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RÉSUMÉ

Nous étudions la relation entre les paires de cotorsion et les structures
Abéliennes de modèles au sens de Hovey. L’idée est d’utiliser la correspondance
de Hovey pour obtenir des nouvelles structures de modèles sur les catégories de
modules RMod et de complexes de chaînes Ch(RMod), à partir des paires de
cotorsion compatibles et complètes. Nous généralisons la procédure de zig-zag
pour démontrer que les classes ÊPn de complexes n-projectifs (ceux dont la dimen-
sion projective est bornée par n) et dg ÊPn de complexes n-projectifs di�érentiels
gradués sont les moités à gauches de deux paires de cotorsion compatibles et
complètes, qui sont induites par la classe Pn de modules n-projectifs. Nous pré-
sentons aussi une version pour modules n-projectifs d’un résultat par Kaplansky
sur modules projectifs, pour obtenir deux paires de cotorsion compatibles et com-
plètes (dw ÊPn, (dw ÊPn)‹) et (ex ÊPn, (ex ÊPn)‹), où dw ÊPn est la classe de complexes
de chaînes dont les termes sont n-projectifs, et ex ÊPn est donnée par les complexes
appartenant à dw ÊPn qui sont aussi exactes. D’autres applications de la procédure
de zig-zag produisent deux paires de cotorsion compatibles et complètes, à savoir
( ÊFn, ( ÊFn)‹) et (dg ÊFn, (dg ÊFn)‹), et aussi (dw ÊFn, (dw ÊFn)‹) et (ex ÊFn, (ex ÊFn)‹).
En relation à l’algèbre homologique de Gorenstein, nous donnons un ensemble qui
cogénère le paire de cotorsion (GPr, (GPr)‹) en RMod (R un anneau de Goren-
stein), où GPr est la classe de modules r-projective de Gorenstein. Nous donnons
aussi un résultat analogue pour complexes de chaînes. Dans une catégorie de Go-
renstein et localement Noethérienne, nous trouvons un ensemble que cogénère le
paire (‹(GIr(C)), GIr(C)), où GIr(C) est la classe d’objets r-injective de Goren-
stein. Les paires (GPr, (GPr)‹) et (‹(GIr(C)), GIr(C)) s’avèrent être compatibles
respectivement avec (Pr, (Pr)‹) et (‹(Ir(C)), Ir(C)). Pour la dimension plate de
Gorenstein, nous restreignons le concept de submodules purs pour obtenir une
paire de cotorsion complète (GF r, (GF r)‹). Afin d’avoir un résultat similaire pour
complexes de chaînes, nous modifions la notion habituelle d’une paire de cotorsion
en remplaçant le foncteur Ext1(≠, ≠) par le foncteur Ext1(≠, ≠).

Mots-clés : Paires de cotorsion, structures Abéliennes de modèles, dimensions
homologiques (de Gorenstein), correspondence de Hovey, procédure de zig-zag.





ABSTRACT

We study the relationship between (Gorenstein) homological dimensions
and Abelian model structures in the sense of Hovey. The idea is to use Hovey’s
correspondence in order to get new model structures on the categories of modules
RMod and chain complexes Ch(RMod), from compatible and complete cotorsion
pairs. We use a generalization of the zig-zag procedure to prove that the classes
ÊPn of n-projective (i.e. projective dimension bounded by n) and dg ÊPn of di�eren-
tial graded n-projective chain complexes are the left halves of two compatible and
complete cotorsion pairs in Ch(RMod) induced by the class Pn of n-projective
modules. We also present a version of a result by Kaplansky on projective modules
for n-projective modules, to obtain two compatible and complete cotorsion pairs
(dw ÊPn, (dw ÊPn)‹) and (ex ÊPn, (ex ÊPn)‹), where dw ÊPn is the class of chain complexes
whose terms are n-projective, and ex ÊPn is given by the complexes in dw ÊPn which
are also exact. Other applications of the zig-zag procedure, along with a con-
struction of small pure subresolutions for n-flat modules, yield two pairs of com-
patible and complete cotorsion pairs, namely ( ÊFn, ( ÊFn)‹) and (dg ÊFn, (dg ÊFn)‹),
and (dw ÊFn, (dw ÊFn)‹) and (ex ÊFn, (ex ÊFn)‹). Concerning Gorenstein homological
algebra, we give a cogenerating set for the cotorsion pair (GPr, (GPr)‹) in RMod
(with R a Gorenstein ring), where GPr is the class of Gorenstein-r-projective
modules. We present an analogous result for chain complexes. If we work in a
locally Noetherian Gorenstein category, we give a cogenerating set for the pair
(‹(GIr(C)), GIr(C)), where GIr(C) is the class of Gorenstein-r-injective objects.
The pairs (GPr, (GPr)‹) and (‹(GIr(C)), GIr(C)) turn out to be compatible with
(Pr, (Pr)‹) and (‹(Ir(C)), Ir(C)), respectively. For the Gorenstein-flat dimension,
we restrict the concept of pure submodules to obtain a complete cotorsion pair
(GF r, (GF r)‹). In order to have a similar result for chain complexes, we modify
the usual definition of a cotorsion pair by considering orthogonality with respect
to Ext1(≠, ≠) instead of Ext1(≠, ≠).

Keywords: Cotorsion pairs, Abelian model structures, (Gorenstein) homological
dimensions, Hovey’s correspondence, zig-zag procedure.





INTRODUCTION

Some history, from Salce to Hovey

Nowadays, probably among the most important objects in the realm of homo-

logical algebra are the cotorsion pairs. First introduced by Luigi Salce in the

category of groups, they where rediscovered by Edgar E. Enochs for the category

of modules in the decade of 90s. Colloquially, two classes of modules form a co-

torsion pair if they are orthogonal to each other with respect to the first extension

functor Ext1
R(≠, ≠). This definition, which seems to be very simply at first sight,

turns out to have very deep applications in several branches of mathematics, being

probably the Representation Theory of Algebras the most favoured.

Two of the most important episodes representing the impact of cotorsion pairs are

linked to some homological conjectures. For instance, the flat cover conjecture

explicitly first stated in 1981 by Enochs in his paper Injective and flat covers,

envelopes and resolvents, remained open for 20 years. It asserts the existence of

a flat cover for every module. This was proven to be true in 2001 by Enochs,

and simultaneously and independently by L. Bican and R. El Bashir. Thanks to

some contributions by Paul Eklof and Jan Trlifaj, Enochs settled the conjecture by

proving that the class of flat modules is the left half of a cotorsion pair cogenerated

by a set. The famous Eklof and Trlifaj’s Theorem states that every cotorsion pair

cogenerated by a set is complete. It follows that every module has a special flat

pre-cover. Once this is known, flat covers are constructed by using the fact that

the class of flat modules is closed under direct limits.
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The theory of cotorsion pairs was also used by Lidia Angeleri-Hügel and Octavio

Mendoza in (6) to establish a validity criterion for the second finitistic dimension

conjecture, which states that the little finitistic dimension of every finite Artin

algebra is finite. This has been proved to be true in some particular cases, such as

for finite dimensional monomial algebras. The proof of the cited criterion uses the

fact, proved by S. T. Aldrich, E. E. Enochs, O. M. G. Jenda and L. Oyonarte, that

the class of modules with projective dimension at most n (with n some positive

integer) is the left half of a complete cotorsion pair.

Recently in 2002, Mark Hovey established a correspondence between the theo-

ries of cotorsion pairs and model structures. Namely, Hovey proved that given

an Abelian model structure on a bicomplete Abelian category, it is possible to

construct two complete cotorsion pairs from the classes of cofibrant, fibrant and

trivial objects of the given model. Moreover, the converse is also true, that is if

we are given three classes of objects in such a category forming two compatible

and complete cotorsion pairs, then it is possible to obtain a unique Abelian model

structure such that the classes of cofibrant, fibrant and trivial objects coincide

with the given classes.

Hovey’s results provide an easy method to construct model structures on cate-

gories such as modules or chain complexes. Concerning complexes over a ring

or a ringed space, James Gillespie introduced the notions of di�erential graded

chain complexes with respect to a class of modules. One important example of an

Abelian model structure obtained from Hovey’s correspondence is given by him in

the paper The flat model structure on Ch(R), published in 2004, by proving that

the classes of flat and dg-flat chain complexes are the left halves of two compatible

complete cotorsion pairs.
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Another interesting example of a model structure on chain complexes was given by

D. Bravo, E. Enochs, A. Iacob, O. Jenda and J. Rada in their article Cotorsion

pairs in C(RMod), published in 2012. There they proved that the classes of

degreewise and exact degreewise projective chain complexes are the left halves of

two compatible complete cotorsion pairs.

The goal of this work is to construct new model structures in homological al-

gebra. The idea is to construct a pair of compatible complete cotorsion pairs

(A fl W , B) and (A, B fl W) related to a specific homological dimension, and then

apply Hovey’s correspondence to obtain an Abelian model structure where the

classes of (trivially) cofibrant, (trivially) fibrant, and trivial objects coincide with

A (resp. A fl W), B (resp. B fl W) and W .

Figure I.1: Hovey’s correspondence.

The contributions presented in this work can be split into two parts. In this

first one, we study the projective, injective and flat dimensions of objects in the

category Ch(RMod) of chain complexes of modules, in order to obtain pairs of

compatible and complete cotorsion pairs for each homological dimension, via the

application of techniques such as the zig-zag argument. We recall several model

structures on the category of chain complexes, obtained from the classes of pro-

jective, injective and flat modules, such as the flat and the degreewise projective
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model structures just mentioned, and then we shall present their corresponding

generalizations to any homological dimension.

In the second part, we restrict our attention to the case where R is a Goren-

stein ring, in which another type of homological algebra appears in RMod and

Ch(RMod), described by the notions of Gorenstein-projective, Gorenstein-injective

and Gorenstein-flat dimensions. M. Hovey and J. Gillespie constructed model

structures on RMod having the classes of Gorenstein-projective, Gorenstein-injective

and Gorenstein-flat modules among the cofibrant and fibrant objects. We shall

see how to generalize Hovey’s arguments to get new Abelian model structures on

RMod and Ch(RMod) from the notions of Gorenstein-projective and Gorenstein-

injective dimensions. With respect to the Gorenstein-flat case, we shall need to

introduce the notions of W-pure submodules and bar-cotorsion pairs to realize

and prove that the class of modules (resp. complexes) with bounded Gorenstein-

flat dimension constitutes the left half of a new complete cotorsion pairs in RMod

(resp. Ch(RMod)).

Summary of principal results

In homological algebra. The first point in our work on homological dimen-

sions and Abelian model structures concerns to the study of the projective dimen-

sion of chain complexes. The first model structure we shall construct, named the

n-projective model structure on Ch(RMod), is obtained after proving several

results involving the class ÊPn of chain complexes whose projective dimension is

bounded by a nonnegative integer n.
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There is a unique Abelian model structure on Ch(RMod) where the (trivial)

cofibrations are the monomorphisms with cokernel in dg ÊPn (resp. ÊPn), the

(trivial) fibrations are the epimorphisms with kernel in ( ÊPn)‹ (resp. (dg ÊPn)‹),

and the trivial objects are the exact chain complexes.

Theorem 3.2.2

The above result is motivated by the investigations developed by M. Hovey in

the case n = 0. The projective model structure described in (36, Section 2.3) is

obtained from sets of generating cofibrations and generating trivial cofibrations.

It turns out that the class ÊPn, whose elements are also called n-projective com-

plexes, is the left half of a complete cotorsion pair. This result was proven by S.

T. Aldrich, E. E. Enochs, O. M. G. Jenda, and L. Oyonarte in (5, Proposition 4.1)

for the category of left R-modules. Specifically, they use a technique called the

zig-zag argument to show that every M œ Pn is a transfinite extension of the set of

Ÿ-small n-projective modules (By a Ÿ-small module S we mean that Card(S) Æ Ÿ,

where Ÿ is a fixed regular cardinal with Card(R) < Ÿ). Their arguments can be

generalized to the category of left modules over a ringoid R.

Let M be a n-projective R-module. Then for every homogeneous element x œ
M(a) there exists a Ÿ-small submodule N Òæ M such that:

(1) x œ N(a).

(2) The R-modules N and M/N are n-projective.

Lemma 3.1.11

The previous lemma is a key result to show that (Pn(Mod(R)), (Pn(Mod(R)))‹)

is a complete cotorsion pair, where Pn(Mod(R)) is the class of left modules over
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R. The categories RMod and Ch(RMod) of modules and chain complexes over a

ring are particular cases of Mod(R), obtained by putting R = R and R = Z¢R,

respectively. So the pair ( ÊPn, ( ÊPn)‹) is complete in Ch(RMod). On the other

hand, the class of di�erential graded chain complexes dg ÊPn is the left half of

another complete cotorsion pair. The two pairs ( ÊPn, ( ÊPn)‹) and (dg ÊPn, (dg ÊPn)‹)

are compatible in the sense that ÊPn = dg ÊPn fl E and (dg ÊPn)‹ = ( ÊPn)‹ fl E , where

E is the class of exact chain complexes. This compatibility allows us to deduce

the completeness of (dg ÊPn, (dg ÊPn)‹) from that of ( ÊPn, ( ÊPn)‹). In fact, we show

that if we are given two compatible cotorsion pairs, then one of them if complete

if, and only if, the other one is (see Proposition 2.3.6). Applying Hovey’s result

mentioned above, we obtain the Abelian model structure described in the previous

theorem.

With respect to the flat case, we previously mentioned the flat model structure

on Ch(RMod) constructed by J. Gillespie. The cofibrant and trivial objects are

given by the dg-flat and the exact chain complexes, respectively. In order to

obtain a generalization of Gillespie’s result, we first show that (Fn, (Fn)‹) is a

complete cotorsion pair, where Fn is the class of n-flat modules. The key thing

at this point is to construct Ÿ-small pure subresolutions for each module in Fn.

This shall be a consequence of the following lemma.
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Let M œ Fn with a flat resolution

(1) = (0 æ Fn
fnæ Fn≠1 æ · · · æ F1

f
1æ F0

f
0æ M æ 0)

and N be a small submodule of M . Then there exists a flat subresolution (i.e.

a subcomplex)

0 æ S Õ
n æ · · · æ S Õ

1 æ S Õ
0 æ N Õ æ 0

of (1) such that S Õ
k is a small and pure submodule of Fk, for every 0 Æ k Æ n,

and such that N ™ N Õ. In this case, we shall say that N Õ is a n-pure submodule

of M . Moreover, if N has a subresolution of (1),

0 æ Sn æ · · · æ S1 æ S0 æ N æ 0

where Sk is a small and pure submodule of Fk, for every 0 Æ k Æ n, then the

above resolution of N Õ can be constructed in such a way that it contains the

resolution of N .

Lemma 3.1.21

Let ÊFn denote the class of n-flat chain complexes. In (4, Proposition 3.1), the

authors construct a cogenerating set for the cotorsion pair ( ÊF0, ( ÊF0)‹), by using

a slightly modified version of the zig-zag procedure. This method, combined with

the previous lemma, can be applied to prove the following theorem.

For every left n-flat complex X œ ÊFn and every element x œ X (i.e. x œ Xk for

some k œ Z), there exists a small n-flat subcomplex L ™ X such that x œ L

and X/L œ ÊFn.

Theorem 3.6.5

As a consequence, we have the existence of the following model structure on

Ch(RMod), that we call the n-flat model structure.
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There exists a unique Abelian model structure on Ch(RMod) where the (triv-

ial) cofibrations are the monomorphisms with cokernel in dg ÊFn (resp. ÊFn), the

(trivial) fibrations are the epimorphisms with kernel in ( ÊFn)‹ (resp. (dg ÊFn)‹),

and the weak equivalences are the quasi-isomorphisms.

Theorem 3.6.2

The model structures just mentioned are not the only structures that can be ob-

tained from the notion of homological dimensions. In the paper (12), J. Rada and

coauthors construct an Abelian model structure on Ch(RMod) where the class

of cofibrant objects is given by the class dw ÊP0 of degreewise projective complexes

(i.e. complexes which are projective at each degree). The methods used there can

be generalized to any projective dimension, in order to prove that:

(1) If R is a Noetherian ring, every n-projective chain complex is a transfinite

extension of the set dw(̂Pn)›
0 of complexes whose terms are in the set (Pn)›

0 ,

where a module is in (Pn)›
0 if, and only if, it has a projective resolution of

length n, where each projective term is written as a direct sum, over a

countable set, of countably generated projective modules.

(2) Every exact n-projective chain complex (i.e. a complex in ex ÊPn = dw ÊPnflE)

is a transfinite extension of the set ex(̂Pn)ÆŸ of exact complexes whose terms

are in the set (Pn)ÆŸ, where a module is in (Pn)ÆŸ if, and only if, it has a

projective resolution of length n, where each projective term is written as a

direct sum, over a Ÿ-small set, of countably generated projective modules.

As a consequence of (1) and (2), we obtain the following model structure on

Ch(RMod), that we call the degreewise n-projective model structure.
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There exists a unique Abelian model structure on Ch(RMod) where the (triv-

ial) cofibrations are the monomorphisms with cokernel in dw ÊPn (resp. ex ÊPn),

the (trivial) fibrations are the epimorphisms with kernel in (ex ÊPn)‹ (resp.

(dw ÊPn)‹), and the weak equivalences are the quasi-isomorphisms.

Theorem 3.3.2

In the paper (4) mentioned above, the authors also prove that the classes of degree-

wise and exact degreewise flat complexes are the left halves of two cotorsion pairs

cogenerated by sets. There they apply a modified zig-zag procedure to construct

for every (exact) degreewise flat complex a transfinite extension of small (exact)

degreewise flat complexes. We call this method the stairway zig-zag procedure,

which we can combine with Lemma 3.1.20 to prove that for every X œ ex ÊFn and

every x œ X, there exists a Ÿ-small complex Y œ (ex ÊFn)ÆŸ such that x œ Y and

X/Y œ ex ÊFn. A similar result holds for the class dw ÊFn of degreewise n-flat com-

plexes. It follows that every (exact) degreewise n-flat complexes is a transfinite

extension of the set Y œ (dw ÊFn)ÆŸ (resp. Y œ (ex ÊFn)ÆŸ).As a consequence, we

shall obtain the degreewise n-flat model structure on Ch(RMod) described

as follows.

There exists a unique Abelian model structure on Ch(RMod) there the (triv-

ial) cofibrations are the monomorphisms with cokernel in dw ÊFn (resp. ex ÊFn),

the (trivial) fibrations are the epimorphisms with kernel in (ex ÊFn)‹ (resp.

(dw ÊFn)‹), and the weak equivalences are the quasi-isomorphisms.

Theorem 3.5.2
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In Gorenstein homological algebra. If we assume that R is a Goren-

stein ring, another sort of homological algebra can be developed in the cate-

gories of modules and chain complexes. It turns out that the classes of mod-

ules with finite projective, injective and flat dimension coincide. This class, de-

noted by W , appears as the right and left half of two complete cotorsion pairs

(‹(W), W) and (W , (W)‹). This fact was proven in di�erent ways by M. Hovey

in (35) for the category of left R-modules, and independently by E. E. Enochs,

S. Estrada and J. R. García Rozas for any Gorenstein category. Moreover, the

latter authors also proved that ‹(W) and (W)‹ turn out to be the classes of

Gorenstein-projective and Gorenstein-injective modules, denoted GP0 and GI0,

respectively. On the other hand, Hovey noted the equalities P0 = GP0 fl W
and I0 = GI0 fl W , so his correspondence implies the existence of two Abelian

model structures on Ch(RMod), known as the Gorenstein-projective and the

Gorenstein-injective model structures on RMod. Our first little contribution

for the theory of model categories in the context of Gorenstein homological alge-

bra, is to rewrite the previous two model structures in the language of Gorenstein

categories.

The completeness of the cotorsion pairs (GP0, W) and (W , GI0) allows us to de-

fine Goresntein homological dimensions of modules. Moreover, this notion makes

sense in any Gorenstein category C. We consider the class GPr(C) of objects

in C whose Gorenstein-projective dimension is bounded by r (with 0 Æ r Æ
sup{pd(X) : X has finite projective dimension}). We shall prove that this class

appears as the left half of a complete cotorsion pair (GPr(C), (GPr(C))‹) in the

cases where C is the category of modules or chain complexes over a Gorenstein

ring. After showing that the pairs (GPr(C), (GPr(C))‹) and (Pr(C), (Pr(C))‹) are

compatible, we shall obtain what we call the Gorenstein-r-projective model

structure on C.
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If C is either the category RMod of left R-modules or Ch(RMod) of complexes

over an n-Gorenstein ring, then for each 0 Æ r Æ n there exists a unique Abelian

model structure on RMod where the (trivial) cofibrations are the monomor-

phisms with cokernel in GPr(C) (resp. Pr(C)), the (trivial) fibrations are the

epimorphisms with kernel in (Pr(C))‹ (resp. (GPr(C))‹), and W is the class of

trivial objects.

Theorems 4.4.2 and 4.7.4

With respect to the cotorsion pair (W(C), GI0(C)), Hovey provided a cogener-

ating set S formed by the i-cosyzygies �i(J) with i Ø 0 and J running over

the set of indecomposable injective objects J of C, provided C is locally Noethe-

rian. If S(r) denotes the subset of S where i Ø r, then we shall show that

(‹(GIr(C)), GIr(C)) is cogenerated by S(r). Since this pair turns out to be com-

patible with (‹(Ir(C)), Ir(C)), by Hovey’s correspondence we obtain the Goren-

stein-r-injective model structure on C.

Let C be a locally Noetherian Gorenstein category. Then there exists a unique

Abelian model structure on C, where the (trivial) fibrations are the epimor-

phisms with kernel in GIr(C) (resp. Ir(C)), the (trivial) cofibrations are the

monomorphisms with cokernel in ‹(Ir(C)) (resp. in ‹(GIr(C))), and W(C) is

the class of trivial objects.

Theorem 4.5.1

The Gorenstein-flat model structure on RMod is constructed by Hovey and Gille-

spie in (30), where the class GF0 of Gorenstein-flat modules is the class of cofibrant

objects, and the trivial objects are given by W . We construct the same model on

the category of complexes, by applying the following two results.
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The classes ‰GF0 and ( ‰GF0)‹ form a bar-cotorsion pair ( ‰GF0 | ( ‰GF0)‹).

Proposition 4.7.14

Let E be a Gorenstein-flat complex and x œ E. Then there exists a Gorenstein-

flat subcomplex E Õ ™ E with Card(E Õ) Æ Ÿ, such that x œ E Õ and E/E Õ is also

Gorenstein-flat.

Proposition 4.7.15

By bar-cotorsion pair (A | B) in Ch(RMod) we mean two classes of complexes A
and B orthogonal to each other with respect to bar-extension functor Ext1(≠, ≠),

the first right derived functor of the internal hom Hom(≠, ≠). From these two

results we deduce that the class ‰GF0 of Gorenstein-flat complexes is the left half

of a complete cotorsion pair. As a consequence of this and the completeness of the

pair (GF0, (GF0)‹), we can define the Gorenstein-flat dimension for both modules

and chain complexes. For the class GF r of Gorenstein-r-flat modules, we have

the following “Gorenstein version” of Lemma 3.1.21.
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Let M œ GF r with a Gorenstein-flat resolution

(1) = (0 æ Er
fræ Er≠1 æ · · · æ E1

f
1æ E0

f
0æ M æ 0)

and N be a submodule of M with Card(N) Æ Ÿ. Then there exists a Gorenstein-

flat subresolution

0 æ S Õ
r æ S Õ

r≠1 æ · · · æ S Õ
1 æ S Õ

0 æ N Õ æ 0

of (1) such that S Õ
k is a W-pure submodule of Ek and Card(S Õ

k) Æ Ÿ, for every

0 Æ k Æ r, and such that N ™ N Õ. Moreover, if N has a subresolution of (1)

0 æ Sr æ Sr≠1 æ · · · æ S1 æ S0 æ N æ 0

where Sk is a W-pure submodule of Ek with Card(Sk) Æ Ÿ, for every 0 Æ k Æ r,

then the above resolution of N Õ can be constructed in such a way that it contains

the given resolution of N .

Lemma 4.6.12

This result is a tool to construct a cogenerating set of (GF r, (GF r)‹). This pair

and (Fr, (Fr)‹) are compatible and so we get a generalization to any Gorenstein-

flat dimension of the Gorenstein-flat model structure constructed by Hovey and

Gillespie. We call it the Gorenstein-r-flat model structure on RMod.

If R is an n-Gorenstein ring, then for each 0 Æ r Æ n there exists a unique

Abelian model structure on RMod where the (trivial) cofibrations are the

monomorphisms with cokernel in GF r (resp. in Fr), the (trivial) fibrations

are the epimorphisms with kernel in (Fr)‹ (resp. (GF r)‹), and W is the class

of trivial objects.

Theorem 4.6.2

Applying the techniques used to show that (dw ÊFn, (dw ÊFn)‹) is complete, along

with some results concerning bar-cotorsion pairs, we show that the class ‰GF r of

Gorenstein-r-flat complexes is the left half of a complete cotorsion pair. From this
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point, as in the case of modules, we shall deduce the existence of the Gorenstein-

r-flat model structure on Ch(RMod), with the di�erence that we need to apply

the notion of bar-cotorsion pairs.

If R is an n-Gorenstein ring, then for every 0 Æ r Æ n there exists a unique

Abelian model structure on RMod where the (trivial) cofibrations are the

monomorphisms with cokernel in ‰GF r (resp. in ÊFr), the (trivial) fibrations

are the epimorphisms with kernel in ( ÊFr)‹ (resp. in ( ‰GF r)‹), and ÊW is the

class of trivial objects.

Theorem 4.7.22

The projective, injective and flat model structures are somehow connected to

the Gorenstein model structures just mentioned. It is not hard to construct

an equivalence between the categories of complexes over R and A-modules, say

Ch(RMod) �æA Mod �Ω Ch(RMod), where A = R[x]/(x2) is a Z-graded ring.

If R is a Gorenstein ring, then so is A. Under this assumption, Hovey and

Gillespie proved that di�erential graded projective complexes over R are actu-

ally Gorenstein-projective A-modules, and vice versa. This interpretation can be

seen via the mentioned equivalence between Ch(RMod) and AMod. This as-

sertion is also true for the injective and flat cases. After establishing a similar

equivalence between exact complexes over R and graded A-modules with finite

projective dimension (i.e. the class W), we are capable to state and prove the

following result.
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The functor � : Ch(RMod) æA Mod maps:

(1) dg-r-projective complexes into Gorenstein-r-projective A-modules,

(2) dg-r-injective complexes into Gorenstein-r-injective A-modules, and

(3) dg-r-flat complexes into Gorenstein-r-flat A-modules.

If R is a left and right Noetherian ring of finite global dimension, then the

inverse functor � :A Mod æ Ch(RMod) maps:

(1’) Gorenstein-r-projective A-modules into dg-r-projective complexes,

(2’) Gorenstein-r-injective A-modules into dg-r-injective complexes, and

(3’) Gorenstein-r-flat A-modules into dg-r-flat complexes.

Theorem 4.8.5
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How to read this thesis

In the next paragraphs we describe the outline we shall be following throughout

this thesis, which is divided into four chapters plus two appendices. The figure

below represents and explains the logical dependence of the chapters forming

the thesis. Later we shall give diagrams explaining a more detailed dependence

between the sections of each chapter.

