# Structural approach to subset-sum problems 

Endre Szemerédi

Rutgers University, New Jersey
Alfréd Rényi Institute, Budapest
(joint work with Van H. Vu)

## Notation

AP stands for Arithmetic Progression
$\mathcal{A}$ is a set of integers, $\mathcal{A}(n)=|\mathcal{A} \cap[1, n]|$.
$2 \mathcal{A}=\mathcal{A}+\mathcal{A}$

$$
\ell \mathcal{A}=\left\{a_{1}+\ldots+a_{\ell} \mid a_{i} \in \mathcal{A}\right\}
$$

is the collection of those numbers which can be represented as a sum of $\ell$ elements of $\mathcal{A}$.

$$
\ell^{*} \mathcal{A}=\left\{a_{1}+\ldots+a_{\ell} \mid a_{i} \in \mathcal{A}\right\}
$$

is the collection of those numbers which can be represented as a sum of $\ell$ different elements of $\mathcal{A}$.

Example. (Vinogradov's theorem) If $\mathbf{P}$ is the set of primes, then $3 \mathbf{P}$ contains every sufficiently large odd number.

Example. (Waring's conjecture, proved by Hilbert, Hardy, Littlewood, Hua) asserts that for any given $r$ there are numbers $\ell_{1}(r)$ and $\ell_{2}(r)$ such that both
$\ell_{1} \mathbb{N}^{r}$ and ... contain every sufficiently large positive integer.
For a finite set $\mathcal{A}$, then natural analogue of Vinogradov-Waring results is to show that under appropriate conditions, a finite sum-set $\ell \mathcal{A}$ (resp. $\left.\ell^{*} \mathcal{A}\right)$ contains a long AP .
$\mathcal{A} \subseteq\{1,2, \ldots, n\}$
$f(|\mathcal{A}|, \ell, n)$ (resp. $\left.f^{*}(|\mathcal{A}|, \ell, n)\right)$ denotes the minimum length of the longest arithmetic progression in $\ell \mathcal{A}, \ell^{*} \mathcal{A}$.

## Some earlier results:

Bourgain (1990) proved that if $|\mathcal{A}|=\gamma n$ where $\gamma>0$ is a constant, then $2 \mathcal{A}$ contains an arithmetic progression of length $e^{\varepsilon(\gamma)(\log n)^{1 / 3}}$.
Green improved Bourgain's result by replacing $(\log n)^{1 / 3}$ with $(\log n)^{1 / 2}$.
On the other hand I. Ruzsa constructed a set $\mathcal{A}$ of positive density, such that
$|2 \mathcal{A}| \leq e^{(\log n)^{2 / 3}}$.
Freiman, Halberstam and Ruzsa (1992) considered sum-sets modulo a prime and proved that

Let $n$ be a prime and $\mathcal{A}$ a set of residues modulo $n$. Let $|\mathcal{A}|=\gamma n$,
$0<\gamma<1$ may depend on $n$. Then $\ell \mathcal{A}$ contains an arithmetic progression (modulo $n$ ) of length

$$
n^{\gamma / 10}
$$

If the density of the sequence is $\leq \frac{1}{\log n}$ then the previous results do not say too much.

## When $|\mathcal{A}|$ is "small",

still, something can be said: E. Croot, I. Ruzsa, T. Shoen
$\mathcal{A} \subseteq[1, n]$

$$
|\mathcal{A}| \geq N^{1-\frac{1}{k-1}}
$$

$\Longrightarrow 2 \mathcal{A}$ contains an arithmetic progression of length at least $k$.
There is an $\mathcal{A} \subseteq[1, N]$ such that

$$
\begin{gathered}
|\mathcal{A}| \geq N^{1-\frac{1}{k-1}} \\
|\mathcal{A}+\mathcal{A}| \leq e^{k^{2 / 3}}
\end{gathered}
$$

## Many summands

## Sárközy (1990) proved that

There are two positive constants $c$ and $C$ such that the following holds.
If $\mathcal{A}$ is a subset of $[n]$ and $\ell$ is a positive integer such that $\ell|\mathcal{A}| \geq C n$, then $\ell \mathcal{A}$ contains an arithmetic progressions of length $c \ell|A|$.

Sárközy's result is sharp up to a constant factor. (If $\mathcal{A}$ is an interval, then $\ell \mathcal{A}$ is also an interval, of length at most $|\ell \mathcal{A}|$. The most interesting case is when $\ell=|\mathcal{A}|$ and $|\mathcal{A}|>c \sqrt{n}$.)

