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Formulations of Interest

Unconstrained: min
x∈Rn

f (x),

where f is at least continuous—also assume smooth, convex, strongly
convex for some analysis.

Summation Form: min
w∈Rn

φ(w) :=
1

m

m∑
i=1

φi (w),

where m may be very large.

Structured Regularization: min
x∈Rn

f (x) + λΩ(x),

where Ω is convex, nonsmooth, but typically separable or block-separable:

Ω(x) =
n∑

i=1

Ωi (xi ). (example: Ω(x) = ‖x‖1)
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Basic Coordinate Descent (CD) Framework

... for smooth unconstrained minimization: minx f (x):

Set k ← 0 and choose x0 ∈ Rn;
repeat

Choose index ik ∈ {1, 2, . . . , n};
xk+1 ← xk − αk [∇f (xk)]ik eik ;
k ← k + 1;

until termination test satisfied;

where

ei = (0, . . . , 0, 1, 0, . . . , 0)T : the ith coordinate vector;

[∇f (x)]i = ith component of the gradient ∇f (x);

αk > 0 is the step length.

Many variants within this framework, including block CD, where each ik is
a subset of {1, 2, . . . , n} rather than a single index.
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Basic Stochastic Gradient (SG) Framework

for summation form minw φ(w) := (1/m)
∑m

i=1 φi (w):

Set k ← 0 and choose x0 ∈ Rn;
repeat

Choose index ik ∈ {1, 2, . . . ,m};
wk+1 ← wk − αk∇φik (wk);
k ← k + 1;

until termination test satisfied;

∇φik (w) is a proxy for ∇φ(w).

Again, many variants.

The output of SG could be the latest iterate wK , or a weighted average of
all iterates w 0,w 1, . . . ,wK . The step between successive averaged iterates
is a linear combination of all gradient estimates encountered so far:

∇φi0(w 0),∇φi1(w 1), . . . ,∇φiK (w iK ).
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Applications: Summation Form

Extremely common form in data analysis and machine learning:

support vector machines (primal form)

least-squares, robust regression

logistic regression (incl binary, multiclass, regularized)

In these applications φi often depends on a single item of data (e.g. a
feature vector + observation), so ∇φi may be much cheaper to evaluate
than ∇φ, which requires the entire data set to be read.

The unknown vector w is a set of weights / coefficients.
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Relating CD and SG

There is kind of duality relationship between CD and SG.

See this most evidently in the feasible linear system Aw = b, where A is
m × n and possibly rank deficient: the Kaczmarz algorithm.

Write as a least-squares problem

min
w

1

2m

m∑
i=1

(Aiw − bi )
2,

where Ai is the ith row of A (assume normalized: ‖Ai‖2 = 1 for all
i = 1, 2, . . . ,m).

SG updates with αk ≡ 1 are

wk+1 = wk − AT
ik

(Aik wk − bik ) Kaczmarz step!

Project onto the hyperplane define by the ik equation.
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Suppose we seek a minimum-norm solution from the formulation

P: min
w∈Rn

1

2
‖w‖2 subject to Aw = b,

for which the dual is

D: min
x∈Rn

1

2
‖AT x‖2

2 − bT x ,

where primal and dual solutions are related by w = AT x .

CD updates applied to the dual with αk ≡ 1 are

xk+1 = xk − (Aik AT xk − bik )eik .

Multiplying by AT and using the identity w = AT x , we obtain the
Kaczmarz step again:

wk+1 = wk − AT
ik

(Aik wk − bik ).
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Randomized Kaczmarz: Convergence

Recall that ‖Ai‖ = 1 for all i . λmin,nz denotes minimum nonzero
eigenvalue of ATA. P(·) is projection onto solution set.

1

2
‖xk+1 − P(xk+1)‖2 ≤ 1

2
‖xk − AT

ik
(Aik xk − bik )− P(xk)‖2

=
1

2
‖xk − P(xk)‖2 − 1

2
(Aik xk − bik )2.

Suppose that ik is chosen randomly with equal probability, and
independently at each iteration. Take expectation over ik :

E

[
1

2
‖xk+1 − P(xk+1)‖2 | xk

]
≤ 1

2
‖xk − P(xk)‖2 − 1

2
E
[
(Aik xk − bik )2

]
=

1

2
‖xk − P(xk)‖2 − 1

2m
‖Axk − b‖2

≤
(

1− λmin,nz

m

)
1

2
‖xk − P(xk)‖2.

