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Characterize the rate of approximation
(Approximation spaces) in various settings in
Nonlinear Approximation
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Nonlinear n-term approximation from orthonormal

bases in Hilbert spaces

Suppose H is a separable Hilbert space and {)m}m>1 is an
orthonormal basis for H.
Denote by Q, is the set of all functions g of the form

n
g = Z al/wmya
v=1

Let
on(f) = inf [If —glln.
geQn

“Besov” spaces. Lets > 0and 1/7 := s+ 1/2. The Besov
space B¢ is defined as the set of all f € H s.t.

= (Z| ) <0
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Nonlinear n-term approximation from bases (Cont.)

Jackson estimate: If f € BS, then
on(f) < n~S||f|lgs, n>1.

Proof. Given f € H let |[(f,vm,)| > [{f, Ym,)| >
Then

f)z(]f—n fomim||, = (30 1om)?)"® < %) e

=1 v=n+1
Bernstein estimate: If g € Q,, n > 1, then

Ilgllss < n®llgllH-

These estimates allow to characterize the rates of nonlinear
n-term approximation from {¢n} in H.
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Approximation spaces

Approximation spaces: |||l asn) := [|fl1 + [f|ag(n), where

oo 1\ 1/a
(Z[nsgn(f)]q> , 0<g< oo,
Flagery = \ 75 n
Sup,>1 N°on(f), q = oo.

K-functional: Suppose Y < X. Then the K-functional for
f € X is defined by

K(f, 1) = gigfy{\lf— gllx +tigly}, t=0.

Interpolation spaces: For0 < g<ccand 0 < 0 < 1, the
interpolation space (X, Y)g,q consists of all f € X for which

00 at 1/q

(/ [tOK(f, t)]qt> , 0<g<oo
0

SUPo<rcoe VK (F, 1), q = oc.

(X, V)0q =
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Characterization of Approximation spaces

Norm: || - lx,v)sq == I - Ix + 1+ (X, v)0.4-
Claim: The Jackson inequality implies
on(f) < cK(f,n™%), feH, K(ft):=K(f,tH,BS)
Claim: The Bernstein inequality implies (if 7 < 1)
m _ 1/7
K(r2™) < 2 (S +IR) . fe . m=0,
j=0

Characterization: Aj(H) = (H,B),/sq 0 <7 <S5,
0 < g < oo, with equivalent norms.

In particular, o,(f) = O(n~7) iff K(f, 1) = O(t"/$), 0 < v < s.
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Nonlinear Spline Approximation in dimension d = 1

Nonlinear approximation from piecewise poynomials in
LP(R) or LP(a,b), 1 < p < oo (Free knot spline approximation)
Denote by S(k, n), k > 1, the set of all functions S of the form

n
S=> P,
v=1

where P, is a polynomial of degree < k — 1 and 1, is the
characteristic functiuon of the compact interval /,. Assume that
{l,} have disjoint interiors.
Denote

Sk(fp:= inf |f-S

AN = g inf If =Sl

The goal is to characterize the associated approximation
spaces.
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Nonlinear Spline Approximation in dimension d = 1

Lets>0,1<p<oo,and1/7=s+1/p.
Besov space:

& Tdt 1/T
|| gsue = (/ (t 5w (f, 1)) —) . wi(f, 1) = sup |AKF() |- (9
. 0 t |h<t

Jackson estimate: If f € BS, s > 0, then
Sh()p < en®|f| go.
Bernstein estimate: If S € S(k, n), s > 0, then

S gsk < 6n°|S]lus.
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Nonlinear Spline Approximation in dimension d = 1

Approximation spaces: |/f|| as(wr) == [Iflle + |fl ag(1r), Where

|l ag(p) =

(Z[nss’g(f)p]qn) , 0<g< oo,
n=1
SUP,>1 N SK(f)p, q = 0.

Characterization: AJ(LP) = (LP, B2 ), /sq 0 <7 <S5,
0<qg<oo.

