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Abstract Setting for MLMC

Motivational Example: Let (Ω,F ,P) be a complete probability
space and D ⊂ Rd be a bounded convex polygonal domain.
The solution u : D × Ω→ R here solves almost surely (a.s.) the
following equation:

−∇ · (a(x ;ω)∇u(x ;ω)) = f (x ;ω) for x ∈ D,
u(x ;ω) = 0 for x ∈ ∂D. (1)

Goal: to approximate E[g ] ∈ R where g = Ψ(u) for some
sufficiently “smooth” u (solution of a random PDE/stochastic
differential equation) and a given functional g .
Assumption: We assume we have an approximation of u, say ūh
(time discretization, FEM, FD, FV, . . . ) based on discretization
parameter h.
Notation: gh is the approximation of g calculated using a
discretization defined by h.
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Monte Carlo complexity analysis

Monte Carlo (MC) approximates expectations by sample averages
of i.i.d. approximate realizations

E[g ] ≈ E[gh] ≈ 1

M

M∑

m=1

gh(ωm).

Error splitting: E[g ]− 1

M

M∑

m=1

gh(ωm) = EBias(h) + EStat(M)

|EBias(h)| = |E[g ]− E[gh]|︸ ︷︷ ︸
Discretization Error

≤ Chw

|EStat(M)| = |E[gh]− 1

M

M∑

m=1

gh(ωm)|
︸ ︷︷ ︸

Statistical Error

. c0

√
Var [gh]

M

The last estimate is motivated in probability by a Central Limit
Theorem.
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Monte Carlo complexity analysis

Let us assume now that the computational work to solve for each
sample of gh is O(h−dγ). Thus, we have the following estimates

Total work : W . M h−dγ

Total error : |EBias(h)|+ |EStat(M)| ≤ C1h
w +

C2√
M

We want now to choose optimally h and M. We thus minimize the
computational work subject to an accuracy constraint, i.e. we solve

{
minh,M M h−dγ

s.t. C1h
w + C2√

M
≤ TOL

The resulting complexity (error versus computational work) is then

W . TOL−(2+dγ/w)
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Multilevel Monte Carlo (MLMC)

Seminal works: [Giles06, Heinrich01].
Construction: Take β > 1 and for each ` = 1, 2, . . .
use discretizations with h` = h0β

−`.
Recall the standard MLMC difference operator

∆g` =

{
gh0 if ` = 0,

gh` − gh`−1
if ` > 0.

Observe the telescopic identity

E[g ] ≈ E[ghL ] =
L∑

`=0

E[∆g`].

Then, using MC to approximate each level indepen-
dently, the MLMC estimator can be written as

AMLMC =
L∑

`=0

1

M`

M∑̀

m=1

∆g`(ω`,m).
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Variance reduction: MLMC

Recall: With Monte Carlo we have to satisfy

Var [AMC ] =
1

ML
Var [gL] ≈ 1

ML
Var [g ] ≤ TOL2.

Main point: MLMC reduces the variance of the deepest level
using samples on coarser (less expensive) levels!

Var [AMLMC] =
1

M0
Var [g0]

+
L∑

`=1

1

M`
Var [∆g`] ≤ TOL2.

(2)

Observe: Level 0 in MLMC is usually de-
termined by both stability and accuracy,
i.e.

Var [∆g1] << Var [g0] ≈ Var [g ] <∞.
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Assumptions for MLMC

For every level `, assume:

Assumption 1̃ (Bias): |E[g − g`]| ≤ Cβ−w`,

Assumption 2̃ (Variance): Var [∆g`] ≤ Cβ−s`,

Assumption 3̃ (Work): Work(∆g`) ≤ Cβdγ`,

for positive constants C , γ,w and s < 2w .

Example: For the smooth linear elliptic PDE (1) approximated
with multilinear piecewise continuous FEM we have:

2w = s = 4 and 1 ≤ γ ≤ 3.

Total Work MLMC:

Work(MLMC) =
L∑

`=0

M` Work(∆g`)

∝TOL−2

(
L∑

`=0

√
Work(∆g`)Var [∆g`]

)2
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MLMC Computational Complexity

We choose the number of levels to bound the bias

|E[g − gL]| ∝ β−Lw ≤ CTOL ⇒ L ≥ log(TOL−1)− log(C )

w log(β)
,

and then the samples (M`)
L
`=0 to minimize the total work s.t. (2)

[Giles et al., 08,11]:

Work(MLMC) =





O
(
TOL−2

)
, s > dγ,

O
(
TOL−2

(
log(TOL−1)

)2
)
, s = dγ,

O
(
TOL

−
(

2+ (dγ−s)
w

))
, s < dγ.

Recall: Work(MC) = O
(
TOL−(2+ dγ

w
)
)
.

Today’s questions : How to extend MLMC into non-uniform,
adaptive discretization settings? Is it worth it?
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Some of the developments on MLMC

Seminal works: (Giles, Heinrich).
An incomplete list of later developments:
• Antithetic variates for MLMC with the Milstein scheme, (Giles,
Szpruch)
• MLMC for SDEs with Rough Observables/Payoffs, (Avikainen, Giles,
Mao, Higham)
• MLMC with Tamed Time stepping for stiff SDEs, (Jentzen, Kloeden)
• MLMC complexity, (Creutzig, Dereich, Gronbach, Ritter)
• MLMC for jump diffusion SDEs, (Xia, Giles, Abdulle, Blumenthal,
Buckwar)
• MLMC for Levy driven SDEs, (Dereich, Heidenreich)
• MLMC for Tau Leap (Anderson, Higham, Moraes, T, Vilanova)
• MLMC for SPDEs: (Giles, Graham, Scheichl, Teckentrup, Kuo, Sloan,
Barth, Gittelson, Schwab, Reisinger, Haji-Ali, . . . )
• Optimized hierarchies for MLMC, Continuation-MLMC, (Haji-Ali,
Nobile, von Schwerin, T.)
• Multi-Index-Monte-Carlo (MIMC), (Haji-Ali, Nobile, T.)

https://people.maths.ox.ac.uk/gilesm/mlmc community.html
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Weak approximation of an Itô SDE

p(x)g(x)

time t 

x 

x0 
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Problem formulation

For the Itô SDE

dXt = a(Xt , t) dt +
K∑

k=1

bk(Xt , t) dW k
t , 0 < t < T ,

X0 = x0,

(3)

and g : Rd → R, approximate E [g(XT )] to a given accuracy TOL
and with prescribed confidence.
Wt is a K-dimensional Wiener process.