Question: What happens if $\ell \mathcal{A} \ll n$ ?
(Typical case, when $\ell=n^{\alpha},|\mathcal{A}|=n^{\beta}$, where $0<\alpha, \beta<1$.)
Question: What happens for $\ell^{*} \mathcal{A}$ ?

## First focus on $\ell \mathcal{A}$

For simplicity, we assume that $n$ and $\ell$ are fixed and think of $f(|\mathcal{A}|, \ell, n)$ as a function on $|\mathcal{A}|$, say $g(|\mathcal{A}|)$. A. Sárközy's theorem asserts that if

$$
|A|>C n / \ell \quad g(|A|)=\theta(\ell|\mathcal{A}|))
$$

Taking $\mathcal{A}$ to be an interval implies the upper bound $g(|\mathcal{A}|)=O(\ell|\mathcal{A}|)$.

## Crucial observation

When $|\mathcal{A}|<n / \ell$, there are better upper bounds on $g(|\mathcal{A}|)$.
We present a construction with a set $\mathcal{A} \subseteq[n]$ and an $\ell$ such that $\ell|A| \approx n / 4$, while the length of the longest arithmetic progression in $\ell \mathcal{A}$ is only $O\left(\ell|\mathcal{A}|^{1 / 2}\right)$, which is much smaller than $\ell|\mathcal{A}|$.

## Construction

$$
\mathcal{A}=\left\{p_{1} x_{1}+p_{2} x_{2} \mid 1 \leq x_{1}, x_{2} \leq m\right\}
$$

where $p_{1} \approx p_{2} \approx \frac{n}{2 m}$ are two primes and $p_{1}, p_{2}>m$, and $m<\frac{1}{10} n^{1 / 2}$. It is easy to see that $|\mathcal{A}|=m^{2}$.

Let $\ell=\frac{n}{4|\mathcal{A}|}=\frac{n}{4 m^{2}}$. Then

$$
\ell \mathcal{A}=\left\{p_{1} x_{1}+p_{2} x_{2} \mid 1 \leq x_{1}, x_{2} \leq \ell m .\right\}
$$

If $\mathcal{P}$ is an $\mathbf{A P}$ in $\ell \mathcal{A}$, then the coordinates of the elements of $\mathcal{P}$ form AP of the same length. Thus $|\mathcal{P}|$ is at most $\ell m=\ell|\mathcal{A}|^{1 / 2}$.
$\mathcal{A}$ is a $d+1$-dimensional cube. The general construction shows that for any fixed $d$ there is a constant $c(d)$ such that if $\ell^{d}|\mathcal{A}| \leq c n$ then

$$
|\ell \mathcal{A}| \leq \ell|\mathcal{A}|^{\frac{1}{d+1}}
$$

This suggests that $g(|\mathcal{A}|)$ is not a continuous function and follows a threshold behaviour, where the threshold points are

$$
\frac{n}{\ell}, \ldots \frac{n}{\ell^{2}}, \frac{n}{\ell^{d}} .
$$

Theorem (Van Vu-Sz. (2004)). For any fixed positive integer $d$ there are positive constants $C$ and $c$ (depending on $d$ ) such that the following holds: For any positive integers $n$ and $\ell$ and any set $\mathcal{A} \subseteq[n]$ satisfying $|\mathcal{A}| \geq C n / \ell^{d}$ contains an arithmetic progression of length c $\ell|\mathcal{A}|^{1 / d}$.

Corollary 1. For any fixed positive integer $d$ there are positive constants $C_{1}, C_{2}, c_{1}, c_{2}$ depending on $d$ such that whenever

$$
\frac{C_{1} n}{\ell^{d}} \leq|\mathcal{A}| \leq \frac{C_{2} n}{\ell^{d-1}}
$$

then

$$
c_{1} \ell|\mathcal{A}|^{\frac{1}{d}} \leq g(|\mathcal{A}|) \leq c_{2} \ell|\mathcal{A}|^{1 / d} .
$$

The corollary confirms our intuition about thresholds. The threshold points are indeed

$$
\frac{n}{\ell}, \cdots \frac{n}{\ell^{2}}, \frac{n}{\ell^{d}}
$$

$g(|\mathcal{A}|)$ behaves like $\ell|\mathcal{A}|^{1 / d}$; to the left it behaves like $\ell|\mathcal{A}|^{1 /(d+1)}$.

