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Theorem: (Hölder, 1887) The Gamma function defined by

Γ(x + 1)− xΓ(x) = 0

satisfies no polynomial differential equation that is, there is no
nonzero polynomial

P(x , y , y ′, y ′′, . . . , y (n)) ∈ C[x , y , y ′, . . . , y (n), . . .]

such that P(x , Γ(x), Γ′(x), . . . Γ(n)(x)) = 0.



Group Theory

⇓ Galois Theory

Form of Functional Dependencies



Galois Theory of Linear Differential Equations

Galois Theory of Linear Differential Equations with Continuous
Parameters

Galois Theory of Linear Difference Equations with Continuous
Parameters

Galois Theory of Linear Differential/Difference Equations with
Discrete Parameters



Galois Theory of Polynomial Equations

P(y) = yn + an−1yn−1 + . . .+ a1y + a0 = 0, ai ∈ Q

Galois group = the group of transformations of the roots α1, . . . , αn
that preserve all algebraic relations among them.

Splitting Field E = Q(α1, . . . , αn).
Galois Group Gal(E/Q) = {σ | σ = Q-autom. of E}.

∀σ ∈ Gal(E/Q), σ(αi ) is again a root of P(y)

⇒ Gal(E/Q) ↪→ Symmn

Galois Correspondence: Subgroups⇔ Subfields
Galois group measures the amount of interaction among the
roots:

|Gal(E/Q)| = [E : Q]



Galois Theory of Linear Differential Equations

ex is not an algebraic function.



Picard-Vessiot (PV) Theory
dY
dx

= A(x)Y A ∈ Mn(C(x))

Splitting Field: Y = (yi,j ), yi,j analytic near x = x0, det Y 6= 0,

K = C(x) ⊂ C(x)(y1,1, . . . , yn,n) = E , PV-Extension

Note: E is closed under ∂ = d
dx

Galois Group Gal∂(E/K ) = {σ | σ = K -autom. of E , σ∂ = ∂σ}

∀σ ∈ Gal∂(E/K ), ∂(σY ) = A(σY )⇒ ∃ Cσ ∈ GLn(C)σY = Y · Cσ
Gal∂(K/Q) ↪→ GLn(C)

Gal∂(E/K ) ⊂ GLn(C) is Zariski closed, a linear algebraic group

Galois Correspondence:

HZariski closed ⊂ Gal∂(E/K ) ⇔ FDiff. field, k⊂F⊂E

Measuring the amount of relations:

dimC Gal∂(E/K ) = tr. deg.K E



ex is not an algebraic function

dy
dx

= y k = C(x)

PV-extension E = k(ex ), Gal∂(E/k) ⊂ GL1(C) = (C∗,×)

Closed subgps of GL1(C) =

{
GL1(C)

Z/nZ = {ζ |ζn = 1}, n ∈ N>0

ex algebraic over C(x)⇒ Gal∂(E/k) = {ζ |ζn = 1} for some n.
ex algebraic over C(x)⇒ (ex )n ∈ C(x) for some n ∈ N>0.

ex algebraic over C(x)⇒ dz
dx = nz has a soln z = enx in C(x).

z = c
∏

(x − ai )
mi ⇒ n = dz/dx

z =
∑ mi

x−ai
6= n.

Gal∂ = {ζ |ζn = 1} ⇒ yn ∈ C(x)

Defining eqns. of group⇒ Algebraic relations for solutions



More Examples

Ex. dy
dx = t

x y E = C(x)(x t )

Gal(E/C(x)) =

{
Z/nZ if t = m/n, (m,n) = 1
C∗ = GL1(C) if t /∈ Q

Ex. d2y
dx2 − 1

x
dy
dx + (1− ν2

x2 )y = 0 E = C(x)(Yν ,Y ′ν , Jν , J ′ν)

Gal(E/K ) = SL2(C)⇔ ν /∈ Z + 1
2

dimC SL2(C) = 3⇒ tr. deg.C(x)E = 3

YνJ ′ν − Y ′νJν = π
x and Yν ,Y ′ν , Jν alg. indep. over C(x).



Galois Theory of Linear Differential Equations with
Continuous Parameter

∂xY = A(t , x)Y A ∈ Mn(C(t , x)), ∂x = ∂
∂x

Galois group = the group of transformations of Y that preserve all
algebraic relations among x ,Y , and the {∂x , ∂t}-derivatives of Y .