Applications: Diffusion processes, Langevin Dynamics,
Computational Finance, Crowd Flows,. . .
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Forward Euler Maruyama Method

1 Forward Euler scheme on a grid t0 = 0 < t1 < . . . < tN = T

X n+1 = X n + a(X n, tn)∆tn +
K∑

k=1

bk(X n, tn)∆W k
n

gives approximate realisations XT (ω).

Here ∆tn = tn+1 − tn and independent Wiener increments

∆W k
n = W k

n+1 −W k
n ∼ N(0,∆tn) ∼

√
∆tnN(0, 1).

2 Monte Carlo estimator:

E [g(XT )] ≈
M∑

i=1

g(XT (ωi ; ∆t))

M
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The error contributions in MC: Bias and Statistical

Total error:
∣∣∣∣∣E [g(XT )]−

M∑

i=1

g(XT (ωi ; ∆t))

M

∣∣∣∣∣

≤
∣∣∣E [g(XT )− g(XT )]

∣∣∣+

∣∣∣∣∣E [g(XT )]−
M∑

i=1

g(XT (ωi ; ∆t))

M

∣∣∣∣∣
≤ TOLT + TOLS = TOL

Requirement for the time discretization error:

|E [g(XT )− g(XT )]| ≤ TOLT

Requirement for the statistical error (with high probability):
∣∣∣∣∣E [g(XT )]−

M∑

i=1

g(XT (ωi ; ∆t))

M

∣∣∣∣∣ ≤ TOLS
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Error Control and Complexity

Weak convergence for smooth drift and diffusion:

|E [g(XT )− g(XT (·; ∆t))]| = O(∆t).

∆t ∝ TOL needed for |E [g(XT )− g(XT )]| ≤ O(TOLT ).

By the Central Limit Theorem, as M →∞,

√
M

(
M∑

i=1

g(XT (ωi ; ∆t))− E [g(XT )]

M

)
D→ N

(
0,

√
Var [g(XT )]

)
.

Thus, M ∝ 1
TOL2 needed for sufficient probability that∣∣∣E [g(XT )]−∑M

i=1
g(XT (ωi ;∆t))

M

∣∣∣ ≤ O(TOLS).

Computational complexity = M T
∆t . TOL−3.
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Adaptivity, weak approximation of SDE

Given TOLT , use adaptive refinements to generate stochastic
grids t0 = 0 < t1(ω) < . . . < tN = T to create realizations
XT (ω; ∆t(ω)).

Why? Non-smooth a(Xs , s) or b(Xs , s) can decrease convergence
rates.

How? Use a posteriori SDE weak error density [STZ01],
[MSTZ06],[MSTZ08].
For max ∆t(TOL)→ 0 as TOL→ 0 we have

E
[
g(XT )− g(XT )

]
'
∫ T

0
E [∆t(s)ρW (X s , s)]ds

One also has a strong error density [HHT14] (see H. Hoel’s
upcoming talk)

E
[(
g(XT )− g(XT )

)2
]
'
∫ T

0
E [∆t(s)ρS(X s , s)]ds
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Single Level, Adaptive Time Step algorithm

Adaptive refinements start from a coarse initial grid, and
(1) compute solution and error indicators rn for each time step n,
(2) as long as

max
n

rn ≥ CS
TOLT
E [N]

, (4)

(3) refine all time steps s.t.

rn ≥ CR
TOLT
E [N]

, (5)

refine sampling of W by Brownian bridges, and go to (1).

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.0

0.2

0.4

0.6 W
{
0
}

t

W
{
1
}

t

rn = ρn ∆t2
n
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Idea of Adaptive Multilevel Algorithm [HSST08]

How to apply the multilevel Monte Carlo idea with adaptive time
stepping?
Let the tolerance in the adaptive algorithm define the hierarchy!

Grid hierarchy defined by

TOLT ,` =
TOLT ,0

2`
.

When is adaptivity useful for multilevel Monte Carlo?

Non-smooth a(Xs , s) or b(Xs , s) can decrease both weak and
strong convergence rates for uniform grids, but also affects
proportionality constants.

Jentzen & Kloeden pointed out that stability problems on
coarse grids can ruin multilevel Monte Carlo convergence for
stiff SDEs.
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Our results on adaptive MLMC

Developed the first adaptive MLMC algorithm. Theoretical
analysis of our adaptive MLMC algorithm proves

Stopping: The adaptive MLMC Algorithm stops.

Asymptotic Normality: Show CLT for MLMC based on
Lindeberg-Feller’s CLT theorem.

Asymptotic Accuracy: With prescribed confidence, the Error is
bounded by TOL.

Complexity: Essentially the same as MLMC has with uniform
time steps in smooth problems.

All these results hold for our adaptive (∆t(t, ω) non uniform),
non-adapted (X̄ depends on the future values of W through ∆t)
discretizations.
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Example: Drift singularity

Consider for a constant α ∈ (0,T ), the SDE

dXt =

{
XtdWt , t ∈ [0, α]

Xt

2
√
t−αdt + XtdWt , t ∈ (α,T ]

X0 = 1, with T = 1 and α = T/3

with the unique solution

Xt =

{
exp(Wt − t/2), t ∈ [0, α]

exp(Wt − t/2) exp(
√
t − α), t ∈ (α,T ].

Goal: Approximate E [XT ] = exp(
√
t − α).

