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Notation

AP stands for Arithmetic Progression
Ais a set of integers, A(n) = [AN[1,n]|.
2A=A+A

(A={a;+...+as|a; € A}

is the collection of those numbers which can be represented as a sum of ¢

elements of A.

CA={{a1+...+ay|a; € A}

is the collection of those numbers which can be represented as a sum of ¢

different elements of A.

Example. (Vinogradov’s theorem) If P is the set of primes, then 3P contains

every sufficiently large odd number.
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Example. (Waring’'s conjecture, proved by Hilbert, Hardy, Littlewood, Hua)
asserts that for any given 1 there are numbers /1 (7) and ¢5(7) such that both

¢/1N" and ... contain every sufficiently large positive integer.

For a finite set A, then natural analogue of Vinogradov-Waring results is to
show that under appropriate conditions, a finite sum-set /A (resp. /*A)

contains a long AP .

ACH{1,2,...,,n}
f(|A], ¢,n) (resp. f*(|.Al, ¢, n)) denotes the minimum length of the longest
arithmetic progression in /. A, (* A.
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Some earlier results:

Bourgain (1990) proved that if | A| = ~n where v > 0 is a constant, then 2.4
contains an arithmetic progression of length es()logn)t/?

Green improved Bourgain’s result by replacing (log n)/3 with (log n)!/?.
On the other hand |. Ruzsa constructed a set .A of positive density, such that
24| < ellosm)*?,

Freiman, Halberstam and Ruzsa (1992) considered sum-sets modulo a prime

and proved that

Let . be a prime and A a set of residues modulo n. Let | A| = n,
0 < v < 1 may depend on n. Then /A contains an arithmetic progression

(modulo n) of length
n/10

If the density of the sequence is < @ then the previous results do not say

too much.
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When | A| is “small”,

still, something can be said: E. Croot, |. Ruzsa, T. Shoen

A C[1,n]

1
Al > NTTET
—> 2. contains an arithmetic progression of length at least k.

Thereis an A C [1, N| such that
Al > N7

A4 A <
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Many summands

Sarkozy (1990) proved that

There are two positive constants ¢ and C' such that the following holds.
If A is a subset of [n] and ¢ is a positive integer such that /| A| > Cn, then

(A contains an arithmetic progressions of length c¢/| A|.

Sarkozy’s result is sharp up to a constant factor. (If A is an interval, then /A is

also an interval, of length at most |(.4|. The most interesting case is when

(= |A|land |A| > cy/n.)

Question:  What happens if /A < n?
(Typical case, when / = n®, |A| = n”, where 0 < o, 3 < 1.)

Question:  What happens for /* A?
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First focus on/A (¢* A 1s much harder)

For simplicity, we assume that 7 and ¢ are fixed and think of f(|.A], ¢, n) as a
function on | A/, say g(|.A|). A. Sarkozy’s theorem asserts that if

Al > Cn/t g(|A]) = 0(£]A])).

Taking A to be an interval implies the upper bound g(|.A|) = O(/|Al).

Crucial observation

When | A| < n//, there are better upper bounds on ¢g(|.A|).

We present a construction with a set A C [n| and an ¢ such that

(| A| ~ n /4, while the length of the longest arithmetic progression in /A is
only O(¢|A['/?), which is much smaller than ¢|.A|.
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Construction

A= {p1x1 + poxa |1 <y, 29 <M}

where p1 &~ pa &~ 5~ are two primes and p1, p2 > m, and m < f—onl/Q.

It is easy to see that | A| = m?.
Let { = 757 = —=. Then

4] A 4m? "

A= {p1x1 + poxo | 1 <y, 20 < .}

If P is an AP in / A, then the coordinates of the elements of P form AP of the
same length. Thus |P| is at most £m = (| A['/2.
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A is a d + 1-dimensional cube. The general construction shows that for any
fixed d there is a constant ¢(d) such that if /4| A| < cn then

CA| < 0| A7

This suggests that g(|.4]) is not a continuous function and follows a threshold

behaviour, where the threshold points are

Theorem (Van Vu-Sz. (2004)). For any fixed positive integer d there are
positive constants C' and ¢ (depending on d) such that the following holds:

For any positive integers n and ¢ and any set A C [n] satisfying

| A| > Cn /(% contains an arithmetic progression of length c/|.A|*/¢.