In particular: For f € LP we have
Sk(fp=0(n™") iff K(f,t)=O(t"%), 0 <y <s.

Here K(f,t) :=inf__gsx {If = glle + t|g\B§,k}.
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Nonlinear Spline Approximation in dimensions d > 2

Nonlinear Spline Approximation in dimensions d = 2 over
multilevel nested triangulations.

Besov type spaces are introduced and companien Jackson and
Bernstein estimates are established, which allow to
characterize the associated approximation spaces.

B. Karaivanov, PP, Nonlinear piecewise polynomial
approximation beyond Besov spaces. Appl. Comput. Harmon.
Anal. 15 (2003), no. 3, 177-223

O. Davydov, PP, Nonlinear approximation from differentiable
piecewise polynomials. SIAM J. Math. Anal. 35 (2003), no. 3,
708-758.
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Nonlinear Spline Approximation in dimension d > 2

Nonlinear approximation from piecewise constants on a
polygonal domain Q ¢ R? or Q = R? (the nonnested case).
Denote by ¥, the set of all functions S of the form

n
S= Z al,IlRV,
v=1

where R, = Q, \ Q,, (N:?V~C Q,, Q,, Q, are convex isotropic
polygonal subdomains (Q, = 0 is Okay). We assume that {R, }
are with disjoint interiors and no “thin” rings R, are allowed.

Example. Q,, Q, can be rectangles with sides parallel to the
coordinate axes (or triangles), but no “thin” rectangles or rings
are allowed.

Denote

on(fp = Jdnf [|f = Sllie(q).
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Nonlinear piecewise constant approximation (d > 2)

Lets>0,1<p<oo,and1/7=5s/2+1/p.
Besov space:

> Fadt\1/7
fls = (/ (5w, %) wlf, ) = sup [ Bf() (e
0 t |hi<t

Jackson estimate: If f € BS, where 0 < s < 2/p, then
on(f)p < cn5/?|f|gs.
Ingeneral, Sy — So € X if S1, S, € £p, and
S1 — Solgs % cn®?||S) — So|le,  S1,Ss € X

Example: ’f|3§ ~ E_S/z”fHLp for f = ]1[075]><[0’1], 0<s<2/p.
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Bernsten estimate

New Bernstein estimate: If 0 < s <2/pand 7 < 1, then

|S1|5s < |S2[ps + cn°/?||Sy - Sol|fo, S, Sz € o

Inverse estimate: If 1 <p<o0,0<s<2/p,7<1and
f € [P, then

ms ms m s T 1/7
K(t.2"%) < 2% (3 (2%0p(f) +1f15) . m=>o.
k=0

where K(f, t) :=infgeps {|If — gllo + t|9|Bs }-

Characterization: A}(LP) = (LP,B?)2,/5q. 0 <7 < 8/2,
0<qg<o0.
Corollary. For f € LP we have

on(f)p = O(n™) iff K(f,t) = O(2/%), 0 <~ <s/2<1/p.
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Nonlinear approximation from smooth splines (d > 2)

Nonlinear approximation from piecewise linear polynomials
on a polygonal domain Q or Q = R? (the nonnested case).
Denote by ¥} the set of all functions S of the form

n
S = Z aV(p@yv
v=1

where ¢y, is the Courant element supported on the polygonal
cell 6,. The minimal angle condition is imposed on the
underlying triangles. No “thin” rings are allowed.