Weak convergence uniform order 1/2 ; adaptive order 1.
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Drift singularity adaptive strategy

Drift singularity at a deterministic (but unknown!) time

Grid generation phase – use sample averaged error indicators
to generate the grid hierarchy

Sampling phase – control statistical error by performing
multilevel simulations on the existing grid hierarchy
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Experimental Complexity: Adapted time step size
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Experimental Complexity: Drift Singularity
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Experimental Complexity: Drift Singularity
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Drift Singularity, gains from adaptive MLMC
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Conclusions

Extended single level adaptive time stepping algorithms to the
MLMC setting.

Showed a CLT result that allows prescription of confidence
level in our computations.

Asymptotic estimates describe the behavior of the resulting
adaptive algorithms, numerical experiments confirm the
predicted bounds.

Extension to stopped [DMSST05] and jump diffusions
[MSTZ08] is direct.
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Noise driven by Poisson Random Measures
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Figure: Semilogarithmic plot showing 20 exact i.i.d. paths of 3
biochemical species in a problem from genomics.
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Fast Simulation with Stochastic Reaction Networks

Motivational Example: Gene transcription and translation
In [Anderson2012] the following example is proposed:

G
25−→ G+M, a single gene is being transcribed into mRNA.

M
1000−−−→ M+P mRNA is then being translated into proteins.

P+P
0.001−−−→ D, finally the proteins produce stable Dimers.

M
0.1−−→ ∅,P 1−→ ∅ degradation of mRNA and proteins,

respectively.

Initial state: X (0) = (0, 0, 0), where X1,X2,X3 give the molecular
counts of the mRNA, proteins, and dimers, respectively.

Goal: We want to estimate the expected number of Dimers at
time T = 1 up to certain tolerance, with high probability.
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Mathematical statement of the problem

Let X be a Pure Jump Process X=(X1, . . . ,Xd) : [0,T ]×Ω→ Zd
+

described by

Finite number of possible reaction channels νj ∈ Zd .

x ∈ Zd
+, x → x + νj

and its corresponding propensity functions, aj : Rd → R+ s.t.

P
(
X (t + dt)=x + νj

∣∣ X (t)=x
)

= aj(x)dt + o (dt) ,

Motivation: accurately approximate the expected value

E [g(X (T ))],

for some given observable g : Rd → R.
Applications: Systems biology, complex reaction networks,
biochemical kinetics, stochastic epidemic spread modeling, . . . .
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References: MLMC for Pure Jump Processes

J. Karlsson and R. T. ”Towards Automatic Global Error
Control: Computable Weak Error Expansion for the Tau-Leap
Method”, Monte Carlo Methods and Applications, 17(3),
233–278, (2011).
D. Anderson and D. Higham, ”Multilevel Monte Carlo for
continuous Markov chains, with applications in biochemical
kinetics”. SIAM Multiscal Model. Simul., 10(1), (2012).
A. Moraes, P. Vilanova and R. T., “Hybrid Chernoff
Tau-Leap”, SIAM Multiscale Modeling and Simulation, Vol.
12, Issue 2, (2014).
A. Moraes, P. Vilanova and R. T., “Multilevel Hybrid Chernoff
Tau-Leap”, arXiv:1403.2943. Submitted, April 2014.
A. Moraes, P. Vilanova and R. T., “Multilevel adaptive
reaction-splitting kinetic simulation method for stochastic
reaction networks”, arXiv:1406.1989v1. Submitted, June
2014.

See Pedro & Alvaro’s posters outside for further details
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Pathwise Exact and approximate simulation methods

Exact algorithms like the Stochastic Simulation Algorithm
(SSA) [Gillespie76] and the Modified Next Reaction Method
(MNRM) [Anderson07] sometimes are too expensive for path
simulation. Just consider the inter-arrival time between
transitions τSSA|X (t)=x ∼ exponential

(∑
j aj(x)

)
.

Approximate algorithms that evolve with fixed time steps,
like the Tau-leap, may be faster [Gillespie01] .Two drawbacks:
i) time discretization errors ii) may lead to negative population
numbers, i.e., non-physical results. Pre-leap: adjust adaptively
the time step to control the one-step exit probability.

[Moraes,Vilanova,T.14]:
– single level hybrid algorithm that, at each time step, adaptively
switches between the SSA and the Tau-leap to min comp. cost.
– related hybrid adaptive MLMC algorithms for error control
– a variance reduction technique based on Kurtz representation
and a deterministic time change.
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A Chernoff bound for the tau-leap method I

From Kurtz’s random time change representation [Kurtz78]:

X (t) = X (0) +
J∑

j=1

Yj

(∫ t

0
aj(X (s))ds

)
νj ,

where Yj are independent unit-rate Poisson processes, we obtain
the Tau-leap method (forward Euler approximation):

X̄ (t+τ) = X̄ (t) +
J∑

j=1

Pj


aj(X̄ (t))τ︸ ︷︷ ︸

=λj


 νj ,

where Pj(λj) are independent Poisson random vars with rate λj .
Problem: Given δ>0, find the largest τ = τ(x , δ) s.t.

P
(
X̄ (t+τ) /∈ Zd

+

∣∣ X̄ (t) = x
)
≤ ChBnd(x , τ) < δ.

One-step hybrid switching rule: Take the T-Leap step if the
min{τ ,∆t} >> τSSA
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An exiting path is a rare event, the role of δ

Let A be the event that a hybrid trajectory arrived to final time T
without exiting Zd

+. We show in [MVT13-14] that

P (Ac) ≤ δE [NTL]− δ2

2
(E
[
N2
TL

]
− E [NTL]) + o(δ2).

In practice, we use δE [NTL] as an upper bound of P (Ac).

Remark: The role of δ is to turn Ac into a rare event. Direct
sampling of hybrid paths to estimate P(Ac) is non feasible, while
the estimate of E [NTL] is straightforward.
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The MLMC estimator I

Consider the following telescopic decomposition with
∆t` = 2−`∆t0, ` = 1, . . . , L:

E [gL1AL
] = E [g01A0 ] +

L∑

`=1

E
[
g`1A` − g`−11A`−1

]
,

which motivates the definition of our MLMC estimator of
E [g(X (T ))],

ML :=
1

M0

M0∑

m0=1

g01A0(ωm0) +
L∑

`=1

1

M`

M∑̀

m`=1

[g`1A` − g`−11A`−1
](ωm`).