[Strohmer and Vershynin, 2009]. Linear rate in expectation.
Wright (UW-Madison) Coordinate Descent Methods December 2014 9 / 56



CD and SG for Empirical Risk Minimization (ERM)

The ERM framework [Lin et al., 2014] can express linear least-squares,
support vector classification and regression, logistic regression etc:

P: min
w∈Rd

1

n

n∑
i=1

φi (cT
i w) + λΩ(w),

for vectors ci ∈ Rd and convex functions φi and Ω, and regularization
parameter λ. For conjugate function t∗ defined as usual by

t∗(y) = sup
z

(zT y − t(z)),

we can write the Fenchel dual of ERM as follows:

D: min
x∈Rn

1

n

n∑
i=1

φ∗i (−xi ) + λΩ∗
(

1

λn
Cx

)
,

where C is the d × n matrix whose columns are ci .

SG on P corresponds to CD on D e.g. for Ω(s) = (1/2)sT s.
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Coordinate Descent

Consider the simplest setting: single-coordinate descent for

min
x∈Rn

f (x)

where f is a smooth continuous function.

Often OK for applications — and necessary for analysis — to make
additional assumptions on f , such as

smooth, e.g. Lipschitz continuously differentiable

convex

strongly convex

(Discuss extensions to structured nonsmooth objectives and
block-coordinate updates later.)
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Variants

Selection of coordinate ik :

Randomized: Select ik at random and independently at each iteration.

Cycle through the coordinates: ik+1 = [(ik + 1) mod n] + 1;

“Essentially cyclic:” touch each coordinate i at least once in each
stretch of T iterations;

Line Search αk :

Short step: αk prescribed, using global knowledge about f (bounds
on Lipschitz constant for ∇f , modulus of convexity);

Line search: Choose αk to satisfy “sufficient decrease” conditions for
f along the ik coordinate direction;

Exact: Choose αk to exactly minimize f along ik coordinate.
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Coordinate Descent (CD): Background

CD methods have been popular with practitioners over many years:

Intuitive: Solve an optimization problem by solving a sequence of
easier problems — in this case, one-dimensional optimization.

Often easy to implement.

Handle bounds and regularization well.

There was little interest among optimization researchers until recently
(with some very notable exceptions: Bertsekas, Tseng, Luo,....)

Convergence analysis of popular variants was not obvious!

According to certain assumptions on the cost of evaluating
derivatives, it’s not clear if CD is competitive in theory.

But interest among optimization specialists has grown since 2009, and new
applications appear steadily.
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Applications: Coordinate Descent

From the literature 1990-2014:

Support vector machines (dual formulation, with kernel).

Positron emission tomography, optical diffusion tomography.

Protein structure - adjusting dihedral angles in a protein chain so that
the end of the chain is in a specified position.

Gene expression studies (via logistic regression).

Recovering origin-destination matrices from traffic observations.

Functional MRI image analysis.

Generalized linear models in statistics.

Transceiver design via tensor optimization.

Phase retrieval in X-ray crystallography.

Self-calibrating sensing models: y = A(θ)x .
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Convergence? Not Always: [Powell, 1973]

f (x1, x2, x3) = −(x1x2 + x2x3 + x1x3) +
3∑

i=1

(|xi | − 1)2
+.

Nonconvex. Minimizers at (1, 1, 1)T and (−1,−1,−1)T . CD with cyclic
ordering, exact minimization cycles near the six nonoptimal vertices.
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Convergence: Convex, Randomized, Short-Step

Convergence can be proved for the case of smooth, convex f .

[Nesterov, 2009] showed that randomized, short-step methods can be
analyzed in a similar fashion to the corresponding full-gradient methods.

SCD (Stochastic Coordinate Descent)
Set k ← 0 and choose x0 ∈ Rn;
repeat

Choose index ik ∈ {1, 2, . . . , n} at random with equal probability;
Set αk ≡ 1/Lmax;
xk+1 ← xk − αk [∇f (xk)]ik eik ;
k ← k + 1;

until termination test satisfied;

Here Lmax is a componentwise Lipschitz constant for ∇f :

|[∇f (x + tei )]i − [∇f (x)]i | ≤ Lmax|t|, for all x , t, i .
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Convergence: Full-Gradient vs Coordinate Descent

Classical short-step full-gradient descent method for minimizing f :

xk+1 = xk − αk∇f (xk), where αk ≡ 1/L,

where L is the Lipschitz constant for ∇f , that is,

‖∇f (x + d)−∇f (x)‖ ≤ L‖d‖, for all x , d .