∂t -PV-Extension: Y = (yi,j ), yi,j analytic near (t0, x0), det Y 6= 0,

K = C(t , x) ⊂ C(t , x)(y1,1, . . . , yn,n, ∂ty1,1, . . . , ∂
r
t ∂

s
x yi,j,...) = E

∂t -Gal(E/K ) = {σ | σ = k -autom., σ∂ = ∂σ ∂ ∈ {∂x , ∂t}}

∀σ ∈ ∂t -Gal(E/K ),∃ Cσ ∈ GLn(C(t)) s. t. σY = Y · Cσ

∂t -Gal(E/K ) ↪→ GLn(C(t))



Ex. ∂y
∂x = t

x y , K = C(x , t), {∂x = ∂
∂x , ∂t = ∂

∂t }

∂t -PV-Ext. = E = C(x)(x t , ∂t (x t ), . . .) = C(x , x t , log x)

∂t -Gal(E/C(x , t)) = G = {c ∈ C(t)∗ | ∂t (
∂tc
c

) = 0}

G is a Linear Differential Algebraic Group, a group of matrices whose
entries satisfy a system of differential equations.

∂t (
∂tc
c

) = 0 ⇒ c(t) = aebt , a,b ∈ C

If c(t) ∈ C(t) then c(t) = a ∈ C! Need more functions of t .

Replace C(t) with a “large” field k of meromorphic functions of t .



Parameterized PV-Theory for Differential Eqns
Cassidy/Singer 2006

k = a sufficiently large field of functions of t
K = k(x) with derivations ∂x , ∂t .

∂xY = A(x , t)Y , A ∈ Mn(k(x , t))

One then has:
Parameterized PV-extension E = K (Y , ∂t (Y ), ∂2

t (Y ), . . .)

Parameterized PV-Galois group G = Aut∂x ,∂t (E) - linear
differential algebraic group
Galois Correspondence: differential subfields↔ closed
subgroups
The size of G measures the amount of differential dependence

defining differential equations for G ⇒ ∂t -differential relations
among solutions



Linear Differential Algebraic Groups (LDAGs)

k - a ∂t -differential field, C = k∂t = constants in k .

G ⊂ GLn(k), entries satisfy algebraic DEs with respect to t

Any Linear Algebraic Group and the constant pts of such a group.

eg, SLn(C) ⊂ SLn(k)

G ( Ga(k0) = (k ,+) = {
(

1 α
0 1

)
| α ∈ k}

⇒ G = {α | L(α) = 0} where L ∈ k [ ∂∂t ]

G ( Gm(k) = (k∗,×) = GL1(k)

⇒ G =

{
Z/nZ
{α 6= 0 | L(∂t (α)

α ) = 0} where L ∈ k [ ∂∂t ]

`∂t : Gm → Ga z 7→ ∂tz
z



Ex. The Incomplete Gamma Function:

γ(t , x) =

∫ x

0
st−1e−sds

satisfies
∂2γ

∂x2 −
t − 1− x

x
∂γ

∂x
= 0

but satisfies no differential equation of the form

p(x , t , γ, γt , γtt , . . .) = 0.

• Algorithms for 2nd order param. LDE - Dreyfus 2012, Arreche 2013

• Partial Algorithms for nth order - Minchenko/Ovchinnikov/Singer
2014



Ex. Integrable Systems/Isomonodromy:

Def. The system

∂Y
∂x

= A(x , t)Y , A(x , t) ∈ Mn(C(x , t))

is integrable if ∃B(x , t) ∈ C(x , t) such that

At − Bx = AB − BA.

i.e., if the systems ∂Y
∂x = A(x , t)Y , ∂Y

∂t = B(x , t)Y are consistent.

Thm. A parameterized system is integrable if and only if its
parameterized PV-group is conjugate to a group of constant matrices.

The param. PV-Group measures how far a system is from integrable.

Thm. (Mitschi-Singer, 2013) The Darboux-Halphen V system is
associated with a projectively integrable system.



Galois Theory of Linear Difference Equations with
Continuous Parameter

Hardouin/Singer 2008

Ex. Hermite polynomials:

H(n, t) = n!

[n/2]∑
m=0

(−1)m(2t)n−2m

m!(n − 2m)!

If Y (n, t) = (H(n, t),H(n + 1, t))T , then

Y (n + 1, t) =

(
0 1
−2n 2t

)
Y (n, t)

Is there a differential dependence on t? What is it?

∂Y (n, t)
∂t

=

(
2t −1
2n 0

)
Y (n, t).



Ex. Gamma Function:

Γ(x + 1) = xΓ(x)

Γ(x) is a meromorphic function of x .

What are the differential properties of Γ?



Algebraic Setting

K = a field with automorphism σ and derivation ∂ such that σ∂ = ∂σ.