Figure I.2: Logical dependence.

Chapter 1. We introduce some categorical preliminaries and notations. One

of the purposes of this thesis is to present most of the definitions and results in

a categorical setting. So it is necessary to recall the definitions and notations

of the universal constructions most used in category theory. We present each

construction along with a diagram so it will be easier to understand and recall

the concept for the reader who is not familiar with category theory.
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This chapter represents a review of Abelian and Grothendieck categories. Sections

1.1, 1.2 and 1.9 represent the basic background on this matter. We basically work

in two categories throughout this thesis, namely modules and chain complexes

over a ring. As we said before, much of the contents are presented in a categorical

setting, that means results and definitions given for an Abelian category C and

for Ch(C), the category of chain complexes over C.

1.1  Universal constructions

1.2   Abelian categories

Projective and injective  
 objects

1.3
Resolutions in  

 Abelian categories
1.4

1.9    Grothendieck categories

1.5  Extension functors1.7   Homological dimensions

n-projective and n-injective  
chain complexes1.8

1.6  Baer sums
1.10  Modules over ringoids

Figure I.3: Logical dependence in Chapter 1.

We present some notions known in Relative Homological Algebra, such as left

and right resolutions with respect to a class of objects, (pre-)covers and (pre-)

envelopes, and left and right homological dimensions. It is known that using pro-

jective or injective resolutions we can compute the extension functors Exti(≠, ≠)
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for every i Ø 0. For the case i = 1, Ext1(X, Y ) can be described as the set

of classes of short exact sequences of the form 0 æ Y æ Z æ X æ 0 under

certain equivalence relation, being a group when it is equipped with an opera-

tion called the Baer sum. This description of first extensions allows us to prove

some natural isomorphisms for Ext involving disk and spheres complexes, namely

Ext1
Ch(C)(Dm(C), Y ) ≥= Ext1

C(C, Ym) and Ext1
Ch(C)(X, Dm+1(C)) ≥= Ext1

C(Xm, C).

These isomorphisms were proven by J. Gillespie in (27). If in addition, the

complexes X and Y are exact, then Ext1
Ch(C)(Sm(C), Y ) ≥= Ext1

C(C, Zm(Y )) and

Ext1
Ch(C)(X, Sm(C)) ≥= Ext1

C(Xm/Bm(X), C) (see the paper (25) by the same au-

thor). This constitutes sections from 1.3 to 1.7. Section 1.8 shows how complexes

with bounded projective dimension can be expressed as exact complexes whose

cycles have projective dimension with the same bound. The same characteriza-

tion is valid for complexes with bounded injective dimension. Finally, section

1.10 represents a brief reminder of the notion of left modules over a ringoid. This

background is very important to generalize some results presented in Section 3.1.

Chapter 2. We present the investigations done by M. Hovey that connects

the theories of cotorsion pairs and model categories. We begin by giving the

definition of weak factorization systems, as the core notion of that of a model

structure. Roughly speaking, a weak factorization system is given by two classes

of morphisms in a category C such that they have a lifting property with respect

to each other and satisfy a certain factorization axiom. A morphism X
fæ Y lifts

with respect to a morphism W
gæ Z in a commutative square

X W

Y Z

f g
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if there exists a morphism Y
dæ W such that the resulting inner triangles

X W

Y Z

f g
d

commute. On the other hand, the equality Ext1
C(X, Y ) = 0 means that every

short exact sequence of the form 0 æ Y
–æ Z

—æ X æ 0 splits, that is there is a

morphism X
—Õæ Z such that — ¶—Õ = idX . In other words, we have a commutative

diagram

0 Z

X X

—
Õ

—

meaning that 0 æ X lifts with respect to —. Hovey noticed this particular be-

havior, and established a correspondence for constructing a certain type of model

structure from a pair of cotorsion pairs satisfying a compatibility condition (see

the above diagram of Hovey’s correspondence). Since this correspondence is of

vital importance in this work, we think pertinent to present a proof, although in

a particular way via the concept of cotorsion factorization systems, introduced

after defining model structures from weak factorization systems. Every cotorsion

pair gives rise to a cotorsion factorization system. Since every model structure is

formed by two weak factorization systems, namely (trivial cofibrations, fibrations)

and (cofibrations, trivial fibrations), the idea is that from two compatible cotor-

sion pairs we can obtain two cotorsion factorization systems forming an Abelian

model structure. We assume factorizations in model structures to be functorial.

We add to Hovey’s proof that functorially complete cotorsion pairs yield functorial

factorizations.
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Weak factorization systems  
and model structures2.1
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Projective and injective  
 objects1.3

2.3  Hovey’s correspondence

Figure I.4: Logical dependence in Chapter 2.

Concerning cotorsion pairs, we present a proof of Eklof and Trlifaj’s Theorem

in Grothedieck categories. This result was originally proven in the category of

modules, and it is mentioned in some of the literature that it is also valid in any

Grothedieck category. Although this seems to be folklore, we give a complete

proof of this result.

In the last section, we present some methods obtained by J. Gillespie to induce

certain cotorsion pairs in chain complexes from a cotorsion pair in an Abelian

category C. Given an hereditary complete cotorsion pair (A, B), the classes of

di�erential graded A-complexes and B-complexes dg ÂA and dgÂB are the left and

right halves of the cotorsion pairs (dg ÂA, dgÂBflE) and (dg ÂAflE , dgÂB), where E is the

class of exact complexes. In the end, we study other results by Gillespie that allow
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us to obtain cotorsion pairs from degreewise A-complexes dw ÂA and B-complexes

dwÂB, namely (dw ÂA, (dw ÂA)‹) and (‹(dwÂB), dwÂB). We shall see that under certain

hypothesis we can express the classes (dw ÂA)‹ and ‹(dwÂB) as (dw ÂAflE)‹ flE and
‹(dwÂB fl E) fl E , respectively.

Chapter 3. This chapter is devoted to study the relationship between model

structures and homological dimensions. We construct six model structures on the

category of chain complexes, namely: the n-projective, n-injective, n-flat, degree-

wise n-projective, degreewise n-injective and degreewise n-flat model structures,

mentioned in the previous section.

We start with the projective dimension in the category of chain complexes. In

Section 3.1 we work with the category Mod(R) of modules over a ringoid R.

We prove that Pn(Mod(R)) of n-projective modules over R is the left half of

a cotorsion pair cogenerated by a set. We shall see how to adapt Enochs’ zig-

zag argument in Mod(R) in order to construct transfinite extension of Ÿ-small

n-projective modules. We shall define free modules over R, and then we shall

show how to construct a free resolution of length n for every n-projective module

over R. In Section 3.2, we deduce that ( ÊPn, ( ÊPn)‹) is a complete cotorsion pair,

applying the results from Section 3.1 in the particular case where R = Z ¢ R.

In Section 3.3, we present and construct the degreewise n-projective model struc-

ture mentioned before. The case n = 0 proved by J. Rada and coauthors is based

on a famous theorem by Kaplansky on projective modules: Every projective mod-

ule can be written as a direct sum of countably generated projective modules.

So every element in Pn has a projective resolution where each projective term is

written as such a direct sum. If we work over a Noetherian ring, we prove that

every module in Pn is a transfinite extension of the set (Pn)›
0 mentioned before.
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Figure I.5: Logical dependence in Chapter 3.
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This fact help us to construct the respective cogenerating sets of (dw ÊPn, (dw ÊPn)‹)

and (ex ÊPn, (ex ÊPn)‹).

The induced cotorsion pairs ( ÊPn, ( ÊPn)‹), (dg ÊPn, (dg ÊPn)‹), (dw ÊPn, (dw ÊPn)‹) and

(ex ÊPn, (ex ÊPn)‹) are obtained by Gillespie’s results given in section 2.4. The com-

patibility of the first two is a consequence of another result by Gillespie, while the

compatibility of the last two is deduced from a general result given at the end of

section 2.4.

Using properties of injective objects in Grothendieck categories and the theory of

induced cotorsion pairs, we obtain two compatible and complete cotorsion pairs

(‹(ÊIn), ÊIn) and (‹(dgÊIn), dgÊIn), as well as (‹(dwÊIn), dwÊIn) and (‹(dwÊIn), dwÊIn),

in the category of chain complexes Ch(RMod).

Sections 3.5 and 3.6 are devoted to construct the n-flat and degreewise n-flat

model structures on Ch(RMod). Moreover, the classes ÊFn, dw ÊFn and ex ÊFn have

the interesting property of being closed under direct limits. It follows the cotor-

sion pairs ( ÊFn, ( ÊFn)‹), (dw ÊFn, (dw ÊFn)‹) and (ex ÊFn, (ex ÊFn)‹) are perfect and so

the existence of n-flat and (exact) degreewise n-flat covers of every complex is

guaranteed. In other words, we have an extension of Enochs’ flat cover conjecture

in the category of complexes to any flat dimension.

We shall finish this chapter presenting the projective model structures obtained so

far in a more general context of Abelian categories. It turns out to be that every

Abelian category C equipped with a progenerator is equivalent to the category

of right R-modules, for a certain ring R. This result is known as the Mitchell

equivalence. As a consequence, we obtain the n-projective and the degreewise

n-projective model structures on Ch(C).
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Chapter 4. We focus our attention in a special type of Grothendieck categories

known as Gorenstein categories. They are a sort of generalization of some situa-

tions that occur for modules over a Gorenstein ring R. In such categories we can

construct left Gorenstein-projective and right Gorenstein-injective resolutions for

every object, yielding a new theory of homological algebra in terms of Gorenstein-

projective and injective dimensions. We present some properties in this matter,

and then we construct cogenerating sets of the cotorsion pairs (GPr, (GPr)‹) and

( ‰GPr, ( ‰GPr)‹). For the Gorenstein-injective dimension, we present our results in

any locally Noetherian Gorenstein category.

In our study of Gorenstein-flat modules, we replace the notion of pure submodules

by that of W-pure submodules, i.e. submodules N ™ M of a module M such that

the inclusion 0 æ N æ M remains exact after tensoring with every module in W .

Among the properties we shall see for this particular type of pure submodules,

we have the possibility to express every Gorenstein-flat module as a transfinite

extension of Ÿ-small W-pure submodules. Concerning homological dimensions,

the previous fact can be used to construct Ÿ-small W-pure subresolutions for

every Goresntein r-flat module. In the category of complexes over a Gorenstein

ring, some tools are required before studying the Gorenstein-flat dimension in the

category of complexes. If we replace the bifunctor Ext1(≠, ≠) by Ext1(≠, ≠) in

the definition of cotorsion pairs in chain complexes, we get the notion of bar-

cotorsion pairs. There are some cases in which it is easier to prove that two

classes of complexes form a (complete) bar-cotorsion pair, rather than a (complete)

cotorsion pair. That is the case of the classes ‰GF r and ( ‰GF r)‹. We give some

properties of bar-cotorsion pairs and show the connection they have with the

standard cotorsion pairs.

We finish this chapter proving the equivalence given in Theorem 4.8.5.
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Appendices. When a model category is equipped with a monoidal structure, a

natural question that comes to us is if the given model structure is monoidal. The

homological model structures we obtain are not monoidal when the homological

dimension in question is greater than zero. Besides proving this, we study the

monoidality of the Gorenstein-projective and flat model structures. Probably the

most interesting fact proven in Appendix A is that the degreewise flat model

structure is monoidal if the ground ring has finite weak dimension.

Appendix B is devoted to give certain applications of Gorenstein homological al-

gebra to the theory of derived functors. As extension functors are obtained from

left projective or right injective resolutions, Gorenstein-extension functors are ob-

tained in the same way by using left Gorenstein-projective or right Gorenstein-

injective resolutions. For every pair of objects X and Y in a Gorenstein cat-

egory C, we give a Baer-like description of the first Gorenstein-extension func-

tor GExt1(X, Y ). This help us to establish some natural isomorphisms between

the Gorenstein-extension functors on C and Ch(C), involving disk and sphere

complexes. Specifically, we prove that GExt1
Ch(C)(Dm(C), Y ) ≥= GExt1

C(C, Ym)

and GExt1
Ch(C)(X, Dm+1(C)) ≥= GExt1

C(Xm, C). If in addition, the complexes

X and Y are exact, we also get GExt1
Ch(C)(Sm(C), Y ) ≥= GExt1

C(C, Zm(Y )) and

GExt1
Ch(C)(X, Sm(C)) ≥= GExt1

C(Xm/Bm(X), C).
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The coloration we have chosen for the classes of homological dimensions and

Gorenstein homological dimensions can be compared to a diagram of subtrac-

tive color mixing. For example, the class of projective objects in a Gorenstein

category can be written as the intersection of the class of Gorenstein-projective

objects with the class of objects with finite projective dimension. This equality is

represented by the fact that is obtained after mixing and .

Figure I.7: Subtractive color mixing and Gorenstein homological algebra.





CHAPTER I

CATEGORICAL PRELIMINARIES

“The saddest aspect of life right now is that

science gathers knowledge faster than society

gathers wisdom.”

Isaac Asimov.

This chapter consists of a review of some categorical notions and constructions.

Recall that a category C is given by a collection of objects and arrows between

objects such that composition of arrows is associative and such that for each object

there is an identity arrow. We shall refer to arrows as morphisms or maps. The

class of objects of C shall be denoted by Ob(C), and for each pair of objects X and

Y , HomC(X, Y ) shall denote the class of arrows from X to Y . We shall work with

locally small categories, i.e. categories C such that for each pair X, Y œ Ob(C),

the class HomC(X, Y ) is a set, called a homset. Given an arrow X
fæ Y , the object

X is called the domain of f , and Y the codomain of f . The opposite category of

C is the category Cop whose objects are labeled as Xop, where X is an object of C,

and whose homsets are given by HomCop(Xop, Y op) = HomC(Y, X), i.e. an arrow

Xop fopæ Y op is given by an arrow Y
fæ X of C. The composition ¶op is defined

by gop ¶op f op = (f ¶ g)op. We shall consider statements defined for C along with
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its dual. Roughly speaking, the dual of a statement P is formed by making the

following replacements throughout in P : “domain” by “codomain”, “codomain”

by “domain”, and “h is the composite of g with f” by “h is the composite of f

with g”. In other words, arrows and compositions of arrows are reversed. We shall

denote the dual of a statement P by P op.

Duality principle: P is valid for some category C if, and only if, P op is valid for

Cop.

Some definitions and results in this work are given along with their dual state-

ments. We shall use a two-column environment to present the statement in the

left column, and its dual in the right one.

1.1 Universal constructions

Definition 1.1.1. Let X : � æ C be a functor, where � is a small category, i.e.

the class Ob(�) is a set. Such a functor is called a diagram of type � in C. Some

authors call � a scheme.
A cone of X is given by an object L of

C and a family of morphisms

(L fisæ Xs : s œ Ob(�))

such that Xsæj ¶fis = fit for every map

s æ t.

A limit of X is defined as a cone

(L fisæ Xs : s œ Ob(�))

such that if (LÕ fiÕ
sæ Xs : s œ Ob(�))

is another cone of X, then there is a

unique map LÕ hæ L such that the fo-

A cocone of X is given by an object C

of C and a family of morphisms

(Xs
µsæ C : s œ Ob(�))

such that µt ¶Xsæt = µs for every map

s æ t.

A colimit of X is defined as a cocone

(Xs
µsæ C : s œ Ob(�))

such that if (Xs
µÕ

sæ C Õ : s œ Ob(�)) is

another cocone of X, then there is a

unique map C
hæ C Õ such that the fo-
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llowing diagram commutes for every

map s æ t in �:

LÕ

L

Xs Xt

fi
Õ

s

fi Õ
t

fi s fi
t

Xsæt

÷!
h

llowing diagram commutes for every

map s æ t in �:

Xs Xt

C

C Õ

Xsæt

µ
s

µ Õ
s

µ t

µ
Õ

t÷!
h

Figure 1.1: Limits and colimits.

Remark 1.1.1. Using the universal property above, one can show that the limit of

a diagram X : � æ C is unique up to isomorphisms, i.e. if (L fisæ Xs : s œ Ob(�))

and (LÕ fiÕ
sæ Xs : s œ Ob(�)) are both limits of C, then L ≥= LÕ. Similarly, the

colimit of X is also unique up to isomorphisms.

Definition 1.1.2. A category C is called:
(finitely) complete if every (finite) di-

agram � Xæ C (resp. with Ob(�) a

finite set) has a limit.

(finitely) cocomplete if every (finite)

diagram � Xæ C (resp. with Ob(�) a

finite set) has a colimit.

Some of the universal constructions in category theory are particular examples of

limits and colimits.

(1) Products and coproducts: Suppose the scheme � is a discrete category,

i.e. Hom�(X, X) = {idX} and HomC(X, Y ) = ÿ if Y ”= X. So � can be

represented as a diagram
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•

• • • · · ·

• • •

Figure 1.2: Scheme for products and coproducts.

The limit of a diagram � Xæ C
is called the product of the family

(Xs : s œ Ob(�)), and it is denoted

by L = r{Xs : s œ Ob(�)}.

r
sœOb(�) Xs Xs

LÕ

fis

fi
Õ
s

÷! h

The colimit of a diagram � Xæ C
is called the coproduct of the family

(Xs : s œ Ob(�)), and it is denoted

by C = ‡{Xs : s œ Ob(�)}.

Xs
‡

sœOb(�) Xs

C Õ

µs

µ Õ
s

÷! h

Figure 1.3: Universal property of products and coproducts.

(2) Equalizers and coequalizers: Let � be the following scheme:

• •
a

b

Figure 1.4: Scheme for equalizers and coequalizers.
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The limit of a diagram � Xæ C is

called the equalizer of f = X(a) and

g = X(b).

X(•) X(•)

K Õ K

X(•) X(•)

fi
Õ

fi Õ

fi
fi

f

g

÷!

The colimit of a diagram � Xæ C is

called the coequalizer f = X(a) and

g = X(b).

X(•) X(•)

C C Õ

X(•) X(•)

f

g

µ
µ Õ

µ

µ
Õ

÷!

Figure 1.5: Universal property of equalizers and coequalizers.

(3) Pullbacks and pushouts: Let � be the following scheme:

•

• •
a

b

Figure 1.6: Scheme for pullbacks.

The limit of the diagram � Xæ C is

called the pullback of f = X(a) and

g = X(b).

P Õ

P X(•)

X(•) X(•)

fi Õ
•

fi Õ•

fi•

fi• f

g

÷! h

The colimit of a diagram �op Xæ C is

called the pushout f = X(aop) and

g = X(bop).

X(•) X(•)

X(•) C

C Õ

f

g µ•

µ•

µ Õ•

µ Õ
•

÷! h

Figure 1.7: Universal property of pullbacks and pushouts.
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There are some interesting equivalences involving the previous concepts. You can

see the proof of the following result in (54, Theorem 1.26) or (47, Chapter 2,

Lemma 1 & Proposition 2). This reference is also an excellent source of examples

of the universal constructions above in the categories Set, Top, Gpr, Rings,

RMod, etc.

The following conditions are equivalent for any category C:

(1) C is (finitely) complete.

(2) C has (finite) products and

equalizers.

(3) C has (finite) products and

pullbacks.

(1’) C is (finitely) cocomplete.

(2’) C has (finite) coproducts and

coequalizers.

(3’) C has (finite) coproducts and

pushouts.

Proposition 1.1.1

1.2 Abelian categories

Before explaining the notion of Abelian categories, we need to recall the concepts

of initial, terminal and zero objects. Then we give the definition of additive

categories, a special type of category in which we can add morphisms. Finally,

we present the notion of an Abelian category, which is an additive category where

kernels and cokernels of morphisms exist. Roughly speaking, an Abelian category

is somehow a generalization of the category of Abelian groups Ab.

An object X in a category C is called initial (resp. terminal) if HomC(X, Y ) (resp.

HomC(Y, X)) is a singleton for all Y œ Ob(C). An object X is a zero object if

it is both an initial and a terminal object. Initial, terminal and zero objects are
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unique up to isomorphisms. We shall say that a category C is pointed if the zero

object exists. We shall denote the zero object of a pointed category by 0.

For example, in Set, ÿ is the initial object, and any singleton is the terminal

object. Similarly, the empty space is the initial object of Top, and every one-

point space is terminal. In Grp, the trivial group is the zero object. Similarly,

the zero module 0 is the zero object of RMod and ModR.

A category with zero morphisms is one where, for every two objects X and Y in

C, there is a fixed morphism 0XY : X æ Y such that for every object Z in C
and every pair of morphisms f : X æ Y and g : Y æ Z, the following diagram

commutes:

X Y

Y Z

0XY

f g

0Y Z

0
X

Z

Figure 1.8: Zero morphisms.

The collection {0XY : X, Y œ Ob(C)} is unique. Every pointed category is a

category with zero objects, where the previous family is defied by the compositions

0XY : X æ 0 æ Y .

Definition 1.2.1. Given a finite family of objects X1, . . . , Xn in a category C, the

finite biproduct of this family is an object X1 ü · · · ü Xn, together with a family

of morphisms X1 ü · · · ü Xn
fiiæ Xi and Xj

µjæ X1 ü · · · ü Xn, with i, j = 1, . . . , n,

called projections and injections, respectively, satisfying the following conditions:

(1) fii ¶ µj =

Y
_]

_[

idXi if j = i,

0 if j ”= i.
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(2) (X1 ü · · · ü Xn, fi1, . . . , fin) is the product for the family (X1, . . . , Xn).

(3) (X1 ü · · · ü Xn, µ1, . . . , µn) is the coproduct for the family (X1, . . . , Xn).

Definition 1.2.2. A category C is said to be pre-additive if every set HomC(X, Y )

is equipped with a binary operation HomC(X, Y ) ◊ HomC(X, Y ) +æ HomC(X, Y )

that makes (HomC(X, Y ), +) into an Abelian group, where the zero element is

denoted by 0XY , such that the composition ¶ of morphisms is distributive with

respect to +.

A pre-additive category C is called additive if it has a zero object and finite

biproducts. That is if (X1, . . . , Xn) is a finite family of objects of C, then the

biproduct X1 ü · · · ü Xn exists.

Definition 1.2.3. Let X
fæ Y be a morphism in a additive category C.

The kernel of f is defined as the equal-

izer of f and the zero map 0XY .

The cokernel of f is defined as the co-

equalizer of f and the zero map 0XY .

Recall that a morphism X
fæ Y is a monomorphism (or is monic) if for every pair

of morphisms h, hÕ : Z æ X satisfying f ¶ h = f ¶ hÕ, then h = hÕ. Dually, f is an

epimorphism (or is epic) if for every pair of morphisms h, hÕ : Y æ Z satisfying

h ¶ f = hÕ ¶ f , then h = hÕ.

Definition 1.2.4. A additive category C is said to be pre-Abelian if for each

morphism f in C, the kernel and cokernel of f exist. An Abelian category is a

pre-Abelian category C such that the following two conditions are satisfied for

every pair of objects X and Y :

(1) C is Ab-monic: If f œ HomC(X, Y ) is a monomorphism, then there exists an

object Z œ Ob(C) and a morphism g œ HomC(Y, Z) such that f is the kernel

of g.
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(2) C is Ab-epic: If f œ HomC(X, Y ) is an epimorphism, then there exists an

object Z œ Ob(C) and a morphism g œ HomC(Z, X) such that f is the cokernel

of g.

Let f : X æ Y be a morphism in a pre-Abelian category C. The following

conditions are equivalent:

(1) f is a monomorphism.

(2) Ker(f) = 0.

(3) For every object Z œ Ob(C) and

every map h : Z æ X, if f ¶h = 0

then h = 0.

(1’) f is an epimorphism.

(2’) CoKer(f) = 0.

(3’) For every object Z œ Ob(C) and

every map h : Y æ Z, if h¶f =

0 then h = 0.

Proposition 1.2.1 (see (10, Proposition 1.5.4))

Example 1.2.1.

(1) The categories RMod and ModR are Abelian.

(2) The category of chain complexes over an Abelian category C: Let C be an abe-

lian category. A chain complex X over C is given by a family of objects

(Xm : m œ Z) of C together with a family (Xm
ˆX

mæ Xm≠1 : m œ Z) of mor-

phisms of C, called boundary maps, such that ˆX
m ¶ˆX

m+1 = 0, for every m œ Z.

We shall write X as a sequence X = · · · æ Xm+1
ˆX

m+1æ Xm
ˆX

mæ Xm≠1 æ · · · .

For every m œ Z, the objects Zm(X) = Ker(ˆX
m) and Bm(X) = Im(ˆX

m+1) are

called the mth cycle and the mth boundary of X.

Given two chain complexes X and Y , a chain map X
fæ Y is given by a family

of morphisms (fm : m œ Z) such that ˆY
m ¶ fm = fm≠1 ¶ ˆX

n for every m œ Z.
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Xm Xm≠1

Ym Ym≠1

ˆX
m

fm fm≠1

ˆY
m

Figure 1.9: Chain maps.

Let Ch(C) denote the category whose objects are the chain complexes over

C, and whose morphisms are given by the chain maps. One can show that

Ch(C) is an Abelian category, where the zero object is given by the complex

· · · æ 0 0æ 0 0æ 0 æ · · · , and the chain maps are added componentwise.

Finite biproducts are also computed componentwise, as well as kernel and

cokernel of chain maps.

In any Abelian category C, one of the most important notions is that of an exact

sequence. Before stating a formal definition, we need to recall the notions of

subobjects and images.

Definition 1.2.5. Let X
fæ Z and Y

gæ Z be two monomorphisms sharing the

same codomain. We shall say that f Æ g if f factors through g, i.e. there exists

X
hæ Y such that f = g ¶ h. We define the following relation on the set of all

monomorphisms with codomain Z: f ≥ g if, and only if, f Æ g and g Æ f .

This relation is an equivalence relation, and the equivalence classes are called the

subobjects of Z.

Example 1.2.2.

(1) If C = Set, Grp, RMod or ModR, the notion of a subobject of an object X

coincides with that of a subset, subgroup and submodule, respectively.
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(2) In the category of chain complexes Ch(C) over an Abelian category C, the

subobjects of a complex X are called subcomplexes of X. It is not hard to

see that Y is a subcomplex of X if, and only if, each Ym is a subobject of Xm.

If we work with groups, for example, the image of a homomorphism G
fæ H

is a subgroup of H such that g can be factored uniquely as the composition

G
hæ Im(g) iæ H, where h is the restriction g ‘æ f(g) and i is the inclusion. Then

it is natural to think that the image of a morphism in a category is a subobject

of the codomain, satisfying certain universal property.

Definition 1.2.6. An image of a morphism X
fæ Y in a category C is a subobject

Y Õ iæ Y of Y to which there exists a morphism X
gæ Y Õ with i ¶ g = f , satisfying

the following universal property: If Y ÕÕ iÕæ Y is another subobject of Y and if

X
gÕæ Y ÕÕ is another morphism such that iÕ ¶ gÕ = f , then there exists a unique

morphism Y Õ hæ Y ÕÕ such that h ¶ g = gÕ and iÕ ¶ h = i.

The image of a morphism f is unique up to isomorphisms. Note that g is uniquely

determined since i is a monomorphism. If C is a category with equalizers, then g

is epic (47, Lemma 2, page 35). Moreover, Y Õ is unique up to isomorphisms. So

we shall denote the image of f by Im(f).

X Y

Y Õ

Y ÕÕ

f

g i

g Õ iÕ÷!
h

Figure 1.10: Image of a morphism.
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Definition 1.2.7. A sequence

X
fæ Y

gæ Z

in C is called exact in Y if Ker(g) = Im(f).