All iterates xk lie in the level set S(x0) := {x | f (x) ≤ f (x0)}. Suppose
there is R0 such that ‖x − x∗‖ ≤ R0 for all x ∈ S(x0). Then can show

f (xk)− f ∗ ≤ 2LR2
0

k
.

Sublinear convergence with rate 1/k.

Similar analysis for SCD yields an expected sublinear rate

E [f (xk)− f ∗] ≤ 2nLmaxR2
0

k
.

(Expectation taken over the random coordinates: i0, i1, i2, . . . .)
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Full-Gradient vs Coordinate Descent

The SCD convergence rate from the full-gradient rate in that

extra factor of n — not surprising, as we are using only “one-nth” of
the full gradient;

Lmax replaces L (possibly Lmax < L).

[Beck and Tetruashvili, 2013] derive a similar rate for Cyclic CD: With
steps αk ≡ L obtain (L = usual Lipschitz constant) have

f (xk)− f ∗ ≤ 4Ln(n + 1)R2
0

k + 8
, for k = n, 2n, 3n, . . . .

(The dependence on n is slightly worse, but it may or may not have a
bearing on practical performance.)
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Convergence: Strongly Convex f

Suppose f is strongly convex with modulus σ:

f (y) ≥ f (x) +∇f (x)T (y − x) +
σ

2
‖y − x‖2

SCD with steps αk ≡ 1/Lmax yields convergence at a linear rate:

E [f (xk)− f ∗] ≤
(

1− σ

nLmax

)k

[f (x0)− f ∗].

Again, similar to the full-gradient rate in this case, except for the factor of
n and the different Lipschitz constant.

Cyclic CD with αk = 1/L also yields a similar linear rate
[Beck and Tetruashvili, 2013]:

f (xk)− f ∗ ≤
(

1− σ

2(n + 1)L

)k/n

[f (x0)− f ∗], k = n, 2n, 3n, . . . .

Similar except for different Lipschitz constant and extra factor of n in the
rate (due to the 1/n power).
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Sublinear vs Linear Convergence

Sublinear convergence (e.g. error decreases like C/k or C/k2 in iteration
number k , for some constant C ) is slow.

To achieve a specified accuracy ε, need O(C/ε) iterations for a 1/k
process, and O(

√
C/ε) for a 1/k2 process.

Linear convergence is asymptotically faster. If error decreases like (1− δ)k

for some small positive δ, need O(| log ε|/δ) iterates to reach accuracy ε.

Sublinear rates were often viewed almost as uninteresting. But some
modern applications need only a low-accuracy solution, and a sublinear
algorithm may suffice.

(The constants in the O() terms and the cost per iteration are significant.)
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Sublinear vs Linear Convergence: Semilog Plot
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Asynchronous Parallel Optimization

Figure: Asynchronous parallel setup used in Hogwild! [Niu et al., 2011]

  

RAM (Shared Memory)
“X”

Core Core

Core Core

Cache

Core Core

Core Core

Cache

…...

Read “X”;
Compute gradient at “X”
Update “X” in RAM

All cores share the same memory, containing the variable x ;

All cores run the same optimization process independently;

All cores read and update the coordinates of x concurrently without
any hardware or software locking — no coordination!

Use the same model of computation for the algorithms discussed below.
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Asynchronous Random Kaczmarz [Liu et al., 2014]

Each core runs the following process, for given stepsize γ > 0:

repeat
• Choose index i ∈ {1, 2, . . . , n} uniformly at random;
• Choose component t ∈ supp(Ai ) uniformly at random;
• Read the supp(Ai )-components of x (from shared memory);
• Update the t component of x :

xt ← xt − γ‖Ai‖0(Ai )t(Aix − bi )

(unitary operation);
until whenever;

Note that x can be updated by other cores between the time it is read and
the time that the update is performed.

Randomized Kaczmarz analysis does not apply directly, as each update is
using outdated information and we update just a single component of x .
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AsyRK: Global View

From a central, global viewpoint, aggregating the actions of the individual
cores, we have the following:

• Choose x0 and steplength γ > 0;
for k = 0, 1, 2, . . . do
• Choose index ik ∈ {1, 2, . . . , n} uniformly at random;
• Choose component tk ∈ supp(Aik ) uniformly at random;
• Update the tk component of xk :

xk+1 ← xk − γ‖Aik‖0(Aik )tk (Aik x j(k) − bik )

(unitary operation);
end for

where j(k) is some iterate prior to k but no more than τ cycles old:

k − j(k) ≤ τ.

