jackson estimate

Namely,

‖f‖Bs
ττ
∼
(∑

j,`

‖〈θ̃j`, f 〉θj`‖τp
)1/τ

.

Denote by σn(f ,B)p the best n-term appromation in Lp from B.

Theorem. Let s > 0, 1 < p <∞, and 1/τ = s/d + 1/p. If
f ∈ Bs

ττ , then
σn(f ,B)p ≤ cn−s/d‖f‖Bs

ττ
.

PP, Bases consisting of rational functions of uniformly bounded
degrees or more general functions. J. Funct. Anal. 174 (2000),
no. 1, 18-75.

G. Kyriazis, PP, New bases for Triebel-Lizorkin and Besov
spaces. Trans. Amer. Math. Soc. 354 (2002), no. 2, 749-776
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Rational approximation on R
Denote

Rn(f )p := inf
g∈Rn

‖f − g‖Lp(R), {Rn : g = P/Q, deg P,Q ≤ n}.

Theorem. [Pekarskii] If f ∈ Bs
ττ , s > 0, 1 < p <∞,

1/τ = s + 1/p, then

Rn(f )p ≤ cn−s/d‖f‖Bs
ττ
.

Let As
pq(R) be the approximation spaces assoc. with {Rn(f )p}:

|f |As
pq(R) :=


( ∞∑

n=1

[nsRn(f )p]q
1
n

)1/q

, 0 < q <∞,

supn≥1 nsRn(f )p, q =∞.

Theorem. [Pekarski] If 1 < p <∞, s > 0, 1/τ = s + 1/p, then

Aγpq(R) = (Lp,Bs
ττ )γ/s,q, 0 < γ < s,0 < q ≤ ∞.
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Open problem

Prove or disprove the Bernstein inequality:

‖g‖Bs
ττ
≤ cns/d‖g‖Lp ,

where s > 0, 1 < p <∞, 1/τ = s + 1/p, for functions of the
form

g(x) =
n∑

ν=1

cνΦ(aνx + bν), aν , cν ∈ R,bν ∈ Rd ,

where
Φ(x) = exp{−|x |2}

or another Φ ∈ C∞(Rd ) with fast decay.
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General scheme for construction of bases and frames

The idea is to use a “small perturbation argument” method.

The setting: Let H be a separable Hilbert space of functions
and

S ⊂ H ⊂ S ′,

where S is a linear space of test functions and S ′ is the
associated space of distributions. Suppose

B ⊂ S ′

is a quasi-Banach space of distributions with associated
sequence space b(X ).
For instance, B can be a Besov or Triebel-Lizorkin space.
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Construction of bases

The old basis. Assume Ψ := {ψξ : ξ ∈ X} ⊂ S is an
orthonormal basis for H and Ψ is a basis for the space B in the
following sense:
(a) Every f ∈ B has a unique representation in terms of
{ψξ}ξ∈X and

f =
∑
ξ∈X
〈f , ψξ〉ψξ in B.

(b) The operator SΨf := (〈f , ψξ〉)ξ∈X is bounded as an operator
from B to b(X ).
(c) For any sequence h ∈ b(X ) the operator TΨh :=

∑
ξ∈X hξψξ

is well defined and bounded as an operator from b(X ) to B.
Consequently, for any f ∈ B

c1‖f‖B ≤ ‖(〈f , ψξ〉)‖b(X ) ≤ c2‖f‖B

for some constants c1, c2 > 0.
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Construction of bases (Cont.)

Construction of a new basis. The idea is by perturbing Ψ to
construct a new basis Θ = {θξ : ξ ∈ X} for H and B.
Since Ψ is a basis for H, we have

θξ =
∑
η∈X
〈θξ, ψη〉ψη in H.

Denote by A the transformation matrix

A := (aξ,η)ξ,η∈X , aξ,η := 〈θξ, ψη〉.

The key assumption is that the operator A with matrix A is
bounded and invertible on `2(X ) and A−1 is bounded on `2(X ).
Observe that if

D = (dξ,η)ξ,η∈X := (〈ψξ − θξ, ψη〉)ξ,η∈X ,

then A = Id − D and, therefore, A−1 exists and is bounded on
`2(X ) if

‖D‖`2(X )7→`2(X ) < 1.
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Construction of bases (Cont.)