Throughout the rest of this work, sometimes we shall denote monomorphisms

and epimorphsims by X Òæ Y and W ⇣ Z, respectively. Note that X æ Y is a

monomorphism if, and only if, 0 æ X æ Y is exact in X. Similarly, W æ Z is

an epimorphism if, and only if, W æ Z æ 0 is exact in Z.

Definition 1.2.8. A long sequence · · · æ Xm+1 æ Xm æ Xm≠1 æ · · · is

called exact if every sequence Xm+1 æ Xm æ Xm≠1 is exact in Xm. A sequence

X
fæ Y

gæ Z is called short exact if f is monic, g is epic, and Ker(g) = Im(f).

Note that for every monomorphism X
fæ Y there exists an exact sequence

X
f

Òæ Y
µ⇣ CoKer(f).

Dually, from every epimorphism X
fæ Y we can get an exact sequence

Ker(f) fi
Òæ X

f⇣ Y.

Every Abelian category has pullpacks and pushouts by Proposition 1.1.1. Con-

cerning those constructions, we shall use the following property repeatedly through-

out this thesis.
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If we are given two epimorphisms

Y
f⇣ X and Z

g⇣ X in an Abelian

category C, then there exists a com-

mutative diagram
Ker(f) Ker(f)

Ker(g) Y ◊X Z Y

Ker(g) Z X

f

g

with exact rows and columns, where

the bottom right square is a pullback

square.

If we are given two monomorphisms

X
f

Òæ Y and X
g

Òæ Z in an Abelian

category C, then there exists a com-

mutative diagram

X Z CoKer(g)

Y Y
‡

X Z CoKer(g)

CoKer(f) CoKer(f)

g

f

with exact rows and columns, where

the top left square is a pushout

square.

Proposition 1.2.2 (see (43, Proposition 2, page 203))

1.3 Projective and injective objects

Projective objects are probably among the most interesting concepts in homolog-

ical algebra. They are the categorical version of the notion of projective modules,

which were introduced in 1956 by Henri Cartan and Samuel Eilenberg in their

book Homological algebra (13) in order to provide a generalization of the notion

of free modules. In some cases, projective objects allow us to construct for every

object certain exact sequences called projective resolutions, which are basic to

define extension groups.
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Definition 1.3.1. An object X in a category C is called:
projective if for every epimorphism

Y
f⇣ Z and every morphism X

gæ Z,

there exists a morphism X
hæ Y such

that f ¶ h = g.

X

Y Z

g

f

÷ h

injective if for every monomorphism

Y
f

Òæ Z and every morphism Y
gæ X,

there exists a morphism Z
hæ X such

that h ¶ f = g.

Y Z

X

f

g ÷ h

Figure 1.11: Projective and injective objects.

Remark 1.3.1. We shall denote by P0(C) and I0(C) the classes of projective and

injective objects of C, respectively. It is known that P0(C) is closed under coprod-

ucts, i.e. the coproduct ‡
sœS P s, of a family (P s : s œ S) of projective objects,

is a projective object. Dually, I0(C) are closed under products. The projective

objects shall be colored red, while the injective objects blue. This particular

choice of colours can be checked in the introduction.

Definition 1.3.2. Let C and D be two categories and F, G : C æ D be two

functors from C to D. A natural transformation ÷ : F æ G from F to G is a col-

lection of morphisms (F (X) ÷Xæ G(X))XœOb(C) in D such that for every morphism

f : X æ Y in C, the equality G(f) ¶ ÷X = ÷Y ¶ F (f) holds.

A natural transformation ÷ : F æ G is called:

(1) A natural monomorphism if ÷X is a monomorphism for every X œ Ob(C).

(2) A natural epimorphism if ÷X is an epimorphism for every X œ Ob(C).

(3) A natural isomorphism if ÷X is an isomorphism for every X œ Ob(C).
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F (X) G(X)

F (Y ) G(Y )

÷X

F (f) G(f)

÷Y

Figure 1.12: Natural transformation.

Given an Abelian category C, we know HomC(X, Y ) is an Abelian group for every

pair of objects X, Y œ Ob(C).
HomC(X, ≠) : C æ Ab is the co-

variant functor defined as follows: for

every morphism Y
fæ Z, fú :=

HomC(X, f) is the group homomor-

phism HomC(X, Y ) æ HomC(X, Z)

given by h ‘æ f ¶ h, for every h œ
HomC(X, Y ).

HomC(≠, Y ) : C æ Ab is the con-

travariant functor defined as follows:

for every morphism X
fæ Z, f ú :=

HomC(f, Y ) is the group homomor-

phism HomC(Z, Y ) æ HomC(X, Y )

given by h ‘æ h ¶ f , for every h œ
HomC(Z, Y ).

Definition 1.3.3. Let C be an Abelian category.
C has enough projective objects if for

every X œ Ob(C) there is an epimor-

phism P ⇣ X, for some projective ob-

ject P .

Moreover, C has functorially enough

projective objects if there is a functor

C Pæ C along with a natural epimor-

phism P æ idC such that P (X) is pro-

jective for every X œ Ob(C).

C has enough injective objects if for

every X œ Ob(C) there is a monomor-

phism X Òæ I, for some injective ob-

ject I.

Moreover, C has functorially enough

injective objects if there is a functor

C Iæ C along with a natural monomor-

phism idC æ G such that I(X) is in-

jective for every X œ Ob(C).

Example 1.3.1. Assuming the Axiom of Choice, the following categories have

functorially enough projective and injective objects.
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(1) RMod and ModR: Let M be a left R-module. It is well known that M is

the epimorphic image of a free module. We present a construction of such

an epimorphism to show that it is functorial. Let S be the set of all nonzero

elements of M , and ÈSÍ be the free module generated by S. Define an epi-

morphism ÈSÍ —æ M by — (q
ri(si)) = q

ri ·si, where (si) denotes the element

in ÈSÍ corresponding to si œ M . Now denote F (M) := ÈSÍ. Given a mor-

phism M1
fæ M2, we have an induced morphism F (M1)

F (f)æ F (M2) given by

F (f) (q
iœI ri(xi)) = q

jœJ rj (f(xj)), where J = {j œ I : f(xj) ”= 0} (with

F (f) (q
iœI ri(xi)) = 0 if f(xi) = 0 for every i œ I). It is not hard to see that

F is a functor and — defines a natural epimorphism F æ idRMod

.

Now we show how to embed every module into an injective module. First, con-

sider the case R = Z. So RMod (or ModR) is the category of Abelian groups.

So consider M as an Abelian group. We have an epimorphism F (M) —æ M ,

where F (M) is a free group. We know Z can be embedded into Q, which is

a divisible group. Recall that an Abelian group G is said to be divisible if

nG = G, for every nonzero n œ Z. It follows that every free group is embedded

into a divisible group, and this can be done functorially via some functor G.

So we have an embedding F (M) –æ G(F (M)), where G(F (M)) is a divisible

group. Then we get an embedding M ≥= F (M)/Ker(—) –æ G(F (M))/Ker(—),

where G(F (M))/Ker(—) is divisible and so injective (An Abelian group is in-

jective if, and only if, it is divisible). This embedding is functorial in M . The

general case follows by the inclusion M ≥= HomR(R, M) Òæ HomZ(R, M) ≥=
HomZ(R, —(M)) ™ HomZ(R, G(F (M))/Ker(—)).

(2) Ch(RMod) and Ch(ModR) (a consequence of Proposition 1.3.2 below).

Definition 1.3.4. Let m œ Z and C be an object in an Abelian category C.
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(1) The m-th sphere complex Sm(C) is defined by

(Sm(C))k =

Y
_]

_[

C if k = m,

0 otherwise.

whose boundary maps are all zero.

(2) The m-th disk complex Dm(C) is defined by

(Dm(C))k =

Y
_]

_[

C if k = m, m ≠ 1,

0 otherwise.

whose boundary maps are all zero except for ˆDm(C)
m = idC .

For every X, Y œ Ob(Ch(C)) and every C œ Ob(C), there exist natural

isomorphisms:

Hom(Dm(C), Y ) Hom(C, Ym)
�

(1)

Hom(Sm(C), Y ) Hom(C, Zm(Y ))
�

(2)

Hom(X, Dm(C)) Hom(Xm≠1, C)
�Õ

(1Õ)

Hom(X, Sm(C)) Hom( Xm
Bm(X) , C)

�Õ

(2Õ)

Proposition 1.3.1

Proof .

To define (1), let f be a chain map in Hom
Ch(C)(Dm(C), Y ). It su�ces to set

�(f) = fm. To define the inverse, if g œ HomC(C, Ym) then set g : Dm(C) æ Y

as the chain map given by

gk =

Y
_____]

_____[

g if k = m,

ˆY
m ¶ g if k = m ≠ 1,

0 otherwise.

The mapping g ‘æ g defines the inverse of �. The map �Õ can be defined dually.
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For (2), let f œ Hom
Ch(C)(Sm(C), Y ). Then ˆY

m¶fm = 0. Since Zm(Y ) = Ker(ˆY
m),

there exists a unique morphism �(f) : C æ Zm(Y ) such that the following

diagram commutes:

Zm(C) Ym Ym≠1

C

÷! �(f)
fm

ˆY
miZm(Y )

To define the inverse of �, set g ‘æ iZm(Y ) ¶ g for every g œ HomC(C, Zm(Y )).

The map �Õ can be defined dually since Xm
Bm(X) is the cokernel of the map ˆX

m+1.

Definition 1.3.5. Let C and D be Abelian categories and

S = 0 æ Y æ Z æ X æ 0

be a short exact sequence in C.
A covariant functor F : C æ D is said

to be:

(1) half exact if

F (Y ) æ F (Z) æ F (X)

is exact for every S.

(2) left exact if

0 æ F (Y ) æ F (Z) æ F (X)

is exact for every S.

A contravariant functor G : C æ D is

said to be:

(1’) half exact if

F (X) æ F (Z) æ F (Y )

is exact for every S.

(2’) left exact if

0 æ F (X) æ F (Z) æ F (Y )

is exact for every S.
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(3) right exact if

F (Y ) æ F (Z) æ F (X) æ 0

is exact for every S.

(4) exact if

0 æ F (Y ) æ F (Z) æ F (X) æ 0

is exact for every S.

(3’) right exact if

F (X) æ F (Z) æ F (Y ) æ 0

is exact for every S.

(4’) exact if

0 æ F (X) æ F (Z) æ F (Y ) æ 0

is exact for every S.

Example 1.3.2. If P is a projective object of C, then Dm(P ) is a projective ob-

ject of Ch(C), for every m œ Z. Recall that an object X of an Abelian category

C is projective (resp. injective) if, and only if, the functor HomC(X, ≠) (resp.

HomC(≠, X)) is exact. Then Dm(P ) is a projective since Hom
Ch(C)(Dm(P ), ≠) is

exact (being naturally isomorphic to the exact functor HomC(P , (≠)m)). Dually,

disk complexes of injective objects are injective in Ch(C). However, sphere com-

plexes of projective (resp. injective) objects are not projective (resp. injective) in

Ch(C).

Let C be an Abelian category.
If C has (functorially) enough projec-

tive objects, then so does Ch(C).

If C has (functorially) enough injec-

tive objects, then so does Ch(C).

Proposition 1.3.2 (see (52, Theorem 10.43))

Proof .

We only prove the functorial case of the left statement. The proof of the non-

functorial case appears in the cited reference.
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In the projective case, suppose there is a functor P : C æ C and a natural

epimorphism b : P æ idC such that P (C) is projective for every C œ Ob(C). We

can collect all the natural maps Dm(P (Xm)) æ Dm(Xm) æ X defined for chain

complex X to obtain a natural surjection m
mœZ Dm+1(P (Xm)) æ X. It is not

hard to see that the object m
mœZ Dm+1(P (Xm)) is functorial in X.

We can say more about the relationship between the projective objects of C and

Ch(C). In (52, Theorem 10.42) it is proven that a chain complex X in Ch(C) is

projective if, and only if, it is split and Xm is a projective object in C, for every

m œ Z.

Recall that a complex X over C is split if the exact sequences

Zm(X) Òæ Xm ⇣ Bm≠1(X) and Bm(X) Òæ Zm(X) ⇣ Hm(X)

are split for every m œ Z. Let P be a projective chain complex, i.e. P is split

and P m is a projective object of C, for every m œ Z. We show that P is exact.

First, we need to recall the notions of cones of chain maps, and suspensions of

complexes.

Definition 1.3.6. The cone of a chain map X
fæ Y is the chain complex

cone(f) such that cone(f)m = Xm≠1 ü Ym and whose di�erential maps ˆcone(f)
m :

cone(f)m æ cone(f)m≠1 are given by
Q

ca
≠ˆX

m≠1 0

≠fm≠1 ˆY
m

R

db .

Definition 1.3.7. The nth suspension of a chain complex X is the complex

�n(X) such that (�n(X))m = Xm≠n and whose di�erential morphisms ˆ�n(X)
m :

(�n(X))m æ (�n(X))m≠1 are given by (≠1)nˆX
m≠n : Xm≠n æ Xm≠n≠1.
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It is not hard to see that there is a short exact sequence P Òæ cone(idP ) ⇣ �1(P ).

By (52, Theorem 10.42), the first suspension �1(P ) is projective. So the previous

sequence splits, i.e. P is a direct summand of cone(idP ). According to (52,

Lemma 10.40), cone(idX) is an exact complex, for every complex X. So P is a

direct summand of an exact complex. Since the class of exact complexes is closed

under direct summands, we conclude that P is also exact. On the other hand,

Zm(P ) is a direct summand of a projective object in C (namely Pm), and so it is

projective (the class of projective objects is also closed under direct summands).

Now suppose P is an exact chain complex such that Zm(P ) is a projective object

in C, for every m œ Z. The exact sequences Zm(P ) Òæ Pm ⇣ Bm≠1(P ) and

Bm(P ) Òæ Zm(P ) ⇣ Hm(P ) are split since Zm(P ) = Bm(P ) and Hm(P ) = 0, for

every m œ Z. Hence, P is a projective chain complex according to (52, Theorem

10.42). We have obtained the following equivalence.

Let C be an Abelian category.
A chain complex X in Ch(C) is pro-

jective if, and only if, it is exact and

Zm(X) is a projective object in C, for

every m œ Z.

A chain complex Y in Ch(C) is in-

jective if, and only if, it is exact and

Zm(Y ) is an injective object in C, for

every m œ Z.

Proposition 1.3.3

1.4 Resolutions in Abelian categories

In this section we recall the notions of left and right F -resolutions, where F is a

class of objects in an Abelian category C. First, we study how to construct left

and right derived functors from a given class F . Then we present the particular

examples of Exti
C(X, ≠) and Exti

C(≠, X), the ith extension functors, for an object
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X œ Ob(C). There exists an interesting characterization of these functors in terms

of classes of exact sequences under certain equivalence relation. We present this

characterization for the case i = 1. This provides us an easier method to deal with

elements in Ext1
C(X, Y ). One of its advantages can be noticed in the construction

of natural isomorphisms

Ext1
Ch(C)(Dm(C), Y )

≥=æ Ext1
C(C, Ym) and Ext1

C(X, Dm+1(C))
≥=æ Ext1

C(Xm, C),

where X and Y are chain complexes, and C is an object of C. These isomorphisms

were stablished by J. Gillespie in (27), for any Abelian category C. The same

author also shows in (25) that, if in addition X and Y are exact, it is possible to

construct natural isomorphisms

Ext1
Ch(C)(Sm(C), Y ) æ Ext1

C(C, Zm(Y )) and Ext1
Ch(C)(X, Sm(C)) æ Ext1

C

A
Xm

Bm(X) , C

B

.

One of the reasons to studying these isomorphisms is that we repeatedly consider

disk and sphere complexes in our constructions of model structures. Another rea-

son is that we are interested in establishing similar isomorphisms for Gorenstein-

extension functors, but we shall wait until the appendix to focus on this topic.

Definition 1.4.1. A functor F : C æ D between additive categories C and D is

said to be additive if it preserves finite biproducts, that is if:

(1) F maps the zero object of C to the zero object of D.

(2) For every pair of objects X and Y , there is an isomorphism Ï from F (X ü Y )

to F (X) ü F (Y ) which respects the inclusion and projection maps of the

biproducts, i.e. the following diagram commutes.
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F (X) F (X)

F (X ü Y ) F (X) ü F (Y ) F (X ü Y )

F (Y ) F (Y )

F (iX
) iF (X)

F (iY ) iF (Y )

Ï
fiF (X)

fi
F (Y )

F (fi
X )

F (fiY
)

Ï

Figure 1.13: Additive functor.

Definition 1.4.2. Let C, D and E be Abelian categories and C ◊ D Tæ E be a

functor contravariant in the first variable, covariant in the second, and additive

in both.
If F is a class of objects of C, we say

that a complex

· · · æ D1 æ D0 æ D0 æ D1 æ · · ·

in D is T (F , ≠)-exact if for every F œ
F the complex

· · · æ T (F, D0) æ T (F, D0) æ · · ·

is an exact sequence in E .

If G is a class of objects of D, we say

that a complex

· · · æ C1 æ C0 æ C0 æ C1 æ · · ·

in C is T (≠, G)-exact if for every G œ G
the complex

· · · æ T (C0, G) æ T (C0, G) æ · · ·

is an exact sequence in E .

Definition 1.4.3. Let F and G be classes of objects of C and X, Y œ Ob(C).
A left F -resolution of X is a

Hom(F , ≠)-exact complex

· · · æ F1 æ F0 æ X æ 0

with each Fi œ F .

A right G-resolution of Y is a

Hom(≠, G)-exact complex

0 æ Y æ G0 æ G1 æ · · ·

with each Gi œ G.
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One of the most important problems in Representation Theory of Algebras is

the existence of covers and envelopes for a given class of modules. Covers and

envelopes were first introduced by M. Auslander and S. O. Smalø, using the ter-

minology of minimal left and minimal right approximations.

Definition 1.4.4. Let F and G be classes of objects in an Abelian category C
and X, Y œ Ob(C).
A morphism F

fæ X with F œ F is

said to be an F -cover if:

(1) Given another morphism F Õ f Õæ X

with F Õ œ F , there exists a mor-

phism F Õ Ïæ F such that the fo-

llowing triangle commutes:

F X

F Õ

f

f
Õ÷ Ï

(2) If F Õ = F , the above diagram

can only be completed by automor-

phisms of F .

If f satisfies (1) but may be not (2),

then it is called an F -pre-cover. The

class F is called a (pre-)covering class

if every object of C has an F -(pre-)

cover.

A morphism Y
gæ G with G œ G is said

to be a G-envelope if:

(1’) Given another morphism Y
gÕæ GÕ

with GÕ œ G, there exists a mor-

phism G
Ïæ GÕ such that the fo-

llowing triangle commutes:

Y G

GÕ

g

g Õ ÷ Ï

(2’) If GÕ = G, the above diagram can

only be completed by automor-

phisms of G.

If g satisfies (1’) but may be not (2’),

then it is called an G-pre-envelope. The

class G is called a (pre-)enveloping class

if every object of C has a G-(pre-)en-

velope.

The main classes of objects we shall be considering in this work are the projective

and injective objects. For instance, in the category RMod of left R-modules,

projective covers are rare, i.e. not every module has a projective cover. Moreover,
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P0 is a covering class if, and only if, R is a perfect ring (i.e. a ring R where

projective and flat modules over R coincide). On the other hand, flat covers of

modules always exist. This is not easy to prove at all. This was an open problem

known as the Flat Cover Conjecture, until it was proven by E. E. Enochs and

(independently) by L. Bican and R. El Bashir in 2001 (see (8)).

We know that in the category of modules or chain complexes over a ring, it is al-

ways possible to find epic projective pre-covers and monic injective pre-envelopes.

However, (pre-)covers are not epic in general. Flat covers of modules constitute

an example of covers which are epic. This is a consequence of the following result.

Let F and G be two classes of objects in an Abelian category C.
If C has enough projective objects and

F ´ P0(C), then every F -cover is

epic.

If C has enough injective objects and

G ´ I0(C), then every G-envelope is

monic.

Proposition 1.4.1 (see (24, Page 8))

Definition 1.4.5. Let C Tæ D be a covariant functor between Abelian categories.
Let F be a pre-covering class of C.

Consider a left F -resolution

· · · æ F1 æ F0 æ X æ 0

of an object X of C. Denote by F•

the deleted complex · · · æ F1 æ F0.

The homology groups of T (F•) give the

left derived functors of T :

LnT : X ‘æ (LnT )(X)

Let G be a pre-enveloping class of C.

Consider a right G-resolution

0 æ Y æ G0 æ G1 æ · · ·

of an object Y of C. Denote by G• the

deleted complex G0 æ G1 æ · · · . The

cohomology groups of T (G•) give the

right derived functors of T :

RnT : Y ‘æ (RnT )(Y )
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If T is contravariant, then the left (right) derived functors can be computed using

right G-resolutions (left F -resolutions).

Let C Tæ D be a functor between Abelian categories, and F and G be classes

of objects in C closed under finite biproducts.
Suppose 0 æ X Õ æ X æ X ÕÕ æ 0 is

a HomC(F , ≠)-exact sequence of ob-

jects in C and F is a pre-covering

class.

(1) If T is covariant, there exists a

long exact sequence
· · · (L2T )(X ÕÕ)

(L1T )(X Õ) (L1T )(X) (L1T )(X ÕÕ)

(L0T )(X Õ) (L0T )(X) (L0T )(X ÕÕ)

(2) It T is contravariant, there exists

a long exact sequence
(R0T )(X ÕÕ) (R0T )(X) (R0T )(X Õ)

(R1T )(X ÕÕ) (R1T )(X) (R1T )(X Õ)

(R2T )(X ÕÕ) · · ·

Suppose 0 æ Y Õ æ Y æ Y ÕÕ æ 0 is a

HomC(≠, G)-exact sequence of objects

in C and G is a pre-enveloping class.

(1’) If T is covariant, there exists a

long exact sequence
(R0T )(Y Õ) (R0T )(Y ) (R0T )(Y ÕÕ)

(R1T )(Y Õ) (R1T )(Y ) (R1T )(Y ÕÕ)

(R2T )(Y Õ) · · ·

(2’) If T is contravariant, there ex-

ists a long exact sequence
· · · (L2T )(Y Õ)

(L1T )(Y ÕÕ) (L1T )(Y ) (L1T )(Y Õ)

(L0T )(Y ÕÕ) (L0T )(Y ) (L0T )(Y Õ)

Theorem 1.4.2 (see (21, Theorems 8.2.3 & 8.2.5))
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1.5 The extension functor

Let C be an Abelian category with enough projective and injective objects, and

X œ Ob(C). Then there exists a short exact sequence K0
g

1

Òæ P0
f

0⇣ X where P0

is a projective object in C. Applying the same argument for K0, we have a short

exact sequence K1
g

2

Òæ P1
h

1⇣ K0, where P1 is projective. If we set f1 := g1 ¶ h1, we

get a commutative diagram

K1

P1 P0 X

K0

g2

g 1h
1

f0f1

Proceeding this way, we get a commutative diagram

K1

· · · P2 P1 P0 X

K2 K0

f2

f1 f0

h
1

h 2 g2

g 3 g 1

Set fi := gi¶hi for every i > 0. To show the central row is exact, for every i > 0 we

have Ker(fi) = Im(gi+1). Since hi+1 is epic, Im(gi+1) = Im(gi+1 ¶hi+1) = Im(fi+1).

Hence Ker(fi) = Im(fi+1). Therefore, · · · æ P2
f

2æ P1
f

1æ P0
f

0æ X æ 0 is an exact

sequence. Since this sequence is HomC(P0(C), ≠)-exact, we conclude that every

object has an exact left projective resolution.

Therefore, if C is an Abelian category with enough projective (resp. injective)

objects, then every object has an exact left projective (resp. right injective) reso-

lution.

It is known that P0(C) is pre-covering and I0(C) is pre-enveloping. Also, it is easy

to see that they are closed under finite biproducts. So we can compute the right
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derived functors of HomC(X, ≠) and HomC(≠, Y ), called the extension functors,

for any pair of objects X and Y of C.

Let X and Y be objects in C. If C has enough projective objects, we can consider

an exact left projective resolution of · · · æ P1 æ P0 æ X æ 0. The ith ex-

tension group Exti
C(X, Y ) is defined as the ith cohomology group of the complex

HomC(P•, Y ). If we assume instead that C has enough injective objects, consider

an exact right injective resolution of Y , say 0 æ Y æ I0 æ I1 æ · · · . The ith

extension group Exti
C(X, Y ) in this case is defined as the ith cohomology group of

the complex HomC(X, I•). If C has both enough projective and injective objects,

it is known that the definition of Exti
C(X, Y ) does not depend on the choice of an

exact left projective resolution of X or an exact right injective resolution of Y . A

good reference to check this fact is (46).

For every object X and every exact

sequence 0 æ Y ÕÕ æ Y æ Y Õ æ 0 in

an Abelian category C with enough

injective objects, there exists a long

exact sequence

Hom(X, Y ÕÕ) Ext1(X, Y Õ) Ext2(X, Y ÕÕ)

Hom(X, Y ) Ext1(X, Y ) ...

Hom(X, Y Õ) Ext1(X, Y ÕÕ)

For every object Y and every exact

sequence 0 æ X Õ æ X æ X ÕÕ æ 0 in

an Abelian category C with enough

projective objects, there exists a long

exact sequence

Hom(X ÕÕ, Y ) Ext1(X Õ, Y ) Ext2(X ÕÕ, Y )

Hom(X, Y ) Ext1(X, Y ) ...

Hom(X Õ, Y ) Ext1(X ÕÕ, Y )

Corollary 1.5.1
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Remark 1.5.1. Let C be an Abelian category. It is not hard to show that X œ
Ob(C) is projective if, and only if, Ext1

C(X, Y ) = 0 for every Y œ Ob(C). Dually,

X is injective if, and only if, Ext1
C(Y, X) = 0 for every Y œ Ob(C).

Example 1.5.1. In C =R Mod or ModR, a module M is projective if, and only

if, it is a direct summand of a free module. In other words, there is an index set I

and a module N such that M ü N = R(I). If R is a principal ideal domain, then

M is projective if, and only if, M is free.

A left R-module N is injective if, and only if, Ext1
R(R/I, N) = 0, for every left

ideal I ™ R. The same characterization applies in ModR. This result is known as

the Baer Criterion. In the end of this chapter, we shall see a categorical version

of this result.

Homology and cohomology are not the only tools to compute extension functors.

The next section is devoted to constructing an isomorphism from Ext1
C(X, Y ) to

an Abelian group of classes of short exact sequences of the form Y Òæ Z ⇣ X,

under a certain equivalence relation. This is known as the Baer description of

Ext1
C(X, Y ).

1.6 Baer sums

Given two exact sequences S1 = Y
f

1

Òæ Z1
g

1⇣ X and S2 = Y
f

2

Òæ Z2
g

2⇣ X in

an Abelian category C, we shall say that they are (Baer) equivalent if there is a

morphism Ï : Z1 æ Z2 such that the following diagram commutes:

Y Z1 X

Y Z2 X

f1

f2

g1

g2

Ï
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We shall denote by [S] the equivalence class of a sequence S = Y Òæ Z ⇣ X,

and by EC(X, Y ) the set of all the equivalence classes [S]. We shall equip this set

with an operation called the Baer sum, which shall turn EC(X, Y ) into an Abelian

group.