Structural approach to subset-sum problems — p.9



Corollary 1. For any fixed positive integer d there are positive constants
C'1,C9, c1, co depending on d such that whenever

an

Cm

then

el Al < g(|A]) < eal] AN

The corollary confirms our intuition about thresholds. The threshold points

are indeed
n n n

g 9 o o o 6_27 g_d.
g(]Al) behaves like £|A|'/%: to the left it behaves like ¢|.A|'/(4+1),
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Now let us turn to /* A

Recall that
CA={a1 + ...+ as | a; €A, a; # a;}

The requirement that the summands must be different usually poses a great
challenge in additive problems. One of the most well-known examples is the
celebrated Erdos-Heilbronn’s conjecture. In order to describe this conjecture,
let us start with the classical Cauchy—Davenport theorem which asserts that if

A is a set of residues modulo 72, where n is a prime, then
2| Al > min{n, 2|A| — 1}

For A being an arithmetic progression, the bound is sharp. Now let us
consider 2*.A. We wish to bound |2*.A| from below with something similar to
the Cauchy-Davenport bound. Observe that in the special case when A in an
AP, 2%|A| = min{n, 2|.A| — 3} holds for any set.
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This is what Erdos and Heilbronn conjectured.
While the Cauchy-Davenport theorem is quite easy to prove, the
Erdos-Heilbronn conjecture had been open for about thirty years, until it was

proved by de Silva and Hamidounne in 1994.

With a lot of extra work Theorem 1 could be extended to

Theorem (Van Vu-Sz. (2004)). For any fixed positive integer d there are
positive constants C' and ¢ depending on d such that the following holds. Fix
any positive integer n and £ and any set A C [n], satisfying /4| A| > Cn.
Then (* A contains an AP of length c/| A|'/<.

While the two theorems look formally the same, Theorem 2 is a much harder

result, evenif d = 1.
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Stronger, more structural results

Definition GAP . (generalized arithmetic progressions)

1=1

d

dimension = d

Volume
d

H(ni + 1)

i—1
PROPER
all > a;x; are different

d
Zaixi < (xlax% 7:Cd)
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GAP theorem

Theorem (Van Vu-Sz. (2004)). For any fixed positive integer d there are
positive constants C' and ¢ depending on d such that the following holds. Fix
any positive integer n and £ and any set A C [n], satisfying /¢|A| > Cn.
Then /A contains a PROPER GAP for some dimension d’ < d, volume
cl?|Al.

This implies that /A contains an AP of length c/| A|'/<.

Same holds for /* A.
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Another extension of the theorem or/ A .

Let A, be sets of integers. Define

A1—|—...+Ag:{a1—‘r...+ae‘aiE.Ai}

Theorem 4 (Van Vu-Sz. (2006)). For any fixed positive integer d there are

positive constants C' and ¢ depending on d such that the following holds. For

any positive integers n and ¢ and collection A; C [n],..., A, C [n], where

A;| = |A;| = A, and (A > Chn,

A+ ...+ A

contains an AP of length ¢/ A'/<.
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New results

Theorem (Van Vu-Sz. (2009)). If A C [1,n| and |A| > 2y/n then S4
contains a homogenous AP of length n.

(A is homogenous if A= {d(z +c¢) : {1 <a <))

O. Serra + Y. Hamidounne +A. Lada resently proved that
mod n the sumset covers all the »n residue classes. (This
solves an old conjecture of Olson.)

Our result implies their theorem. Our result is tight.
The following example yields the tightness:

A=1{1,2,[\/n], n,n—1,n—2,n— [/n].

Our constans can be improved.
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Applications

An infinite set A of positive integers is complete if every sufficiently large
positive integer can be represented as a sum of different elements of A

For instance, Waring’s conjecture implies that the set
{17,2",3",...,}

IS complete for any fixed r.

What would be necessary for a sequence to be complete?

Well, density must be the answer: one cannot hope to represent every positive
Integer with a very sparse sequence. But density itself would not be enough.
The set of even numbers has very high density but clearly, is not complete.

This shows that we also need a condition involving modularity.
In the following A(n) = [A N [1,n]|.
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Conjecture, Erdos, 1962

There is a constant ¢ such that the following holds. An increasing sequence
A={a; <ay <ag<...}iscomplete if
@) A(n) > cn'/2.

(b) S 4 contains an element of every infinite AP .

(This says that for any a, b there is an s € S 4 that equals a modulo b.)

The bound on A(n) is the best possible, up to the constant factor ¢, as shown
by Cassels, (1960).
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Results

Erdos (1962) proved a weaker form of his conjecture:

It holds if one replaces (a) by a stronger condition

A(n) > enzV51,

Folkman (1962) proved that A(n) > cnz T is sufficient, for any
constant € > 0.
Hegyvari (1994) and tuczak & Schoen (1994) independently reduced this to

A(n) > cn’ log n.