If A−1 =: (bξ,η)ξ,η∈X we define the dual by

θ̃ξ :=
∑
η∈X

bη,ξψη and set Θ̃ := {θ̃ξ : ξ ∈ X}.

Theorem. Assume in addition that the operators AT and
(A−1)T with matrices AT and (A−1)T are bounded on b(X ).
Then Θ (with dual Θ̃) is a basis for B in the following sense:
(a) Every f ∈ B has a unique representation in terms of
{θξ}ξ∈X and

f =
∑
ξ∈X
〈f , θ̃ξ〉θξ,

where by definition 〈f , θ̃ξ〉 :=
∑

η∈X 〈f , ψη〉〈ψη, θ̃ξ〉 and the series
converges unconditionally in B.
(b) There exist constants c1, c2 > 0 such that

c1‖f‖B ≤ ‖(〈f , θ̃ξ〉)ξ‖b(X ) ≤ c2‖f‖B for f ∈ B.
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Construction of holomorphic rational bases

Goal: Apply the above scheme for the construction of a
unconditional basis

{Rj,k} with dual {R̃j,k}

for the Hardy spaces Hp, 0 < p <∞, on the unit disc
D := {z ∈ C : |z| < 1} which characterizes holomorphic Besov
spaces Bs

pq(A) on D. Here each

Rj,k ∈ RK (D) with K <∞ fixed,

where RK (D) is the set of all rational functions of degree ≤ K
with poles outside D̄.
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Rational approximation in Hp. Pekarski’s results

Let A be the set of all holomorphic functions on D := {|z| < 1}
and for f ∈ A set

‖f (r ·)‖Lp :=
(∫
|z|=1

|f (rz)|p|dz|
)1/p

0 < p <∞.

The Hardy space Hp, 0 < p ≤ ∞, is the set of all f ∈ A s.t.

‖f‖Hp := lim
r→1−

‖f (r ·)‖Lp <∞.

If f (z) =
∑

n≥0 f̂ (n)zn we set

Jβf (z) :=
∑
n≥0

(n + 1)β f̂ (n)zn, β ∈ R.

Besov space Bs
pq := Bs

pq(A), s ∈ R, 0 < p,q ≤ ∞, is defined by

‖f‖Bs
pq

:=
(∫ 1

0
(1−r)(β−s)q−1‖Jβf (r ·)‖qLpdr

)1/q
, β > s, if q <∞.
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Pekarski’s results

Denote
Rn(f ,Hp) := inf

g∈Rn(D)
‖f − g‖Hp ,

where Rn(D) is the set of rational functions of degree ≤ n on D.

Theorem (A. Pekarski)
(a) If f ∈ Bs

ττ , s > 0, 1
τ = s + 1

p , 0 < p <∞, then

Rn(f ,Hp) ≤ cn−s‖f‖Bs
ττ
, n ≥ 1 (Jackson)

(b) If g ∈ Rn(D), n ≥ 1 and s > 0, 1
τ = s + 1

p , 1 < p ≤ ∞, then

‖g‖Bs
ττ
≤ cn−s‖g‖Hp (Bernstein)

A. Pekarskii, Classes of analytic functions defined by best
rational approximation in Hp, Mat. Sb. 127 (1985), 3–20.
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Two hump holomorphic wavelet basis of Y. Meyer

Let Ψ := {2j/2ψ(2jx − k), j , k ∈ Z} be Meyer’s orthonormal
wavelet basis for L2(R). Recall that ψ is a real-valued function
with the properties: ψ ∈ S(R),

supp ψ̂ ⊂
{
ξ :

2π
3
≤ |ξ| ≤ 8π

3

}
,
∑
j∈Z
|ψ̂(ξ2−j)|2 = 1, ξ 6= 0.

The 1-periodic Meyer’s wavelets are defined by

gj,k (x) := 2j/2
∑
`∈Z

ψ(2j(x + `)− k), 0 ≤ k < 2j , j ≥ 0.

Using the Poisson summation formula it readily follows that

gj,k (x) = 2−j/2
∑
ν∈Z

ψ̂(2πν2−j)e2πiν(x−k2−j ).