Consider two short exact sequences S1 and S2 as above. Taking the pullback of

g1 and g2, by Proposition 1.2.2, we get the following commutative diagram with

exact rows and columns:

Y Y

Y Z1 ◊X Z2 Z2

Y Z1 X

f̂2 f2
f̂1

f1

flZ
2

flZ
1

g1

g2

Consider the map Y
f̂

1

≠f̂
2æ Z1 ◊X Z2 and set Z1 +B Z2 := CoKer(f̂1 ≠ f̂2). By the

universal property of cokernels, there is a unique map Z1 +B Z2
g

1

+Bg
2æ X such

that the following diagram commutes:

Y Z1 ◊X Z2 Z1 +B Z2

X

f̂1 ≠ f̂2 fi

g1 ¶ flZ
1 = g2 ¶ flZ

2

÷! g1 +B g2

On the other hand, set f1 +B f2 := fi ¶ f̂1 = fi ¶ f̂2. We get a short exact sequence

S1 +B S2 := 0 æ Y
f

1

+Bf
2æ Z1 +B Z2

g
1

+Bg
2æ X æ 0.

Define a binary operation +B : EC(X, Y ) ◊ EC(X, Y ) æ EC(X, Y ), called the

Baer sum, by setting [S1] +B [S2] := [S1 +B S2]. It is not hard to check that +B

is a well defined and makes EC(X, Y ) into an Abelian group.
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We know the category of chain complexes Ch(C) over an Abelian category C is

also Abelian. So Baer sums can be defined for Ch(C). Actually, the Baer sum

of two exact sequences Y
f1

Òæ Z1 g1

⇣ X and Y
f2

Òæ Z2 g2

⇣ X can be computed

componentwise from the Baer sums of Ym

f1

m
Òæ Z1

m

g1

m⇣ Xm and Ym

f2

m
Òæ Z2

m

g2

m⇣ Xm.

The following result gives a description of Ext1
C(X, Y ) in the sense of Baer. One

can construct similar isomorphisms for the case i > 1, but for our purposes we

just need the case i = 1.

The groups EC(X, Y ) and Ext1
C(X, Y ) are isomorphic if C has enough projective

or injective objects.

Theorem 1.6.1

The previous theorem is a well known result in the category of left R-modules. It

is not hard to give a category theoretical proof, but we are going to skip it since

in Appendix B we provide a generalization of this proposition.

As we said before, sometimes it is better to consider the description of Ext1
C(≠, ≠)

as the Abelian group EC(≠, ≠). For instance, the connecting homomorphisms

HomC(X, Y Õ) ”æ Ext1
C(X, Y ÕÕ) and HomC(X Õ, Y ) ”Õæ Ext1

C(X ÕÕ, Y ) in Corollary 1.5.1

can be constructed in terms of this description.

Consider a morphism X æ Y Õ. Taking its pullback with Y ⇣ Y Õ, we get the

following commutative diagram with exact rows:

Y ÕÕ Y ◊Y Õ X X

Y ÕÕ Y Y Õ
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The homomorphism ” is defined by (X æ Y Õ) ‘æ [Y ÕÕ Òæ Y ◊Y Õ X ⇣ X]. Dually,

”Õ is defined by taking pushouts instead of pullbacks. A proof of Corollary 1.5.1

using these description of ” is given in (38, Theorems 25.8 & 25.10).

The following results, due to J. Gillespie, were originally stated for Ext1
C(≠, ≠)

and Ext1
Ch(C)(≠, ≠) and proven by using the Baer description of Ext.

Let C be an object of an Abelian category C, and X and Y be chain complexes.

There are natural isomorphisms

ECh(C)(Dm(C), Y ) æ EC(C, Ym). ECh(C)(X, Dm+1(C)) æ EC(Xm, C).

Proposition 1.6.2 (see (27, Lemma 3.1))

Let C be an object of an Abelian category C and X and Y be exact chain

complexes. There are natural isomorphisms

ECh(C)(Sm(C), Y ) æ EC(C, Zm(Y )). ECh(C)(X, Sm(C)) æ EC( Xm
Bm(X) , C).

Proposition 1.6.3 (see (25, Lemma 4.2))

We do not give the construction of these isomorphisms. We shall recall them in

Appendix B, where some generalizations of the previous propositions are given.

If C is an Abelian category with enough projective and injective objects, we can

replace ECh(C)(≠, ≠) and EC(≠, ≠) by Ext1
Ch(C)(≠, ≠) and Ext1

C(≠, ≠), respec-

tively. Under this hypothesis, it is possible to give proofs of the previous two

results simpler than those appearing in (27) and (25), as noted in Remarks B.1

and B.3.
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1.7 Homological dimensions

Definition 1.7.1. Let F and G be classes of objects in an Abelian category C.

(1) An object X of C is called a

left n-F -object if there exists an

exact sequence of length n, say

0 æ Fn æ · · · æ F0 æ X æ 0,

with Fi œ F for every 0 Æ i Æ n. If

n is the smallest integer for which

such a sequence exists, we say that

X has left F -dimension equal to n.

If such an integer n does not exist,

we say that X has infinite left F -

dimension.

(2) Given a left F -resolution of X œ
Ob(C),

F = · · · æ F1
f

1æ F0
f

0æ X æ 0,

we shall say that Im(fi) is the i-th

F -syzygy of X in F. By �i
F(X)

we denote the class of all i-th F -

syzygies occurring in all left F -

resolutions of X. We use the nota-

tion �i(X) for the class of all pro-

jective syzygies of X.

(1’) An object Y of C is called a

right n-G-object if there exists an

exact sequence of length n, say

0 æ Y æ G0 æ · · · æ Gn æ 0,

with Gi œ G for every 0 Æ i Æ n. If

n is the smallest integer for which

such a sequence exists, we say that

Y has right G-dimension equal to

n. If such an integer n does not

exist, we say that Y has infinite

right G-dimension.

(2’) Given a right G-resolution of Y œ
Ob(C),

G = 0 æ Y
g0æ G0 g1æ G1 æ · · · ,

we shall say that Ker(gi) is the i-th

G-cosyzygy of Y in G. By �≠i
G (Y )

we denote the class of all i-th G-

cosyzygies occurring in all right G-

resolutions of Y . We use the no-

tation �≠i(Y ) for the class of all

injective cosyzygies of Y .
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Remark 1.7.1. Let X be an object of an Abelian category C.
We denote the (left) projective di-

mension of an object X by pd(X).

Note X is n-projective if, and only if,

pd(X) Æ n. We denote the class of

n-projective objects of C by Pn(C).

We denote the (right) injective di-

mension of an object Y by id(Y ).

Note Y is n-injective if, and only if,

id(Y ) Æ n. We denote the class of n-

injective objects of C by In(C).

Let X and Y be two objects of an Abelian category C. For every i Ø 0:
If C has enough projective objects

and A œ �i(X), then Ext1
C(A, Y ) ≥=

Exti+1
C (X, Y ).

If C has enough injective objects and

B œ �≠i(Y ), then Ext1
C(X, B) ≥=

Exti+1
C (X, Y ).

Proposition 1.7.1 (Dimension Shifting. See (46, Proposition 4.2))

Let X œ Ob(Ch(C)). For every m œ Z and i œ ZØ0:
Suppose C has enough projective ob-

jects. If Y œ �i(X) then Ym œ
�i(Xm).

Suppose C has enough injective ob-

jects. If Y œ �≠i(X) then Ym œ
�≠i(Xm).

Proposition 1.7.2

Proof .

Let Y œ �i(X) and · · · æ P1
f

1æ P0
f

0æ X æ 0 be an exact left projective resolution

of X with Y = Im(fi). Since each Pn is a projective complex, we have for every

m œ Z a short exact sequence

Zm(Pn) Òæ (Pn)m ⇣ Zm≠1(Pn),

where Zm≠1(Pn) and Zm(Pn) are projective objects. Since P0(C) is closed un-

der extensions, (Pn)m is also projective. Then we have an exact left projective
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resolution of Xm:

· · · æ (P1)m
(f

1

)mæ (P0)m
(f

0

)mæ Xm æ 0

in C. Hence Ym = Im((fi)m) œ �i(Xm).

Let X and Y be objects in an Abelian category C:
If C has enough projective objects,

then the following conditions are

equivalent:

(1) X œ Pn(C).

(2) X has an exact and finite left pro-

jective resolution of length n.

(3) Exti
C(X, Y ) = 0 for every Y œ

Ob(C) and every i > n.

(4) Extn+1
C (X, Y ) = 0 for every Y œ

Ob(C).

(5) Every K œ �n(X) is projective.

If C has enough injective objects, then

the following conditions are equiva-

lent:

(1’) Y œ In(C).

(2’) Y has an exact and finite right

injective resolution of length n.

(3’) Exti
C(X, Y ) = 0 for every X œ

Ob(C) and every i > n.

(4’) Extn+1
C (X, Y ) = 0 for every

X œ Ob(C).

(5’) Every C œ �≠n(Y ) is injective.

Proposition 1.7.3

1.8 n-Projective and n-injective chain complexes

In this section we characterize the n-projective and n-injective chain complexes

over an Abelian category C, for every positive integer n. Specifically, we shall

show that X is an n-projective complex if, and only if, it is exact and every cycle

of X is a n-projective object of C. We have a dual equivalence for the injective

case.
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Definition 1.8.1. Given an object X in a category C, we shall say that an object

Y is a retract of X if there exist morphisms Y
ræ X and p : X

pæ Y such that

p ¶ r = idY , i.e. r has a left inverse. The map r is called a retraction.

Definition 1.8.2. Let S = X Õ Òæ X ⇣ X ÕÕ denote a short exact sequence in an

Abelian category C. A class X ™ Ob(C) is said to be:

(1) closed under extensions if for every S, X Õ, X ÕÕ œ X implies X œ X ;

(2) closed under taking kernels of epimorphisms if for every S, X, X ÕÕ œ X implies

X Õ œ X ;

(3) closed under taking cokernels of monomorphisms if for every S, X Õ, X œ X
implies X ÕÕ œ X ;

(4) resolving if it contains the projective objects of C and it satisfies (1) and (2);

(5) coresolving if it contains the injective objects of C and it satisfies (1) and (3);

(6) thick if it satisfies (1), (2) and (3), and if it is closed under retracts.

Example 1.8.1. The class E of exact chain complexes over an Abelian category

C is thick.

First, we show E is closed under retracts. Recall that a complex E is exact

if, and only if, the nth homology group Hn(E) = Zn(E)
Bn(E) of E is zero for every

n œ Z. Suppose we are given a sequence E Õ ræ E
pæ E Õ such that E is exact and

p ¶ r = idEÕ . For every n œ Z, after applying the functor Hn(≠) to the previous

sequence, we have that Hn(E Õ) is a retract of Hn(E) = 0. It follows Hn(E Õ) = 0

and hence E Õ is exact.

Now suppose we are given a short exact sequence E Õ Òæ E ⇣ E ÕÕ. By (46, Theorem

7.48), there exist connecting homomorphisms ” : Hn(E ÕÕ) æ Hn≠1(E Õ) such that

the following sequence is exact:

· · · æ Hn+1(E ÕÕ) ”æ Hn(E Õ) æ Hn(E) æ Hn(E ÕÕ) ”æ Hn≠1(E Õ) æ · · ·



65

This sequence is called the long exact homology sequence. Then it is clear that E
satisfies (1), (2) and (3).

Let C be an Abelian category.
If 0 æ An æ · · · æ A0

f
0æ X æ 0 is

an exact sequence in Ch(C) such that

Ai is exact for every 0 Æ i Æ n, then

so is X.

If 0 æ Y
g0æ B0 æ · · · æ Bn æ 0 is

an exact sequence in Ch(C) such that

Bi is exact for every 0 Æ i Æ n, then

so is Y .

Lemma 1.8.1 (see (49, Lemma 4.2))

Proof .

We only prove the left statement, by using induction on n. The case n = 0 is

trivial, while the case n = 1 follows by the previous example. For the general case,

we note first by the induction hypothesis that Im(f1) is exact since the sequence

0 æ An æ An≠1 æ · · · æ A1 æ Im(f1) æ 0 is exact. It follows that X is exact

by using the short exact sequence Im(f1) Òæ A0 ⇣ X and the case n = 1.

Consider a short exact sequence S = Y
f

Òæ Z
g⇣ X in Ch(C).

If Y is exact, then S gives rise to a

short exact sequence

Zm(Y ) Òæ Zm(Z) ⇣ Zm(X).

If X is exact, then S gives rise to a

short exact sequence

Ym

Bm(Y ) Òæ Zm

Bm(Z) ⇣ Xm

Bm(X) .

Lemma 1.8.2

Proof .

We only show the left statement for the category RMod. The general proof follows

by (43, Theorem 3, page 204). Note we have the following commutative diagrams:
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Zm(Z) Zm Zm≠1 Zm(X) Xm Xm≠1

Zm(Y ) Zm(Z)

iZ
m iX

mˆZ
m ˆX

m

fm
¶ iYm

gm
¶ iZm

÷! Zm(f) ÷! Zm(g)

It is easy to check that Zm(f) is monic and that Ker(Zm(g)) = Im(Zm(f)). These

facts do not depend on the exactness of Y . Let x œ Zm(X). There exists z œ Zm

such that x = gm(z). We have gm≠1 ¶ ˆZ
m(z) = ˆX

m ¶ gm(z) = 0. Since the sequence

Ym≠1 Òæ Zm≠1 ⇣ Xm≠1 is exact, there exists y œ Ym≠1 such that ˆZ
m(z) = fm≠1(y).

Then fm≠2 ¶ ˆY
m≠1(y) = ˆZ

m≠1 ¶ fm≠1(y) = 0 and so ˆY
m≠1(y) = 0 since fm≠2 is

monic. By the exactness of Y , there exists yÕ œ Ym such that y = ˆY
m(yÕ). Hence

ˆZ
m(z ≠ fm(yÕ)) = 0 and gm(z ≠ fm(yÕ)) = x.

Let 0 æ An
fnæ An≠1 æ · · · æ A1

f
1æ A0 æ 0 be an exact sequence in Ch(C) of

exact chain complexes. Then the mth cycles Zm(Ai) form the following exact

sequence in C, for every m œ Z:

0 æ Zm(An) æ Zm(An≠1) æ · · · æ Zm(A1) æ Zm(A0) æ 0.

Lemma 1.8.3 (see (49, Lemma 4.3))

Proof .

The case n = 1 is trivial. The case n = 2 follows by the previous lemma. Now

suppose the statement is true for n ≠ 1. Then we have an exact sequence of

the form 0 æ An æ An≠1 æ · · · æ A2 æ Im(f2) æ 0, where Im(f2) is an exact

complex by Lemma 1.8.1. By the induction hypothesis, we have an exact sequence

of mth cycles
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0 æ Zm(An) æ Zm(An≠1) æ · · · æ Zm(A2) æ Zm(Im(f2)) æ 0.

We get the following commutative diagram with exact rows and columns

0 Zm(An) Zm(An≠1) · · · Zm(A2) Zm(Im(f2)) 0

Zm(A1)

Zm(A0)

h

It is not hard to show that

0 æ Zm(An) æ Zm(An≠1) æ · · · æ Zm(A2) hæ Zm(A1) æ Zm(A0) æ 0

is an exact sequence in C, for every m œ Z.

The right statement of the following proposition is proven in (24, Theorem 3.1.3).

We give a di�erent argument.

Let C be an Abelian category and n be a positive integer.
Assume C has enough projective ob-

jects. A chain complex X is n-pro-

jective if, and only if, X is exact and

Zm(X) is an n-projective object of C
for every m œ Z.

Assume C has enough injective ob-

jects. A chain complex Y is n-in-

jective if, and only if, Y is exact and

Zm(Y ) is an n-injective object of C
for every m œ Z.

Proposition 1.8.4 (see (49, Proposition 4.4))
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Proof .

(≈=) Let X be an exact complex such that Zm(X) is n-projective for every m œ Z.

Consider a partial projective resolution

0 æ K æ Pn≠1 æ · · · æ P1 æ P0 æ X æ 0.

We shall see K is also projective by proving that K is exact with projective cycles

(Proposition 1.3.3). Note K is exact by Lemma 1.8.1. It follows by Lemma 1.8.3

that the mth cycles give rise to an exact sequence

0 æ Zm(K) æ Zm(Pn≠1) æ · · · æ Zm(P1) æ Zm(P0) æ Zm(X) æ 0

in C, where each Zm(Pi) is projective, and so Zm(K) œ �n(Zm(X)). Hence,

Zm(K) œ �n(Zm(X)) ™ P0(C) since Zm(X) is n-projective.

(=∆) Now suppose that X has a projective resolution

0 æ Pn æ Pn≠1 æ · · · æ P1 æ P0 æ X æ 0

of length n. The complex X is exact by Lemma 1.8.1. Then by Lemma 1.8.3, we

get for every m œ Z an exact sequence

0 æ Zm(Pn) æ Zm(Pn≠1) æ · · · æ Zm(P1) æ Zm(P0) æ Zm(X) æ 0

in C, where Zm(Pk) is projective, for every 0 Æ k Æ n. Hence Zm(X) is n-

projective.

1.9 Grothendieck categories

In this section we recall the notion of Grothendieck categories. They are a spe-

cial type of Abelian categories introduced by Alexander Grothendieck in 1957 in
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order to generalize the machinery of homological algebra known in the category

of modules. Some of the results used in this thesis are known in the categories of

modules and chain complexes of modules, but they can be presented in terms of

Grothendieck categories. Since one of our objectives is to present our results in a

categorical setting, if possible, it would be good if the reader took some minutes

to review this section.

Definition 1.9.1. A family of objects (Gi : i œ I) in a category C, indexed by a

set I, is called
a set of generators if for each pair of

di�erent morphisms f, g : X æ Y ,

there is a Gi and a map Gi
hæ X with

f ¶ h ”= g ¶ h. If the set of generators

is a singleton {G}, then G is called a

generator.

a set of cogenerators if for each pair

of di�erent morphisms f, g : X æ Y ,

there is a Gi and a map Y
hæ Gi with

h ¶ f ”= h ¶ g. If the set of cogenerators

is a singleton {G}, then G is called a

cogenerator.

Remark 1.9.1. If C is a pointed cocomplete category with a set of genera-

tors (Gi : i œ I), then by r
iœI HomC(Gi, ≠) ≥= HomC(‡

iœI Gi, ≠) the coproduct
‡

iœI Gi of the Gi is a generator.

Example 1.9.1.

(1) In Set, each nonempty set is a generator, and each set with at least two

elements is a cogenerator.

(2) In Top, each discrete and nonempty topological space is a generator, and each

topological space with at least two elements and equipped with the indiscrete

topology is a cogenerator.

(3) The category Grp does not have any cogenerator. In the full subcategory

Ab, Q/Z is a cogenerator. In both cases, the group Z is a generator.
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(4) In RMod or ModR, R is a generator.

(5) If G is a generator of C, then the direct sum ümœZDm(G) is a generator of

Ch(C).

Let C be a category with coproducts. An object G is a generator if, and only

if, to each object X œ Ob(C) there is an epimorphism G(I) æ X, where I =

HomC(G, X) and G(I) denotes the coproduct of copies of G over I.

Proposition 1.9.1 (see (47, Lemma 2, page 111))

Definition 1.9.2. A direct limit is a colimit of a diagram � Fæ C where Ob(�) is

a directed set, i.e. if Ob(�) has a reflexive and transitive binary relation Æ such

that each pair of elements has an upper bound.

Definition 1.9.3. A Grothendieck category is a cocomplete Abelian category C
with a generator such that:

(1) C is AB3: C has arbitrary direct sums.

(2) C is AB5: C is AB3 and direct limits of short exact sequences are exact.

Definition 1.9.4. Let Y be an object in a category C and (Xi
fiæ Y : i œ I) be

a family of subojects of Y indexed by a set I.

(1) A subobject X
fæ Y is called the intersection of the Xi’s if the following two

conditions are satisfied:

(a) X is a subobject of Xi, for every i œ I.

(b) For each object Z œ Ob(C) and each morphism Z
gæ Y which may

be factored through all Xi, there exists a morphism Z
hæ X such that

f ¶ h = g.

In pictures, we have:
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Z Y Z Y

’ i œ I: æ
Xi X

g g

f i f

÷
h
i

÷
h

Figure 1.14: Intersection of objects.

(2) A subobject X
fæ Y is called the union of the Xi’s if the following two

conditions are satisfied:

(a) Xi is a subobject of X, for every i œ I.

(b) For each object Z œ Ob(C) and each morphism Y
gæ Z such that every

g ¶ fi may be factored through a morphism Z Õ kæ Z, there exists a

morphism X
hæ Z Õ such that g ¶ f = k ¶ h.

In pictures, we have:

Xi Y X Y

’ i œ I: æ
Z Õ Z Z Õ Z

fi

g

k

f

g

k

÷
h

i

÷
h

Figure 1.15: Union of objects.

Remark 1.9.2.

(1) One can show that the intersection and union of the Xi’s are uniquely de-

termined. So we shall denote these constructions by u
iœI Xi and t

iœI Xi,

respectively.

(2) In any Grothendieck category, the intersection and union of any family of

objects exist. Moreover, (t
iœI Xi) fl Y = t

iœI Xi fl Y for every subobject

Y ™ X and every chain of subobjects (Xi : i œ I) of X. This equality is

known as the Grothendieck condition. Moreover, this equality also holds for

every directed family of subobjects of X (47, Lemma 2, page 182).
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Example 1.9.2.

(1) If C = Set, Grp, RMod, or ModR, then the intersection and the union of a

family of subobjects (Xi : i œ I) of an object Y are given by the objects

‹

iœI

Xi = {x œ Y : x œ Xi for every i œ I} and

€

iœI

Xi = {x œ Y : x œ Xi for some i œ I},

respectively.

(2) Union of an ascending chain of chain complexes: Let (X i : i œ I) be a family

of chain complexes such that X i is a subcomplex Xj whenever i Æ j, then the

union of this family is given by the chain complex

€

iœI

X i = · · · æ €

iœI

X i
n+1

ˆn+1æ €

iœI

X i
n

ˆnæ €

iœI

X i
n≠1 æ · · · ,

where the boundary maps ˆn : t
iœI X i

n æ t
iœI X i

n≠1 are defined by ˆn(x) :=

ˆXi

n (x) if x œ Xi.

In (20), the notion of cardinality is given for Grothendieck categories. This shall

allow us to extend some results in the context of the set theoretical homological

algebra to any Grothendieck Category.

Definition 1.9.5. Let C be a Grothendieck category with a fixed generator G.

For each object X œ Ob(C), we shall define the cardinality of X by Card(X) :=

|HomC(G, X)|, where |HomC(G, X)| denotes the cardinal number of HomC(G, X).

If X is a subobject of an object Y in a Grothendieck category C, then Card(X) Æ
Card(Y ).

Lemma 1.9.2 (see (20, Lemma 2.5))
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Example 1.9.3.

(1) If C =R Mod or ModR, then the cardinality of a module M coincides with

|M |. In this case, R is a generator of C. The mapping f ‘æ f(1) defines an

isomorphism HomR(R, M) æ M .
(2) The cardinal of a chain complex X = (Xm, ˆX

m)mœZ œ Ob(Ch(RMod)) is

usually defined as the cardinal number of the disjoint union g
mœZ Xm. On the

other hand, since Ch(RMod) is a Grothendieck category with a generator

G = m
mœZ Dm(R), the cardinality of X is given by Card(X) = |Hom(G, X)|.

For every m œ Z, the mapping f ‘æ fm(1) defines an isomorphism of modules

from Hom(Dm(R), X) to Xm. Then |Hom(Dm(R), X)| = |Xm| and since

Hom(G, X) ≥= r
mœZ Hom(Dm(R), X), we have Card(X) Ø | g

mœZ Xm|.

Now we study a special type of generators, called progenerator, that allows to

construct an equivalence between any Abelian category C equipped with a pro-

generator, and ModR for some ring R. Colloquially, this represents a method to

translate results in ModR to C.

Definition 1.9.6. If C is a cocomplete Abelian category, we say that a projective

object P of C is finite if the functor HomC(P , ≠) : C æ Ab preserves coproducts.

A progenerator of C is a finite projective generator.

According to (47, Corollary 1, page 213), every cocomplete Abelian category with

a progenerator is a Grothendieck category with an injective cogenerator. So the

results we have given so far for Grothendieck categories hold for this particular

class of Abelian categories.

Definition 1.9.7. An equivalence of categories between two categories C and D
is given by a pair of functors C Fæ D GΩ C such that G ¶ F and F ¶ G are naturally

isomorphic to idC and idD, respectively.
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Let C be an Abelian category. There exists an equivalence of categories F :

C æ ModR for some ring R if, and only if, C contains a progenerator P and

arbitrary coproducts of copies of P . If F is an equivalence, then P may be

chosen such that HomC(P , P ) ≥= R and F = HomC(P , ≠).

Theorem 1.9.3 (see (47, Theorem 1, page 211))

The equivalence F of the previous theorem is called Mitchell’s equivalence.

To conclude this section, we present the existence of enough injective objects in

every Grothendieck category. This can be found in the famous Grothendieck’s

Tohoku paper Sur quelques points d’algèbre homologique.

If C is an Abelian category satisfying AB5 and admitting a generator, then

for every object Y œ Ob(C) there exists a monomorphism Y Òæ I, for some

injective object I.

Theorem 1.9.4 (A. Grothendieck, see (32, Theorem 1.10.1))

The injective object I can be constructed to be functorial in Y . This is due to the

fact that every Grothendieck category has an injective cogenerator, as mentioned

in (1, page 379).

We know that a left R-module I is injective if, and only if, every morphism J æ I

defined on a left ideal J of R can be extended to all of R (Baer’s Criterion).

Another important result in the just cited Grothendieck’s paper is a generalization

of Baer’s Criterion.
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If C is an AB5 Abelian category with a generator G, then an object Y of C is

injective if, and only if, for every subobject U of G and for every morphism

U æ Y , there exists a morphism G æ Y such that (G æ Y ) ¶ (U Òæ G) =

U æ Y .

Theorem 1.9.5 (A. Grothendieck, see (32, Lemme 1, page 136))

The following result follows.

Let C be a Grothendieck category with a generator G, and Y be an object of

C. The following are equivalent:

(1) Y is n-injective.

(2) Extn+1
C (G/J, Y ) = 0 for every subobject J of G.

Corollary 1.9.6

1.10 Modules over ringoids

Throughout this thesis, we shall be working mainly with the categories of left

R-modules and complexes over left R-modules. These categories are particular

examples of a categorical notion known as modules over ringoids. Some results

concerning the relationship between projective dimensions and model structures

are presented in the context of modules over ringoids, so we devote the last lines

of this chapter to recall this concept.

Definition 1.10.1. We shall say that a small pre-additive category R is a ring with

many objects, or a ringoid.
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If R is a ringoid, then we have a composition law

HomR(b, c) ¢ HomR(a, b) æ HomR(a, c)

y ¢ x ‘æ y ¶ x

for every a, b, c œ Ob(R), and a unit ida œ HomR(a, a) for every a œ Ob(R).

The composition law defines a ring structure on HomR(a, a) for every a œ Ob(R).

Moreover, the Abelian group HomR(a, b) has the structure of a bimodule, with a

left action by HomR(b, b) and a right action by HomR(a, a).