If all computational cores are roughly the same speed, we can think of the
delay τ as being similar to the number of cores.
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Consistent Reading

Assumes consistent reading, that is, the x j(k) used in the step calculation
is an “x” that actually existed at some point in the shared memory.

(This condition may be violated if two or more updates happen to the
supp(Aik )-components of x while they are being read.)

When the vectors Ai are sparse, inconsistency is not too frequent.

More on this later!
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AsyRK Analysis: A Key Element

Key parameters:

µ := maxi=1,2,...,m ‖Ai‖0 (maximum nonzero row count);

α := maxi ,t ‖Ai‖0‖(Aet)Ai ,t‖ ≤ µ‖A‖;
λmax = max eigenvalue of ATA.

Idea of analysis: Choose some ρ > 1 and choose steplength γ small
enough that

ρ−1E(‖Axk − b‖2) ≤ E(‖Axk+1 − b‖2) ≤ ρE(‖Axk − b‖2).

Not too much change to the residual at each iteration. Hence, don’t pay
too much of a price for using outdated information.

But don’t want γ to be too tiny, otherwise overall progress is too slow.

Strike a balance!
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Main Theorem

Theorem

Choose any ρ > 1 and define γ via the following:

ψ = µ+
2λmaxτρ

τ

m

γ ≤ min

{
1

ψ
,

m(ρ− 1)

2λmaxρτ+1
, m

√
ρ− 1

ρτ (mα2 + λ2
maxτρ

τ )

}

Then have

ρ−1E(‖Axk − b‖2) ≤ E(‖Axk+1 − b‖2) ≤ ρE(‖Axk − b‖2)

E(‖xk+1 − P(xk+1)‖2) ≤
(

1− λmin,nzγ

mµ
(2− γψ)

)
E(‖xk − P(xk)‖2),

A particular choice of ρ leads to simplified results, in a reasonable regime.
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A Particular Choice

Corollary

Assume
2eλmax(τ + 1) ≤ m

and set ρ = 1 + 2eλmax/m. Can show that γ = 1/ψ for this case, so
expected convergence is

E(‖xk+1 − P(xk+1)‖2) ≤
(

1− λmin,nz

m(µ+ 1)

)
E(‖xk − P(xk)‖2).

In the regime 2eλmax(τ + 1) ≤ m considered here the delay τ doesn’t
really interfere with convergence rate. In this regime, speedup is linear in
the number of cores!

Rate is consistent with serial randomized Kaczmarz
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AsyRK: Near-Linear Speedup

Run on an Intel Xeon 40-core machine. Used one socket — 10 cores.

Diverges a bit from the analysis:

We update all components of x for AT
ik

(not just component t);
Choose ik randomly, but use sampling without replacement to work
through the rows of A, reordering after each “epoch”

Sparse Gaussian random matrix A ∈ Rm×n with m = 100000 and
n = 80000, sparsity δ = .001. See linear speedup.
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AsyRK: Near-Linear Speedup

Sparse Gaussian random matrix A ∈ Rm×n with m = 100000 and
n = 80000, sparsity δ = .003.

See slight dropoff from linear speedup for this slightly less-sparse problem.
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(Runtime: 18.4 seconds on 10 cores.)
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RK vs Conjugate Gradient

Compare serial implementations of RK and CG (applied to ATA).
Multicore speedups are similar for both. Random A, sparsity δ = .1.
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Comparison of asymptotic linear rates shows that RK becomes competitive
for λmaxλmin > 1, where these are the max / min eigenvalues of ATA.
(Recall: rows of A are normalized).
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Regularized Objectives

Many modern applications of optimization seek approximate minimizers of
f with desirable structure. One way to achieve this is to add a regularizer
Ω(x) to the objective:

min
x

f (x) + λΩ(x).

Ω(x) is chosen to impose the desired structure on x ;

λ ≥ 0 is a regularization parameter that controls the amount of
regularization.