Denote

on(f)p = sien; If = Sllr()-
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Nonlinear piecewise linear approximation (d > 2)

Lets>0,1<p<oo,and1/7=5s/2+1/p.
Besov space:

flos = ([ (rwalt.) )" walfit): = sup 18w Ol

[hI<t
Jackson estimate: If f € BS, where 0 < s/2 < 1/p+ 1, then
an(f)p < cn=*/?|f|gs.
In general, S; — S; ¢ £, if Sy, S, € ¥}, and

St — Solgs % cn®?||S1 — Sollip,  S1,S2 €T,
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Bernsten estimate

Bernstein estimate: If 0 < s/2 < 1/p+1and 7 < 1, then

|S1|5s < |S2lps + cn°/?||Sy - Sol|fp, S, Sp € X,

Inverse estimate: If 1 <p<oo,0<s/2<1/p+1,7<1
and f € LP, then

m
ms ms s T 1/7
K(t.2~%) < 2% (3 (2%op(f) +1f15) . m=>o.
k=0

where K(f, t) :=infgeps {|If — gllo + t|9|Bs }-

Characterization: A}(LP) = (LP, B%)2,/s.q»
0<y<s/2<1/p+1, 0<qg<oo.
Corollary. For f € LP we have

on(f)p = O(n) it K(f,1) = O(t2/%), 0<~<s/2<1/p+1.
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Nonlinear n-term approximation from dilates and shifts

of smooth localized functions

Suppose ® € C*(RY) and ¢ is well localized. For example,

®(x) = (1+|1x]2)’V or &(x)=exp{—|x?} or

Denote by Q, the set of all functions of the form

n
gx)=> cadlax+b,), a.c €Rb, R

v=1

Consider
on(fp : gggan 9lir, feLP(RY).

The goal is to characterize the associated approximation
spaces.
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Jackson estimate

Theorem. Lets > 0,1 <p<oo,and 1/7 =s/d +1/p. If
f e BS_, then

T

on(f)p < en 9| f s

Here
L RV th 1/q
M = ([ (ntt.0)°%) ", k> s>0

Theorem. (d=1) Let s > 0, 1 < p < co. There exists K and a
function 6 of the form

K
0(x)=> cd(ax+b,), ac, cRb, R
v=1

s.t. if 0¢(x) := 2/20(2x + () then B := {6,} is unconditional
basis for LP(R) which characterizes the Besov norm B2 .
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Jackson estimate

Namely,

s, ~ (16 nel)” v

Denote by ox(f, B), the best n-term appromation in LP from B.

Theorem. Lets > 0,1 <p<oo,and 1/7 =s/d + 1/p. If
f e BS_, then

TT?

on(f,B)p < cn~/9||f| s .

PP, Bases consisting of rational functions of uniformly bounded
degrees or more general functions. J. Funct. Anal. 174 (2000),
no. 1, 18-75.

G. Kyriazis, PP, New bases for Triebel-Lizorkin and Besov
spaces. Trans. Amer. Math. Soc. 354 (2002), no. 2, 749-776
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Rational approximation on R

Denote
Rn(f)p := gien,g If = 9lleew)y, {RAn:g=P/Q,degP,Q < n}.

Theorem. [Pekarskii] If f € BS_, s> 0,1 < p < o,
1/7 =85+ 1/p, then

Rn(f)p < cn=*/|f|ls, -

Let A3,(R) be the approximation spaces assoc. with {Rn(f)p}:

oo 1 1/q
<Z[nsﬂn(f)p]q) , 0<g<oo,
flasym) = § \ = n
supp>1 N°Rn(f)p, g = 0.

Theorem. [Pekarski] If 1 < p < oo, s>0,1/7 =5+ 1/p, then
Alg(R) = (LP,B},)y/sqp 0 <7 <8,0<qg< o0,
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Open problem

Prove or disprove the Bernstein inequality:

lglles. < cn®||g|l e,

where s > 0,1 < p < oo, 1/7 = s+ 1/p, for functions of the
form

n
9(x) = Z c,®(a,x+b,), a,c €R b, R

v=1

where
(x) = exp{—|x[?}

or another ® € C>(RY) with fast decay.
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General scheme for construction of bases and frames

The idea is to use a “small perturbation argument” method. |

The setting: Let H be a separable Hilbert space of functions
and
SCHcS,

where S is a linear space of test functions and S’ is the
associated space of distributions. Suppose

BcS

is a quasi-Banach space of distributions with associated
sequence space b(X).