We define the computational global error, EL, as

EL := E [g(X (T ))]−ML.
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The MLMC estimator II

Now, consider the following decomposition of EL

EL = E
[
g(X (T ))(1AL

+ 1Ac
L
)
]
± E [gL1AL

]−ML

= E
[
g(X (T ))1Ac

L

]

︸ ︷︷ ︸
=:EE ,L (exit)

+E [(g(X (T ))−gL) 1AL
]︸ ︷︷ ︸

=:EI ,L (weak)

+E [gL1AL
]−ML︸ ︷︷ ︸

=:ES,L (statistical)

.

Problem: Given TOL> 0, find the parameters for computing ML

such that |EL|<TOL with high probability, and with nearly optimal
computational work.
Issues addressed:

i) Simulated coupled hybrid pairs (g`, g`−1)(ω) for ` = 1, . . . , L,

ii) Estimated accurately and controlled all the global error
components.

iii) Showed the resulting complexity O(TOL−2).
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Example: Gene transcription and translation

In [Anderson2012] the following example is proposed:

G
25−→ G+M, a single gene is being transcribed into mRNA.

M
1000−−−→ M+P, mRNA is then being translated into proteins.

P+P
0.001−−−→ D, finally the proteins produce stable Dimers.

M
0.1−−→ ∅,P 1−→ ∅, degradation of mRNA and proteins,

respectively.

Initial state: X (0) = (0, 0, 0), where X1,X2,X3 give the molecular
counts of the mRNA, proteins, and dimers, respectively.

Goal: We want to estimate the expected number of Dimers at time
T = 1 up to certain tolerance, with high probability.

37 / 87



Example: Gene transcription and translation
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Figure: Semilog scale. Some paths of the time evolution of the species.
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Numerical results: global error vs actual work
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Figure: Actual work for each one of the one hundred adaptive runs. Our
hybrid MLMC is 10 times faster than the SSA.
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Numerical results: error vs TOL
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Figure: TOL versus the actual computational error. The numbers above
the straight line show the percentage of runs that had errors larger than
the required tolerance. We observe that in all cases the computational
error follows the imposed tolerance closely with the expected confidence
of 95%.
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Novel MLMC Reaction-Splitting Method: error vs TOL
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Figure: Speed-ups of order 102 − 104 are obtained in stiff problems using
our novel reaction-splitting Multilevel Monte Carlo method. We
developed also a novel Control Variate based on Kurtz representation and
a deterministic-time change approximation.

∅ k−→ Xn, Xn
c−→ Y , n = 1, . . . ,N = 200

Y
a−→ ∅, Y b−→ 50Y
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Novel MLMC Reaction-Splitting Method: error vs TOL
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Figure: Speed-ups of order 103 are obtained in stiff problems using our
novel reaction-splitting Multilevel Monte Carlo method. We developed
also a novel Control Variate based on a deterministic-time change
approximation. Example adapted from [Cao-Gillespie-Petzold,2005].

X1
c1−⇀↽−
c2

X2
c3−→ X3

c4−→ ∅, c2 � c3 > c4.
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Conclusions

The computational complexity of this method is of order
O
(
TOL−2

)
, and therefore, it can be seen as a variance

reduction of the SSA method, which has the same complexity.
This represents an important advantage of the hybrid tau-leap
with respect to the pure tau-leap in the MLMC context.

Our algorithm provides the elements for the simulation setting
(i.e., initial time mesh, number of levels, one-step exit
probabilities and number of coupled hybrid paths at each
level) that optimizes the computational work.

For reaching this optimality, we derived novel formulas based
on dual-weighted residual to estimate the variance of the
difference of the observables between two consecutive levels in
coupled hybrid paths.
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Optimal MLMC hierarchies and CMLMC
Goal: compute E[g ] where g = g(u). Here g is either a bounded
linear functional or a Lipschitz functional with respect to u, and u
solves a stochastic equation.
Example:

−∇ · (a(x;ω)∇u(x;ω)) = f (x;ω) for x ∈ D := [0, 1]d ,

u(x;ω) = 0 for x ∈ ∂D,

and

g(u) =

∫

D
k(x)u(x)dx,

for sufficiently smooth a, f , k.
References (See E. von Schwerin’s upcoming talk):
[ANvST00] “Optimization of mesh hierarchies for Multilevel Monte

Carlo”, by A.-L Haji-Ali, F. Nobile, E. von Schwerin and R. T. Preprint

arXiv:1403.2480, 2014.

[NANvST01] “A Continuation Multilevel Monte Carlo”, by N. Collier,

A.-L Haji-Ali, F. Nobile, E. von Schwerin and R. T. (in BIT Num., 2014).
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Optimal MLMC hierarchies and CMLMC

Following the standard MLMC approach, we introduce a hierarchy
of L + 1 meshes defined by decreasing mesh sizes {h`}L`=0 and we
denote the approximation of g using mesh size h` by g`. We then
write the MLMC estimator as

A =
1

M0

M0∑

m=1

g0(ω0,m) +
L∑

`=1

1

M`

M∑̀

m=1

(g`(ω`,m)− g`−1(ω`,m)) .

(7)

We assume positive constants QW ,QS , q1, q2, d and γ s.t.
∣∣∣E[g` − g ]

∣∣∣ ≈ QW hq1

` , (8a)

Var [g` − g`−1] := V` ≈ QSh
q2

`−1, (8b)

Work per sample of level ` := W` ≈ h−dγ` . (8c)

Goal: Choose ({h`}L`=0, {M`}L`=0) optimally to minimize work
while meeting prescribed accuracy and confidence constraints.
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Examples

Examples for q1, q2:

q1 = q2 = 1 for an SDE with Euler-Maruyama approximation.