λ large⇒ more emphasis on structure;

λ small⇒ more emphasis on optimizing f .
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Regularized Formulation

min
x

: F (x) := f (x) + λΩ(x) (1)

f (·) : Rn 7→ R is convex and differentiable;

Ω(·) : Rn 7→ R ∪ {+∞} is a proper closed convex real value extended
function;

Ω(x) is separable: Ω(x) =
∑n

i=1 Ωi (xi ), Ωi (·) : R 7→ R ∪ {+∞}.

Instances of Ω(x):

Box-constrained: Ω(x) =
∑n

i=1 1[ai ,bi ](xi ) where 1[ai ,bi ] is an indicator
function for [ai , bi ];

`p norm regularization for p ≥ 1: Ω(x) = ‖x‖pp.
(The `1 norm ‖x‖1 is especially popular.)
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Stochastic Proximal Coordinate Descent SPCD

Define prox-operator Ph for a convex function h:

Ph(y) = arg min
x

1

2
‖x − y‖2 + h(x).

(It’s nonexpansive: ‖Ph(y)− Ph(z)‖ ≤ ‖y − z‖.)
Basic Step: Select a coordinate i and compute the gradient element
[∇f (x)]i ; take a step along this direction and “shrink” to account for
coordinate regularizer Ωi .

xi ← PαλΩi
(xi − α[∇f (x)]i︸ ︷︷ ︸

coordinate gradient

),

for some step length α.

This is equivalent to solving an approximate version of the coordinate-i
problem in which f is replaced by a simple quadratic:

min
zi
∇i f (x)T [zi − xi ] +

1

2α
[zi − xi ]

2 + λΩi (zi ).
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Prox-Operator Examples

Prox-operators can be executed efficiently in many cases.

Ωi (t) = |t|: soft thresholding operation

PλΩi
(t) = sgn(t) max{|t| − λ, 0}.

Ωi (t) = 1[a,b]: projection operation

PλΩi
(t) = arg min

s∈[a,b]

1

2
‖s − t‖2 = mid(a, b, t).

Ωi null (no regularization on component i): Then PλΩi
(t) = t. The

basic CD step is then

xi ← xi − α[∇f (x)]i ,

so reduces to the basic CD step for a smooth function.
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Asynchronous Parallel Stochastic Proximal Coordinate
Descent Algorithm (AsySPCD)

All processors run a stochastic proximal coordinate descent process
concurrently and without synchronization, for some γ > 0:

repeat
• Select a coordinate i ∈ {1, 2, . . . , n} uniformly at random;
• Read “x” from the shared memory and compute the gradient
component i using “x”:

di ← [∇f (x)]i ;

• Update “x” in the shared memory by the proximal operation,
performed atomically:

x i ← P(γ/Lmax)λΩi

(
x i −

γ

Lmax
di

)
.

until whenever.
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Global View of AsySPCD

Global counter k incremented when one of the cores makes an update:

• Choose x0, steplength parameter γ > 0;
for k = 0, 1, 2, . . . do
• Choose ik ∈ {1, 2, · · · , n} uniformly at random;
• Read components of x from shared memory needed to compute
[∇f (x)]ik , denoting the local version of x by x̂k ;
• Update component ik of x (atomically):

xk+1
ik
← P(γ/Lmax)λΩik

(
xk
ik
− γ

Lmax
[∇f (x̂k)]ik

)
.

end for

Vector x̂k may never appear in shared memory at any point in time. The
elements of x may have been updated repeatedly during reading of x̂k ,
which means that the components of x̂k may have different “ages.”

We call this phenomenon inconsistent read.
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Consistent Read vs. Inconsistent Read
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Expressing Read-Inconsistency

Difference between x̂k and xk is expressed in terms of “missed updates:”

xk = x̂k +
∑

t∈J(k)

(x t+1 − x t)

where J(k) defines the iterate set of updates missed in reading x̂k .

We assume τ to be the upper bound of ages of all elements in J(k):

τ ≥ k −min{t | t ∈ J(k)}.

Example: our assumptions would be satisfied with τ = 10 when

x100 = x̂100 +
∑

t∈{91,95,98,99}

(x t+1 − x t)

τ is related strongly to the number of cores / processors that can be used
in the computation. The number of updates we would expect to miss
between reading and updating x is similar to the number of cores.
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Notation

Recall that

Lmax: component Lipschitz constant (“max diagonal of Hessian”)

|[∇f (x + tei )]i − [∇f (x)]i | ≤ Lmax|t| ∀x , t, i ;

Lres: restricted Lipschitz constant (“max row-norm of Hessian”)

‖∇f (x + tei )−∇f (x)‖2 ≤ Lres|t| ∀x , t, i ;

Λ := Lres/Lmax measures the degree of diagonal dominance.