For instance, B can be a Besov or Triebel-Lizorkin space.
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Construction of bases

The old basis. Assume V := {1 : £ € X} C Sisan
orthonormal basis for H and V is a basis for the space B in the
following sense:
(a) Every f € B has a unique representation in terms of
{t¢}eca and

f=> (fe)e in B.

£ex

(b) The operator Syf := ({f,v¢))ccx is bounded as an operator
from B to b(X).

(c) For any sequence h € b(X) the operator Tyh := 3.y hey)e
is well defined and bounded as an operator from b(X) to B5.
Consequently, for any f € B

cillflls < [[({F, ¢e)) lbcay < callflls

for some constants ¢y, ¢ > 0.
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Construction of bases (Cont.)

Construction of a new basis. The idea is by perturbing ¥ to
construct a new basis © = {0; : £ € X'} for H and B.
Since V is a basis for H, we have

O = > (Oe,ty)tby i H.
nex
Denote by A the transformation matrix

A= (8 n)emex, 8= (0 Yy).
The key assumption is that the operator A with matrix A is
bounded and invertible on /2(X) and A~' is bounded on ¢2(X).
Observe that if
D = (dep)enex = (Ve — ¢, ¥n) e mex,
then A = Id — D and, therefore, A~ exists and is bounded on
2x) if
1Dl (xcymsez(ay < 1.
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Construction of bases (Cont.)

If A= =: (b ,)e.nex We define the dual by

O =Y byep, andset ©:={f;:¢e X}
nex

Theorem. Assume in addition that the operators A’ and
(A~")T with matrices A™ and (A~")" are bounded on b(X).
Then © (with dual ©) is a basis for 5 in the following sense:

(a) Every f € B has a unique representation in terms of

{95}5626 and
f= E (f,0¢)0¢,
Eex

where by definition (,f¢) := 3", (f, 1) (¢, fc) and the series
converges unconditionally in .

(b) There exist constants ¢y, ¢, > 0 such that

crllflls < (U, ) logey < allflls for e B.
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Construction of holomorphic rational bases

Goal: Apply the above scheme for the construction of a
unconditional basis

{Rix} withdual {R;«}

for the Hardy spaces HP, 0 < p < oo, on the unit disc
D .= {z € C: |z| < 1} which characterizes holomorphic Besov
spaces B;,(A) on D. Here each

Rix € Rx(D) with K < oo fixed,

where Rk (D) is the set of all rational functions of degree < K
with poles outside D.
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Rational approximation in HP. Pekarski’s results

Let A be the set of all holomorphic functions on D := {|z| < 1}
and for f € A set

1/p
)= ([ if)Plaz)) " 0<p <.
|z|=1
The Hardy space HP, 0 < p < oo, isthe setof all f € As.t.
[l == lim[[f(r)[|p < oo.
r—1
If (2) = 3o F(n)2" we set

Sf(z):= (n+1)°K(n)z", BEeR.

n>0

Besov space By, := B3,(A), s€ R, 0 < p,q < oo, is defined by

1 (B-s)g-1) B a 4)\"9 i
I, := (/O (1=n)¥"2970|J f(f’)HLpdf) , B>s, if g<oo.
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Pekarski’s results

Denote
Rn(f,HP) := inf ||f —
n( ) ) ge:{l(D)” gHHpv
where Rj(D) is the set of rational functions of degree < non D.

Theorem (A. Pekarski)
(@) ffeBs,s>0,1=5+10<p< oo, then

Rn(f,HP) < cn™®||f|lgs., n>1 (Jackson)
(b) fg € Ry(D), n>1ands>0,1=s+1,1<p< oo, then

I9lles. < cn~®||gllwe (Bernstein)

A. Pekarskii, Classes of analytic functions defined by best
rational approximation in Hp, Mat. Sb. 127 (1985), 3—20.
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Two hump holomorphic wavelet basis of Y. Meyer

Let W := {2//24)(2/x — k), ], k € Z} be Meyer’s orthonormal
wavelet basis for L?(R). Recall that ¢ is a real-valued function
with the properties: ¢ € S(R),

wppi c {e: 2 <1g) < T S e P =1, ¢ £ 0

JEZL

The 1-periodic Meyer’s wavelets are defined by

Gin(x) =223 " y(@(x+0)— k), 0<k<2 j>o0.