## Now let us turn to $\ell^{*} \mathcal{A}$

Recall that

$$
\ell^{*} \mathcal{A}=\left\{a_{1}+\ldots+a_{\ell} \mid a_{i} \in \mathcal{A}, a_{i} \neq a_{j}\right\}
$$

The requirement that the summands must be different usually poses a great challenge in additive problems. One of the most well-known examples is the celebrated Erdős-Heilbronn's conjecture. In order to describe this conjecture, let us start with the classical Cauchy-Davenport theorem which asserts that if $\mathcal{A}$ is a set of residues modulo $n$, where $n$ is a prime, then

$$
2|\mathcal{A}| \geq \min \{n, 2|\mathcal{A}|-1\}
$$

For $\mathcal{A}$ being an arithmetic progression, the bound is sharp. Now let us consider $2^{*} \mathcal{A}$. We wish to bound $\left|2^{*} \mathcal{A}\right|$ from below with something similar to the Cauchy-Davenport bound. Observe that in the special case when $\mathcal{A}$ in an $\mathbf{A P}, 2^{*}|\mathcal{A}|=\min \{n, 2|\mathcal{A}|-3\}$ holds for any set.

This is what Erdős and Heilbronn conjectured.
While the Cauchy-Davenport theorem is quite easy to prove, the
Erdős-Heilbronn conjecture had been open for about thirty years, until it was proved by de Silva and Hamidounne in 1994.

With a lot of extra work Theorem 1 could be extended to
Theorem (Van Vu-Sz. (2004)). For any fixed positive integer $d$ there are positive constants $C$ and $c$ depending on $d$ such that the following holds. Fix any positive integer $n$ and $\ell$ and any set $\mathcal{A} \subseteq[n]$, satisfying $\ell^{d}|\mathcal{A}| \geq C n$. Then $\ell^{*} \mathcal{A}$ contains an AP of length $c \ell|\mathcal{A}|^{1 / d}$.

While the two theorems look formally the same, Theorem 2 is a much harder result, even if $d=1$.

## Stronger, more structural results

## Definition GAP . (generalized arithmetic progressions)

$$
\mathcal{A}:=\left\{\sum_{i=1}^{d} a_{i} x_{i} \mid 0 \leq x_{i} \leq n_{i}\right\} .
$$

dimension $=d$
Volume

$$
\prod_{i=1}^{d}\left(n_{i}+1\right)
$$

## PROPER

all $\sum a_{i} x_{i}$ are different

$$
\sum_{i=1}^{d} a_{i} x_{i} \Longleftrightarrow\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

## GAP theorem

Theorem (Van Vu-Sz. (2004)). For any fixed positive integer $d$ there are positive constants $C$ and $c$ depending on $d$ such that the following holds. Fix any positive integer $n$ and $\ell$ and any set $\mathcal{A} \subseteq[n]$, satisfying $\ell^{d}|\mathcal{A}| \geq C n$. Then $\ell \mathcal{A}$ contains a PROPER GAP for some dimension $d^{\prime} \leq d$, volume $c \ell^{d^{\prime}}|A|$.

This implies that $\ell \mathcal{A}$ contains an AP of length $c \ell|\mathcal{A}|^{1 / d}$.

Same holds for $\ell^{*} \mathcal{A}$.

## Another extension of the theorem on $\ell \mathcal{A}$

Let $\mathcal{A}_{i}$ be sets of integers. Define

$$
\mathcal{A}_{1}+\ldots+\mathcal{A}_{\ell}=\left\{a_{1}+\ldots+a_{\ell} \mid a_{i} \in \mathcal{A}_{i}\right\}
$$

Theorem 4 (Van Vu-Sz. (2006)). For any fixed positive integer $d$ there are positive constants $C$ and $c$ depending on $d$ such that the following holds. For any positive integers $n$ and $\ell$ and collection $\mathcal{A}_{1} \subset[n], \ldots, \mathcal{A}_{\ell} \subset[n]$, where $\left|\mathcal{A}_{i}\right|=\left|\mathcal{A}_{j}\right|=A$, and $\ell^{d} A>C n$,

$$
\mathcal{A}_{1}+\ldots+\mathcal{A}_{\ell}
$$

contains an AP of length $c \neq A^{1 / d}$.

## New results

Theorem (Van Vu-Sz. (2009)). If $\mathcal{A} \subseteq[1, n]$ and $|\mathcal{A}|>2 \sqrt{n}$ then $\mathcal{S}_{\mathcal{A}}$ contains a homogenous AP of length $n$.
( $\mathcal{A}$ is homogenous if $\mathcal{A}=\left\{d(x+c): \ell_{1} \leq x \leq \ell_{2}\right\}$ )
O. Serra + Y. Hamidounne +A. Lada resently proved that $\bmod n$ the sumset covers all the $n$ residue classes. (This solves an old conjecture of Olson.)

Our result implies their theorem. Our result is tight. The following example yields the tightness:

$$
\mathcal{A}=\{1,2,[\sqrt{n}], n, n-1, n-2, n-[\sqrt{n}] .
$$

Our constans can be improved.

