
Structural approach to subset-sum
problems

Endre Szemerédi
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Notation
AP stands for Arithmetic Progression

A is a set of integers, A(n) = |A ∩ [1, n]|.
2A = A + A

ℓA = {a1 + . . . + aℓ | ai ∈ A}

is the collection of those numbers which can be represented as a sum of ℓ

elements of A.

ℓ∗A = {a1 + . . . + aℓ | ai ∈ A}

is the collection of those numbers which can be represented as a sum of ℓ

different elements of A.

Example. (Vinogradov’s theorem) If P is the set of primes, then 3P contains

every sufficiently large odd number.
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Example. (Waring’s conjecture, proved by Hilbert, Hardy, Littlewood, Hua)

asserts that for any given r there are numbers ℓ1(r) and ℓ2(r) such that both

ℓ1N
r and ... contain every sufficiently large positive integer.

For a finite set A, then natural analogue of Vinogradov-Waring results is to

show that under appropriate conditions, a finite sum-set ℓA (resp. ℓ∗A)

contains a long AP .

A ⊆ {1, 2, . . . , , n}
f(|A|, ℓ, n) (resp. f ∗(|A|, ℓ, n)) denotes the minimum length of the longest

arithmetic progression in ℓA, ℓ∗A.
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Some earlier results:
Bourgain (1990) proved that if |A| = γn where γ > 0 is a constant, then 2A
contains an arithmetic progression of length eε(γ)(log n)1/3

.

Green improved Bourgain’s result by replacing (log n)1/3 with (log n)1/2.

On the other hand I. Ruzsa constructed a set A of positive density, such that

|2A| ≤ e(log n)2/3

.

Freiman, Halberstam and Ruzsa (1992) considered sum-sets modulo a prime

and proved that

Let n be a prime and A a set of residues modulo n. Let |A| = γn,

0 < γ < 1 may depend on n. Then ℓA contains an arithmetic progression

(modulo n) of length

nγ/10

If the density of the sequence is ≤ 1
log n

then the previous results do not say

too much.
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When |A| is “small”,
still, something can be said: E. Croot, I. Ruzsa, T. Shoen

A ⊆ [1, n]

|A| ≥ N 1− 1

k−1

=⇒ 2A contains an arithmetic progression of length at least k.

There is an A ⊆ [1, N ] such that

|A| ≥ N 1− 1

k−1

|A + A| ≤ ek2/3

.
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Many summands
Sárközy (1990) proved that

There are two positive constants c and C such that the following holds.

If A is a subset of [n] and ℓ is a positive integer such that ℓ|A| ≥ Cn, then

ℓA contains an arithmetic progressions of length cℓ|A|.

Sárközy’s result is sharp up to a constant factor. (If A is an interval, then ℓA is

also an interval, of length at most |ℓA|. The most interesting case is when

ℓ = |A| and |A| > c
√

n.)

Question: What happens if ℓA ≪ n?

(Typical case, when ℓ = nα, |A| = nβ , where 0 < α, β < 1.)

Question: What happens for ℓ∗A?
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First focus on ℓA (ℓ∗A is much harder)
For simplicity, we assume that n and ℓ are fixed and think of f(|A|, ℓ, n) as a

function on |A|, say g(|A|). A. Sárközy’s theorem asserts that if

|A| > Cn/ℓ g(|A|) = θ(ℓ|A|)).

Taking A to be an interval implies the upper bound g(|A|) = O(ℓ|A|).

Crucial observation

When |A| < n/ℓ, there are better upper bounds on g(|A|).

We present a construction with a set A ⊆ [n] and an ℓ such that

ℓ|A| ≈ n/4, while the length of the longest arithmetic progression in ℓA is

only O(ℓ|A|1/2), which is much smaller than ℓ|A|.
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Construction

A= {p1x1 + p2x2 | 1 ≤ x1, x2 ≤ m}

where p1 ≈ p2 ≈ n
2m

are two primes and p1, p2 > m, and m < 1
10

n1/2.

It is easy to see that |A| = m2.

Let ℓ = n
4|A| = n

4m2 . Then

ℓA= {p1x1 + p2x2 | 1 ≤ x1, x2 ≤ ℓm.}

If P is an AP in ℓA, then the coordinates of the elements of P form AP of the

same length. Thus |P| is at most ℓm = ℓ|A|1/2.

Structural approach to subset-sum problems – p.8



A is a d + 1-dimensional cube. The general construction shows that for any

fixed d there is a constant c(d) such that if ℓd|A| ≤ cn then

|ℓA| ≤ ℓ|A| 1

d+1 .

This suggests that g(|A|) is not a continuous function and follows a threshold

behaviour, where the threshold points are

n

ℓ
, . . .

n

ℓ2
,

n

ℓd
.