For 0 ≤ k < 2j−1, j ≥ 0, and k∗ = 2j − k − 1, set

Gj,k (x) := 2−j/2
∑
ν≥0

ψ̂(2πν2−j)
(
e2πiν(x−k2−j ) + e2πiν(x−k∗2−j )

)
.
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Two hump holomorphic wavelet basis of Y. Meyer

Note that G0,0(x) = −e2πix . In addition, let G−1,0(x) := 1. Then

{Gj,k : 0 ≤ k < 2j−1, j ≥ −1}

is an orthonormal basis for H2.
Given s ∈ R and 0 < p,q ≤ ∞ the space bs

pq is defined as the
set of all complex-valued sequences h := {hjk} s.t.

‖h‖bs
pq

:=
( ∞∑

j=−1

2j(s− 1
p + 1

2 )q
( ∑

0≤k<2j−1

|hjk |p
) q

p
)1/q

<∞

with the usual modification for q =∞.

Theorem. Each f ∈ Bs
pq has a unique representation

f =
∑

jk

cjk (f )Gj,k , where cjk (f ) := 〈f ,Gj,k 〉.

Moreover,
‖f‖Bs

pq
∼ ‖(cjk (f ))‖bs

pq
.
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Holomorphic rational bases

Let
Φ(x) :=

1
(1 + x2)n , x ∈ R, n ∈ N,

and denote

ΘK :=
{
θ : θ(x) =

K∑
ν=1

cνΦ(ax + bν), cν ,bν ∈ R, a > 0
}
.

Obviously, ΘK ⊂ R2nK (R), where Rn(R) is the set of all rational
functions of degree (order) ≤ n on R with real coefficients.

Proposition. Given N,n ∈ N, M > 0 with 2n > M, and ε > 0
there exists K ≥ 1 and θ ∈ ΘK such that

(i) |ψ(r)(x)− θ(r)(x)| ≤ ε(1 + |x |)−M , 0 ≤ r ≤ N + 2,

(ii)
∫
R

x rθ(x) dx = 0, 0 ≤ r ≤ N.
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Holomorphic rational bases

For j ≥ 0, 0 ≤ k < 2j−1, with k∗ = 2j − k − 1, we define

Rj,k (x) := 2−j/2
∑
ν≥0

θ̂(2πν2−j)
(
e2πiν(x−k2−j ) + e2πiν(x−k∗2−j )

)
,

and R−1,0(x) := 1. Write R := {Rj,k}.

Theorem. Let above N > max{s,J ,J − s − 1} with
J := 1/min{1,p} and M > N + 1. Then
(a) Each Rj,k extends to a rational function in RK (D) for some
fixed K <∞.
(b) If ε > 0 is sufficiently small R has a dual system R̃ s.t.
(R, R̃) is a unconditional basis for Hp and any f ∈ Bs

pq has a
unique representation

f =
∑
j,k

djk (f )Rj,k , djk (f ) := 〈f , R̃j,k 〉,

Furthermore, if f ∈ Bs
pq we have ‖f‖Bs

pq
∼ ‖(djk (f ))‖bs

pq
.
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Proof of Pekarski’s direct estimate

n-term approximation in Hp from the rational basis R := {Rjk}.
Let Σn be the nonlinear set of all functions g of the form

g =
n∑

ν=1

aνRν , Rν ∈ R.

Denote
σn(f ,Hp) := inf

g∈Σn
‖f − g‖Hp .

Theorem. If f ∈ Bs
ττ , s > 0, 0 < p <∞, 1

τ = s + 1
p , then

σn(f ,Hp) ≤ cn−s‖f‖Bs
ττ
, n ≥ 1.

Corollary. [Pekarski]

Rn(f ,Hp) ≤ cn−s‖f‖Bs
ττ
, n ≥ 1.

G. Kyriazis, PP, Rational bases for spaces of holomorphic
functions in the disc, J. Lond. Math. Soc. (2) 89 (2014),
434–460.
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Nonlinear n-term approximation from frames

Goal:

Characterize the approximation spaces
associated with nonlinear n-term approximation
in Lp from frames with smooth and localized
elements in Rd , on the sphere, interval, ball and
simplex with weights as well as in general
Dirichlet spaces
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Classical frames of Frazier and Jawerth on R

Let ψ0, ψ ∈ S, supp ψ̂0 ⊂ [−2,2], supp ψ̂ ⊂ [−2,−1/2] ∪ [1/2,2],
and

|ψ̂0(ξ)|2 +
∑
ν≥1

|ψ̂(2−νξ)|2 = 1 for ξ ∈ R.