In our example: a PDE with smooth random coefficients and
for piecewise linear or piecewise bilinear continuous finite
element approximations we have q1 = 2 and q2 = 4.

Examples for γ:

γ = 1 for an SDE with Euler-Maruyama approximation.

In our PDE example: d = 3 and γ = 3 for a naive Gaussian
elimination implementation. Moreover, Using an Iterative
solver has γ ≈ 1 while using Direct solver has γ ≈ 1.5.

We define: χ =
q2

dγ
and η =

q1

dγ
.

In our PDE example: χ ≈ 1.34 for iterative solver and χ ≈ 0.89 for
direct solver.
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Optimization of MLMC hierarchies

Problem (Optimization of MLMC computational work)

Given L ∈ N and θ ∈ (0, 1), find
H = ({h`}L`=0, {M`}L`=0) ∈ RL+1

+ × RL+1
+ such that

WORK(H) =
L∑

`=0

M`

hdγ`
, (9a)

is minimized while satisfying the constraints

QW hq1

L ≤ (1− θ)TOL, (9b)

V0

M0
+ QS

L∑

`=1

hq2

`−1

M`
≤
(
θTOL

Cα

)2

, (9c)

Obs: We showed a MLMC-CLT result justifying (9c). For a
confidence parameter, Cα, such that Φ(Cα) = 1− α

2 ; here,
0 < α� 1 and Φ is the standard normal cdf.
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MLMC Optimal hierarchies I

Theorem (On the optimal hierarchies when χ = 1)

For any fixed L ∈ N, with χ = 1, the optimal sequences {h`}L`=0 and {M`}L`=0
in Problem 1 are given by

h` = β(L−`)
(

(1− θ)TOL
QW

) 1
q1

, for l = 0, 1, 2, . . . ,L,

1 ≤ β =

{(
(1− θ)TOL

QW

) 1
q1
(
QS

V0

) 1
q2

}− 1
L+1

,

and the optimal choice of the splitting parameter is

θ(1, η,L) =

(
1 +

1

2η

1

L + 1

)−1

→ 1 as L→∞.

For this case the optimal number of levels, L, satisfies asymptotically

lim
TOL→0

L + 1

logTOL−1
=

1

2η
.
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MLMC Optimal hierarchies II

Theorem (On the optimal hierarchies when χ 6= 1)

For any fixed L ∈ N, with χ 6= 1, the optimal sequences, {h`}L`=0 in Problem 1
are given by

h`(θ,L) =

(
(1− θ)TOL

QW

) 1
q1

1−χ`+1

1−χL+1
(
V0

QS

) 1
dγ

χ`−χL

1−χL+1

· χ
− 1

dγ
2

1−χ

(
χL+1−χ`+1

1−χL+1 +
L(1−χ`+1)−`(1−χL+1)

1−χL+1

)
,

where the optimal choice of the splitting parameter is

θ(χ, η,L) =

(
1 +

1

2η

1− χ
1− χL+1

)−1

→
(

1 +
1−min(χ, 1)

2η

)−1

as L→∞.

For this case the optimal number of levels, L, satisfies asymptotically

1

2η

χ− 1

logχ
≤ lim inf

TOL→0

L + 1

log (TOL−1)
≤ lim sup

TOL→0

L + 1

log (TOL−1)
≤ max {1, χ}

2η

χ− 1

logχ
.
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MLMC Optimal hierarchies III

Corollary (On the asymptotic work with optimal hierarchies)

For the these optimal hierarchies and using asymptotic upper bounds on L, the
total computational complexity

WORK(H)

TOL
−2
(

1+ 1−χ
2η

) → C0, as TOL↘ 0 for 0 < χ < 1

WORK(H)

TOL−2(log(TOL))2
→ C1, as TOL↘ 0 for χ = 1,

WORK(H)

TOL−2
→ C2, as TOL↘ 0 for χ > 1,

with known constants of proportionality,

C0 = C 2
αQS Q

{
1−χ
η

}
W χ

{
− 2χ

1−χ

}(
1

2η

)2(
1 +

2η

1− χ

)2
(

1+ 1−χ
2η

)
,

C1 = C 2
αQS exp(2)

(
1

2η

)2

,

C2 = C 2
αQ

{
1
χ

}
S V0

{
χ−1
χ

}
χ

2
{

χ
χ−1

}
(χ− 1)−2 .
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Continuation-MLMC: Error plots
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The algorithm was run with Cα = 2 so that the bound holds with 95%
confidence.

Our contribution:
We developed a Continuation MLMC algorithm that, given a hierarchy, solves

the given approximation problem for a sequence of decreasing tolerances,
ending with the desired one. The sequence is chosen such that the total work is
dominated by the last iteration, estimating all necessary parameters on the fly.
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Measured total work of CMLMC
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Reference lines are TOL−2.25 and TOL−2, respectively.

52 / 87



Continuation-MLMC: Running times
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Improvement in running time due to better choice of splitting
parameter, θ.
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Conclusions

Showed normality of MLMC estimator under certain
conditions through the use of Lindeberg central limit theorem.
We use this in the formulation of our MLMC algorithm and
the work optimization problem.

Computational saving through better tolerance splitting
between bias and statistical error contributions.

A more stable continuation MLMC algorithm with a small
overhead. In CMLMC, reusing samples does not introduce
significant computational savings.

We show that geometric hierarchies are near-optimal.
Moreover, we derive the computational complexity with
known rates and constants.
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[H-ANT2014] Multi Index Monte Carlo (MIMC) Estimator

We want to compute E[S ] ∈ R. Assume Sα is a discretization of S
with discretization parameters of the form

hi = β−αi
i

for i ∈ 1, 2, . . . , d . Assume E[Sα]→ E[S ] as min1≤i≤d αi →∞.
Define

∆iSα =

{
Sα if αi = 0,

Sα − Sα−e i if αi > 0,
(10)

and let ∆Sα =
(
⊗d

i=1∆i

)
Sα. Then the MIMC estimator can be

written as

AMIMC =
∑

α∈I

1

Mα

Mα∑

m=1

∆Sα(ωα,m),

with index set I ⊂ Nd and independent samples.
[H-ANT] A.-L Haji-Ali, F. Nobile, R.T. Multi Index Monte Carlo:
Where Sparsity Meets Sampling. Preprint, arXiv:1405.3757, May
2014. (See Abdul-Lateef’s talk this afternoon) 55 / 87



Variance reduction: Further potential
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Assumptions for MIMC

Provided that we satisfy mixed regularity assumptions, MIMC
yields (up to log factors) the rates of MLMC with d = 1.