1 for separable f ,
2 for convex quadratic f with diagonally dominant Hessian,√

n for general convex quadratic.

S : the solution set of (1);
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Key to Analysis

Recall iteration:

xk+1
ik

= P(γ/Lmax)λΩik

(
xk
ik
− γ

Lmax
[∇f (x̂k)]ik

)
.

Choose some ρ > 1 and choose γ so that

E(‖xk − xk−1‖2) ≤ ρE(‖xk+1 − xk‖2) “ρ-condition”.

Not too much change in the step at each iteration
⇒ not too much change in the gradient
⇒ not too much price to pay for using outdated information.

Want to choose γ small enough to satisfy this property but large enough
to get steady convergence.

Strike a balance, as in asynchronous randomized Kaczmarz.
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Main Assumption: Optimal Strong Convexity (OSC)

Optimal strong convexity parameter σ > 0

F (x)− F (PS(x)) ≥ σ

2
‖x − PS(x)‖2, for all x ∈ domF .

Weaker than usual strong convexity — allows nonunique solutions.

F (x) = f (Ax) with strongly convex f .

Squared hinge loss: F (x) =
∑

k max(aTk x − bk , 0)2;
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An OSC (but not strongly convex) function:
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Main Theorem: OSC yields a Linear Rate

Theorem

For any ρ > 1 + 4/
√

n, define

θ :=
ρ(τ+1)/2 − ρ1/2

ρ1/2 − 1
θ′ :=

ρ(τ+1) − ρ
ρ− 1

ψ := 1 +
τθ′

n
+

Λθ√
n
.

and choose

γ ≤ min

{
1

ψ
,

√
n(1− ρ−1)− 4

4(1 + θ)Λ

}
.

Then the “ρ-condition” is satisfied at all j , and we have

E‖xk − PS(xk)‖2 + 2γ(EF (xk)− F ∗)

≤
(

1− σ

n(l + γ−1)

)k (
‖x0 − PS(x0)‖2 + 2γ(F (x0)− F ∗)

)
.
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Notes on the Result

Rate depends intuitively on the various quantities involved:

Smaller γ ⇒ slower rate;

Smaller σ ⇒ slower rate;

Larger Λ = Lres/Lmax implies smaller γ and thus slower rate.

Larger delay τ ⇒ slower rate.

Dependence on ρ is a bit more complicated, but best to choose ρ near its
lower bound.
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Special Case

Corollary

Consider the regime in which τ satisfies

4eΛ(τ + 1)2 ≤
√

n,

and define

ρ =

(
1 +

4eΛ(τ + 1)√
n

)2

.

Thus we can choose γ = 1
2 , and the rate simplifies to:

E(F (xk)−F ∗) ≤
(

1− σ

n(l + 2Lmax)

)k

(Lmax‖x0−PS(x0)‖2 +F (x0)−F ∗).

If the diagonal dominance properties are good (Λ ∼ 1) we have τ ∼ n1/4.

In earlier work, with consistent read and no regularization, get τ ∼ n1/2.
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General Convex (without OSC): Sublinear Rate

Theorem

Define ψ and γ as in the main theorem, have

E(F (xk)− F ∗) ≤ n(Lmaxγ
−1‖x0 − PS(x0)‖2 + 2(F (x0)− F ∗))

2(k + n)
.

Roughly ”1/k” behavior (sublinear rate).

Corollary

Assuming 4eΛ(τ + 1)2 ≤
√

n and setting ρ and γ = 1/2 as above, we have

E(F (xk)− F ∗) ≤ n(Lmax‖x0 − PS(x0)‖2 + F (x0)− F ∗)

k + n
.
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Computational Experiments

Implemented on a 40-core Intel Xeon, containing 4 sockets × 10 cores.

We do sampling without replacement: each thread/core is assign a subset
of gradient components, and sweeps through these in order. Order is
shuffled periodically (once per epoch, or less frequently).