N/
Using the Poisson summation formula it readily follows that
gj,k(X) — 2‘//2 Z 112(271.”2—])627ri1/(x—k2_f)'
VEZL
ForO<k<2~1,j>0,and k* =2/ — k — 1, set
Gix(x) := 27123 (2mv2)) (P tE )y e,
v>0
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Two hump holomorphic wavelet basis of Y. Meyer

Note that Go o(x) = —€?™. In addition, let G_1 (x) := 1. Then
(Gik:0<k<27"j> -1}

is an orthonormal basis for H?.
Given s € Rand 0 < p, g < oo the space b, is defined as the
set of all complex-valued sequences h:= {hy} s.t.

— L q
Il = (3 26D S me)) <o
J=-1 0<k<2i—1

with the usual modification for g = cc.
Theorem. Each f € B, has a unique representation

f= chk(f)Gj,lﬁ where Cjk(f) = (f, nyk>'
jk

Moreover,
1flls, ~ 1(ci()llog,
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Holomorphic rational bases

Let
xXeR, neN,

and denote

K
Ok = {0 10(x) = chcb(aer b,), ¢c,,b, € R, a> O}.

v=1

Obviously, ©k C Raonk(R), where Ry (R) is the set of all rational
functions of degree (order) < n on R with real coefficients.

Proposition. Given N,n € N, M > 0 with2n > M, and ¢ > 0
there exists K > 1 and 6 € © such that

() WO -0 <e(t+ XD, 0<r<N+2
(if) /X’Q(x)dx:o, 0<r<N.
R
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Holomorphic rational bases

Forj>0,0<k <2~ with k* =2/ — k — 1, we define

'qj k(X) — 27j/2 Z é‘(27[_y27j)(627ri1/(xfk2*/') + eZﬂiV(ka*Z’j))’
v>0

and A_qo(x) := 1. Write R := {R; «}.
Theorem. Let above N > max{s, 7,7 — s — 1} with
J:=1/min{1,p} and M > N + 1. Then
(a) Each R; x extends to a rational function in Rx (D) for some
fixed K < oo. )
(b) If e > 0 is sufficiently small R has a dual system R s.t.

(R,R) is a unconditional basis for H? and any f € Bg, has a
unique representation

f=>" ARk, dilf) = (F. Ry,
I,k

Furthermore, if f € B3, we have ||f||ng ~ H(djk(f))Hbgq-
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Proof of Pekarski’s direct estimate

n-term approximation in HP from the rational basis R := {Ri}.
Let X, be the nonlinear set of all functions g of the form

n
9=> aR, R cR.
v=1
Denote
Py .— i _
on(f, H?) = inf |If = gl

Theorem. If f € BS

TT?

§>0,0<p<oo,=s+7 then
on(f,HP) < cn®||f|lgs ., n>1.
Corollary. [Pekarski]
Rn(f,HP) < cn™®||f|lgs., n>1.
G. Kyriazis, PP, Rational bases for spaces of holomorphic

functions in the disc, J. Lond. Math. Soc. (2) 89 (2014),
434-460.
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Nonlinear n-term approximation from frames

Goal:

Characterize the approximation spaces
associated with nonlinear n-term approximation
in LP from frames with smooth and localized
elements in RY, on the sphere, interval, ball and
simplex with weights as well as in general
Dirichlet spaces
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Classical frames of Frazier and Jawerth on R

Let 4o, 4 € S, supp C [~2,2], suppe) C [-2,—1/2] U [1/2,2],
and

[Do(©)Z + D _Ih@E)P =1 for R,
v>1
Set
ka(X) = wo(X — k) = ’l/)/(X), | := [k, Kk + 1],
i ; k k+17 .
Up(x) = 220(@x — k) = wi(x), 1= |3 oo = 1

Denote D := {[£, 3] : k € Z} and set D := Uj( D).
It is easy to see that {1/} ,cp is a tight frame for L?(R):

F= (e and e = (S IwP) " for fer

leD leD
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Inhomogeneous Besov spaces

Definition of inhomogeneous Besov spaces.