Assumption 1 (Bias) : Eα = |E[∆Sα]| ≤ QW β−w |α|

for constants 0 < QW and w > 0

Assumption 2 (Variance) : Vα = Var [∆Sα] ≤ QS β
−s|α|,

for constants 0 < QS and 0 < s ≤ 2w

Assumption 3 (Work) : Wα = Work(∆Sα) ≤ Cwork β
γ|α|,

for constants 0 < Cwork and 0 < γ
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Fully Isotropic Case: Comparing MIMC to MLMC

Assume si = s, wi = w , βi = β and γi = γ for all i = 1, 2, . . . d .
Then

Work(MLMC) =





O
(
TOL−2

)
, s > dγ,

O
(
TOL−2

(
log(TOL−1)

)2
)
, s = dγ,

O
(
TOL

−
(

2+ (dγ−s)
w

))
, s < dγ.

Work(MIMC, TD) =





O
(
TOL−2

)
, s > γ,

O
(
TOL−2

(
log(TOL−1)

)2d
)
, s = γ,

O
(
TOL−(2+ γ−s

w ) log(TOL−1)(d−1) γ−s
w

)
, s < γ,

Provided that we satisfy mixed regularity assumptions, MIMC
yields (up to log factors) the rates of MLMC with d = 1.
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Numerical test: Running time, 3D problem
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Numerical test: Running time, 4D problem
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Numerical test: layered media
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Numerical test: layered media
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Numerical test: layered media
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Conclusions and Extra Points

MIMC may perform better than MLMC. Especially in higher
dimensions.

MIMC requires mixed regularity between discretization
parameters.

Just like MLMC reduces to MC when L = 0. MIMC reduces
to MLMC when d = 1 or we do not have mixed regularity.

MIMC can take advantage of non-isotropic behavior in
different directions.

A different set of regularity assumptions would yield a
different optimal index set I.

A direction does not have to be a spatial dimension. It can
represent any form of discretization parameter (Number of
particles, Number of terms in an expansion, etc...).
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Itô SDEs: Regularity Assumptions

Assumption

Assume that the following regularity conditions hold:

(i) The functions a(t, x) and b(t, x) are continuous in (t, x) and
are twice continuously differentiable with respect to x .

(ii) The partial derivatives of first and second order with respect
to x of the functions a and b are uniformly bounded.

(iii) The function g is twice continuously differentiable, and
together with its partial derivatives of first and second order it
is uniformly bounded.
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Regularity on the cost to go function

Lemma (Regularity)

Suppose that a, b, g ,X satisfy Assumption 1. Then the cost to go
function, defined by

u(t, x) = E
[
g(X (T )) | X (t) = x

]
, (11)

satisfies the Kolmogorov equation

∂tu(t, x) + ak∂ku(t, x) + dkn∂knu(t, x) = 0, (12)

with the final condition

u(T , ·) = g .

Notation: djn :=
∑

k bj
kbkn .
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Furthermore, if the following regularity conditions are satisfied:

(i) the functions ∂βa(t, ·), ∂βb(t, ·), and are bounded uniformly
in t for 1 ≤ |β| ≤ 8;

(ii) the functions a(·, x), b(·, x) have continuous and uniformly
bounded first order time derivatives;

(iii) the function g has spatial derivatives ∂βg , with polynomial
growth for |β| ≤ 8;

then the function u has continuous partial derivatives with respect
to x up to the order 8, satisfying the following polynomial growth
condition: for all i ∈ {0, 1, 2} and α ∈ Nd with i + |α| ≤ 8 there
exists pα,i ∈ N and Cα,i > 0 such that

max
0≤t≤T

∣∣ ∂ it∂αu(t, x)
∣∣ ≤ Cα,i

(
1 + |x |pα,i

)
∀ x ∈ Rd .
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Time discretization, weak approximation of SDE

A priori [Talay and Tubaro 90],

E [g(XT )− g(XT )] '
∫ T

0
E [∆t(s)Ψ(X s , s)]ds = O(∆tmax).

A posteriori SDE error density [STZ01],
[MSTZ06],[MSTZ08]. For TOL→ 0 we have

E [g(XT )− g(XT )] '
∫ T

0
E [∆t(s)ρ(X s , s)]ds

Two adaptive strategies
• ∆t stochastic ⇒ determined by error density ρ,
• ∆t deterministic ⇒ determined by error density E [ρ].
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Imposed bounds for the a posteriori error density

For technical reasons we impose, for exponents γ̄, r̄ > 0,

TOLγ̄ = ρlow (TOL) ≤ |ρ| ≤ ρup(TOL) = TOL−r̄ (13)

for instance to ensure that the refinement algorithm stops and that
∆tmax(TOL)→ 0 as TOL→ 0.
This in turn implies the a.s. convergence of the error density,

ρ→ ρ̂, as TOL→ 0.

Lemma (strong convergence, STZ01)

Suppose that a, b, g ,X satisfy Assumption 1,and X is constructed
using Euler Maruyama, based on the stochastic time stepping
algorithm above. Then, as TOL→ 0 and for p = 2, 4 we have

sup
0≤t≤T

E [|X (t)− X (t)|p]
1/p

= O
(√

TOL

ρlow (TOL)

)
→ 0
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A posteriori SDE weak error density

E [g(XT )−g(XT )] = E

[
N−1∑

n=0

ρ(tn, ω)(∆tn)2

]

+O
(( TOL

ρlow (TOL)

)1/2( ρup(TOL)

ρlow (TOL)

)ε)
E

[
N−1∑

n=0

(∆tn)2

]
,

(14)
The weak error density ρ = 1

2∂ta · ϕ+ . . . is based on computable

adjoints, i.e. X n+1 = Â(X n),

ϕn = ∂x Â(X n)ϕn+1,

ϕT = ∂xg(XT ),

ϕ′n = . . .