This departs from the analyzed version, which assumes that sampling with
replacement for indices ik .
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Unconstrained: 4-socket, 40-core Intel Xeon

min
x

‖Ax − b‖2 + 0.5‖x‖2

where A ∈ Rm×n is a Gaussian random matrix (m = 6000, n = 20000,
data size≈3GB, columns are normalized to 1). Λ ≈ 2.2. Choose γ = 1.
Takes 3-4 seconds to achieve the accuracy 10−5 on 40 cores.
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Constrained: 4-socket, 40-core Intel Xeon

min
x≥0

(x − z)T (ATA + 0.5I )(x − z) ,

where A ∈ Rm×n is a Gaussian random matrix (m = 6000, n = 20000,
columns are normalized to 1) and z is a Gaussian random vector.
Lres/Lmax ≈ 2.2. Choose γ = 1.
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Experiments: 1-socket, 10-core Intel Xeon

min
x

1

2
‖Ax − b‖2 + λ‖x‖1,

where A ∈ Rm×n is a Gaussian random matrix (m = 12000, n = 20000,
data size≈3GB),b = A ∗ sprandn(n, 1, 20) + 0.01 ∗ randn(n, 1), and
λ = 0.2

√
m log(n). Lres/Lmax ≈ 2.2. Choose γ = 1.
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Block Coordinate Descent (BCD)

A common and useful extension is to update blocks of coordinates, rather
than single coordinates.

At iteration k , select a subset Ik ⊂ {1, 2, . . . , n} and update just the
components in Ik .

As for basic coordinate descent, there are different techniques for choosing
Ik (random, cyclic, essentially cyclic), and different strategies for updating
the Ik components of x .

Can do regularized block coordinate descent provided that the regularizer
Ω(x) is separable with respect to Ik , that is,

Ω(x) = ΩIk (xIk ) + ΩIck (xIck ).

Fairly straightforward to generalize the analysis of basic CD.

BCD also opens a path to synchronous parallel implementation, e.g. the
components within Ik can be updated simultaneously, in parallel.
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Synchronous Parallel Algorithms

Numerous recent papers on parallel synchronous methods. Examples:

[Richtarik and Takac, 2013]: separable regularization, internal
parallelism in updating block Ik at iteration k .

[Marecek et al., 2014]: Partition {1, 2, . . . , n} between processors.
Two levels of parallelism.

[Jaggi et al., 2014]: ERM model (encompasses SVM, least squares)
with {1, 2, . . . , n} partitioned between processors. Nonlinear block
Gauss-Jacobi.
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Alternative Analysis: “Totally” Asynchronous

A much earlier and much shorter analysis of asynchronous CD appears in
[Bertsekas and Tsitsiklis, 1989]. It allows total asynchronicity — no bound
on the delay between reading and updating x — no need for finite τ . Need
only assume that each component of x is updated infinitely often.

Assume f convex, smooth and that the mapping T : Rn → Rn defined by
T (x) := x − α∇f (x) for some α > 0 is `∞-norm contractive, that is,

‖T (x)− x∗‖∞ ≤ η‖x − x∗‖∞ for some η ∈ (0, 1).

Then with αk ≡ α in the totally asynchronous randomized CD algorithm,
we have xk → x∗.

Powerful result. But the contraction assumption can fail even for strongly
convex functions: e.g. f (x) = (1/2)xTQx with

Q =

[
1 1
1 2

]
.
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Accelerated Variants

Accelerated first-order methods [Nesterov, 1983] have also become highly
popular in recent years; the revival traces to [Nesterov, 2004] and
[Beck and Teboulle, 2009].

They maintain multiple sequences of vectors {xk}, {vk}, {yk}. Steps are
combinations of all gradients encountered so far, not just the latest one.
Convergence rates are faster e.g. O(1/k2) instead of O(1/k).

[Nesterov, 2009] describes an accelerated methods that uses just a
subvector of the gradient ∇f (x j). But is has the apparent drawback of
having to manipulate dense vectors, so at least O(n) operations per
iteration are required.

Recent work has shown that this approach can be implemented efficiently
in some cases! An early idea for accelerated Kaczmarz is
[Liu et al., 2013b], but [Lee and Sidford, 2013] have a much nicer idea
that uses a clever change of variables. See also
[Fercoq and Richtarik, 2013], [Lin et al., 2014].
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Conclusions

There is a renewed interest in coordinate descent methods, driven by
applications (including machine learning).

CD methods are a good match to parallel (multicore) computer
architectures.

We can analyze asynchronous parallel algorithms, with a computing
model and results that approximate reality pretty well.

[Liu et al., 2013a], [Liu et al., 2014], [Liu and Wright, 2014].
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