= a σ∂-field

Ex. K = C(x , t){
σ(x) = x + 1 σ(t) = t
∂(x) = 0 ∂(t) = 1

}
or

{
σ(x) = qx σ(t) = t
∂(x) = 0 ∂(t) = 1

}
Ex. K = C(x){

σ(x) = x + 1
∂(x) = 1

}
or

{
σ(x) = qx
∂(x) = x

}

Given
σ(Y ) = AY , A ∈ GLn(K )

describe the behavior of solutions with respect to ∂.



Parameterized PV-Theory for Difference Eqns
K = a σ∂-field

σ(Y ) = AY , A ∈ Mn(K )

One then has:
Parameterized PV-extension E
Parameterized PV-Galois group Galσ∂(E/K ) = Autσ∂(E/K )

- linear differential algebraic group
Galois Correspondence
The size of G measures the amount of differential dependence

defining differential equations for G ⇒ ∂-differential relations among
solutions



Ex. Gamma Function:

Γ(x + 1) = xΓ(x)

Galois Group ⊂ GL1

Differential Subgroups of GL1 =

{
{ζ | ζn = 1}, or

{c | L( c′

c ) = 0} ←

Galois Theory⇒ L( Γ′(x)
Γ(x) ) = g(x) ∈ C(x)

Can assume L has constant coefficients, apply the shift σ and
subtract:

L(
1
x

) = g(x + 1)− g(x)

L( 1
x ) has exactly one pole

g(x + 1)− g(x) has at least two poles



Ex. First order q-difference equations:

Thm:(Ishizaki, 1998) If a(x),b(x) ∈ C(x) and z(x) /∈ C(x) satisfies

z(qx) = a(x)z(x) + b(x), |q| 6= 1 (1)

and is meromorphic on C, then z(x) is not differentially algebraic over
q-periodic functions.

z(x) meromorphic on C\{0} and satisfies (1):

Assume distinct zeroes and poles of a(x) are not q-multiples of each
other.

Thm: (H-S) z(x) is differentially algebraic iff a(x) = cxn and
b = f (qx)− a(x)f (x) for some f ∈ C(x), when a 6= qr , or
b = f (qx)− af (x) + dx r for some f ∈ C(x),d ∈ C when
a = qr , r ∈ Z.



Ex. q-Hypergeometric Functions:

Thm: (Roques, 2007) Let y1(x), y2(x) be lin. indep. solutions of

y(q2x)− 2ax − 2
a2x − 1

y(qx) +
x − 1

a2x − q2 y(x) = 0 (2)

with a /∈ qZ and a2 ∈ qZ.

Then y1(x), y2(x), y1(qx) are algebraically independent.

(Hardouin/Singer): y1(x), y2(x), y1(qx) are differentially independent.

In general, we give necessary and sufficient computable conditions
for a large class of linear difference equations for differential
dependence of solutions and give differential relations if these are
differentially dependent.



Other recurrences

The series

B(x) =
∞∑

n=0

Bnxn = 1 + x + 2x2 + 5x3 + 15x4 + . . .

Bn = no. of ways to partition {1,2 . . . ,n} = Bell numbers

B(
x

1 + x
)− xB(x) = 1

M(x) =
∞∑

n=0

xkn
, k ≥ 2, Mahler function

M(xk )−M(x) = x

are not differentially algebraic.



Galois Theory of Linear Differential Equations with
Discrete Parameters Hardouin/Di Vizio/Wibmer 2014

Galois groups are Difference Groups.

Ex. K = C(x , α), δ = d
dx , σ(α) = α + 1. The Bessel function Jα(x)

satisfies

x2 d2y
dx2 + x

dy
dx

+ (x2 − α2)y = 0

How does Jα depend on α?

xJα+2(x)− 2(α + 1)Jα+1(x) + xJα(x) = 0.

Ex. K = C(x), δ = d
dx , σ(x) = x + 1. Ai(x),Bi(x) are lin. indep. solns.

of
d2y
dx2 − xy = 0

then Ai(x),Bi(x), dAi(x)
dx ,Ai(x + 1),Bi(x + 1), dAi(x+1)

dx , . . .
are alg. ind. over C(x).



Galois Theory of Linear Difference Equations with
Discrete Parameters

Ovchinnikov/Wibmer 2014

Galois groups are Difference Groups.

Thm: The Gamma Function satisfies no difference equation with
respect to x 7→ x + c, c /∈ Q over M<1, the field of meromorphic
functions f whose Nevanlinna characteristic satisfies T (f , r) = o(r).