## Applications

An infinite set $\mathcal{A}$ of positive integers is complete if every sufficiently large positive integer can be represented as a sum of different elements of $\mathcal{A}$

For instance, Waring's conjecture implies that the set

$$
\left\{1^{r}, 2^{r}, 3^{r}, \ldots,\right\}
$$

is complete for any fixed $r$.
What would be necessary for a sequence to be complete?

Well, density must be the answer: one cannot hope to represent every positive integer with a very sparse sequence. But density itself would not be enough.

The set of even numbers has very high density but clearly, is not complete.
This shows that we also need a condition involving modularity.
In the following $\mathcal{A}(n)=|\mathcal{A} \cap[1, n]|$.

## Conjecture, Erdôs, 1962

There is a constant $c$ such that the following holds. An increasing sequence
$\mathcal{A}=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}$ is complete if
(a) $\mathcal{A}(n)>c n^{1 / 2}$.
(b) $\mathcal{S}_{\mathcal{A}}$ contains an element of every infinite AP .
(This says that for any $a, b$ there is an $s \in \mathcal{S}_{\mathcal{A}}$ that equals $a$ modulo $b$.)

The bound on $\mathcal{A}(n)$ is the best possible, up to the constant factor $c$, as shown by Cassels, (1960).

## Results

Erdős (1962) proved a weaker form of his conjecture:
It holds if one replaces (a) by a stronger condition

$$
\mathcal{A}(n)>c n^{\frac{1}{2} \sqrt{5}-1}
$$

Folkman (1962) proved that $\mathcal{A}(n)>c n^{\frac{1}{2}+\varepsilon}$ is sufficient, for any constant $\varepsilon>0$.
Hegyvári (1994) and Łuczak \& Schoen (1994) independently reduced this to

$$
\mathcal{A}(n)>c n^{\frac{1}{2}} \log n
$$

Theorem (Van Vu-Sz. (2003)). Erdős' conjecture holds.
[Related results of Chen, different approach.]

## Non-decreasing sequences

An infinite sequence $\mathcal{A}$ is sub-complete if $\mathcal{S}_{\mathcal{A}}$ contains an infinite AP. Again, $\mathcal{A}(n)$ denotes the number of elements of $\mathcal{A}$ in $[1, n]$. This number could be larger than $n$ as we allow $A$ to contain the same number many times.

In 1966 Folkman made the following conjecture:

Conjecture (Folkman). There is a constant $C>0$ such that the following holds. If $\mathcal{A}=\left\{a_{1} \leq a_{2} \leq a_{3} \leq \ldots\right\}$ is an infinite non-decreasing sequence of positive integers, and $\mathcal{A}(n) \geq C n$ for all sufficiently large $n$, then $\mathcal{A}$ is subcomplete.
(If true Folkman's conjecture is tight.)

Theorem (Van Vu-Sz. (2004)). Folkman's conjecture is true

## The number of 0 -sum-free sets

$\mathcal{A}$ is called zero-sum-free if $0 \notin \mathcal{S}_{\mathcal{A}}$, where $\mathcal{S}_{\mathcal{A}}$ is the collection of subset sums of $\mathcal{A} \bmod n$.
Olson proved that a zero-sum-free set has at most $2 n^{1 / 2}$ elements.
So the number of zero-sum-free sets is at most

$$
\sum_{i=1}^{2 \sqrt{n}}\binom{n}{i}=2^{\Omega(\sqrt{n} \log n)} .
$$

Theorem (Van Vu-Sz. (2003)). Let $n$ be a prime. The number of zero-sumfree sets $(\bmod n)$ is

$$
2^{\left(\sqrt{1 / 3} \pi \log _{2} e+o(1)\right) \sqrt{n}}
$$

## Why?

$\mathcal{A}$ is $n$-small if the sum of the elements in $\mathcal{A}$ is less than $n$.
The number of representations of $n$ as a sum of different positive integers is

$$
2\left(\sqrt{1 / 3} \pi \log _{2} e+o(1)\right) \sqrt{n}
$$

Consequently, the number of $n$-small sets is

$$
2\left(\sqrt{1 / 3} \pi \log _{2} e+o(1)\right) \sqrt{n}
$$

Theorem (Van Vu-Sz. (2003)). $\approx$ Most of the 0 -free sets are $n$-small, so their number is at most

$$
2\left(\sqrt{1 / 3} \pi \log _{2} e+o(1)\right) \sqrt{n}
$$

## The number of $x$-sum-free sets

Definition. Let $x \not \equiv 0(\bmod n)$.
$\mathcal{A}$ is $x$-sum-free, if $x \notin \mathcal{S}_{\mathcal{A}}$. (The number of $x$-sum-free sets is the same for every $x \not \equiv 0$ )

Theorem (Van Vu-Sz. (2003)). The number of $x$-sum-free sets is

$$
\left.2^{(\sqrt{2 / 3} \pi} \log _{2} e+o(1)\right) \sqrt{n}
$$

The reason is that a typical $\frac{1}{2} n$-sum-free set is of the form

$$
\mathcal{A}_{1} \cup\left(n-\mathcal{A}_{2}\right),
$$

where $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ are $\frac{1}{2}(n-1)$ small sets.