Example 1.10.1.

(1) Every ring R can be regarded as a ringoid R having a single object ı if we

put HomR(ı, ı) = R.

(2) We shall denote by S the ringoid generated by the following infinite graph

· · · 2 1 0 ≠1 ≠2 · · ·ˆ2 ˆ1 ˆ0 ˆ≠1

e
2

e
1

e
0

e≠1

e≠2

together with the relation ˆn ¶ ˆn+1 = 0 for n œ Z. We have

(i) Ob(S) = Z.

(ii) HomS(i, j) =

Y
_____]

_____[

ÈeiÍ := {m · ei : m œ Z} if j = i,

ÈˆiÍ := {m · ˆi : m œ Z} if j = i + 1,

0 otherwise.

(3) The opposite Rop of a ringoid R is defined by putting Ob(Rop) = Ob(R) and

HomRop(a, b) = HomR(b, a).

We shall denote the category of additive functors between two pre-additive cate-

gories C and D by [C, D]. It is known that if D is Abelian, complete or cocomplete,

then so is [C, D].
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Definition 1.10.2. A (left) module M over a ringoid R is an additive functor

M : R æ Ab. A map of (left) R-modules is a natural transformation M
fæ N .

A right module over R is defined to be a left Rop-module. In other words, a right

R-module is a contravariant additive functor R æ Ab.

Example 1.10.2. Given a ringoid R and a œ Ob(R), the covariant functor

HomR(a, ≠) : R æ Ab is a (left) R-module and the contravariant functor

HomR(≠, a) : R æ Ab is a right R-module.

We shall denote the category of left R-modules by Mod(R). Note that this

category is Abelian, complete and cocomplete, since Ab is.

Remark 1.10.1. A sequence of R-modules · · · æ M1 æ M0 æ M≠1 æ · · · is

exact if the sequence of Abelian groups · · · æ M1(a) æ M0(a) æ M≠1(a) æ · · ·
is exact for every a œ Ob(R).

Definition 1.10.3. If M is a R-module, we say that the direct sum m
aœOb(R) M(a)

is the total group of M . We shall say that an element x œ M(a) is homogenous of

grade a and we shall write a = |x|.

If M is a left module over a ringoid R, then the map HomR(a, b) æ Hom
Ab

(M(a), M(b))

of Abelian groups defined by M induces a multiplication

HomR(a, b) ¢ M(a) æ M(b)

(r, x) ‘æ r · x := M(r)(x)

for every a, b œ Ob(R). The product of r œ HomR(a, b) by x œ M(a) is an element

r · x œ M(b).
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Definition 1.10.4. We shall say that a linear combination of homogenous ele-

ments y = q
iœI ri · xi is admissible if y is homogenous and ri œ HomR(|xi|, |y|) for

every i œ I. We will accept infinite combinations in the case where ri = 0 for all

but finitely many i œ I.

Definition 1.10.5. If M is a left R-module we shall say that a family N =

{N(a) : a œ Ob(R)} of subgroups N(a) ™ M(a) is a submodule if x œ N(a)

implies r · x œ N(b) for every r œ HomR(a, b).

Remark 1.10.2. Note that the family N = {N(a) : a œ Ob(R)} in the previous

definition defines a functor N : R æ Ab. Let r : a æ b be a map in R. For

every x œ N(a), we have M(r)(x) = r · x œ N(b). Then we define N(r) as the

restriction M(r)|N(a). Conversely, if N is a subfunctor of M , then r · x œ N(b) for

every r œ HomR(a, b) and every x œ N(a).

We finish this section by presenting a generalized version of Theorem 1.9.3, which

states that any Abelian category satisfying certain conditions is equivalent to the

category of right modules over certain ringoid.

Let G be a set of finite projective generators of a cocomplete Abelian category

C. Let EndC(G) denote the full subcategory of C with Ob(EndC(G)) = G. Note

that EndC(G) is a ringoid. Let L : C æ [EndC(G)op, Ab] be the functor defined as

follows:

(1) If X œ Ob(C), then L(X)(G) = HomC(G, X), for every G œ G.

(2) If X
fæ Y is an arrow in C, then L(f) : L(X) æ L(Y ) is the natural transfor-

mation defined by putting

L(f)G = HomC(G, f) : HomC(G, X) æ HomC(G, Y )

for every G œ G.
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Let C be a cocomplete Abelian category with a set of finite projective generators

G. Then the functor L defined above is an equivalence of categories.

Theorem 1.10.1 (P. Freyd. See (18, Theorem 7.1))





CHAPTER II

MODEL CATEGORIES AND RELATIVE HOMOLOGICAL
ALGEBRA

“Monsters are real, and ghosts are real too.

They live inside us, and sometimes, they win.”

Stephen King.

This chapter is devoted to study the connection between model categories and

cotorsion theories. The notion of model categories was introduced by Daniel

Quillen in 1967 (51). Roughly speaking, these are categories equipped with three

distinguished classes of morphisms called weak equivalences, cofibrations and fi-

brations, which allow us to do homotopy theory. The triplet formed by these

three classes is known as a model structure on the given category. Problably the

most well-known example of a model category is the category of topological spaces

Top, where the weak equivalences are given by weak homotopy equivalences of

continuous functions (Details can be found in (51)).

In this work we deal with a particular class of model categories, called Abelian

model categories. In 2002, Mark Hovey established criteria to construct Abelian

model structures from two compatible and functorially complete cotorsion pairs,

and viceversa (35). Roughly speaking, cotorsion pairs are given by two classes of
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objects in an Abelian category which are orthogonal to each other with respect to

the 1st extension functor Ext1
C(≠, ≠). The theory of complete cotorsion pairs was

first introduced by Luigi Salce in 1977 is his paper Cotorsion Theories for Abelian

Groups (53). This notion was rediscovered by Edgar E. Enochs in 2000 in the

category of modules over a ring, turning out to be an important tool to prove the

existence of a flat cover for every module. About 2008, James Gillespie started

to develop several methods to induce cotorsion pairs in chain complexes over an

Abelian category C, from a cotorsion pair in C satisfying certain conditions (see

(25), (27) and (26)). We shall present proofs of these results, based on Gillespie

arguments, but some of them with slight modifications and remarks.

2.1 Weak factorization systems and model structures

We shall give the formal definition of a model category and present some exam-

ples. We shall use the concept stated by Hovey in (36), which di�ers slightly to

the one originally given by Quillen in (51). In order to understand better the

notion of a model structure, we first present the concept of a weak factorization

system. The purpose for doing so is to give the proof of Hovey’s Correspondence

in a more understandable way.

Definition 2.1.1. Let X
fæ Y and W

gæ Z be two morphisms in a category

C. We shall say that f has the left lifting property with respect to g if for every

equality g ¶u = v ¶f , there exists a map Y
dæ W such that d¶f = u and g ¶d = v.

One may also say that g has the right lifting property with respect to f .

The commutative square below is known as a lifting problem and d is called a

solution or a diagonal filler. We write f t g if f has the left lifting property with

respect to g.
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X W X W

=∆
Y Z Y Z

u

v

u

v

f fg g÷ d

Figure 2.1: Left lifting property.

If M is a class of morphisms of C, we shall say that f has the left lifting property

with respect to M if it has the left lifting property with respect to every g œ M.

We shall denote by tM the class of all morphisms having the left lifting property

with respect to M. Similarly, Mt shall denote the class of all morphisms having

the right lifting property with respect to M.

Definition 2.1.2. A weak factorization system on a category C is a pair (L, R)

formed by two classes of morphisms L and R of C such that:

(1) Lifting axiom: L = tR and R = Lt.

(2) Factorization axiom: For every morphism X
fæ Y in C, there exists l œ L and

r œ R such that the following triangle commutes:

X Y

Z

f

l r

Figure 2.2: Factorization axiom.

Condition (1) in the previous definition can be di�cult to check in several cases.

The notions of domain and codomain retracts provide an easier way to verify that

a given pair of classes of morphisms in C form a weak factorization system.
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Definition 2.1.3.
A map X

uæ Z is a domain retract of

Y
væ Z if there exist maps X

fæ Y

and Y
gæ X such that the following

diagram commutes:

X Y X

Z

f

u

g

v
u

A map Z
uæ X is a codomain retract

of Z
væ Y if there exist maps X

fæ Y

and Y
gæ X such that the following

diagram commutes:
Z

X Y X
f g

u v
u

Figure 2.3: Domain and codomain retracts.

A class M of maps in C is said to be:
closed under domain retracts if ev-

ery domain retract of a map in M
belongs to M.

closed under codomain retracts if every

codomain retract of a map in M belongs

to M.

A pair (L, R) of classes of maps in a category C is a weak factorization system

if, and only if, the following conditions are satisfied:

(1) l t r for every l œ L and r œ R.

(2) The class L is closed under codomain retracts, and the class R under domain

retracts.

(3) Every map X
fæ Y admits a factorization f = r ¶ l with l œ L and r œ R.

Theorem 2.1.1 (see (39, Weak factorization systems, Theorem 2))

In some cases, factorizations in a weak factorization system are assumed to be

functorial.
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Definition 2.1.4. Given a category C, let Map(C) denote the category whose

objects are the morphisms of C, and whose maps (u, v) : (X fæ Y ) æ (W gæ Z)

are commutative squares

X W

Y Z

u

f g

v

A functorial factorization is an ordered pair (F, G) of functors Map(C) æ Map(C)

such that every morphism X
fæ Y of C can be written as f = G(f) ¶ F (f).

Definition 2.1.5. A functorial weak factorization system on a category C is a

pair (L, R) formed by two classes of morphisms L and R of C such that:

(1) Lifting axiom: L = tR and R = Lt.

(2) Factorization axiom: C is equipped with a functorial factorization (L, R) such

that for every morphism X
fæ Y , L(f) œ L and R(f) œ R.

In most of the definitions appearing in the literature, factorizations do not need

to be functorial. However, we shall work with the previous definition in order to

establish Hovey’s correspondence.

Example 2.1.1. The following are examples of weak factorization systems:

(1) In Set: L = Surj := {surjective functions} and R = Inj := {injective functions}.

(2) In Grp: L = Epi := {epimorphisms} and R = Mono := {monomorphisms}.

(3) In any category C: (Mor(C), Iso(C)) and (Iso(C), Mor(C)) are weak factor-

ization systems, where Iso(C) is the class of isomorphisms.

The three examples above are in fact factorization systems.

(4) In Set, the classes L := Inj and R := Surj form a weak factorization system

where factorizations of functions are not necessarily unique. This is mentioned

in (7, Example 3.-1.).
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Definition 2.1.6. Two classes of morphism L and R in a category C form a

factorization system (L, R) if the following two conditions are satisfied:

(1) The classes L and R contain Iso(C) and are closed under compositions.

(2) Unique factorizations: Every map X
fæ Y admits a factorization f = r¶l with

l œ L and r œ R such that this factorization is unique up to isomorphisms.

That is, if f = rÕ ¶ lÕ is another factorization with lÕ œ L and rÕ œ R, then

there exists an isomorphism Ï such that the following diagram commutes:

Z

X Y

Z Õ

≥= Ï

l

l Õ

r

r
Õ

Definition 2.1.7. Let X
fæ Y be a morphism in a category C.

If pullbacks exist in C, the diagonal

of f is the only morphism ”(f) :

X æ X ◊Y X such that the diagram

X

X ◊Y X X

X Y

”(f)
fi2

fi1 f

f

commutes.

A class of maps M of C is said to be

closed under diagonals if f œ M ∆
”(f) œ M.

If pushouts exist in C, the codiagonal

of f is the only morphism ”o(f) :

Y
‡

X Y æ Y such that the diagram

X Y

Y Y
‡

X Y

Y

f

f ÿ1

ÿ2 ” o(f)

commutes.

A class of maps M of C is said to be

closed under codiagonals if f œ M ∆
”o(f) œ M.
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In a category C with pullbacks, a

weak factorization system (L, R) on

C is a factorization system if, and

only if, the class R is closed under

diagonals.

In a category C with pushouts, a

weak factorization system (L, R) on

C is a factorization system if, and

only if, the class L is closed under

codiagonals.

Proposition 2.1.2 (see (39, Factorization systems, Propositions 3 and 4))

Definition 2.1.8. Let X
fæ Y and W

gæ Z be morphisms in a category C.
If pullbacks exist in C, the base change

of g along a map Y
væ Z is the map

Y ◊Z W æ Y in the pullback square

Y ◊Z W W

Y Z

g

v

A class of maps M of C is said to be

closed under base change if the base

change of each map in M belongs to

M.

If pushouts exist in C, the cobase

change of f along a map X
uæ W is

the map W
gæ Y

‡
X W in the pushout

square
X W

Y Y
‡

X W

u

f

A class of maps M of C is said to

be closed under cobase change if the

cobase change of each map in M be-

longs to M.

Definition 2.1.9. We shall say that a class of maps M in a category C is

closed under retracts if the following implication is true: f is a retract of g in

the category Map(C) and g œ M =∆ f œ M.

The following result gives some closure properties of the classes Mt and tM.

The details can be found in (39, Weak Factorization Systems, Lemma 2).
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Let M be a class of morphisms in a category C.
If C has products and pullbacks (i.e.

C is complete), then Mt contains

the isomorphisms and is closed un-

der composition, retractions, prod-

ucts and base changes.

If C has coproducts and pushouts (i.e.

C is cocomplete), then tM contains

the isomorphisms and is closed under

composition, retractions, coproducts

and cobase changes.

Proposition 2.1.3

Suppose C is an Abelian category with f : X æ Y monic and g : W æ Z epic.

If Ext1
C(CoKer(f), Ker(g)) = 0 then f t g.

Lemma 2.1.4

Proof .

Suppose we are given a commutative diagram

X Y CoKer(f)

Ker(g) W Z

– —

f

k

c

g

We want to find a diagonal filler d : Y æ W such that d ¶ f = – and g ¶ d = —.

We have the following commutative grid (Corollary 1.5.1):
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0

✏✏

0

✏✏

0

✏✏

0
✏✏

0 // Hom(CoKer(f), Ker(g))

✏✏

// Hom(Y, Ker(g))

✏✏

// Hom(X, Ker(g))

✏✏

//

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠: 0

Ext1(CoKer(f), Ker(g))

✏✏

// · · ·

0 // Hom(CoKer(f), W ) //

✏✏

Hom(Y, W )

✏✏

// Hom(X, W )

✏✏

” // Ext1(CoKer(f), W ) //

✏✏

· · ·

0 // Hom(CoKer(f), Z) //

✏✏

Hom(Y, Z)

✏✏

// Hom(X, Z)

✏✏

// Ext1(CoKer(f), Z) //

✏✏

· · ·

· · · //

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠: 0

Ext1(CoKer(f), Ker(g)) //

✏✏

Ext1(Y, Ker(g)) //

✏✏

Ext1(X, Ker(g))

✏✏

// Ext2(CoKer(f), Ker(g))

✏✏

// · · ·

... ... ... ...

We begin with – œ HomC(X, W ). We have a commutative diagram

– ”(–)

— g ¶ – = — ¶ f 0

Since the map Ext1
C(CoKer(f), W ) æ Ext1

C(CoKer(f), Z) is monic, we have ”(–) =

0. Then by exactness there exists a map d0 : Y æ W such that – = d0 ¶ f . Con-

sider the map —≠g¶d0 : Y æ Z. Then —≠g¶d0 ‘æ —¶f≠g¶d0¶f = —¶f≠g¶– = 0,

and so by exactness there exists a map l : CoKer(f) æ Z such that —≠g¶d0 = l¶c.

Since HomC(CoKer(f), W ) æ HomC(CoKer(f), Z) is epic, there exists a map

lÕ : CoKer(f) æ W such that l = g ¶ lÕ. Set d := d0 + lÕ ¶ c : Y æ W , we have:

d ¶ f = d0 ¶ f + lÕ ¶ c ¶ f = – + 0 = –,

g ¶ d = g ¶ d0 + g ¶ lÕ ¶ c = g ¶ d0 + l ¶ c = g ¶ d0 + — ≠ g ¶ d0 = —.

Hence, f t g.
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We introduce the following notation for a weak factorization system (L, R):

Ker(R) := {Ker(r) : r œ R} and CoKer(L) := {CoKer(l) : l œ L}.

Let C be an Abelian category equipped with a weak factorization system (L, R)

such that L ™ Mono(C) and R ™ Epi(C). The following conditions are equiv-

alent:

(1) l is monic and CoKer(l) œ CoKer(L) =∆ l œ L.

(2) r is epic and Ker(r) œ Ker(R) =∆ r œ R.

(3) Ext1
C(A, X) = 0 for every A œ CoKer(L) and X œ Ker(R).

Lemma 2.1.5

Proof .

We only prove (1) ≈∆ (3), since (2) ≈∆ (3) is dual.

(1) =∆ (3): Let A œ CoKer(L) and X œ Ker(R). Consider a representative

0 æ X æ Y æ A æ 0 of a class in Ext1
C(A, X). We show this sequence splits.

On the one hand, by (1), f : X æ Y is in L. On the other hand, there exists

r œ R such that X = Ker(r). Since r is epic, we have a short exact sequence

0 æ X æ W
ræ Z æ 0. It is not hard to see that X is the pullback of the maps

0 æ Z and r. We have a pullback square

X W

0 Z

r œ R

So X æ 0 is the base change of r along 0 æ Z. By Proposition 2.1.3, we have

(X æ 0) œ R. It follows we have a commutative square
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X X

Y 0
L – f œ R

So there is a map d : Y æ X such that d ¶ f = idX , i.e. the short exact sequence

0 æ X æ Y æ A æ 0 splits.

(1) ≈= (3): Let f be a monic map such that CoKer(f) œ CoKer(L). Let r œ R.

Then r is epic by hypothesis, with Ker(r) œ Ker(R). Since Ext1
C(CoKer(l), Ker(r))

is 0 by (3), we have l t r by Lemma 2.1.4. Since l t r for every r œ R, we have

l œ tR = L.

Definition 2.1.10. Let C be a category and Cof , Fib and Weak be three classes

of morphisms called cofibrations (Òæ), fibrations (⇣), and weak equivalences

( ≥≠æ), respectively. We also call CofflWeak the class of trivial or acyclic cofibrations

and Fib flWeak the class of trivial or acyclic fibrations. The triple (Cof , Fib, Weak)

is said to be a model structure on C if the following conditions are satisfied:

(1) 3 ◊ 2 axiom 1: Let f and g be two morphisms such that the composition g ¶f

makes sense. If two out of three of the morphisms f , g and g ¶ f are weak

equivalences, then so is the third.

X Y Z =∆ X Y Z≥

≥

≥ ≥

≥

Figure 2.4: One of the possible cases of the 3◊2 axiom.

1. Better known as the two-out-of-three axiom in the literature (for instance (36)). We prefer

to call this axiom as A. Joyal does in (39, Model categories): “This is like getting three apples

for the price of two in a food store”.
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(2) (Cof fl Weak, Fib) and (Cof , Fib fl Weak) are weak factorization systems.

Definition 2.1.11. A model category is a bicomplete 2 category equipped with a

model structure.

The original definition given by Daniel Quillen in (51) only requires finite limits

and colimits to exist, and it also drops the adjective functorial in the factorization

axiom. At a first glance, the di�erence between finite and infinite (co)limits is not

very important. The examples considered in this work correspond to bicomplete

categories. However, we stress the functoriality in the factorization axiom, since

this is a key thing to establish Hovey’s Correspondence.

Some references, for example (36), add a third axiom in the previous definition,

known as the retract axiom, which states that the classes Cof , Fib, and Weak

are closed under retracts. However, this condition is true for Cof and Fib since

(Cof , Fib fl Weak) and (Cof fl Weak, Fib) are weak factorization systems. The fact

that Weak is closed under retracts is a result known as Tierney’s Lemma (due to

Myles Tierney), and the reader can check the details in (39, Model categories,

Lemma 1).

Let C be a bicomplete category equipped with a model structure (Cof , Fib, Weak).

A morphism X
fæ Y is a weak equivalence if, and only if, it is the composition

of a trivial cofibration followed by a trivial fibration.

Proposition 2.1.6

Proof .

Suppose f is a weak equivalence. By the factorization axiom, f can be factored

2. A category C is bicomplete if it is complete and cocomplete.
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as f = r ¶ l where l is a trivial cofibration and r is a fibration. By the 3◊2 axiom,

we have r is a trivial fibration. Conversely, if f is the composition of a trivial

cofibration followed by a trivial fibration, then f is a weak equivalence by the

3◊2 axiom.

Remark 2.1.1. Note that in a model category C, any of the two classes Cof and

Fib is determined by the remaining two. For example, Cof = t(Fib fl Weak).

Example 2.1.2. We give some classical examples of model categories.

(1) Every bicomplete category is equipped with a model structure. Namely,

Weak := Iso(C) and Cof = Fib := Mor(C).

(2) If C is equipped with a model structure, then so is Cop. The cofibrations,

fibrations and weak equivalences of Cop are the fibrations, cofibrations and

weak equivalences of C, respectively.

(3) Two model structures on Top: Let I be the unit interval I = [0, 1] and In =

[0, 1]◊· · ·◊[0, 1] (n times). For n = 0, I0 is a point. Recall that two continuous

functions f, g : X æ Y between topological spaces are said to be homotopic

(denoted f ≥ g) if there exists a continuous function H : X ◊I æ Y such that

H(x, 0) = f(x) and H(x, 1) = g(x), for every x œ X. It is not hard to see that

≥ defines an equivalence relation. Let ˆIn denote the boundary of In. Fix a

point x in a topological space X. By a continuous map f : (In, ˆIn) æ (X, x)

we mean f(s) = x for every s œ ˆIn. The nth homotopy group of X at x is

defined by

fin(X, x) := {f : (In, ˆIn) æ (X, x) : f is continuous}/ ≥ .

Every continuous function X
gæ Y induces a group homomorphism

fin(X, x) fin(g,x)≠æ fin(Y, g(x))
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given by f ‘æ g ¶ f , for every x œ X. A morphism g in Top is called a

weak homotopy equivalence if fin(g, x) is a group isomorphism for every n Ø 0

and every x œ X (Note fi0(X) is the set of connected components of X). The

category Top is equipped with the following model structure:

• The weak equivalences are given by the weak homotopy equivalences.

• The class of fibrations is formed by the Serre fibrations, i.e. maps which

have the right lifting property with respect to inclusions of the form

Dn Òæ Dn ◊ I that include the n-disk Dn as Dn ◊ {0}.

• The class of cofibrations is given by retract of relative CW complexes.

This model structure is known as the Quillen model structure or q-model

structure on Top. Details can be found in (36, Section 2.4) or in (51, Chapter

II, Section 3).

There is another model structure on Top, known as the Hurewicz model structure

or Strøm model structure (see (55) for details):

• Weak equivalences are given by the homotopy equivalences. Recall that

a continuous function f : X æ Y is said to be a homotopy equivalence

if there exists a continuous function g : Y æ X such that g ¶ f ≥ idX

and f ¶ g ≥ idY .

• Fibrations are given by the Hurewicz fibrations, i.e. continuous maps

which have the right lifting property with respect to all inclusions of the

form A Òæ A ◊ I for any space A.

• The class of cofibrations is the class of continuous functions having the

left lifting property with respect to Hurewicz fibrations which are also

homotopy equivalences.
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2.2 Cotorsion pairs

Throughout this section, C shall denote an Abelian category.

Definition 2.2.1. Let A be a class of objects in an Abelian category C with

enough projective or injective objects. The classes

‹A := {X œ Ob(C) : Ext1
C(X, A) = 0, for every A œ A}, and

A‹ := {Y œ Ob(C) : Ext1
C(A, Y ) = 0, for every A œ A}

are known as the left and right orthogonal classes of A, respectively. Two classes

A, B ™ Ob(C) form a cotorsion pair (A, B) if A = ‹B and B = A‹.

The main purpose of this section is to prove Eklof and Trlijaf’s Theorem. It

states that from every set of modules one can construct a complete cotorsion

pair. The author does not know a reference to find a proof of this result for any

Grothendieck category. We shall give a proof in this categorical setting, based

on some arguments appearing in (21). One of the results we need to prove this

theorem is called Eklof’s Lemma, which is proven in (21) for the category of

modules.

Example 2.2.1.

(1) If P0(C) and I0(C) denote the classes of projective and injective objects in

C, respectively, then (P0(C), Ob(C)) and (Ob(C), I0(C)) are cotorsion pairs,

known as the trivial cotorsion pairs.

(2) Consider the class F0 of flat left R-modules. We shall see later that (F0, (F0)‹)

is a cotorsion pair, known as the Enochs cotorsion pair.

(3) For every class S of objects of C, it is not hard to see that S‹ = (‹(S‹))‹ and
‹S = ‹((‹S)‹). It follows (‹(S‹), S‹) and (‹S, (‹S)‹) are cotorsion pairs

in C (see (21, Page 152)).
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Remark 2.2.1. Let (A, B) be a cotorsion pair in C:

(1) The classes A and B are closed under extensions. For if AÕ Òæ A ⇣ AÕÕ

is a short exact sequence with AÕ, AÕÕ œ A and B œ B, then after deriving

HomC(≠, B) we obtain a long exact sequence of groups

· · · æ⇠⇠⇠⇠⇠⇠⇠:0
Ext1

C(AÕÕ, B) æ Ext1
C(A, B) æ⇠⇠⇠⇠⇠⇠⇠:0

Ext1
C(AÕ, B) æ · · ·

It follows Ext1(A, B) = 0 for every B œ B. Similarly, B is also closed under

extensions.

(2) Note that A contains the class of projective objects. Since A is closed under

extensions by the remark above, we have A is resolving if, and only if, A is

closed under taking kernels of epimorphisms. Similarly, B is coresolving if,

and only if, B is closed under taking cokernels of monomorphisms.

(3) The classes A and B are closed under retractions. For if AÕ is a retract of

A œ A, then we have a sequence AÕ ræ A
pæ AÕ such that p ¶ r = idAÕ .

Consider the contravariant functor Ext1
C(≠, B) with B œ B. We get a sequence

Ext1
C(AÕ, B) Ext1

C(p,B)≠æ Ext1
C(A, B) Ext1

C(r,B)≠æ Ext1
C(AÕ, B) such that idExt1

C(AÕ,B) =

Ext1
C(r, B) ¶ Ext1

C(p, B), i.e. Ext1
C(AÕ, B) is a retract of Ext1

C(A, B). Since

Ext1
C(A, B) = 0, it follows Ext1

C(AÕ, B) = 0.

(4) The classes A and B are closed under direct summands. This follows by (3),

since if AÕ is a direct summand of A, then AÕ is a retract of A.

If we are given a cotorsion pair (A, B), it is not necessarily true that Exti
C(A, B) =

0 for every A œ A, B œ B, and i > 1. There is a special type of cotorsion pairs

whose left and right classes are orthogonal with respect to every Exti
C(≠, ≠).

Definition 2.2.2. A cotorsion pair (A, B) in an Abelian category C is said to be

hereditary if A is a resolving 3 class.

3. See Definition 1.8.2.
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Let (A, B) be a cotorsion pair in an Abelian category C. Consider the following

conditions:

(1) A is resolving.

(2) B is coresolving.

(3) Exti
C(A, B) = 0 for every A œ A and B œ B, and i > 1.

If C has enough projective objects,

then (1) and (3) are equivalent.

If C has enough injective objects, then

(2) and (3) are equivalent.