Set
ψ0k (x) := ψ0(x − k) =: ψI(x), I := [k , k + 1],

ψjk (x) := 2j/2ψ(2jx − k) =: ψI(x), I :=
[ k

2j ,
k + 1

2j

]
, j ≥ 1.

Denote Dj := {[ k
2j ,

k+1
2j ] : k ∈ Z} and set D := ∪j≥0Dj .

It is easy to see that {ψI}I∈D is a tight frame for L2(R):

f =
∑
I∈D

〈f , ψI〉ψI and ‖f‖L2 =
(∑

I∈D

|〈f , ψI〉|2
)1/2

for f ∈ L2.
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Inhomogeneous Besov spaces

Definition of inhomogeneous Besov spaces.
Let ϕ0, ϕ ∈ S, supp ψ̂0 ⊂ [−2,2], supp ψ̂ ⊂ [−2,−1/2] ∪ [1/2,2],
and

|ϕ̂0(ξ)|+
∑
ν≥1

|ϕ̂(2−νξ)| ≥ c > 0 for ξ ∈ R.

Set ϕj(x) := 2jϕ(2jx), j ≥ 1.
Let s ∈ R, 0 < p,q ≤ ∞. The space Bs

pq is defined as the set of
all f ∈ S ′ such that

‖f‖Bs
pq

:=
(∑

j≥0

(
2js‖ϕj ∗ f‖Lp

)q)1/q
<∞

with the usual modification when p,q =∞.
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Frame decomposition of Besov spaces

Theorem (Frazier-Jawert). Let s ∈ R, 0 < p,q ≤ ∞. Then
for any f ∈ Bs

pq

‖f‖Bs
pq
∼
(∑

j≥0

(∑
I∈Dj

(
|I|s/d+1/p−1/2|〈f , ψI〉|

)p
)q/p)1/q

with the usual modification when p,q =∞.
Frame decomposition of Lp, 1 < p <∞, and Hp, 0 < p ≤ 1,
spaces:

f =
∑
I∈D

〈f , ψI〉ψI and ‖f‖Lp ∼
∥∥∥(∑

j≥0

[|〈f , ψI〉ψI(·)|]2
)1/2∥∥∥

Lp
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Kernels on the unit sphere Sd ⊂ Rd+1, d ≥ 2

Let Hn be the set of all spherical harmonics of degree n on
Sd ⊂ Rd+1. Then

Pn(x · y) =
n + λ

λωd
Cλ

n (x · y) with λ :=
d − 1

2
, ωd :=

∫
S

1dσ,

is the kernel of the orthogonal projector onto Hn.
Here Cλ

n (t) is the nth degree Gegenbauer polynomial
The construction of frames on Sd relies on kernels

Kn(x · y) =
∞∑

j=0

ϕ
( j

n

)
Pj(x · y), ϕ ∈ C∞(R+), suppϕ ⊂ [1/2,2].

Localization: Here ρ(x , y) is the geodesic distance on the
sphere

|Kn(x · y)| ≤ cσnd

(1 + nρ(x , y))σ
∀σ > 0.
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Construction of spherical needlets

Let ϕ ∈ C∞[0,∞), suppϕ ⊂ [1/2,2] and |ϕ(t)|2 + |ϕ(t/2)|2 = 1
for t ∈ [1,2]. Hence

∑
j≥0 |ϕ(2−j t)|2 = 1, t ∈ [1,∞). Set

Ψj(x ·y) :=
∞∑
ν=0

ϕ
( ν

2j−1

)
Pν(x ·y), j ≥ 1, Ψ0(x ·y) := P0(x ·y).

Let the cubature
∫
Sd f (x)dσ(x) ∼

∑
ξ∈Xj

cξf (ξ)

be exact for spherical harmonics of degree ≤ 2j+2 and
cξ ∼ 2−jd .