## Proof ???

Lemma 1 (Fundamental theorem of G. Freiman). For every positive constant
$c$ there is a positive integer $d$ and a positive constant $k$ such that the following holds. If $\mathcal{A} \subseteq \mathbb{Z}$ and $|\mathcal{A}+\mathcal{A}| \leq c|\mathcal{A}|$, then $\mathcal{A}+\mathcal{A}$ is a subset of a GAP $\mathcal{P}$ of dimension $d$ with volume at most $k|\mathcal{A}|$.

Lemma 2 (Generalization of I. Ruzsa). For every positive constant c there is a positive integer $d$ and a positive constant $k$ such that the following holds. If $\mathcal{A}, \mathcal{B} \subseteq \mathbb{Z}$ of the same cardinality and $|\mathcal{A}+\mathcal{B}| \leq c|\mathcal{A}|$, then $\mathcal{A}+\mathcal{B}$ is a subset of a GAP $\mathcal{P}$ of dimension $d$ with volume at most $k|\mathcal{A}|$.

Definition 1. $A$ set $\mathcal{A}$ is a $(\delta, d)$-set if one can find a GAP $\mathcal{Q}$ of dimension $d$ such that $\mathcal{B}=\mathcal{Q} \cap \mathcal{A}$ satisfies $|\mathcal{B}|>\delta \max \{|\mathcal{A}|, \operatorname{Vol}(\mathcal{Q})\}$

Lemma 3. For any constant $\varepsilon>0$, and integer $d$ there exists a constant $\delta>0$ such that the following holds. If $|\mathcal{A}+\mathcal{A}| \leq\left(2^{d}-\varepsilon\right)|\mathcal{A}|$, then $\mathcal{A}$ is a $(\delta, d)$-set.

This is in a paper of Bilu, a direct consequence of Freiman's cube-lemma and Freiman's theorem.

## Lemmas, cont, II

Lemma 4. For any positive integer $d$, there is a positive $\delta$ such that the following holds. If a GAP $\mathcal{Q}$ of dimension $d$ is proper, but $2 \mathcal{Q}$ is not, then $2 \mathcal{Q}$ is $\boldsymbol{a}(\delta, d-1)$-set.

Lemma 5. For any positive constant $\gamma$, and positive integer $d$ there is a positive constant $\gamma^{\prime}$ and a positive integer $g$ such that the following holds. If $X_{1}, X_{2}, \ldots, X_{g}$ are subsets of a GAP $\mathcal{P}$, of dimension $d$ and $\operatorname{Vol}\left(X_{i}\right)>\gamma \operatorname{Vol}(\mathcal{P})$, then $X_{1}+X_{2}+\ldots+X_{g}$ contains a GAP $\mathcal{Q}$ of dimension $d$ and cardinality at least $\gamma^{\prime} \operatorname{Vol}(\mathcal{P})$. Moreover, the differences of $\mathcal{Q}$ are the multiples of the differences of P .

## Lemmas, cont, III

Lemma 6. For any positive constant $\gamma$, and positive integer $d$ there is a positive constant $\gamma^{\prime}$ and a positive integer $h$ such that the following holds. If $\mathcal{P}$ is a GAP of dimension $d$, and $\mathcal{B} \subset \mathcal{P}$ for which $|\mathcal{B}|>\gamma \operatorname{Vol}(\mathcal{P})$, then $h \mathcal{B}$ contains a PROPER GAP $\mathcal{Q}$ of dimension $d$ and volume at least $\gamma^{\prime}|\mathcal{B}|$.

Lemma 7. Let

$$
\mathcal{P}=\left\{x_{1} a_{1}+x_{2} a_{2}: 0 \leq x_{i} \leq \ell_{i}\right\} .
$$

Let $\mathcal{P}$ be a GAP of dimension 2. The $\mathcal{P}$ contains AP of length $\frac{3}{5}|\mathcal{P}|$ and difference $\operatorname{gcd}\left(a_{1}, a_{2}\right)$.