Proposition 2.2.1

Proof .

We only prove the case where C has enough projective objects. Notice that a

cotorsion pair (A, B) is hereditary if, and only if, A is closed under taking kernels

of epimorphisms. Let A œ A and B œ B and suppose (1). Take a short exact

sequence K Òæ P ⇣ A, with P projective. Then we have a long exact sequence

· · · æ Exti≠1(K, B) æ Exti(A, B) æ Exti(P , B) æ · · · . We use induction on i.

Since A is resolving, we have K œ A and so Ext1(K, B) = 0. On the other hand,

Ext2(P , B) = 0. It follows Ext2(A, B) = 0. If the result is true for i ≠ 1, then

Exti≠1(K, B) = 0. Also, Exti(P , B) = 0. Hence Exti(A, B) = 0. The converse

(3) =∆ (1) follows similarly.

Throughout this thesis, we shall only work with hereditary cotorsion pairs. All of

the examples of cotorsion pairs we have given so far are hereditary, and so will be

those introduced in the next chapters. We present an example of a cotorsion pair

which is not hereditary.

Example 2.2.2. Let R be an integral domain and let Q denote the field of

quotients of R. A left R-module M is said to be a Matlis cotorsion module if
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Ext1
R(Q, M) = 0. The class MC of Matlis cotorsion modules is the right half of a

cotorsion pair (‹(MC), MC) which is not hereditary. Details about this pair can

be found in (45, Example 1.20).

For the rest of this section, we focus our attention in the study of a special type of

cotorsion pairs, called complete cotorsion pairs. Their importance resides in the

fact that it is possible to obtain certain pre-covers and pre-envelopes from them.

Moreover, if the left class A of a complete cotorsion pair (A, B) in an Abelian

category C is closed under direct limits, then it is possible to construct A-covers

for every object in C. These cotorsion pairs from which it is possible to obtain

A-covers are called perfect. We shall recall this notion in Chapter 3.

Definition 2.2.3. Let (A, B) be a cotorsion pair in an Abelian category C (with

enough projective or injective objects).
We say that (A, B) is left complete if

for every object X œ Ob(C) there is

a short exact sequence B Òæ A ⇣ X

with A œ A and B œ B.

We say (A, B) is functorially left

complete if there exists a functor F :

C æ C along with a natural epimor-

phism F æ idC such that F (X) œ A
and Ker(F (X) ⇣ X) œ B for every

object X œ Ob(C).

We say that (A, B) is right complete if

for every object X œ Ob(C) there is

a short exact sequence X Òæ B ⇣ A

with A œ A and B œ B.

We say (A, B) is functorially right

complete if there exists a functor G :

C æ C along with a natural monomor-

phism idC æ G such that G(X) œ B
and CoKer(X Òæ G(X)) œ A for every

object X œ Ob(C).

A pair (A, B) is (functorially) complete if it is both (functorially) left and right

complete.
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(1) [Original Salce’s Lemma] A cotorsion pair (A, B) in an Abelian category C
with enough projective and injective objects is left complete if, and only if,

it is right complete.

(2) [An extension of Salce’s Lemma] Let (A, B) be a left complete and (AÕ, BÕ)

be a right complete cotorsion pair in an Abelian category C. If A ™ AÕ,

then the two cotorsion pairs are complete.

(3) [Functorial Salce’s Lemma] Let (A, B) be a cotorsion pair in C.
If (A, B) is functorially left com-

plete and C has functorially enough

injective objects, then (A, B) is

functorially complete.

If (A, B) is functorially right com-

plete and C has functorially enough

projective objects, then (A, B) is

functorially complete.

Proposition 2.2.2 (Salce’s Lemma)

Proof .

(2) We prove (A, B) is right complete. Let X œ Ob(C). Since (AÕ, BÕ) is right

complete, there exists a short exact sequence X Òæ BÕ ⇣ AÕ where BÕ œ BÕ

and AÕ œ AÕ. Since A ™ AÕ, we have BÕ = (AÕ)‹ ™ (A)‹ = B, and so BÕ œ B.

Since (A, B) is left complete, we have a short exact sequence B Òæ A ⇣ AÕ

with A œ A and B œ B. Taking the pullback of BÕ ⇣ AÕ and A ⇣ AÕ, we get

a commutative diagram
B B

X BÕ ◊AÕ A A

X BÕ AÕ

Since B, BÕ œ B and B is closed under extensions, we have BÕ ◊AÕ A œ B.

Hence (A, B) is complete.
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Note that (1) follows from the inclusion P0(C) ™ A, and from the fact that

(P0(C), Ob(C)) and (Ob(C), I0(C)) are left and right complete, respectively, if

C has enough projective and injective objects.

(3) We only prove the left statement, by showing the above pullback diagram is

functorial if (A, B) is functorially left complete and if there exists a functor

I : C æ C along with a natural monomorphism idC æ I such that I(X)

injective for every X œ Ob(C). As above, we have a commutative diagram:
BCX BCX

X I(X) ◊CX F (CX) F (CX)

X I(X) CX

jX

iX

fiI(X) ÏX

qX

pX

We construct a functor C Gæ C as follows:

• Set G(X) := I(X)◊CX F (CX) for each X œ Ob(C). Note I(X) œ B since

B contains the class of injective objects. Then I(X) ◊CX F (CX) œ B.

• Consider a morphism X
fæ Y . We have a pullback diagram

Y I(Y ) ◊CY F (CY ) F (CY )

Y I(Y ) CY

jY

iY

qY

pY

fiI(Y ) ÏY

Since I(X) is injective, there is a morphism I(X) lfæ I(Y ) such that

lf ¶ iX = iY ¶ f . By the universal property of cokernels, there exists a

unique morphism CX
rfæ CY such that rf ¶pX = pY ¶lf . Since Ï : F æ idC

is a natural transformation, we have

ÏY ¶ F (rf ) ¶ qX = rf ¶ ÏX ¶ qX = rf ¶ pX ¶ fiI(X) = pY ¶ lf ¶ fiI(X).
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Then there exists a unique map I(X) ◊CX F (CX) G(f)æ I(Y ) ◊CY F (CY )

such that the following diagram commutes:

I(X) ◊CX F (CX)

I(Y ) ◊CY F (CY ) F (CY )

I(Y ) CY

lf ¶ fi
I(X)

F (rf ) ¶ qX

qY

fiI(Y ) ÏY

pY

G(f)

Consider G(f) ¶ jX , jY ¶ f : X æ I(Y ) ◊CY F (CY ). We have

qY ¶ G(f) ¶ jX = F (rf ) ¶ qX ¶ jX = F (rf ) ¶ 0 = 0.

fiI(Y ) ¶ G(f) ¶ jX = lf ¶ fiI(X) ¶ jX = lf ¶ iX = iY ¶ f.

qY ¶ jY ¶ f = 0 ¶ f = 0.

fiI(Y ) ¶ jY ¶ f = iJ ¶ f.

We also have G(f) ¶ jX = jY ¶ f since the following diagram commutes.

X

I(Y ) ◊CY F (CY ) F (CY )

I(Y ) CY

0

i
Y ¶

f

G(f) ¶ jX

jY ¶ f

qY

fiI(Y ) ÏY

pY

Summarizing, we have the following commutative diagram with exact

rows:
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0 X G(X) F (CX) 0

0 Y G(Y ) F (CY ) 0

0 X I(X) CX 0

0 Y I(Y ) CY 0

f G(f)

It is clear that G(idX) = idG(X). The equality G(g ¶ f) = G(g) ¶ G(f) can be

proven by using the universal property of pullbacks and the fact that F and

I are functors.

Example 2.2.3. We know that for every left R-module M there exists a projective

module P along with an epimorphism P ⇣ M , with P functorial in M . Dually,

M can be (functorially) embedded into an injective module I. By the Salce’s

Lemma, (P0,R Mod) and (RMod, I0) are (functorially) complete cotorsion pairs.

Definition 2.2.4. Let C be an Abelian category.
An F -pre-cover F æ X is said to

be special if it is epi and Ker(f) œ
‹F . The class F is a special pre-

covering class if every object has a spe-

cial F -pre-covering.

A G-pre-envelope X æ G is said to be

special if it is monic and CoKer(f) œ
G‹. The class G is a special pre-

enveloping class if every object has a

special G-pre-envelope.

Note that we can rewrite Salce’s Lemma using the previous definition. Specifically:

if (A, B) is a cotorsion pair in an Abelian category C with enough projective and

injective objects, then A is a special pre-covering class if, and only if, B is special

pre-enveloping.
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Definition 2.2.5. A cotorsion pair (A, B) in an Abelian category C (with enough

projective or injective objects) is said to be cogenerated by a set of objetcs S ™ A
if B = S‹.

The method used by Enochs to prove the existence of flat covers of modules was

to give a set of generators for the cotorsion pair (F0, (F0)‹). In this thesis we shall

construct cotorsion pairs and sometimes we shall need to prove they are complete.

Here is the importance of Eklof and Trlifaj’s Theorem. As we stated before,

we shall give a proof of this result for any Grothendieck category with enough

projective objects. The first step is to show a result known as Eklof’s Lemma.

The proof we are giving is based on the arguments appearing in (21) and (31) for

the category of left R-modules. Most of these arguments carry over perfectly to

any Abelian category, but at some points we need to impose extra conditions on

the given category, in order to translate these arguments from modules to objects.

Definition 2.2.6. A transfinite composition in a cocomplete Abelian category

C 4 is a morphism of the form f : F0 æ CoLim–<⁄(F–), where F : [⁄] æ C is a

colimit preserving functor and ⁄ is an ordinal 5. The morphism f is also known as

the transfinite composition of the morphisms F– æ F–+1 for every – + 1 < ⁄. If

in addition, all the morphisms F– æ F–+1 are monic with cokernel in some class

S, the F0
fæ CoLim–<⁄(F–) is called a transfinite extension of F0 by S. If F0 œ S

as well, the colimit CoLim–<⁄(F–) is called a transfinite extension of S.

4. For example, every Grothendieck category admits colimits.

5. Every ordinal number ⁄ can be considered as a category [⁄], where the objects are given

by the ordinals – Æ ⁄, and the relation – Æ –Õ is the only morphism from – to –Õ. In [⁄], every

limit ordinal — < ⁄ is the colimit of the family (– œ Ob([⁄]) : – < —).
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Example 2.2.4. A transfinite composition of a family of modules (M– : – < ⁄)

is called a continuous chain of M = t
–<⁄ M– indexed by ⁄. To be clear, M can be

written as M = t
–<⁄ M–, where M– ™ M–Õ whenever – Æ –Õ, and M— = t

–<— M–

for every limit ordinal —.

Let X and Y be two objects of a cocomplete Abelian category C, and suppose

X = CoLim–<⁄(X–), where (X– : – < ⁄) is a transfinite extension of ‹{Y }.

Then X œ ‹{Y }.

Lemma 2.2.3 (Eklof’s Lemma)

Proof .

We use transfinite induction on – < ⁄.

(i) Initial case: Immediate from the definition of transfinite extensions.

(ii) Successor case: Suppose – < ⁄ is not a limit ordinal and that Ext1
C(X–, Y ) =

0. We want to show Ext1
C(X–+1, Y ) = 0. Since X– æ X–+1 is monic with cok-

ernel X–+1/X– in ‹{Y }, we have an exact sequence X– Òæ X–+1 ⇣ X–+1/X–,

where the two ends are in ‹{Y }. Since ‹{Y } is closed under extensions, we

have X–+1 œ ‹{Y }.

(iii) Limit ordinal case: Suppose — < ⁄ is a limit ordinal and that Ext1
C(X–, Y ) = 0

for every non limit ordinal – < —. We show that Ext1
C(X—, Y ) = 0, i.e. that

every short exact sequence Y
f

Òæ Z
g⇣ X— splits, where X— = CoLim–<—(X–).

Let – < — and take the pullback of X—
– : X– æ X— and g : Z æ X— in order

to get the following commutative diagram with exact rows:

Y Z ◊X—
X– X–

Y Z X—

f–

f

g–

g

fl– X—
–
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Since Ext1
C(X–, Y ) = 0, there exists a section s– : X– æ Z ◊X—

X– of g–, i.e.

g– ¶ s– = idZ– . Our goal is to construct a section of g by using the family

(s–)–<— and the universal property of colimits. For every pair of non limit

ordinals “ Æ –, we have a diagram

X“ X–

X—

Z

X–
“

X —
“

fl
“ ¶

s
“

X
—
–

fl –
¶ s

–

where the inner triangle is a cocone. However, it is not necessarily true that

the outer triangle is a cocone. The idea is to construct section maps s– :

X– æ Z ◊X—
X– such that fl– ¶ s– ¶ X–

“ = fl“ ¶ s“. We say that s– and s–Õ are

compatible if the previous equality holds. Suppose we have construct a family

of compatible sections s“ : X“ æ Z ◊X—
X“ with “ Æ – a non limit ordinal.

We construct s–+1 : X–+1 æ Z ◊X—
X–+1 compatible with every s“.

By the universal property of pullbacks, for every “ Æ – there is a unique mor-

phism l–
“ : Z ◊X—

X“ æ Z ◊X—
X– such that the following diagram commutes:

Z ◊X—
X“

Z ◊X—
X– X–

Z X—

X –
“ ¶ g“

fl
“

g–

fl– X—
–

g

÷! l –
“

We have a section t : X–+1 æ Z ◊X—
X–+1 of g–+1 since Ext1

C(X–+1, Y ) = 0

(note – + 1 < — since – < — and — is a limit ordinal). Consider the morphism
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l–+1
– ¶s– ≠t¶X–+1

– : X– æ Z ◊X—
X–+1. We have g–+1 ¶(l–+1

– ¶s– ≠t¶X–+1
– ) =

X–+1
– ¶ g– ¶ s– ≠ X–+1

– = X–+1
– ≠ X–+1

– = 0.

There exists a unique morphism r : X– æ Y such that l–+1
– ¶ s– ≠ t ¶ X–+1

– =

f–+1 ¶ r, since f–+1 is the kernel of g–+1. On the other hand, the function

Hom(X–+1, Y ) æ Hom(X–, Y ) is onto since Ext1(X–+1/X–, Y ) = 0, so there

exists a morphism rÕ : X–+1 æ Y such that r = rÕ ¶ X–+1
– . Set s–+1 :=

f–+1 ¶ rÕ + t. We have:

s–+1 ¶ X–+1
– = f–+1 ¶ rÕ ¶ X–+1

– + t ¶ X–+1
– = f–+1 ¶ r + t ¶ X–+1

–

= l–+1
– ¶ s– ≠ t ¶ X–+1

– + t ¶ X–+1
– = l–+1

– ¶ s–.

For every “ Æ –, we can write X–+1
“ = X–+1

– ¶ X–
“ . We have:

(fl–+1 ¶ s–+1) ¶ X–+1
“ = fl–+1 ¶ (s–+1 ¶ X–+1

– ) ¶ X–
“ = (fl–+1 ¶ l–+1

– ) ¶ s– ¶ X–
“

= fl– ¶ s– ¶ X–
“ = fl“ ¶ s“.

So we have constructed s–+1 compatible with every s“ with “ Æ –. Hence the

family (fl“ ¶ s“ : X“ æ Z) defines a cocone of vertex Z. So by the universal

property of the colimit X— = CoLim–<—, there exists a unique morphism

s— : X— æ Z such that the following diagram commutes:

X“ X–

X—

Z

X–
“

X —
“

fl
“ ¶

s
“

X
—
–

fl –
¶ s

–

÷! s—

Moreover, (g ¶ s—) ¶ X—
“ = g ¶ fl“ ¶ s“ = X—

“ ¶ g“ ¶ s“ = X—
“ . Applying the

universal property of X— again, we conclude that g ¶ s— = idX—
since the

following diagram commutes:
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X“ X–

X—

X—

X–
“

X —
“

X
—“

X
—
–

X
—

“

g¶
s

—

id
X

—

Given a set S, there exists a limit ordinal ⁄ such that if (–s)sœS is a family of

ordinals such that –s < ⁄ for all s œ S, then there exists an ordinal ⁄Õ < ⁄ such

that –s Æ ⁄Õ for all s œ S.

Lemma 2.2.4 (see (21, Lemma 7.3.1))

(1) [See (21, Corollary 7.3.2)] If S and ⁄ are as in the lemma above and if

(Y–)–<⁄ is a family of subsets of a set Y such that Y– ™ Y–Õ when – Æ –Õ < ⁄

and such that Y = t
–<⁄ Y–, then for any function f : S æ Y there is an

– < ⁄ such that f(S) ™ Y–.

(2) [Categorical version of (21, Corollary 7.3.2)] Let X be an object of a

Grothendieck category C. If S := Card(X) and ⁄ are as in the lemma

above, and if Y = CoLim–<⁄Y–, where the family of objects (Y–)–<⁄ is a

transfinite composition, then for any morphism h : X æ Y there is an

– < ⁄ such that h(X) is a subobject of Y–.

Corollary 2.2.5

In order to give a proof for (2), we need to recall the notion of locally presentable

categories.
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Definition 2.2.7 (see (1, Definition 1.17)). Let ⁄ be a regular cardinal , i.e. ⁄ is

infinite and cannot be expressed as ⁄ = q
i<– ⁄i where ⁄i < ⁄ and – < ⁄.

(1) A partially ordered set is called ⁄-directed provided that every subset of car-

dinality smaller than ⁄ has an upper bound.

(2) A diagram F : � æ C such that Ob(�) is a ⁄-directed poset is called a

⁄-directed diagram.

(3) A colimit of a ⁄-directed diagram is called ⁄-directed.

(4) An object K of a category is called ⁄-presentable provided that its hom functor

HomC(K, ≠) preserves ⁄-directed colimits. An object is called presentable if

it is ⁄-presentable for some ⁄.

(5) A category is called locally ⁄-presentable provided that it is cocomplete, and

has a set A of ⁄-presentable objects such that every object if a ⁄-directed

colimit of objects of from A.

Example 2.2.5. Every Grothendieck category C is locally presentable. Moreover,

every object of C is presentable.

Example 2.2.6.

(1) The successor of of any infinite cardinal, such as ›1 (successor of ›0), is a

regular cardinal.

(2) In the proof of the previous lemma, the ordinal ⁄ is defined as the least

ordinal such that Card(⁄) = ›—+1, where Card(S) Æ ›—. So Card(⁄) is a

regular cardinal.

Proof of Corollary 2.2.5 (2) .

First, C is locally “-presentable, for some regular cardinal “. Note that the ordinal

⁄ in the previous lemma can be taken such that Card(⁄) Ø “. Since every object
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in C is “-presentable, in particular we have that HomC(X, ≠) preserves “-directed

colimits. On the other hand, Card(⁄) Ø “ implies that HomC(X, ≠) preserves

colimits indexed by {– : – < ⁄}. This condition means that every morphism

X æ Y = CoLim–<⁄Y– factors through some –. Therefore, the result follows.

Let (A, B) be a cotorsion pair in a Grothendieck category with (functorially)

enough projective objects. If (A, B) is cogenerated by a set S ™ A, then (A, B)

is (functorially) right complete.

Theorem 2.2.6 (Eklof and Trlifaj’s Theorem)

Proof .

First, notice that (A, B) is cogenerated by a single object, namely the direct sum

A = m{S : S œ S}. Since C has enough projective objects, there is a short exact

sequence K Òæ P ⇣ A, where P is a projective object. For X œ Ob(C), we have

a short exact sequence K(Hom(K,X)) Òæ P (Hom(K,X)) ⇣ A(Hom(K,X)), since the direct

sum of short exact sequences is exact. By the universal property of biproducts,

there is a unique morphism K(Hom(K,X)) g
0æ X such that the triangle

K K(Hom(K,X))

X

if

f ÷! g0

commutes for every f œ Hom(K, X). Taking the pushout of the maps g0 and

K(Hom(K,X)) æ P (Hom(K,X)) we get the following diagram with exact rows:
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K(Hom(K,X)) P (Hom(K,X)) A(Hom(K,X))

X X1 A(Hom(K,X))

g0

Setting X0 = X, we have X1/X0 ≥= A(Hom(K,X)). Let D denote the class of direct

sums of copies of A. Using transfinite induction, one can compute a transfinite

extension of X by D. We have already constructed X0 and X1. Assuming X– is

constructed, X–+1 is given by the pushout diagram

K(Hom(K,X–)) P (Hom(K,X–)) A(Hom(K,X–))

X– X–+1 A(Hom(K,X–))

g–

So X–+1/X– œ D. If — is a limit ordinal and X– is constructed for every – < —,

set X— = CoLim–<—X–. By the principle of transfinite induction, we obtain a

transfinite extension B = CoLim–<⁄X– of X by D 6, for some ordinal ⁄. Consider

the sequence X Òæ B ⇣ B/X. We check B œ B and B/X œ A. Note B œ B if,

and only if, Ext1(A, B) = 0. Since the sequence K Òæ P ⇣ A derives in an exact

sequence Hom(A, B) Òæ Hom(P , B) æ Hom(K, B) æ Ext1(A, B), we have that

Ext1(A, B) = 0 if, and only if, Hom(P , B) æ Hom(K, B) is surjective. Consider

a morphism K
fæ B. By Corollary 2.2.5, the ordinal ⁄ can be chosen as a limit

ordinal such that f can be factored as a composition K
f Õæ X– æ B, for some

– < ⁄. Since ⁄ is a limit ordinal, – + 1 < ⁄. So from the previous construction

there exists a morphism P
gæ X–+1 satisfying g ¶ (K æ P ) = (X– æ X–+1) ¶ f Õ.

We get f = (X–+1 æ B) ¶ (X– æ X–+1) ¶ f Õ = [(X–+1 æ B) ¶ g] ¶ (K æ P ) and

hence the map Hom(P , B) æ Hom(K, B) is surjective.

6. It is possible to replace D by {A}, constructing a refinement of (X– : – < ⁄) such that

X–+1/X–
≥= A for every – < ⁄.



111

It is only left to show B/X œ A. Let Y œ B. Note that B/X = CoLim–<⁄(X–/X).

By construction, Ext1(X0/X, Y ) ≥= Ext1(0, Y ) = 0 and Ext1( (X–+1

/X)
(X–/X) , Y ) ≥=

Ext1(X–+1/X–, Y ) = 0. By Eklof’s Lemma, Ext1(CoLim–<⁄(X–/X), Y ) = 0

and hence B/X œ A.

Functoriality: Now we show that the object B above is functorial in X, provided

that C has functorially enough projective objects and that (A, B) is functorially

right complete. We have a natural epimorphism P ⇣ idC with that P (A) is

projective. Consider a morphism X
fæ Y . First, we have a triangle:

P (A) P (A)(Hom(K,X))

P (A)(Hom(K,Y ))

ih

jf¶h

Ï÷!

On the other hand, we have two commutative pullback squares

K(Hom(K,X)) P (Hom(K,X)) K(Hom(K,Y )) P (Hom(K,Y ))

X X1 Y Y1

“

s r

X1
0

”

t l

Y 1
0

Using the universal property of biproducts, one can show that l¶Ï¶“ = Y 1
0 ¶f¶s. It

follows by the universal property of pushouts that there exists a unique morphism

X1
f

1æ Y1 such that the following diagram commutes:

K(Hom(K,X)) P (A)(Hom(K,X))

X X1

Y1

“

s r l ¶
Ï

X1
0

Y 1
0 ¶ f

f1



112

By transfinite induction, we can construct morphisms X–
f–æ Y– with – < ⁄

(notice ⁄ only depends on K) satisfying similar conditions. Using the universal

property of colimits, we obtain:

X– X–Õ

CoLim–<⁄X–

CoLim–<⁄Y–

X–Õ
–

fl
–

fi
– ¶

f
–

fl–
Õ

fi –
Õ
¶ f –

Õ

÷! CoLim–<⁄f–

It is not hard to show that f ‘æ CoLim–<⁄(f–) is functorial.

Example 2.2.7.

(1) In any Grothendieck category with a generator G, note that by the Baer

Criterion the injective cotorsion pair (Ob(C), I0(C)) is cogenerated by the set

of quotients G/I, with I running over the set of subobjects of G.

(2) Given an associative ring R, recall that a left R-module is projective if, and

only if, it is a direct summand of a free module. It follows that (P0, Ob(RMod))

is cogenerated by {R}.

2.3 Hovey’s correspondence

We shall show that from two compatible and functorially complete cotorsion pairs

in an Abelian category C, we can construct an Abelian model structure. We start

describing how to obtain a weak factorization system from a complete cotorsion

pair. As a first approach to this construction, we know that if (A, B) is a complete

cotorsion pair, then for every X œ Ob(C) there is an exact sequence B Òæ A ⇣ X,

with A œ A and B œ B. This gives us a factorization of the morphism B
0æ X,
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where one of the factors is an epimorphism with kernel in B. The class of all the

epimorphisms having this property will turn out to be the right class of a weak

factorization system. Probably the reader has already guessed what will be the

left class of that system. Yes!, all the monomorphisms with cokernel in A.

Definition 2.3.1. Given a cotorsion pair (A, B) and a weak factorization system

(L, R) on an Abelian category C (with enough projective or injective objects), we

shall say that (L, R) is a cotorsion factorization system with respect to (A, B) if

the following two conditions are satisfied:

(1) l : X æ Y is in L if, and only if, l is a monomorphism and CoKer(l) œ A.

(2) r : W æ Z is in R if, and only if, r is an epimorphism and Ker(r) œ B.

If (L, R) is a cotorsion factorization system on C with respect to (A, B), then

(A, B) is complete.

Moreover, if (L, R) is a functorial cotorsion factorization system, then (A, B)

is functorially complete.

Lemma 2.3.1

Proof .

For if X œ Ob(C), then we can factor the map 0 æ X as follows:

A

0 X

l r

with l œ L and r œ B. Since r œ B, it is an epimorphism with Ker(r) œ B. On

the other hand, 0 æ A is a monomorphism with A = CoKer(0 æ A) œ B. So we

get an exact sequence 0 æ Ker(r) æ A æ X æ 0 with A œ A and Ker(r) œ B,
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i.e. (A, B) is left complete. Factoring the map X æ 0 as above, one can show

that (A, B) is right complete. Hence, (A, B) is complete.

Functoriality: We show that (A, B) is functorially complete if (L, R) is equipped

with a functorial factorization (L, R). For every X œ Ob(C), we have a commu-

tative diagram
BX

AX

0 X

L(0 æ X)

R(0 æ X)

where the sequence BX Òæ AX ⇣ X is exact. We prove AX is functorial in X.

Given a map X
fæ Y in C, derive Hom(AX , ≠) from the sequence BY Òæ AY ⇣ Y

to get an exact sequence Hom(AX , AY ) æ Hom(AX , Y ) æ Ext1(AX , BY ) = 0.

So there exists a morphism AX æ AY such that the following square commutes:

AX AY

X Y
f

Define C Fæ C as follows:

• For every X œ Ob(C), F (X) = AX .

• For every morphism X
fæ Y , F (f) is the filler AX æ AY in the above square.

It is not hard to see that F defines a functor. Moreover, note that for every

morphism X
fæ Y , the morphism R(0 æ X) R(0,f)æ R(0 æ Y ) in Map(C) is given

by the pair (F (f), f):
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F (X) F (Y )

X Y

F (f)

f

R(0 æ X) R(0 æ Y )

So R defines a natural epimorphism F æ idC. Hence (A, B) is functorially left

complete. The rest follows in a similar way.