Needlets: ψξ(x) := c−1/2
ξ Ψj(ξ · x), ξ ∈ Xj . Set X := ∪∞j=0Xj

Needlet decomposition: f =
∑

ξ∈X 〈f , ψξ〉ψξ for f ∈ L2, and

‖f‖L2 =
(∑

ξ∈X |〈f , ψξ〉|2
)1/2
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Localization:

|ψξ(x)| ≤ cσ2jd/2

(1 + 2jρ(ξ, x))σ
, ξ ∈ Xj , ∀σ > 0.

Needlets on S2:

Needlet cross section, degree 32
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Needlet of degree 512
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Needlet of degree 512
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Needlet of degree 128
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Definition of Besov spaces

Distributions on Sd . Test functions: D := C∞(Sd ). Claim:
φ ∈ D iff

Nk (φ) := sup
n≥0

(n + 1)k‖(Projn)φ‖2 <∞ ∀k = 0,1, . . .

The topology on D is defined by the seminorms Nk (φ).
The space D′ := D′(Sd ) of distributions on Sd is defined as the
set of all continuous linear functionals on D.

Kernels: Consider the kernels {Φj} defined by

Φ0(x · y) := 1 and Φj(x · y) :=
∞∑
ν=0

ϕ
( ν

2j−1

)
Pν(x · y), j ≥ 1,

where ϕ obeys the conditions

ϕ ∈ C∞[0,∞), supp ϕ ⊂ [1/2,2],

|ϕ(t)| > c > 0, if t ∈ [3/5,5/3].
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Frame decomposition of Besov spaces

Definition of Besov spaces.
Let s ∈ R and 0 < p,q ≤ ∞. The Besov space Bs

pq = Bs
pq(Sd ) is

defined as the set of all distributions f ∈ D′ s.t.

‖f‖Bs
pq

:=
(∑

j≥0

(
2sj‖Φj f (·)‖Lp

)q)1/q
<∞.

Here Φj f (x) :=
∫
Sd Φj(x · y)f (y)dσ(y).

Theorem. Let s ∈ R and 0 < p,q ≤ ∞. Then for any f ∈ Bs
pq

‖f‖Bs
pq
∼
(∑

j≥0

2jsq
[∑
ξ∈Xj

‖〈f , ψξ〉ψξ‖pp
]q/p)1/q

.
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Localized frames in other settings

Similar frames have been constructed

on the interval with Jacobi weights
on the ball with weights
on the simplex with weights
on product spaces

Compactly supported frames with small
shrinking supports have also been constructed
on the sphere, interval, ball, simplex.
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Frames in a general setting

(a) (M, ρ, µ) is a metric measure space with doubling measure:

0 < µ(B(x ,2r)) ≤ cµ(B(x , r)) <∞, x ∈ M, r > 0,

which implies µ(B(x , λr)) ≤ cλdµ(B(x , r)), r > 0, λ > 1.

(b) L is a self-adjoint positive operator on L2(M,dµ) s.t. the
(heat) kernel pt (x , y) of the associated semigroup

Pt = e−tL

obeys

|pt (x , y)| ≤
C exp{−cρ2(x ,y)

t }√
µ(B(x ,

√
t))µ(B(y ,

√
t))

for x , y ∈ M, 0 < t ≤ 1.
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Setting

(c) Hölder continuity: There exists a constant α > 0 s.t

∣∣pt (x , y)− pt (x , y ′)
∣∣ ≤ C

(ρ(y , y ′)√
t

)α exp{−cρ2(x ,y)
t }√

µ(B(x ,
√

t))µ(B(y ,
√

t))

for x , y , y ′ ∈ M and 0 < t ≤ 1, whenever ρ(y , y ′) ≤
√

t .

(d) Markov property:∫
M

pt (x , y)dµ(y) ≡ 1 for t > 0.
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Realization of the setting in Dirichlet spaces

A natural effective realization of the above
setting appears in the general framework
of strictly local regular Dirichlet spaces with a
complete intrinsic metric
where it only suffices to verify

the local Poincaré inequality and
the doubling condition on the measure

then the above general setting applies in full.
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Examples

Classical setting on Rd with L = −∆

Uniformly elliptic divergence form operators on Rd .
Uniformly elliptic divergence form operators on
subdomains of Rd with boundary conditions.
Riemannian manifolds and Lie groups. In particular,
Compact Riemannian manifolds, Riemannian manifold with
non-negative Ricci curvature, Compact Lie groups, Lie
groups with polynomial growth and their homogeneous
spaces, ...
Heat kernel on [−1,1] associated with the Jacobi operator,
Heat kernel on the sphere, ball and simplex
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Functional calculus in the general setting