Let o, ¢ € S, suppo C [~2,2], suppeh C [-2,—1/2] U [1/2,2],
and

@o(€) + D [¢(2778) > ¢c>0 for R
v>1

Set j(x) = 2p(2x), j > 1.
Let s € R, 0 < p,q < oc. The space B, is defined as the set of
all f € 8’ such that

£z, == (3 (2lgy = fln) ) ' < oo

j=0

with the usual modification when p, g = co.
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Frame decomposition of Besov spaces

Theorem (Frazier-Jawert). Let sc R, 0 < p,g < co. Then
forany f € B3,

1fllgg, ~ (Z (Z (jfjs/8+1/P=172 ¢, wl>|)p)q/p>1/q

j>0 " IeD;

with the usual modification when p, g = ~c.

Frame decomposition of LP, 1 < p < oo, and HP, 0 < p < 1,
spaces:

F=3 (e and [fl ~ (S0 eneR)

leD j>0

LP
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Kernels on the unit sphere S c R*!, d > 2

Let H, be the set of all spherical harmonics of degree non
SY c R¥+1. Then
n+ A . d—1
Pn(x-y) = TdCﬁ(X -y) with A= 5 Wdi= /S1da,
is the kernel of the orthogonal projector onto H.,.
Here C)(t) is the nth degree Gegenbauer polynomial
The construction of frames on S¢ relies on kernels

Ka(x-y) = > ¢ (1) Pix-y), ¢ € CX(Ry), suppo © [1/2,2].
j=0

Localization: Here p(x, y) is the geodesic distance on the
sphere
cyn?

< Vo > 0.
S T )y

[Kn(x - y)
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Construction of spherical needlets

Let p € C[0, 00), suppy C [1/2,2] and |p(1)[% + [o(t/2)[2 = 1
for t € [1,2]. Hence Y"1 [¢(277/1)[2 = 1, t € [1,00). Set

Vi(x-y) = Y e (5 ) Polxey), J=1. Wolx-y) == Po(x-y).

v=0

Let the cubature Jsa F(x)do(x) ~ Deen; Cef(€)

be exact for spherical harmonics of degree < 2/+2 and
Ce ~ 2-/d.

Needlets: y(x) := ¢; '/

V(€ x), £ € X). Set X := U4
Needlet decomposition: f =", (f, )y, for f € L?, and

e = (Seer 1.0 E)
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Localization:

¢, 2/d/2
(1+2p(&, %))

[e(x)] < £ € X, Yo >0.

Needlets on S?:

AL LA

Needlet cross section, degree 32
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Needlet of degree 512
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Needlet of degree 512
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Needlet of degree 128
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Definition of Besov spaces

Distributions on S¢. Test functions: D := C>(S9). Claim:
¢ € D iff

Ni(¢) == sup (n+ 1K||(Proj,)¢|la < o0 Vk=0,1,...
n>0

The topology on D is defined by the seminorms N (¢).
The space D' := D'(SY) of distributions on SY is defined as the
set of all continuous linear functionals on D.

Kernels: Consider the kernels {®;} defined by

> v .
So(x-y) =1 and &(x-y):= Y ¢(577)Pulx-y), J=1.

v=0
where ¢ obeys the conditions

¢ € C®[0,00), supp ¢ C [1/2,2],
o() > c>0, ifte[3/55/3].
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Frame decomposition of Besov spaces

Definition of Besov spaces.
Let s € Rand 0 < p,q < cc. The Besov space B, = B5,(S?) is
defined as the set of all distributions f € D’ s.t.