Theorem (Van Vu-Sz. (2003)). Erdds’ conjecture holds.

Related results of Chen, different approach.]
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Non-decreasing sequences

An infinite sequence A is sub-complete if S 4 contains an infinite AP .
Again, A(n) denotes the number of elements of A in |1, n]. This number

could be larger than n as we allow A to contain the same number many times.

In 1966 Folkman made the following conjecture:

Conjecture (Folkman). There is a constant C' > ( such that the following
holds. If A= {a1 <ayg <as <. } is an infinite non-decreasing
sequence of positive integers, and A(n) > (C'n for all sufficiently large n,

then A is subcomplete.

(If true Folkman’s conjecture is tight.)

Theorem (Van Vu-Sz. (2004)). Folkman’s conjecture is true
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The number of O-sum-free sets

A is called zero-sum-free if 0 & S 4, where S 4 is the collection of subset
sums of A mod n.

1/2

Olson proved that a zero-sum-free set has at most 2n'/“ elements.

So the number of zero-sum-free sets is at most

2y/n
Z (n) _ QQ(ﬁlogn).
(

1=1

Theorem (Van Vu-Sz. (2003)). Let n be a prime. The number of zero-sum-

free sets (mod n) is
9(y/1/3mlogy eto(1))v/n
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Why?

A is n-small if the sum of the elements in A is less than 7.

The number of representations of 2 as a sum of different positive integers is

(VT3 o8 e4o(1) Vi

Consequently, the number of n-small sets is

o (V/1/37l0g; eto(1)) v

Theorem (Van Vu-Sz. (2003)). ~ Most of the O-free sets are n-small, so

their number is at most

(VT o8 e4o(1) v
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The number of z-sum-free sets

Definition . Let x Z O(mod n).
A is xz-sum-free, if © & S 4. (The number of z-sum-free sets is the same for

every & = ()

Theorem (Van Vu-Sz. (2003)). The number of z-sum-free sets is

5(v/2/37log, e+o(1) Vi

The reason is that a typical %n-sum-free set is of the form

.A1 U (n — Ag),

1

where A; and A; are 5(n — 1) small sets.
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Proof 7?7

Lemma 1 (Fundamental theorem of G. Freiman). For every positive constant
c there is a positive integer d and a positive constant £ such that the following
holds. If A C Z and | A + A| < ¢|A|, then A + A is a subset of a GAP P

of dimension d with volume at most k|.A|.

Lemma 2 (Generalization of I. Ruzsa). For every positive constant c there is a
positive integer d and a positive constant &k such that the following holds. If
A, B C Z of the same cardinality and | A + B| < ¢|A|, then A + Bis a

subset of a GAP P of dimension d with volume at most k|.A|.
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Definition 1. Aset Aisa (6, d)-setif one can find a GAP Q of dimension
d such that B = O N A satisfies |B| > é max{|A|, Vol(Q)}

Lemma 3. For any constant £> 0, and integer d there exists a constant

6 > 0 such that the following holds. If | A + A| < (2¢ — £)|.A|, then Ais a
(0, d)-set.

This is in a paper of Bilu, a direct consequence of Freiman’s cube-lemma and

Freiman’s theorem.
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Lemmas, cont, Il

Lemma 4. For any positive integer d, there is a positive 0 such that the
following holds. If a GAP O of dimension d is proper, but 29 is not, then
2Qisa (0,d — 1)-set.

Lemma 5. For any positive constant -y, and positive integer d there is a
positive constant 7’ and a positive integer g such that the following holds.

If X1, Xo,..., X, are subsets of a GAP P, of dimension d and

Vol(X;) > vVol(P), then X1 + X2 4 ... 4+ X, contains a GAP Q of
dimension d and cardinality at least 7' Vol(P). Moreover, the differences of
Q are the multiples of the differences of P.
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Lemmas, cont, Il

Lemma 6. For any positive constant v, and positive integer d there is a
positive constant ' and a positive integer 1 such that the following holds.
If P is a GAP of dimension d, and B C P for which | 3| > vVol(P), then
hI3 contains a PROPER GAP Q of dimension d and volume at least /| 3|.

Lemma 7. Let
P={z1a1 + x2a2 : 0 < x; < l;}.

Let P be a GAP of dimension 2. The P contains AP of length %]77] and
difference gcd (a1, az).
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