Theorem. Suppose f ∈ C∞0 (R) and let f be even. Then
f (δ
√

L), δ > 0, is an integral operator with kernel f (δ
√

L)(x , y)
satisfying

∣∣f (δ
√

L)(x , y)
∣∣ ≤ cσ

(
1 + ρ(x ,y)

δ

)−σ√
|B(x , δ)||B(y , δ)|

∀σ > 0,

and if ρ(y , y ′) ≤ δ

∣∣f (δ
√

L)(x , y)−f (δ
√

L)(x , y ′)
∣∣ ≤ cσ

(ρ(y , y ′)
δ

)α (
1 + ρ(x ,y)

δ

)−σ√
|B(x , δ)||B(y , δ)|

for some α > 0.
Here B(x , δ) is the ball with center x and radius δ.
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Spectral spaces

Let Eλ, λ ≥ 0, be the spectral resolution associated with L.
Then

L =

∫ ∞
0

λdEλ

Let Fλ, λ ≥ 0, be the spectral resolution associated with
√

L,
i.e. Fλ = Eλ2 and hence

√
L =

∫∞
0 λdFλ.

The spectral space Σλ is defined by

Σλ := {f ∈ L2 : Fλf = f}.

This can be extended to define Σp
λ, 1 ≤ p ≤ ∞:

Σp
λ := {f ∈ Lp : θ(

√
L)f = f for all θ ∈ C∞0 (R+), θ ≡ 1 on [0, λ]}.
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Frames when {Σ2
λ} possess the polynomial property

Suppose

Σ2
λ · Σ2

λ ⊂ Σ1
2λ, i.e. f ,g ∈ Σ2

λ =⇒ fg ∈ Σ1
2λ.

Choose Ψ0,Ψ ∈ C∞(R+) s.t.
supp Ψ0 ⊂ [0,b], supp Ψ ⊂ [b−1,b], 0 ≤ Ψ0,Ψ ≤ 1,b > 1,

Ψ2
0(u) +

∑
j≥1

Ψ2(b−ju) = 1, u ∈ R+

Set Ψj(u) := Ψ(b−ju). Then
∑

j≥0 Ψ2
j (u) = 1, u ∈ R+ and

f =
∑
j≥0

Ψ2
j (
√

L)f , f ∈ Lp.

P. Petrushev (USC) Nonlinear Approximation



Construction of frames (Con.)

Cubature: Let Xj be a maximal δ-net with δ = O(b−j) s.t.∫
M

f (x)dµ(x) =
∑
ξ∈Xj

wjξf (ξ) for f ∈ Σ1
2bj+1 ,

Discretization:

Ψ2
j (
√

L)(x , y) =

∫
M

Ψj(
√

L)(x ,u)Ψj(
√

L)(u, y)dµ(u)

=
∑
ξ∈Xj

wjξΨj(
√

L)(x , ξ)Ψj(
√

L)(ξ, y).

Definition: ψξ(x) :=
√wjξΨj(

√
L)(x , ξ), ξ ∈ Xj .

Then

f =
∑
ξ∈X
〈f , ψξ〉ψξ in Lp and ‖f‖22 =

∑
ξ∈X
|〈f , ψξ〉|2 for f ∈ L2.
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Frames in the general setting: Properties

Frames: {ψξ}ξ∈X , {ψ̃ξ}ξ∈X , X = ∪j≥0Xj

Representation: for any f ∈ Lp, 1 ≤ p ≤ ∞, with L∞ := UCB

f =
∑
ξ∈X
〈f , ψ̃ξ〉ψξ =

∑
ξ∈X
〈f , ψξ〉ψ̃ξ in Lp.

Frame: The system {ψ̃ξ} is a frame for L2:

c−1‖f‖22 ≤
∑
ξ∈X
|〈f , ψ̃ξ〉|2 ≤ c‖f‖22, ∀f ∈ L2.