ϕ′′n = . . .
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New theoretical results

New results inspired by the treatment by Chow and Robbins on the
accuracy and complexity of sequential stopping rules for sampling
i.i.d. random variables.
” On the asymptotic theory of fixed-width sequential confidence
intervals for the mean.” The Annals of Mathematical Statistics,
36(2):pp. 457–462, 1965.
Now we can let the number of realizations in the coarsest level,
M0(ω), to be random in our analysis.
We also have a sharper computational complexity result that
improves our previous analysis.
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Accuracy

Lemma (strong convergence)

There exists a constant CG > 0 such that, for TOL` = TOL02−`

we have

lim sup
`→+∞

Var(g` − g`−1)
ρlow (TOL`)

TOL`
= CG . (15)

Theorem (Multi level accuracy)

Suppose that the modeling assumptions of Lemma 5 hold and that
TOLT ≤ TOLS. Then the adaptive MLMC algorithm with
confidence parameter CC > 0 cf. (??) and stochastic time
steps (4) and (5) satisfies

lim inf
TOL↓0

P (|E[g(X (T ))]− A(M0)| ≤ TOL) ≥
∫ CC

−CC

e−x
2/2

√
2π

dx . (16)
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Computational Complexity

Theorem (Multi level computational complexity)

Suppose the assumptions of Lemma 5 and (6) hold and that the
lower bound for the error density is as in (13). Then the work for
the MLMC algorithm using stochastic time steps, as defined by

WORK(TOL) =
L∑

`=0

E[M`]E[N`], (17)

satisfies

lim sup
TOL↓0

WORK(TOL)TOL2

L2
C (γ̄ L)

≤ 16C 2
C CG

TOLTMax CR

(
E

[∫ T

0

√
|ρ̂(τ)|dτ

])2

.

(18)
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(A) If ρlow (TOLT) = ρmin ∈ R+ (i.e. γ̄ = 0) and

min
τ∈[0,T ]

|ρ̂(τ)| ≥ ρmin a.s. (19)

then
C (γ̄ L) = 1. (20)

(B) If γ̄ → 0 and Lγ̄ →∞ as TOL ↓ 0, then

C (γ̄ L) =
γ̄ L log(2)

2γ̄L
→ 0. (21)

Here, the number of levels is L = O
(
log(TOL−1)

)
, CC is the

confidence parameter from (??) , CR and CS are refinement
parameters described by (4) and (5), CG is the constant in the
variance estimate (15), where TOLTMax is the upper bound of the
time discretization tolerance at level ` = 0, and γ̄ is the lower
bound error density exponent; ρlow (TOLT) = TOLT

γ̄ , cf. (13).
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Remark (Complexity example)

Case (B) of Theorem 9 implies that if the exponent of the lower
error density ρlow is given by γ̄(TOL) = log2(log2(L))/L→ 0, then

C (γ̄ L) =
γ̄ L log(2)

2γ̄L
=

log2(log2(L)) log(2)

log2(L)
.

This is still very close to case (A) and close to the standard
complexity in the setting of uniform time steps.

Remark (Uniform time steps)

lim sup
TOL↓0

WORK(TOL)TOL2

L2
≤ 8C 2

C CG

TOLTMax
E

[∫ T

0
ρ̂(τ)dτ

]
. (22)
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Lemma (M0 asymptotic estimate)

For a given confidence interval parameter CC > 0, the stopping
criterion implies

lim sup
TOL→0

E [M0]TOLS
2

L
≤ 2 (CC )2CG

TOL0

ρlow (TOL0)
(23)
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Lemma (CLT approximation)

Assume that Var(g0) > 0. Then the multilevel estimator
A = E{S`}L`=0

(
g(X L(T ))

)
, satisfies the following weak convergence

A− E [A]√
Var(A)

⇀ N(0, 1), as TOL→ 0 (24)

Proof: verify that Lindeberg’s CLT conditions are satisfied.
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MC Stopping: Problem statement

For a sequence of i.i.d. random variables X1,X2, . . . and fixed
TOL > 0 and δ > 0, determine the number of samples M
that is required to ensure that

P



∣∣∣∣∣∣

1

M

M∑

j=1

Xj − E[X ]

∣∣∣∣∣∣
≥ TOL


 ≤ δ. (25)

Assumptions: X1,X2, . . . have a continuous probability
distribution function and Var(X) <∞.
To determine M(TOL, δ) by a sequential stopping rule that
only uses first and second sample moments gives an unreliable
result.
In [BHvST] we propose a more reliable higher moments
based sequential stopping rule for determining M(TOL, δ).

[BHvST] Bayer, Hoel, von Schwerin, T. On non-asymptotic optimal
stopping criteria in Monte Carlo simulations. To appear in SIAM Journal
on Scientific Computing.
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General Monte Carlo sequential stopping rule

General stopping rule

1 Generate a batch of M i.i.d. samples X1,X2, . . . ,XM .

2 Estimate the probability of failure through sample moment
functions V (X1,X2, . . . ,XM), e.g., the sample variance.

3 If the estimate indicate that (26) is violated, increase the
number of samples M and return to step 1.
Else; return M and Break.

P



∣∣∣∣∣∣

1

M

M∑

j=1

Xj − E[X ]

∣∣∣∣∣∣
≥ TOL




︸ ︷︷ ︸
the probability of failure

≤ δ. (26)
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A second moment based stopping rule

The central limit theorem motivates replacing the goal

P



∣∣∣∣∣∣

1

M

M∑

j=1

Xj − µ

∣∣∣∣∣∣
≥ TOL


 ≤ δ by 2

(
1− Φ

(√
MTOL

σ

))
≤ δ.