Let A be a class closed under extensions.
The class MonoA(C) of monomor-

phisms with cokernel in A is closed

under compositions.

The class EpiA(C) of epimorphisms

with kernel in A is closed under com-

positions.

Lemma 2.3.2

Proof .

We only prove the left statement. Let f : X æ Y and g : Y æ Z be in MomoA(C).

It is clear that g ¶ f is a monomorphism. By Snake’s Lemma, we have a short

exact sequence 0 æ CoKer(f) æ CoKer(g ¶ f) æ CoKer(g) æ 0, with the two

ends in A. Since A is closed under extensions, we have CoKer(g ¶ f) œ A.
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If (A, B) is a complete cotorsion pair in an Abelian category C, then the two

classes

L := {l œ Mono(C) : CoKer(l) œ A} and R := {r œ Epi(C) : Ker(r) œ B}
form a cotorsion factorization system (L, R) on C. Moreover, if (A, B) is func-

torially complete, then (L, R) is a functorial weak factorization system.

Conversely, if (L, R) is a weak factorization system on C such that L ™
Mono(C), R ™ Epi(C) and Ext1

C(A, X) = 0 for every A œ CoKer(L) and

X œ Ker(R), then (CoKer(L), Ker(R)) is a cotorsion pair and (L, R) is a co-

torsion factorization system with respect to (CoKer(L), Ker(R)).

Theorem 2.3.3

Proof .

(=∆) For the first part, suppose that (A, B) is a complete cotorsion pair in C.

We prove conditions (1), (2), and (3) of Theorem 2.1.1.

Condition (1): l t r for every l œ L and r œ R: This follows by Lemma 2.1.4.

Condition (2): L is closed under codomain retracts and R is closed under

domain retracts: We only prove the statement concerning L, since the other one

is dual. Suppose we are given a commutative diagram

Z

X Y X
f g

u l
u

where l œ L and g ¶ f = idX . Note u is monic since l = f ¶ u and l is monic. It

is only left to show that CoKer(u) œ A. By the universal property of cokernels,

there exist maps f Õ : CoKer(u) æ CoKer(l) and gÕ : CoKer(l) æ CoKer(u) such

that the following diagram commutes:
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X Y X

CoKer(u) CoKer(l) CoKer(u)

uÕ lÕ uÕ

f g

f Õ gÕ

We have (gÕ ¶f Õ)¶uÕ = gÕ ¶ lÕ ¶f = uÕ ¶g ¶f = uÕ. Since uÕ is epic, we have gÕ ¶f Õ =

idCoKer(u), i.e. CoKer(u) is a retract of CoKer(l) œ A. Hence CoKer(u) œ A since

A is closed under retracts.

Condition (3): Every morphism X
fæ Y can be factored as f = r ¶ l where

l œ L and r œ R:

Case 1: f is a monomorphism. Then we have an exact sequence X
f

Òæ Y ⇣ C

where C = CoKer(f). Since (A, B) is complete, there exists a short exact sequence

B Òæ A ⇣ C, where A œ A, B œ B. Taking the pullback of Y ⇣ C and A ⇣ C,

we get the following commutative diagram:

B B

X Y ◊C A A

X Y C
f

Note that in the left bottom commutative square, (X Òæ Y ◊C A) œ L and

(Y ◊C A æ Y ) œ R. So condition (3) holds in the class of monic maps.

Case 2: f is a epimorphism. This case is dual.

Case 3: General case. Given any map X
fæ Y , write it as the composition

X
(idX ,f)æ XüY

flYæ Y , where XüY is the biproduct of X and Y , flY is the projection
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of X ü Y onto Y , and (idX , f) is the only map such that flX ¶ (idX , f) = idX and

flY ¶ (idX , f) = f . It is not hard to see that (idX , f) is monic and flY is an epic.

So by Case 1 we can write (idX , f) = rÕ ¶ lÕ with lÕ œ L and rÕ œ R. On the

other hand, since flY ¶ rÕ is epic, by Case 2 we can write flY ¶ rÕ = r ¶ lÕÕ with

lÕÕ œ L and r œ R. So we obtain f = r ¶ (lÕÕ ¶ lÕ). It su�ces to check that

lÕÕ ¶ lÕ œ L. This is a consequence of the fact that L is closed under compositions.

For if lÕÕ and lÕ are maps in L such that the composition lÕÕ ¶ lÕ makes sense, then

it is clear that lÕÕ ¶ lÕ is monic. By Snake’s Lemma, there is an exact sequence

0 æ CoKer(lÕ) æ CoKer(lÕÕ ¶ lÕ) æ CoKer(lÕÕ) æ 0 with CoKer(lÕ), CoKer(lÕÕ) œ A.

It follows CoKer(lÕÕ ¶ lÕ) œ A since A is closed under extensions. Dually, the class

R is also closed under compositions.

X Y

X ü Y

X Õ Y Õ

f

(id
X , f) flY

l Õ

lÕÕ

rÕ

r

Figure 2.5: Factorizations in cotorsion factorization systems.

Condition (3ú): (L, R) is equipped with a functorial factorization if (A, B) is

functorially complete: Let X
fæ Y be a morphism in C.

Case 1: f is a monomorphism: Let C = CoKer(f). Since (A, B) is functorially

left complete, there exists a functor F : C æ C along with a natural epimorphism

F æ idC such that F (Z) œ A and BZ := Ker(F (Z) ⇣ Z) œ B for every Z œ
Ob(C). We have the following commutative diagram



119

BC BC

X Y ◊C F (C) F (C)

X Y C

Lmonic(f)

f

Ïf

Rmonic(f) pf

f Õ

where Lmonic(f) œ L and Rmonic(f) œ R. We prove that Lmonic and Rmonic give rise

to functors Mono(C) æ Mono(C), where the class Mono(C) of monic maps of C
is considered as a full subcategory of Map(C). Let (u, v) : f æ g be a morphism

in Mono(C). We want to construct a map Lmonic(u, v) : Lmonic(f) æ Lmonic(g),

i.e. a commutative square

X Y ◊C F (C)

W Z ◊D F (D)

u Lmonic(u, v)

Lmonic(f)

Lmonic(g)

Note that we have the following commutative diagram with exact rows, for which

we want to find a filler Y ◊C F (C) æ Z ◊D F (D):

0 X Y ◊C F (C) F (C) 0

0 W Z ◊D F (D) F (D) 0

0 X Y C 0

0 W Z D 0

Lmonic(f)

u

Ïf

F (w)
Lmonic(g) Ïg

f f Õ

u

v w

g gÕ
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where w is the only morphism satisfying w ¶ f Õ = gÕ ¶ v (by the universal property

of cokernels). Note that gÕ ¶ (v ¶ Rmonic(f)) = w ¶ f Õ ¶ Rmonic(f) = w ¶ pf ¶ Ïf

= pg ¶ (F (w) ¶ Ïf ), and by the universal property of pullbacks there exists a

unique morphism Y ◊C F (C) Lmonic

u,væ Z ◊D F (D) such that the following diagram

commutes:

Y ◊C F (C)

Z ◊D F (D) F (D)

Z D

F (w) ¶ Ïf

v ¶ R monic(f)

Ïg

Rmonic(g) pg

gÕ

÷! Lmonic
u,v

We check that Lmonic
u,v ¶ Lmonic(f) = Lmonic(g) ¶ u. This is a consequence of the

following equalities and the universal property of pullbacks:

Ïg ¶ (Lmonic
u,v ¶ Lmonic(f)) = F (w) ¶ Ïf ¶ Lmonic(f) = F (w) ¶ 0 = 0,

Rmonic(g) ¶ (Lmonic
u,v ¶ Lmonic(f)) = v ¶ Rmonic(f) ¶ Lmonic(f) = v ¶ f = g ¶ u,

Ïg ¶ (Lmonic(g) ¶ u) = 0 ¶ u = 0,

Rmonic(g) ¶ (Lmonic(g) ¶ u) = g ¶ u.

X

Y ◊D F (D) F (D)

Z D

0

g ¶ u

Lmonic
u,v ¶ Lmonic(f)

Lmonic(g) ¶ u Ïg

Rmonic(g) pg

gÕ
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Define a correspondence (u, v) ‘æ Lmonic(u, v) := (u, Lmonic
u,v). The fact that

Lmonic is a functor can be proven by using the universal property of pullbacks and

the functoriallity of F . Similarly, Rmonic is also a functor of the subcategory of

Map(C) formed by the monomorphisms of C.

Case 2: The case where f is an epimorphism follows similarly, taking pushouts of

monomorphisms instead of pullbacks. We get a functorial factorization (Lepi, Repi) :

Epi(C) æ Epi(C), along with its respective commutative pushout diagrams.

Case 3: For the general case, for every map X
fæ Y we have he following commu-

tative diagram where C = CoKer((idX , f)) and K = Ker(Repi(flY ¶Rmonic(idX , f))):

X Y

(X ü Y ) ◊C F (C) X ü Y

[(X ü Y ) ◊C F (C)] ‡
K G(K)

f

(id
X , f)

flY

L
monic ((idX

, f))

Lepi(flY ¶ Rmonic(idX , f))

Rmonic((idX , f))
Repi(flY ¶Rmonic(idX , f))

Figure 2.6: Functorial factorizations in cotorsion factorization systems.

We construct functors L, R : Map(C) æ Map(C). Set

L(f) := Lepi(flY ¶ Rmonic((idX , f))) ¶ Lmonic((idX , f)) and

R(f) := Repi(flY ¶ Rmonic((idX , f))).

Now suppose we are given a map (X fæ Y ) (u,v)æ (W gæ Z) in Map(C). Let

C = CoKer((idX , f)) and D = CoKer((idX , g)). On the one hand, by the universal
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property of biproducts, there exists a unique map X ü Y
uÕæ W ü Z such that

uÕ ¶ (idX , f) = (idW , g) ¶ u. On the other hand, we have a unique map C
uÕÕæ D in

the following diagram:

X X ü Y C

W W ü Z D

(idX , f)

(idW , g)

u uÕ uÕÕ

Then there exists a unique morphism (X ü Y ) ◊C F (C) æ (W ü Z) ◊D F (D)

such that the following diagram commutes:

(X ü Y ) ◊C F (C)

(W ü Z) ◊D F (D) F (D)

W ü Z D

F (u ÕÕ) ¶ fiF (C)

u Õ¶ fi
XüY

Using again the universal property of pullbacks, we get the following commutative

square:

X Y

(X ü Y ) ◊C F (C) (W ü Z) ◊D F (D)

u

Lmonic((idX , f)) Lmonic((idW , g))

Now let K = Ker(flY ¶Rmonic((idX , f))) and Q = Ker(flZ ¶Rmonic((idW , g))). There

exists a unique morphism K
vÕÕæ Q such that the following diagram commutes:
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K (X ü Y ) ◊C F (C) Y

Q (W ü Z) ◊D F (D) Z

jK

jQ

flY ¶ Rmonic((idX , f))

flZ ¶ Rmonic((idW , g))

vÕÕ vÕ v

Recall we also have commutative diagrams:

K (X ü Y ) ◊C F (C) Y

G(K) [(X ü Y ) ◊C F (C)] ‡
K G(K) Y

jK

iK

Q (W ü Z) ◊D F (D) Z

G(Q) [(W ü Z) ◊D F (D)] ‡
Q G(Q) Z

jQ

iQ

Then (Lepi(flY ¶Rmonic((idW , g)))¶vÕ)¶jK = iQ ¶(G(vÕÕ)¶(K æ G(K))). It follows

there exists a unique morphism w such that the following diagram commutes:

K (X ü Y ) ◊C F (C)

G(K) [(X ü Y ) ◊C F (C)] ‡
K G(K)

[(W ü Z) ◊D F (D)] ‡
Q G(Q)

Lepi(flZ ¶ Rmonic((idW , g))) ¶ vÕ

iQ ¶ G(v ÕÕ)

w

Using the universal property again,

Repi(flZ ¶ Rmonic((idW , g))) ¶ w = v ¶ Repi(flY ¶ Rmonic((idX , f))).
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We have the commutative diagram

X W

(X ü Y ) ◊C F (C) (W ü Z) ◊D F (D)

[(X ü Y ) ◊C F (C)] ‡
K G(K) [(W ü Z) ◊D F (D)] ‡

Q G(Q)

Y Z

Lmonic((idX , f)) Lmonic((idW , g))

Lepi(flY ¶Rmonic((idX , f))) Lepi(flZ¶Rmonic((idW , g)))

Repi(flY ¶Rmonic((idX , f))) Repi(flZ¶Rmonic((idW , g)))

u

vÕ

w

v

We set L((u, v)) := (u, w) and R((u, v)) := (w, v). It is not hard to show that

(L, R) defines a functorial factorization on C.

(≈=) Assume (L, R) is a weak factorization system such that L ™ Mono(C), R ™
Epi(C) and Ext1

C(A, X) = 0 for every A œ CoKer(L) and X œ Ker(R). First, we

show the classes CoKer(L) and Ker(R) are given by {X œ Ob(C) : (0 æ X) œ L}
and {Y œ Ob(C) : (Y æ 0) œ R}, respectively. Let X œ CoKer(L). Then there

is a map Y
læ Z in L such that X = CoKer(l). Since the sequence Y

l
Òæ Z ⇣ X

is exact, we have 0 æ X is the cobase change of l along Y æ 0. Since L is

closed under cobase changes, we get (0 æ X) œ L. The other inclusion follows

by the definition of CoKer(L). Hence CoKer(L) = {X œ Ob(C) : (0 æ X) œ L}.

Similarly, Ker(R) = {Y œ Ob(C) : (Y æ 0) œ R}.

Since Ext1
C(A, X) = 0 for every A œ CoKer(L) and X œ Ker(R), we only need

to show ‹(Ker(R)) ™ CoKer(L) and (CoKer(L))‹ ™ Ker(R) in order to prove

(CoKer(L), Ker(R)) is a cotorsion pair. Let X œ ‹(Ker(R)). Suppose r œ R.

Notice Ker(r) œ Ker(R). Since 0 æ X is monic, r is epic, and Ext1
C(X, Ker(r)) =



125

0, we have (0 æ X) t r for every r œ R, by Lemma 2.1.4. We have X œ
{Z œ Ob(C) : (0 æ Z) œ L} = CoKer(L). The inclusion (CoKer(L))‹ ™ Ker(R)

follows similarly.

As an interesting property for cotorsion factorization systems, we have that it is

impossible to obtain unique factorizations.

If C is a nonzero Abelian category, then there are no cotorsion factorization

systems on C which are factorization systems.

Proposition 2.3.4

Proof .

Suppose (L, R) is a cotorsion factorization system with respect to a cotorsion

pair (A, B), which is a factorization system. Then the class R is closed under

diagonals. Let r œ R. Then we have a short exact sequence B Òæ W
r⇣Z where

B œ B. On the one hand, we have the following commutative diagram with exact

rows:
B W ◊Z W W

B W Z

fi2

fi1

r

r

Since fi1 ¶ ”(r) = idW , we have that ”(r) is monic. On the other hand, r œ R
implies that ”(r) œ R, and so ”(r) is epic. Then, ”(r) is an isomorphism, and

hence B = 0. It follows r is an isomorphism. Therefore, R = Iso(C). Similarly,

L = Iso(C). We have a weak factorization system (Iso(C), Iso(C)) on C, so every

morphism in C is an isomorphism. Therefore, every object in C is isomorphic to

the zero object 0, getting a contradiction since C ”= {0}.
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Definition 2.3.2. A model structure (Cof , Fib, Weak) on an Abelian category C
is called Abelian if the following two conditions are satisfied:

(1) f œ Cof (resp. f œ Cof fl Weak) if, and only if, f is monic with cofibrant (resp.

trivially cofibrant) cokernel.

(2) g œ Fib (resp. g œ Fib fl Weak) if, and only if, g is epi with fibrant (resp.

trivially fibrant) kernel.

Example 2.3.1. The following are examples of Abelian model categories. All

of these model structures were discovered before the notion of Abelian model

structures.

(1) Recall that a ring R is called a quasi-Frobenius ring if the projective and injec-

tive left (or right) R-modules coincide. Two homomorphisms f, g : M æ N are

said to be stably equivalent (denoted f ≥ g) if f ≠ g factors through a projec-

tive module. A homomorphism f : M æ N is said to be a stable equivalence

if there exists a homomorphism h : N æ M such that h ¶ f ≥ idM and

f ¶ h ≥ idN . On RMod, with R a quasi-Frobenius ring, there is the following

model structure:

• The class of weak equivalences is the class of stable equivalences.

• The fibrations are given by the epimorphisms.

• The cofibrations are given by the monomorphisms.

Details can by found in (36, Section 2.2). The Hovey pair in this case is

given by (Ob(RMod), P0) and (P0, Ob(RMod)). We shall recall this model

structure in Chapter 4.

Most of the model structures we present in this thesis are on the category Ch(RMod)

of complexes over modules. We start giving two well known examples on this ca-

tegory.
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(2) The projective model structure on Ch(RMod): on the category Ch(RMod)

of chain complexes over a ring R is given by the following three classes:

• The weak equivalences are given by the quasi-isomorphisms, i.e. chain

maps f : X æ Y such that each induced group homomorphism Hn(f) :

Hn(X) æ Hn(Y ) is an isomorphism.

• The class of fibrations is given by the class of epimorphisms, i.e. chain

maps f : X æ Y such that fn : Xn æ Yn is an epimorphism of modules,

for every n œ Z. A chain map is a trivial cofibration if an only if it has

the right lifting property with respect to every chain map of the form

Sn≠1(R) æ Dn(R).

• At this moment, we are only going to say that the cofibrations are given

by the class of maps which have the left lifting property with respect to

trivial fibrations. More details can be found in (36, Section 2.3). Hovey’s

correspondence will provide a nice characterization for cofibrations and

trivial cofibrations.

(3) The injective model structure on Ch(RMod): given by the following classes

of morphisms.

• The weak equivalences are, as above, the quasi-isomorphisms.

• The trivial fibrations are given by the epimorphisms with injective kernel.

• The cofibrations are all the maps having the left lifting property with

respect to the trivial fibrations.

More details on this structure are given (36, Section 2.3). This model structure

was probably first discovered by A. Joyal in (40) on the category of complexes

over a Grothendieck category.

Example 2.3.2. We give an example of a NON-Abelian model structure on

Ch(C). The absolute model structure is defined by the following classes of maps:
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• A chain map if a weak equivalence if it is a chain homotopy equivalence.

Recall that two chain maps f, g : X æ Y are said to be chain homotopic

if there exists a family of maps (Dn : Xn æ Yn+1)nœZ such that fn ≠ gn =

ˆY
n+1 ¶Dn +Dn≠1 ¶ˆX

n . A chain map f : X æ Y is said to be a chain homotopy

equivalence if there exists a chain map g : Y æ X such that g ¶ f and f ¶ g

are homotopic to idX and idY , respectively.

• A chain map is a cofibration if it is a degreewise split monomorphism.

• A chain map is a fibration if it is a degreewise split epimorphism.

This model structure can be found in (14, Example 3.4). If this model struc-

ture were Abelian, then every monomorphism with cofibrant cokernel would be

a degreewise split monomorphism. Note that every object X in Ch(C) is cofi-

brant, since 0 æ X is clearly a degreewise split monomorphism. The map

S0(2Z) æ S0(Z) is a monomorphism with cofibrant cokernel which is not a degree-

wise split monomorphism. Hence, the absolute model structure on Ch(ZMod) is

not Abelian.

Definition 2.3.3. Two cotorsion pairs (A, BÕ) and (AÕ, B) are said to be compatible

if AÕ = A fl W and B = BÕ fl W , for some class W . If in addition the class W is

thick, we shall say that (A fl W , B) and (A, B fl W) form a Hovey pair.

Definition 2.3.4. Let (Cof , Fib, Weak) be a model structure on a bicomplete

Abelian category C, and (AflW , B) and (A, BflW) be a Hovey pair in C. We shall

say that (Cof , Fib, Weak) is a cotorsion model structure with respect to (AflW , B)

and (A, B fl W) if:

(1) (Cof flWeak, Fib) is a cotorsion factorization system with respect to (AflW , B).

(2) (Cof , FibflWeak) is a cotorsion factorization system with respect to (A, BflW).
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By Lemma 2.3.1, the pairs (A fl W , B) and (A, B fl W) in the previous definition

are complete.

Remark 2.3.1. Note that if (Cof , Fib, Weak) is a cotorsion model structure with

respect to a Hovey pair (A fl W , B) and (A, B fl W), then A, B and W are the

classes of cofibrant, fibrant and trivial objects, respectively. This is clear for A
and B. If W œ W , then we can write 0 æ W as a cofibration followed by a trivial

fibration. So we have a commutative diagram

A

0 W

l r

with A œ A and Ker(r) œ B fl W . We get an exact sequence Ker(r) Òæ A ⇣ W

where W , Ker(r) œ W . Since W is thick, we have A œ A fl W . So l is a trivial

cofibration, and 0 æ W is a weak equivalence. The converse follows similarly.

Some of the previous results in this chapter allows us to state and prove Hovey’s

correspondence using our terminology of cotorsion factorization systems. The

reader can check the original statement in (35, Theorem 2.2).

Let C be a bicomplete Abelian category.

(1) Every Abelian model structure (Cof , Fib, Weak) on C is a cotor-

sion model structure with respect to (CoKer(Cof ) fl W , Ker(Fib)) and

(CoKer(Cof ), Ker(Fib) fl W), where W is the class of trivial objects.

(2) If (A fl W , B) and (A, B fl W) are functorially complete cotorsion pairs in C
such that the class W is thick, then there exists a unique cotorsion model

structure on C with respect to (A fl W , B) and (A, B fl W).

Theorem 2.3.5 (Hovey’s correspondence)
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Proof .

Part (1): Let (Cof , Fib, Weak) be an Abelian model structure on C. By The-

orem 2.3.3, we have two cotorsion factorization systems (Cof fl Weak, Fib) and

(Cof , Fib flWeak) with respect to the cotorsion pairs (CoKer(Cof flWeak), Ker(Fib))

and (CoKer(Cof ), Ker(Fib fl Weak)), respectively. On the other hand, it is clear

that CoKer(Cof fl Weak) = CoKer(Cof ) fl W and Ker(Fib fl Weak) = Ker(Fib) fl W .

It is only left to show that W is thick. Since Weak is closed under retracts

of maps, we have that W is closed under retracts of objects in W . Now let

0 æ W Õ fæ W
gæ W ÕÕ æ 0 be a short exact sequence where two out of three of

the objects W , W Õ and W ÕÕ are in W .

(i) The case W Õ, W ÕÕ œ W is proven in (35, Lemma 4.3).

(ii) Suppose W, W ÕÕ œ W . Factor f as f = p ¶ i, where i : W Õ ≥
ÒæQ is a trivial

cofibration and p : Q⇣W is a fibration. By the universal property of cokernels,

we have the following commutative diagram with exact rows:

W Õ Q CoKer(i)

W Õ W W ÕÕ
f

i
≥

g

p q

First, note that q is epic. Using Snake’s Lemma, we have Ker(q) ≥= Ker(p),

and so Ker(q) is fibrant. Then, q is a fibration. On the other hand, we have

a commutative triangle

0

CoKer(i) W ÕÕ
q

where the maps 0 æ CoKer(i) and 0 æ W ÕÕ are weak equivalences, since

CoKer(i) is trivially cofibrant and W ÕÕ œ W . By the 3◊2 axiom, we have
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q is a weak equivalence, and so a trivial fibration. It follows Ker(p) is triv-

ially fibrant. We have that p is a trivial fibration. Consider the following

commutative triangle:
0

Q W
p

Since 0 æ W and p are weak equivalences, so is 0 æ Q. Using a similar

triangle with base i, we conclude that 0 æ W is a weak equivalence.

(iii) The case W, W Õ œ W is similar to (ii).

Part (2): Define the following classes of morphisms:

• MonoA(C) = monomorphisms with cokernel in A.

• MonoAflW(C) = monomorphisms with cokernel in A fl W .

• EpiB(C) = epimorphisms with kernel in B.

• EpiBflW(C) = epimorphisms with kernel in B fl W .

• We = maps of the form e ¶ m with m œ MonoAflW(C) and e œ EpiBflW(C).

By Lemma 2.3.2, the first four classes are closed under compositions. First, we

check MonoAflW(C) = MonoA(C)flWe. The equality EpiBflW(C) = EpiB(C)flWe

follows similarly. The inclusion ™ is clear. Now let f œ MonoA(C) fl We. Write

f = e ¶ m, where m œ MonoAflW(C) and e œ EpiBflW(C). By Snake’s Lemma,

we have a short exact sequence 0 æ Ker(e) æ CoKer(m) æ CoKer(f) æ 0.

Moreover, Ker(e), CoKer(m) œ W . Since W is thick and f œ MonoA(C), we have

CoKer(f) œ A fl W . Hence f œ MonoAflW(C).

By the previous two equalities and Theorem 2.3.3, (MonoA(C) fl We, EpiB(C))

and (MonoA(C), EpiB(C) fl We) are functorial cotorsion factorization systems. It

is only left to show that We satisfies the 3◊2 axiom.
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Suppose we are given a composite morphism X
fæ Y

gæ Z.

(i) f and g are weak equivalences: By the definition of weak equivalence and using

the factorizations in (MonoA(C), EpiB(C)flWe), we can obtain a commutative

diagram

X Y Z

W W Õ

W ÕÕ

f g

m m Õ

m ÕÕ

e e
Õ

e
ÕÕ

where m, mÕ œ MonoAflW(C), mÕÕ œ MonoA(C), e, eÕ, eÕÕ œ EpiBflW(C).

We may assume g ¶ f = e ¶ m with f œ EpiBflW(C), g œ MonoAflW(C),

e œ EpiBflW(C) and m œ MonoA(C). We show m œ MonoAflW(C), i.e.

Ker(m) œ A fl W . By the universal property of cokernels, there exists a

morphism CoKer(m) qæ CoKer(g) such that the following diagram commutes:

X W CoKer(m)

Y Z CoKer(g)

qf e

We have a short exact sequence 0 æ Ker(f) æ Ker(e) æ Ker(q) æ 0 by

Snake’s Lemma, where the first two terms belong to W . Since W is thick,

we conclude that Ker(q) œ W . Note that q is an epimorphism. Then we

have a short exact sequence Ker(q) Òæ CoKer(m) ⇣ CoKer(g) where the end

terms are in W . We use again the fact that W is thick to conclude that

CoKer(m) œ W . The result follows.