Theorem (Van Vu-Sz. (2004)) . For any fixed positive integer d there are

positive constants C and c (depending on d) such that the following holds:

For any positive integers n and ℓ and any set A ⊆ [n] satisfying

|A| ≥ Cn/ℓd contains an arithmetic progression of length cℓ|A|1/d.
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Corollary 1. For any fixed positive integer d there are positive constants
C1, C2, c1, c2 depending on d such that whenever

C1n

ℓd
≤ |A| ≤ C2n

ℓd−1

then

c1ℓ|A| 1d ≤ g(|A|) ≤ c2ℓ|A|1/d.

The corollary confirms our intuition about thresholds. The threshold points
are indeed

n

ℓ
, . . .

n

ℓ2
,

n

ℓd
.

g(|A|) behaves like ℓ|A|1/d; to the left it behaves like ℓ|A|1/(d+1).
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Now let us turn to ℓ∗A
Recall that

ℓ∗A= {a1 + . . . + aℓ | ai ∈A, ai 6= aj}

The requirement that the summands must be different usually poses a great

challenge in additive problems. One of the most well-known examples is the

celebrated Erdős-Heilbronn’s conjecture. In order to describe this conjecture,

let us start with the classical Cauchy–Davenport theorem which asserts that if

A is a set of residues modulo n, where n is a prime, then

2|A| ≥ min{n, 2|A| − 1}

For A being an arithmetic progression, the bound is sharp. Now let us

consider 2∗A. We wish to bound |2∗A| from below with something similar to

the Cauchy-Davenport bound. Observe that in the special case when A in an

AP , 2∗|A| = min{n, 2|A| − 3} holds for any set.
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This is what Erdős and Heilbronn conjectured.

While the Cauchy-Davenport theorem is quite easy to prove, the

Erdős-Heilbronn conjecture had been open for about thirty years, until it was

proved by de Silva and Hamidounne in 1994.

With a lot of extra work Theorem 1 could be extended to

Theorem (Van Vu-Sz. (2004)) . For any fixed positive integer d there are

positive constants C and c depending on d such that the following holds. Fix

any positive integer n and ℓ and any set A ⊆ [n], satisfying ℓd|A| ≥ Cn.

Then ℓ∗A contains an AP of length cℓ|A|1/d.

While the two theorems look formally the same, Theorem 2 is a much harder

result, even if d = 1.
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Stronger, more structural results
Definition GAP . (generalized arithmetic progressions)

A:=

{

d
∑

i=1

aixi | 0 ≤ xi ≤ ni

}

.

dimension = d

Volume
d

∏

i=1

(ni + 1).

PROPER

all
∑

aixi are different

d
∑

i=1

aixi ⇐⇒ (x1, x2, . . . , xd).
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GAP theorem

Theorem (Van Vu-Sz. (2004)) . For any fixed positive integer d there are

positive constants C and c depending on d such that the following holds. Fix

any positive integer n and ℓ and any set A ⊆ [n], satisfying ℓd|A| ≥ Cn.

Then ℓA contains a PROPER GAP for some dimension d′ ≤ d, volume

cℓd′|A|.

This implies that ℓA contains an AP of length cℓ|A|1/d.

Same holds for ℓ∗A.

Structural approach to subset-sum problems – p.14



Another extension of the theorem onℓA
Let Ai be sets of integers. Define

A1 + . . . + Aℓ = {a1 + . . . + aℓ | ai ∈ Ai}

Theorem 4 (Van Vu-Sz. (2006)) . For any fixed positive integer d there are

positive constants C and c depending on d such that the following holds. For

any positive integers n and ℓ and collection A1 ⊂ [n],. . . , Aℓ ⊂ [n], where

|Ai| = |Aj | = A, and ℓdA > Cn,

A1 + . . . + Aℓ

contains an AP of length cℓA1/d.
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New results

Theorem (Van Vu-Sz. (2009)) . If A ⊆ [1, n] and |A| > 2
√

n then SA

contains a homogenous AP of length n.
(A is homogenous if A = {d(x + c) : ℓ1 ≤ x ≤ ℓ2})

O. Serra + Y. Hamidounne +A. Lada resently proved that
mod n the sumset covers all the n residue classes. (This
solves an old conjecture of Olson.)

Our result implies their theorem. Our result is tight.
The following example yields the tightness:

A = {1, 2, [
√

n], n, n − 1, n − 2, n − [
√

n].

Our constans can be improved.
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Applications
An infinite set A of positive integers is complete if every sufficiently large

positive integer can be represented as a sum of different elements of A
For instance, Waring’s conjecture implies that the set

{1r, 2r, 3r, . . . , }

is complete for any fixed r.

What would be necessary for a sequence to be complete?

Well, density must be the answer: one cannot hope to represent every positive

integer with a very sparse sequence. But density itself would not be enough.

The set of even numbers has very high density but clearly, is not complete.

This shows that we also need a condition involving modularity.

In the following A(n) = |A ∩ [1, n]|.
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Conjecture, Erdős, 1962

There is a constant c such that the following holds. An increasing sequence

A = {a1 < a2 < a3 < . . .} is complete if

(a) A(n) > cn1/2.

(b) SA contains an element of every infinite AP .

(This says that for any a, b there is an s ∈ SA that equals a modulo b.)