; a\1/a
17llgg, == (D= (27107 ()s) ) " < oo
j>0
Here ®;f(x) := [oa ®;(x - y)f(y)do(y).
Theorem. Let sc Rand 0 < p,q < oco. Then for any f € B,
: a/p\1/q
17llsg, ~ (D259 37 et wehvellg] ™)

j=0 ged;
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Localized frames in other settings

Similar frames have been constructed

e on the interval with Jacobi weights
e on the ball with weights
e on the simplex with weights
e on product spaces
Compactly supported frames with small

shrinking supports have also been constructed
on the sphere, interval, ball, simplex.
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Frames in a general setting

(@) (M, p, 1) is a metric measure space with doubling measure:
0 < u(B(x,2r)) < cu(B(x,r)) <oco, xeM,r>0,
which implies  u(B(x, A\r)) < eA9u(B(x,r)), r>0, A > 1.

(b) L is a self-adjoint positive operator on L2(M, dp) s.t. the
(heat) kernel ps(x, y) of the associated semigroup

Py = e*’L
obeys
C _sz(x,y)
lpt(x, )| < expi - for x,ye M,0<t<1.
V(B VD)U(BlY. VD)
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(c) Holder continuity: There exists a constant o > 0 s.t

ply. y’))“ )
VE T u(Bx V) u(B(y. VD)

lpu(x,y) = pr(xy)| <

forx,y,y’ € Mand 0 < t < 1, whenever p(y, y') < V1.

(d) Markov property:

/ pi(x,y)du(y) =1 fort>0.
M
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Realization of the setting in Dirichlet spaces

A natural effective realization of the above
setting appears in the general framework
of strictly local regular Dirichlet spaces with a
complete intrinsic metric

where it only suffices to verify

the local Poincaré inequality and
the doubling condition on the measure

then the above general setting applies in full.
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@ Classical setting on R? with L = —A
@ Uniformly elliptic divergence form operators on RY.

@ Uniformly elliptic divergence form operators on
subdomains of R? with boundary conditions.

@ Riemannian manifolds and Lie groups. In particular,
Compact Riemannian manifolds, Riemannian manifold with
non-negative Ricci curvature, Compact Lie groups, Lie
groups with polynomial growth and their homogeneous
spaces, ...

@ Heat kernel on [—1, 1] associated with the Jacobi operator,
Heat kernel on the sphere, ball and simplex
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Functional calculus in the general setting

Theorem. Suppose f € C3°(R) and let f be even. Then

f(6v/L), 5 > 0, is an integral operator with kernel f(6v/L)(x, y)
satisfying

p(x.y)
( 0 ) Yo > 0,

VIB(x,9)I1B(y, d)|

116V L)(x,y)| < ¢

and if p(y,y') <0

, p(X.y)y—°
‘f(&ﬂ)(x,y)—f(dﬁ)(x,y/)‘SCa(p(y(;y)> ¢(115|13) 5)]

for some a > 0.
Here B(x, ¢) is the ball with center x and radius o.

P. Petrushev (USC) Nonlinear Approximation



Spectral spaces

Let Ey, A > 0, be the spectral resolution associated with L.
Then -
L= / NE),
0

Let F, A > 0, be the spectral resolution associated with v/L,
i.e. F\ = Ey2 and hence VL = [;° AdF,.
The spectral space ¥, is defined by

Yy :={fel?: Fy\f="f}.
This can be extended to define £f, 1 < p < oc:

SR = {felP:9(VL)f =fforalld € C(Ry), 6 =1o0n [0,\]}.
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Frames when {¥3} possess the polynomial property

Suppose

y3.32 ), ie f,ge¥i— fgecx},.
Choose Wy, ¥ € C*(R;) s.t.
suppWo C [0,b], suppV¥ C [b71,b], 0< W, W<1,b>1,

VE(u)+ ) V(b u)=1, ueR,
j>1
Set Wj(u) := W(b~/u). Then 35,0 W#(u) = 1, u € R, and
f=> wEVDf, felr.

j=0
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Construction of frames (Con.)