The same is true for {ψξ}.
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Frames Properties

Space localization: For any ξ ∈ Xj , j ≥ 0,

|ψξ(x)| ≤ c|B(ξ,b−j)|−1/2 exp
{
− κ(bjρ(x , ξ))β

}
,

and if ρ(x , y) ≤ b−j

|ψξ(x)−ψξ(y)| ≤ c|B(ξ,b−j)|−1/2(bjρ(x , y))α exp
{
−κ(bjρ(x , ξ))β

}
.

Here 0 < κ < 1 and b > 1 are constants. Same holds for ψ̃ξ.

Spectral localization: ψξ, ψ̃ξ ∈ Σp
b if ξ ∈ X0 and

ψξ, ψ̃ξ ∈ Σp
[bj−2,bj+2]

if ξ ∈ Xj , j ≥ 1, 0 < p ≤ ∞.

Norms:

‖ψξ‖p ∼ ‖ψ̃ξ‖p ∼ |B(ξ,b−j)|
1
p−

1
2 for 0 < p ≤ ∞.
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Definition of Besov spaces

Let ϕ0, ϕ ∈ C∞(R+), suppϕ0 ⊂ [0,2], ϕ(ν)
0 (0) = 0 for ν ≥ 1,

suppϕ ⊂ [1/2,2], and |ϕ0(λ)|+
∑

j≥1 |ϕ(2−jλ)| ≥ c > 0, λ ∈ R+.

Set ϕj(λ) := ϕ(2−jλ) for j ≥ 1.

Let s ∈ R and 0 < p,q ≤ ∞.

(i) The “classical” Besov space Bs
pq = Bs

pq(L) is defined by

‖f‖Bs
pq

:=
(∑

j≥0

(
2sj‖ϕj(

√
L)f (·)‖Lp

)q)1/q
.

(ii) The “nonclassical” Besov space B̃s
pq = B̃s

pq(L) is defined by

‖f‖B̃s
pq

:=
(∑

j≥0

(
‖|B(·,2−j)|−s/dϕj(

√
L)f (·)‖Lp

)q)1/q
.
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Frame decomposition of Besov spaces

Theorem. Let s ∈ R and 0 < p,q ≤ ∞. Then for any f ∈ Bs
pq

‖f‖Bs
pq
∼
(∑

j≥0

bjsq
[∑
ξ∈Xj

‖〈f , ψ̃ξ〉ψξ‖pp
]q/p)1/q

and for f ∈ B̃s
pq

‖f‖B̃s
pq
∼
(∑

j≥0

[∑
ξ∈Xj

(
|B(ξ,b−j)|−s/d‖〈f , ψ̃ξ〉ψξ‖p

)p]q/p)1/q
.

Here b > 1 is from the definition of the frames.
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Nonlinear n-term approximation from {ψξ}
Denote by Ωn is the set of all functions g of the form

g =
∑
ξ∈Λn

aξψξ,

where Λn ⊂ X , #Λn ≤ n, and Λn may vary with g. Let

σn(f )p := inf
g∈Ωn

‖f − g‖Lp .

The approximation will take place in Lp, 1 ≤ p <∞.
Suppose s > 0 and let 1/τ := s/d + 1/p. The Besov spaces

B̃s
τ := B̃s

ττ

play a prominent role. Observe that

‖f‖B̃s
τ
∼
(∑
ξ∈X
‖〈f , ψ̃ξ〉ψξ‖τp

)1/τ

For any f ∈ Lp, 1 ≤ p <∞,

f =
∑
ξ∈X
〈f , ψ̃ξ〉ψξ in Lp.
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Nonlinear n-term approximation (Cont.)

Proposition. If f ∈ B̃s
τ , then f can be identified as a function

f ∈ Lp and

‖f‖Lp ≤
∥∥∥∑
ξ∈X
|〈f , ψ̃ξ〉ψξ(·)|

∥∥∥
Lp
≤ c‖f‖B̃s

τ
.

Theorem. If f ∈ B̃s
τ , then

σn(f )p ≤ cn−s/d‖f‖B̃s
τ
, n ≥ 1.

Open problem: Prove or disprove the Bernstein estimate:

‖g‖B̃s
τ
≤ cns/d‖g‖Lp for g ∈ Ωn, 1 < p <∞.

This estimate would allow to characterize the rates of nonlinear
n-term approximation from {ψξ}ξ∈X in Lp (1 < p <∞).
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Thank you!
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