The bound on A(n) is the best possible, up to the constant factor c, as shown

by Cassels, (1960).
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Results
Erdős (1962) proved a weaker form of his conjecture:

It holds if one replaces (a) by a stronger condition

A(n) > cn
1

2

√
5−1.

Folkman (1962) proved that A(n) > cn
1

2
+ε is sufficient, for any

constant ε > 0.

Hegyvári (1994) and Łuczak & Schoen (1994) independently reduced this to

A(n) > cn
1

2 log n.

Theorem (Van Vu-Sz. (2003)) . Erdős’ conjecture holds.

[Related results of Chen, different approach.]
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Non-decreasing sequences
An infinite sequence A is sub-complete if SA contains an infinite AP .

Again, A(n) denotes the number of elements of A in [1, n]. This number

could be larger than n as we allow A to contain the same number many times.

In 1966 Folkman made the following conjecture:

Conjecture (Folkman). There is a constant C > 0 such that the following

holds. If A= {a1 ≤ a2 ≤ a3 ≤ . . .} is an infinite non-decreasing

sequence of positive integers, and A(n) ≥ Cn for all sufficiently large n,

then A is subcomplete.

(If true Folkman’s conjecture is tight.)

Theorem (Van Vu-Sz. (2004)) . Folkman’s conjecture is true
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The number of 0-sum-free sets
A is called zero-sum-free if 0 6∈ SA, where SA is the collection of subset

sums of A mod n.

Olson proved that a zero-sum-free set has at most 2n1/2 elements.

So the number of zero-sum-free sets is at most

2
√

n
∑

i=1

(

n

i

)

= 2Ω(
√

n log n).

Theorem (Van Vu-Sz. (2003)) . Let n be a prime. The number of zero-sum-

free sets (mod n) is

2(
√

1/3π log2 e+o(1))
√

n
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Why?
A is n-small if the sum of the elements in A is less than n.

The number of representations of n as a sum of different positive integers is

2

“√
1/3π log2 e+o(1)

”√
n

Consequently, the number of n-small sets is

2

“√
1/3π log2 e+o(1)

”√
n

Theorem (Van Vu-Sz. (2003)) . ≈ Most of the 0-free sets are n-small, so

their number is at most

2

“√
1/3π log2 e+o(1)

”√
n
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The number of x-sum-free sets
Definition . Let x 6≡ 0(mod n).

A is x-sum-free, if x 6∈ SA. (The number of x-sum-free sets is the same for

every x 6≡ 0)

Theorem (Van Vu-Sz. (2003)) . The number of x-sum-free sets is

2(
√

2/3π log2 e+o(1))
√

n

The reason is that a typical 1
2
n-sum-free set is of the form

A1 ∪ (n −A2),

where A1 and A2 are 1
2
(n − 1) small sets.

There are many further applications not discussed here.
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Proof ???
Lemma 1 (Fundamental theorem of G. Freiman). For every positive constant

c there is a positive integer d and a positive constant k such that the following

holds. If A ⊆ Z and |A + A| ≤ c|A|, then A + A is a subset of a GAP P
of dimension d with volume at most k|A|.

Lemma 2 (Generalization of I. Ruzsa). For every positive constant c there is a

positive integer d and a positive constant k such that the following holds. If

A,B ⊆ Z of the same cardinality and |A + B| ≤ c|A|, then A + B is a

subset of a GAP P of dimension d with volume at most k|A|.
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Definition 1. A set A is a (δ, d)-set if one can find a GAP Q of dimension
d such that B = Q∩A satisfies |B| > δ max{|A|,Vol(Q)}

Lemma 3. For any constant ε> 0, and integer d there exists a constant

δ > 0 such that the following holds. If |A + A| ≤ (2d − ε)|A|, then A is a
(δ, d)-set.

This is in a paper of Bilu, a direct consequence of Freiman’s cube-lemma and

Freiman’s theorem.
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Lemmas, cont, II
Lemma 4. For any positive integer d, there is a positive δ such that the
following holds. If a GAP Q of dimension d is proper, but 2Q is not, then
2Q is a (δ, d − 1)-set.

Lemma 5. For any positive constant γ, and positive integer d there is a
positive constant γ′ and a positive integer g such that the following holds.
If X1, X2, . . . , Xg are subsets of a GAP P , of dimension d and

Vol(Xi) > γVol(P), then X1 + X2 + . . . + Xg contains a GAP Q of

dimension d and cardinality at least γ′Vol(P). Moreover, the differences of
Q are the multiples of the differences of P.
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Lemmas, cont, III
Lemma 6. For any positive constant γ, and positive integer d there is a
positive constant γ′ and a positive integer h such that the following holds.
If P is a GAP of dimension d, and B ⊂ P for which |B| > γVol(P), then

hB contains a PROPER GAP Q of dimension d and volume at least γ′|B|.

Lemma 7. Let

P= {x1a1 + x2a2 : 0 ≤ xi ≤ ℓi}.
Let P be a GAP of dimension 2. The P contains AP of length 3

5 |P| and

difference gcd(a1, a2).
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