This leads to the “intuitive” stopping rule:

Algorithm 1

0 Initialize M = M0.

1 Sample M realizations Xj and compute the mean and sample
variance

XM :=
1

M

M∑

j=1

Xj , σ2
M :=

1

M − 1

M∑

j=1

(Xj − XM)2.

2 IF 2
(

1− Φ
(√

MTOL
σM

))
> δ; set M = 2M and return to point 1.

ELSE; output M and BREAK.
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Numerical test of Algorithm 1

The Pareto distribution with PDF

p(x) = Cx−4.1, for x ≥ 1. With σ = 1 and E [X 4] =∞.

10-2 10-110-3

10-2

10-1

δ

P
(
|XM −µ|>TOL

)
/δ

TOL
0

1

2

3

4

Our goal: P
(∣∣XM − µ

∣∣ > TOL
)
≤ δ.

Algorithm 1 is unreliable on heavy-tailed distributions!

80 / 87



A more reliable stopping rule

Idea for a more reliable stopping rule: double number of
samples M until

2
(

1− Φ
(√

MTOL
σM

))
+ Penalty(higher moments) ≤ δ.

Bounds involving higher moments:

Theorem (Berry-Esseen, uniform and non-uniform)

Suppose X1,X2, . . . are i.i.d. r.v. with E[X ] = µ, σ2 = Var(X) and

β =
E[|X |3]
σ3 <∞. Then

∣∣∣∣∣P
(

n∑

i=1

Xi − µ
σ
√
n

< x

)
− Φ(x)

∣∣∣∣∣ ≤
CBE(x , β)√

n
.
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Bounds involving higher moments

Theorem (Edgeworth expansion)

Suppose X1,X2, . . . are i.i.d. random variables with a non-lattice
distribution, E[X ] = µ, σ2 = Var(X) and E

[
X 3
]
<∞. Then

P

(
n∑

i=1

Xi − µ
σ
√
n

< x

)
= Φ(x)+

(x2 − 1)e−x
2/2E

[
(X − µ)3

]

6
√

2πnσ3
+o
(
n−1/2

)
,

uniformly for x ∈ R.

Bound for the variance of the sample variance

P
(
|σ2

M − σ2| ≥ σ2
∣∣∣M
)
≤ min

((
2

M − 1
+
κ

M

)
, 1

)
,

with the kurtosis
κ =

E
[
|X − µ|4

]

σ4
− 3.
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Algorithm 2 – a higher moments based algorithm

0 Initialize M = M0.

1 Sample M realizations Xj , compute the mean and higher
order sample moments

XM :=
M∑
i=1

Xi

M
, σM :=

√√√√ M∑
i=1

(Xi − XM)2

M
, βM :=

M∑
i=1

|Xi − XM |3

Mσ3
M

,

β̂M :=
M∑
i=1

(Xi − XM)3

Mσ3
M

, and κM :=
M∑
i=1

(Xi − XM)4

Mσ4
M

− 3.

2 IF

2

(
1− Φ

(√
MTOL

σM

))
+ 2 min

(
4

(
2

M − 1
+
κM

M

)
, 1

) CBE

(√
MTOL
σM

, βM

)
√
M

+

(
1−min

(
4

(
2

M − 1
+
κM

M

)
, 1

)) ∣∣∣MTOL2

σ2
M
− 1
∣∣∣ exp

(
−MTOL2

σ2
M

)
|β̂M |

3
√

2πM
> δ,

then set M = 2M and go to point 1.
ELSE output M and BREAK.
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Numerical examples

The Pareto distribution with PDF

p(x) = Cx−4.1, for x ≥ 1,

and moments σ = 1 and κ =∞ (since E
[
X 4
]

=∞).

10-3

10-2

10-1

δ

P
(
|XM −µ|>TOL

)
/δ

Alg 1

10-2 10-110-3

10-2

10-1

δ

Alg 2

TOL

0

1

2

3

4

10-3

10-2

10-1

δ

Computational cost, E[M(TOL,δ)]

Alg 1

10-2 10-110-3

10-2

10-1

δ

TOL

Alg 2

102

103

104

105

Our goal: P
(∣∣XM − µ

∣∣ > TOL
)
≤ δ.
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Numerical examples

The Normal-inverse Gaussian with PDF

p(x) =
α1α4K1(α1

√
α2

4 + (x − α5)2)

π
√
α2

4 + (x − α5)2
eα3α4+α2(x−α5),

with the parameters αi chosen so that σ = 1 and κ = 123.

10-3

10-2

10-1

δ

P
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|XM −µ|>TOL

)
/δ

Alg 1

10-2 10-110-3

10-2

10-1
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TOL

0

1
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4
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Our goal: P
(∣∣XM − µ

∣∣ > TOL
)
≤ δ.
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Numerical examples

The uniform distribution Xi ∼ U(−
√

3,
√

3) with σ = 1 and
κ = −6/5.
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)
/δ

Alg 1
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TOL
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Our goal: P
(∣∣XM − µ

∣∣ > TOL
)
≤ δ.
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Summary

For a given sequence of i.i.d. r.v. X1,X2, . . ., we considered
the problem of determining M(TOL, δ) by a sequential
stopping rule such that

P



∣∣∣∣∣∣

1

M

M∑

j=1

Xj − E[X ]

∣∣∣∣∣∣
≥ TOL


 ≤ δ

for fixed TOL, δ > 0.
Showed that the “intuitive” sample variance based stopping
rule (Algorithm 1) performs unreliably on heavy-tailed
distributions.
Proposed a higher moments based stopping rule (Algorithm 2)
which performs more reliably than Algorithm 1, but which also
requires slightly more computational cost.
For more, see:

[BHvST] Bayer, Hoel, von Schwerin, Tempone. On non-asymptotic

optimal stopping criteria in Monte Carlo simulations. SIAM Journal on

Scientific Computing, Vol. 36, Issue 2, 2014.
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