Cubature: Let X; be a maximal -net with 6 = O(b~/) s.t.

/ f(x)du(x ijgf(g) for fe ¥,

Discretization:

VE(VI)(x,y) = /M (VL) (x, 0)(VI) (U, y)du(u)
=" weW (VD) (x, WH(VL)(E, y).

gex;

Definition: y¢(x) :== /W W;(VL)(x,£), € € A,

Then

f=> (fie)de inLP and |f|5="" |(f,ue)® forfe L2
gex cex
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Frames in the general setting: Properties

Frames: {t¢}¢cx, {1/76}5695, X = Uj>odj

Representation: for any f € LP, 1 < p < oo, with L*® := UCB

= (fhehpe =Y (fape)e in LP.

fex fex

Frame: The system {¢} is a frame for L:

cUIFIB < D [ D) < clfl3, Vel
fex

The same is true for {v¢}.
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Frames Properties

Space localization: Forany ¢ € &}, j > 0,
e (x)] < ¢l B(&, b)) 2 exp { — k(Dp(x,£))"},
and if p(x,y) < b~/
e (X)—tbe(¥)| < clB(&, b)) V2 (B p(x, y))* exp {—k(b/p(x, €))7}

Here 0 < x < 1 and b > 1 are constants. Same holds for ;.
Spectral localization: ¢, ¢ € X if ¢ € &; and

wfa/&fezﬁ)j—{bﬁq if §edj, j>1,0<p< 0.

Norms:

1

. 1
lbellp ~ llvbellp ~ |B(&,b77)[p72 for 0 < p < oo.
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Definition of Besov spaces

Let go, ¢ € C(R1), supp o C [0,2], o8(0) = 0 for v > 1,
supp C [1/2,2], and [0o(A)| + X j51 [9(27A) > ¢ > 0, A € Ry
Set ;(\) := p(27/A) for j > 1.

LetseRand 0 < p,q < oc.

(1) The “classical” Besov space B;, = Bj,(L) is defined by

Ifleg, = (3 (271e,(VDION) ) .

j=0

(i) The “nonclassical” Besov space B, = B5,(L) is defined by

Iflag, = (3 (1182 /D)) ™

j=0
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Frame decomposition of Besov spaces

Theorem. Let s Rand 0 < p,q < oco. Then for any f € B,

IFleg, ~ (30657 3 1F. Behoel q/p>1/q

j>0 e

and for f € Bf,q

5, ~ ([ (1Ble. =l dewelln) ] ") .

j>0 ¢

Here b > 1 is from the definition of the frames.
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Nonlinear n-term approximation from {1}

Denote by Q, is the set of all functions g of the form
9= Z acte,
£ehn
where A, C X, #A\, < n, and A, may vary with g. Let
on(fp:= inf |If — gl

The approximation will take place in LP, 1 < p < oc.
Suppose s > 0 and let 1/7 := s/d + 1/p. The Besov spaces

Bs .= Bs
play a prominent role. Observe that

- 1/7
17llgs ~ (D I4F. de)vellp)

tex
Forany f € LP,1 < p < o,

f=> (fe)pe inLP.

P. Petrushev (USC) Nonlinear Approximation



Nonlinear n-term approximation (Cont.)

Proposition. If f € Bﬁ, then f can be identified as a function
f e LPand

< Fis -
, < clfla,

1Flee < || 3 14, Pe)ese ()
fex

Theorem. If f € BS, then
on(fp < cn‘s/d||fH,~3$, n>A1.
Open problem: Prove or disprove the Bernstein estimate:
lgligs < cn®/?lglles for geQn 1<p<oo.

This estimate would allow to characterize the rates of nonlinear
n-term approximation from {«¢ }ecx in LP (1 < p < 00).
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Thank you!
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