(ii) g and g ¶ f are weak equivalences: Using the definition of weak equivalence

and factoring f , we can get a commutative diagram
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X Y Z

W W Õ

W ÕÕ

f g

m m Õ

m ÕÕ

e e
Õ

e
ÕÕ

where m œ MonoA(C), mÕ, mÕÕ œ MonoAflW(C), e, eÕ, eÕÕ œ EpiBflW(C). Then

we may assume f œ MonoA(C). In this simpler situation, we have the fol-

lowing commutative diagram

X Y Z

W

f g

m e

where m œ MonoAflW(C) and e œ EpiBflW(C). We rewrite the previous

diagram as follows:

X Y Z

W W Z

f

m ¶ f

g

m

e

Note that m ¶ f œ MonoA(C). Since g ¶ f œ We, we can write g ¶ f as

X
mÕæ W Õ eÕæ Y , where mÕ œ MonoAflW(C) and eÕ œ EpiBflW(C). Since

m ¶ f œ MonoA(C) and eÕ œ EpiBflW(C), there exists a filler d : W æ W Õ

such that the following commutes:

X W Z

X W Õ Z

m ¶ f e

d

mÕ eÕ
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Write d = W
mÕÕæ W ÕÕ eÕÕæ W Õ, where mÕÕ œ MonoA(C) and EpiBflW(C). Then

there is an exact sequence Ker(e) Òæ Ker(eÕ ¶ eÕÕ) ⇣ CoKer(mÕÕ), where Ker(e)

and Ker(eÕ ¶ eÕÕ) are in W . It follows CoKer(mÕÕ) œ A fl W . Consider the

composition mÕ = eÕÕ ¶ (mÕÕ ¶ m ¶ f). We use Snake’s Lemma again to obtain

a short exact sequence Ker(eÕÕ) Òæ CoKer(mÕÕ ¶ m ¶ f) ⇣ CoKer(mÕ), with

the end terms in W . We get CoKer(mÕÕ ¶ m ¶ f) œ W . It follows that

mÕÕ ¶ m ¶ f œ MonoAflW(C). Applying the same reasoning, we can show that

m ¶ f œ MonoAflW(C). Similarly, we conclude that f œ MonoAflW(C).

(iii) f and g ¶ f are weak equivalences: Similar to (ii).

By the previous remark, we conclude that this cotorsion model structure just

obtained is Abelian.

We finish the section by giving some conditions under which we can deduce the

completeness of compatible cotorsion pairs.
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Let (AflW , B) and (A, BflW) be two compatible cotorsion pairs in an Abelian

category C.

(1) Suppose (‹W , W) is a cotorsion pair cogenerated by a set SW . If (AflW, B)

is also cogenerated by a set SAflW , then (A, B fl W) is cogenerated by

S = SAflW fi SW .

(2) Suppose C has enough projective and injective objects. If (‹W , W) and

(W , W‹) are complete cotorsion pairs, then (A, B flW) is complete if, and

only if, (A fl W , B) is.

(2ú) Moreover, if C has functorially enough projective and injective objects, and

if (‹W , W) and (W , W‹) are functorially complete, then (A, B fl W) is

functorially complete if, and only if, (A fl W , B) is.

Proposition 2.3.6

Proof .

Part (1) follows from the equality B fl W = (SAflW)‹ fl (SW)‹ = (SAflW fi SW)‹.

Part (2): We only prove the implication (=∆), since the other is dual. So suppose

(A, B fl W) is complete and let X be an object in C. Since (W , W‹) is complete,

there exists a short exact sequence X Òæ C ⇣ W , where C œ W‹ and W œ W .

Since (A, B fl W) is complete, there exists a short exact sequence B Òæ A ⇣ W ,

where A œ A and B œ B fl W . Taking the pullback of the morphisms C ⇣ W

and A ⇣ W , we get the following commutative diagram:

B B

X C ◊W A A

X C W
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Since W is closed under extensions, we have A œ A fl W . It su�ces to show

C ◊W A œ B. Note that A fl W ™ W implies W‹ ™ (A fl W)‹ = B. Then C œ B.

It follows C ◊W A œ B since B is closed under extensions. We have obtained a

short exact sequence X Òæ C ◊W A ⇣ A with C ◊W A œ B and A œ A fl W . By

the Salce’s Lemma, (A fl W , B) is complete.

2.4 Induced cotorsion pairs of chain complexes

In this last section we study some methods developed by Jim Gillespie to construct

certain cotorsion pairs in the category of complexes over an Abelian category

Ch(C), from a complete cotorsion pair in C. This methods appear in (27). We shall

present their proofs based on the arguments given by Gillespie, but we introduced

some modifications and remarks according to our needs. The importance of these

results lie in a better understanding of homological dimensions in Ch(C).

Definition 2.4.1. Let D be a class of objects of an Abelian category C. A complex

D over C is:

(1) An D-complex if D is exact (i.e. D œ E) and Zm(D) œ D for every m œ Z.

We denote this class of complexes by ÂD.

(2) A degreewise D-complex if Dm œ D for every m œ Z. We denote this class of

complexes by dw ÂD.

(3) An exact degreewise D-complex if X œ dw ÂD fl E . We denote this class of

complexes by ex ÂD.

Given two chain complexes X and Y in Ch(C), the complex HomÕ(X, Y ) is defined

by at each n œ Z by

HomÕ(X, Y )n := r
kœZ HomR(Xk, Yn+k).
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Then an element f œ Hom(X, Y )n is a set of maps f = (fk : Xk æ Xk+n)kœZ.

The boundary maps HomÕ(X, Y )n æ HomÕ(X, Y )n≠1 are defined at every f =

(fk)kœZ œ HomÕ(X, Y )n by

ˆHomÕ(X,Y )
n (f) := (ˆY

k+n ¶ fk ≠ (≠1)nfk≠1 ¶ ˆX
k )kœZ.

Definition 2.4.2. Let (A, B) be a cotorsion pair in an Abelian category C. A

complex X over C is:
A di�erential graded A-complex if

Xm œ A for every m œ Z, and if every

chain map X æ Y is null homotopic

(or equivalently, HomÕ(X, Y ) is exact)

whenever Y is a B-complex. Denote

by dg ÂA this class of complexes.

A di�erential graded B-complex if

Xm œ B for every m œ Z, and if every

chain map Y æ X is null homotopic

(or equivalently, HomÕ(Y, X) is exact)

whenever Y is an A-complex. Denote

by dgÂB this class of complexes.

Example 2.4.1.

(1) Given a class D ™ Ob(C), Dm(D) is a D-complex for every m œ Z and every

X œ X .

(2) If (A, B) is a cotorsion pair in C, then Sm(A) is a di�erential graded A-complex

for every m œ Z whenever A œ A. Dually, Sm(B) is a dg B-complex for every

m œ Z whenever B œ B.

Let D be a class of objects in C, and (A, B) be a cotorsion pair in C.

(1) The classes ÂD, dw ÂD, ex ÂD, dg ÂA and dgÂB are closed under suspensions.

(2) If D is a resolving or a coresolving class, then so is ÂD.

(3) If A is resolving then so is dg ÂA. Dually, if B is coresolving then so is dgÂB.

Proposition 2.4.1
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Proof .

(1) It is clear that ÂD, dw ÂD and ex ÂD are closed under suspensions. It is only left

to show the result for dg ÂA, since for dgÂB is dual. Let X œ dg ÂA and k œ Z.

It is clear that (�k(X))n œ A for every n œ Z. Now if �k(X) æ Y is a chain

map with Y œ ÂB. Then we get a chain map X æ �≠k(Y ), where �≠k(Y ) œ ÂB
since ÂB is closed under suspensions. It follows X æ �≠k(Y ) is null homotopic.

Applying �k to this map, we obtain that �k(X) æ Y is null homotopic.

(2) We only prove the case where D is a coresolving class. If P is a projective

chain complex then Zm(P ) is a projective object of C, for every m œ Z. So

Zm(P ) œ D for every m œ Z. On the other hand, every projective chain

complex is exact and so P œ ÂD.

Consider a short exact sequence of complexes DÕ Òæ D ⇣ DÕÕ. If DÕ, DÕÕ œ ÂD,

then D is exact since the class of exact complexes is thick. On the other hand,

for every m œ Z, we have an exact sequence Zm(DÕ) Òæ Zm(D) ⇣ Zm(DÕÕ), by

Lemma 1.8.3. Since Zm(DÕ), Zm(DÕÕ) œ D and D is closed under extensions,

we have Zm(D) œ D.

(3) Suppose A is a resolving class. We first show that dg ÂA is closed under ex-

tensions and under taking kernels of epimorphisms. Suppose we are given

an exact sequence X Õ Òæ X ⇣ X ÕÕ of complexes. Then for every m œ Z

we have ant exact sequence X Õ
m Òæ Xm ⇣ X ÕÕ

m in C. If X Õ, X ÕÕ œ dg ÂA then

X Õ
m, X ÕÕ

m œ A. It follows Xm œ A since A is closed under extensions. Now we

show that HomÕ(X, Y ) is an exact complex whenever Y œ ÂB. For every k œ Z,

the short exact sequence X Õ
k Òæ Xk ⇣ X ÕÕ

k derives in an exact sequence

HomC(X ÕÕ
k , Ym+k) Òæ HomC(Xk, Ym+k) æ HomC(X Õ

k, Ym+k) æ
⇠⇠⇠⇠⇠⇠⇠⇠⇠:0
Ext1

C(X ÕÕ
k , Ym+k) æ · · ·

Since chain homology commutes with direct products and so the product of

exact sequences is exact, we obtain the following diagram with exact rows:
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r
kœZ HomC(X ÕÕ

k , Ym+k) r
kœZ HomC(Xk, Ym+k) r

kœZ HomC(X Õ
k, Ym+k)

HomÕ(X ÕÕ, Y ) HomÕ(X, Y ) HomÕ(X Õ, Y )

where HomÕ(X Õ, Y ) and HomÕ(X ÕÕ, Y ) are exact. It follows HomÕ(X, Y ) is

exact. Hence X œ dg ÂA. If X, X ÕÕ œ dg ÂA, then similarly it follows that

X Õ œ dg ÂA. It is only left to show that dg ÂA contains the class of projective

chain complexes. Given a projective chain complex P , it is clear that Pm œ
P0(C) for every m œ Z. Now we show that every chain map P æ Y is null

homotopic whenever Y œ ÂB. We know P can be written as a direct sum

P = m
mœZ D(Zm(P )). For each m we have an inclusion Dm(Zm(P )) im

Òæ P . It

is clear that every composition f ¶ im is null homotopic. On the other hand,

f = m
mœZ f ¶ im. It follows f is null homotopic.

Definition 2.4.3. Let X and Y be two chain complexes over C. Let Ext1
dw(X, Y )

denote the subgroup of Ext1
Ch(C)(X, Y ) given by all the classes of short exact

sequences Y Òæ Z ⇣ X which are degreewise split, i.e. 0 æ Yk æ Zk æ Xk æ 0

is split for every k œ Z.

Due to several results by J. Gillespie, we shall see how to construct from (A, B)

several cotorsion pairs in Ch(C) involving the classes given in Definitions 2.4.1

and 2.4.2. Before stating these results, we need the following lemma:

Ext1
dw(X, Y ) ≥= H≠1(HomÕ(X, Y )), for every pair of chain complexes X and Y

over C.

Lemma 2.4.2 (see (27, Lemma 2.1))
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For every m œ Z, using the help of the suspension functor �≠m≠1(≠), the previous

equality can be “shifted” to Ext1
dw(X, �≠m≠1(Y )) ≥= Hm(HomÕ(X, Y )).

Let (A, B) be a cotorsion pair in C.
If C has enough injective objects,

then ( ÂA, dgÂB) is a cotorsion pair in

Ch(C).

If C has enough projective objects,

then (dg ÂA, ÂB) is a cotorsion pair in

Ch(C).

Theorem 2.4.3 (see (27, Proposition 3.6))

In the original statement of the previous theorem, the hypothesis assumed is that

C has enough A-objects and enough B-objects, that is for every object X œ Ob(C)

there exists an epimorphism A ⇣ X and a monomorphism X Òæ B with A œ A
and B œ B. In (27, Corollary 3.8), the hypothesis that C has enough projective

or injective objects is also considered.

Proof .

We prove the left statement, based in the arguments given in (27, Proposition

3.6).

(i) ÂA ™ ‹(dgÂB) and dgÂB ™ ( ÂA)‹: Let X œ ÂA and Y œ dgÂB. Note that for every

m œ Z we have an exact sequence Zm(X) Òæ Xm ⇣ Zm≠1(X) since X is exact.

On the other hand, Zm(X), Zm≠1(X) œ A, and so Xm œ A since A is closed

under extensions. Now consider a class S = [Y Òæ Z ⇣ X] in Ext1
Ch(C)(X, Y ).

We have H≠1(HomÕ(X, Y )) = 0 since HomÕ(X, Y ) is exact. So by the previous

lemma, Ext1
dw(X, Y ) = 0. Each short exact sequence Ym Òæ Zm ⇣ Xm splits

since Xm œ A and Ym œ B. It follows [Y Òæ Z ⇣ X] is in Ext1
dw(X, Y ) = 0.

Hence Ext1
Ch(C)(X, Y ) = 0.
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(ii) ÂA ´ ‹(dgÂB): Let X œ ‹(dgÂB). First we show X is exact. Fix m œ Z. Since

C has enough injective objects, there exists a monic Xm/Bm(X) fæ I for

some injective I œ Ob(C). Consider the composition f ¶ fiX
m , where fiX

m is the

canonical projection Xm æ Xm
Bm(X) . We have a chain map X

Sm(f¶fiX
m)≠æ Sm(I)

given by

(Sm(f ¶ fiX
m))k =

Y
_]

_[

f ¶ fiX
m if k = m

0 if k Æ m.

On the other hand,

Hn(HomÕ(X, Sm(I))) ≥= Ext1
dw

A

X,
≠n≠1ÿ

(Sm(I))
B

™
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0
Ext1

Ch(C)(X, �≠n≠1(Sm(I))).

since dgÂB is closed under suspensions. So HomÕ(X, Sm(I)) is exact and the

map Sm(f ¶ fiX
m) is null homotopic, i.e. there exists a map Xm≠1

Dmæ I such

that Dm ¶ ˆX
m = f ¶ fiX

m . On the one hand, Bm(X) ™ Zm(X) for every m œ Z.

On the other hand, Zm(X) ™ Bm(X) by the previous equality. Hence X is

exact.

Now we check Xm
Bm(X) œ A for every m œ Z. Let B œ B. Since X is exact,

by Proposition 1.6.3 we have Ext1
C(Xm/Bm(X), B) ≥= Ext1

Ch(C)(X, Sm(B)).

Recall that Sm(B) œ dgÂB by Example 2.4.1 (2). Since X œ ‹(dgÂB), we have

Ext1
Ch(C)(X, Sm(B)) = 0. So Ext1

C(Xm/Bm(X), B) = 0 and Xm
Bm(X) œ A for

every m œ Z. By exactness of X, we finally get Zm≠1(X) ≥= Xm/Zm(X) ≥=
Xm/Bm(X) œ A, for every m œ Z.

(iii) dgÂB ´ ( ÂA)‹: Let Y œ ( ÂA)‹. For every A œ A, Ext1
Ch(C)(Dm(A), Y ) = 0

since Dm(A) œ ÂA, by Example 2.4.1 (1), and Y œ ( ÂA)‹. On the other hand,

Ext1
C(A, Ym) and Ext1

Ch(C)(Dm(A), Y ) are isomorphic by Proposition 1.6.2.

Then Ext1
C(A, Ym) = 0, and so Ym œ B.

Now let X œ ÂA, we check HomÕ(X, Y ) is exact. By Lemma 2.4.2, we only

need to check that Ext1
dw(X, Y ) = 0. But this follows from the fact that
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Ext1
dw(X, Y ) is a subgroup of Ext1

Ch(C)(X, Y ) and that Ext1
Ch(C)(X, Y ) = 0,

since X œ ÂA and Y œ ( ÂA)‹.

If X œ ÂA and Y œ ÂB, then every chain map X æ Y is null homotopic.

Lemma 2.4.4 (see (27, Lemma 3.9))

Let (A, B) be a hereditary cotorsion pair in C, and E be the class of exact

chain complexes.
If C has enough projective objects,

then ÂB = dgÂB fl E .

If C has enough injective objects,

then ÂA = dg ÂA fl E .

Theorem 2.4.5 (see (27, Lemma 3.14))

This result appears in the given reference under the hypothesis that (dg ÂA, ÂB) and

( ÂA, dgÂB) are right and left complete, respectively. The next proof of the previous

result is based on the arguments given by Gillespie in (27, Lemma 3.10 & Theorem

3.12).

Proof .

We first show that ÂA ™ dg ÂA fl E . Let X œ ÂA. Then it is clear that X œ E , and

so for every m œ Z we have an exact sequence Zm(X) Òæ Xm ⇣ Zm≠1(X), where

Zm(X), Zm≠1(X) œ A. Since A is closed under extensions, we get Xm œ A. The

rest follows by the previous lemma.

Given X œ dg ÂA fl E , we only need to show that Zm(X) œ A for every m œ Z.

Let B œ B. Since C has enough injective objects, there is an exact right injective

resolution of B, say

I = B
ˆI

≠1

Òæ I0 ˆI
0æ I1 ˆI

1æ · · · æ In æ · · · .
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Note that we have an exact sequence B Òæ I0 ⇣ Z1(I). Since B is coresolving

by Proposition 2.2.1, we have Z1(I) œ B. We can repeat this argument recur-

sively and conclude that Zm(I) œ B for every m œ Z. Hence I œ ÂB and so

Ext1
Ch(C)(X, I) = 0 since X œ dg ÂA (Theorem 2.4.3). On the other hand, there is

an exact sequence

0 HomC(Zm≠1(X), B) HomC(Xm, B) HomC(Zm(X), B)

Ext1
C(Zm≠1(X), B) ⇠⇠⇠⇠⇠⇠⇠⇠: 0

Ext1
C(Xm, B) · · ·

where the last term is zero since Xm œ A. It follows Ext1
C(Zm≠1(X), B) = 0 if,

and only if, HomC(Xm, B) æ HomC(Zm(X), B) is surjective. Consider a map

Zm(X) fæ B. We construct a chain map X æ �≠m(I). Set fk = 0 for every

k > m+1. Let fm+1 := f ¶ [̂X
m+1 : Xm+1 æ B, where [̂X

m+1 is the restriction of the

map Xm+1
ˆX

m+1æ Xm onto its image. Since I0 is injective, there exists a morphism

Xm
fmæ I0 such that the following diagram commutes:

Zm(X) Xm Zm≠1(X)

B

I0

f

ˆI

1

fm

flX
mjX

m

Then (ˆI

0 ¶ fm) ¶ jX
m = (ˆI

0 ¶ ˆI

≠1) ¶ f = 0, and so there is a unique morphism

Zm≠1(X)
f Õ

m≠1æ I1 such that f Õ
m≠1 ¶ flX

m = ˆI
0 ¶ fn. Since the sequence

HomC(Zm≠2(X), I1) Òæ HomC(Xm≠1, I1) ⇣ HomC(Zm≠1(X), I1)

is exact, there exists a morphism Xm≠1
fm≠1æ I1 such that fm≠1 ¶ jX

m≠1 = f Õ
m≠1.

Then we have fm≠1 ¶ ˆX
m = fm≠1 ¶ jX

m≠1 ¶ ‰̂X
m = f Õ

m≠1 ¶ ‰̂X
m = ˆI

0 ¶ fm. Recursively,

we construct a chain map
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X · · · Xm+2 Xm+1 Xm Xm≠1 · · ·
=

�≠m(I) · · · 0 B I0 I1 · · ·

fm+1 fm fm≠1

which is null homotopic, since X œ dg ÂA and �≠m(I) œ ÂB. So there exists a map

Xm
Dæ B such that D ¶ ˆX

m+1 = fm+1, i.e. D ¶ jX
m ¶ [̂X

m+1 = f ¶ [̂X
m+1. Since [̂X

m+1 is

epic, we get D ¶ jX
m = f . Hence HomC(Xm, B) æ HomC(Zm(X), B) is surjective

and so Ext1
C(Zm≠1(X), B) = 0 for every m œ Z, i.e. Zm≠1(X) œ A.

Remark 2.4.1. Consider the trivial cotorsion pair (P0(C), Ob(C)), which is com-

plete provided C has enough projective objects. Then we get two induced cotorsion

pairs (P̂0(C), Ob(Ch(C))) and (dgP̂0(C), dgÔb(C) fl E) = (dgP̂0(C), E). So a com-

plex X is dg-projective if, and only if, Ext1
Ch(C)(X, E) = 0 for every exact complex

E. Similarly, a chain complex Y is dg-injective if, and only if, Ext1
Ch(C)(E, Y ) = 0

for every exact complex X, provided C has enough injective objects.

The following two results, proven by J. Gillespie in (25, Propositions 3.2 & 3.3),

describe more methods to get cotorsion pairs in Ch(C) from a cotorsion pair in C.

If (A, B) is a cotorsion pair in C, then so are (dw ÂA, (dw ÂA)‹) and (‹(dwÂB), dwÂB)

in Ch(C). The class (dw ÂA)‹ is given by all complexe Y for which Ym œ B for

every m œ Z and for which each map X æ Y is homotopic to 0 whenever

X œ dw ÂA. Dually, the class ‹(dwÂB) is given by all the complexes X for which

Xm œ A for every m œ Z and for which each map X æ Y is homotopic to 0

whenever Y œ dwÂB.

Theorem 2.4.6 (see (25, Proposition 3.2))
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Proof .

We only present the proof (appearing in the given reference) for (‹(dwÂB), dwÂB).

Let X be the class of all chain complexes X such that Xm œ A for every m œ Z,

and such that every chain map X æ Y is null homotopic whenever Y œ dwÂB.

(i) Let X œ X and Y œ dwÂB. Consider [Y Òæ Z ⇣ X] œ Ext1
Ch(C)(X, Y ). Since

every chain map X æ Y is null homotopic, we have HomÕ(X, Y ) is exact and

so Ext1
dw(X, Y ) = 0. On the other hand, for every m œ Z we have an exact

sequence Ym Òæ Zm ⇣ Xm, which is split exact since Xm œ A and Ym œ B.

It follows [Y Òæ Z ⇣ X] œ Ext1
dw(X, Y ) = 0. Hence every [Y Òæ Z ⇣ X] is

zero and Ext1
Ch(C)(X, Y ) = 0. We have dwÂB ™ X ‹ and X ™ ‹(dwÂB).

(ii) Let Y œ X ‹. Consider A œ A and the disk complex Dm(A). It is clear

that (Dm(A))k œ A for every k œ Z. If Dm(A) fæ Z is a chain map with

Z œ dwÂB, then set Dk = 0 for every k ”= m, and Dm = fm. It is easy to

verify that (Dk)kœZ is a chain homotopy from f to 0. Then Dm(A) œ X . So

Ext1
C(A, Ym) ≥= Ext1

Ch(C)(Dm(A), Y ) = 0 for every A œ A, i.e. Ym œ B for

every m œ Z. Hence Y œ dwÂB and X ‹ ™ dwÂB.

(iii) Let X œ ‹(dwÂB). For every B œ B, Ext1
C(Xm, B) ≥= Ext1

Ch(C)(X, Dm+1(B)) =

0, i.e. Xm œ A for every m œ Z. Let Y œ dwÂB. Since Ext1
Ch(C)(X, Y ) = 0

and dwÂB is closed under suspensions, Ext1
Ch(C)(X, �≠m≠1(Y )) = 0 and so

Ext1
dw(X, �≠m≠1(Y )) = 0. It follows HomÕ

Ch(C)(X, Y ) is exact by Lemma

2.4.2, i.e. every chain map X æ Y is null homotopic. Therefore X œ X .
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Let (A, B) be a cotorsion pair in C.
If either C has enough injective ob-

jects, or if B contains a cogenera-

tor of finite injective dimension, then

(ex ÂA, (ex ÂA)‹) is a cotorsion pair in

Ch(C), where (ex ÂA)‹ coincides with

the class of all complexes Y for which

Ym œ B for every m œ Z, and for

which every chain map X æ Y is null

homotopic whenever X œ ex ÂA.

If either C has enough projective ob-

jects, or if A contains a generator

of finite projective dimension, then

(‹(ex ÂB), ex ÂB) is a cotorsion pair in

Ch(C), where ‹(ex ÂB) coincides with

the class of all complexes X for which

Xm œ A for every m œ Z, and for

which every chain map X æ Y is null

homotopic whenever Y œ ex ÂB.

Theorem 2.4.7 (see (25, Proposition 3.3))

Proof .

We prove the left statement. Suppose C has enough injective objects. This case is

not included in the original statement appearing in (25, Proposition 3.3). Using

this hypothesis we can give an easier proof of the result. Let Y be the class of all

chain complexes Y such that Ym œ B for every m œ Z, and such that every chain

map X æ Y is null homotopic whenever X œ ex ÂA.

(i) The inclusions ex ÂA ™ ‹Y and Y ™ (ex ÂA)‹ are proven as in the previous

theorem.

(ii) Let X œ ‹Y . Consider a di�erential graded injective complex I. We show

I œ Y . Note first that Im œ B since Im is injective. Moreover, every chain

map Z æ I with Z œ ex ÂA is null homotopic since Z is exact and I is DG

injective. Then I œ Y and Ext1
Ch(C)(X, I) = 0. Hence X is exact since

(E , dg ]I0(C)) is a cotorsion pair. On the other hand, for every B œ B we have

Ext1
C(Xm, B) ≥= Ext1

Ch(C)(X, Dm+1(B)) = 0, since Dm+1(B) œ Y . Therefore

Xm œ A for every m œ Z. We have ‹Y ™ ex ÂA.
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(iii) Let Y œ (ex ÂA)‹. For every A œ A, Ext1
C(A, Ym) ≥= Ext1

Ch(C)(Dm(A), Y ) = 0

since Dm(A) œ ex ÂA. So Ym œ B for every m œ Z. On the other hand,

Ext1
dw(X, Y ) ™ Ext1

Ch(C)(X, Y ) = 0, for every X œ ex ÂA, implies that the

complex HomÕ(X, Y ) is exact, i.e. every chain map X æ Y is null homotopic

whenever X œ ex ÂA. Therefore, Y ´ (ex ÂA)‹.

Remark 2.4.2 (A. Joyal). It is possible to get other descriptions of the classes

(dw ÂA)‹ and ‹(dwÂB), using the orthogonality defined by the Ext1
dw(≠, ≠). In this

sense, define (dw ÂA)‹
dw as the class of all complexes Y such that Ext1

dw(X, Y ) is

0 for every X œ dw ÂA. The class ‹
dw(dwÂB) is defined similarly. We have the

following characterizations of (dw ÂA)‹ and ‹(dwÂB) in terms of the dw-orthogonal

classes just defined.

(1) (dw ÂA)‹ = (dw ÂA)‹
dw fldwÂB: Let Y œ (dw ÂA)‹ and X œ dw ÂA. By the previous

theorem, we have Y œ dwÂB. Then Ext1
C(Xm, Ym) = 0 for every m œ Z. This

implies Ext1
dw(X, Y ) = Ext1

Ch(C)(X, Y ). Since Y œ (dw ÂA)‹ and X œ dw ÂA,

we obtain Ext1
Ch(C)(X, Y ) = 0 and therefore Ext1

dw(X, Y ) = 0. The other

inclusion follows similarly.

(2) ‹(dwÂB) = ‹
dw(dwÂB) fl dw ÂA: The proof is similar to (1).

We know that the cotorsion pairs (dg ÂA, ÂB) and ( ÂA, dgÂB) are compatible if the

inducing pair (A, B) is hereditary. The author does not know if the same holds

for the cotorsion pairs (dw ÂA, (dw ÂA)‹) and (ex ÂA, (ex ÂA)‹) (or for (‹(dwÂB), dwÂB)

and (‹(ex ÂB), ex ÂB)). Consider the case C = RMod. Since dgP̂0(C) ™ dw ÂA and

ex ÂA ™ dw ÂA, we have (dw ÂA)‹ ™ (dgP̂0(C))‹ = E and (dw ÂA)‹ ™ (ex ÂA)‹, and so

(dw ÂA)‹ ™ (ex ÂA)‹ flE . Similarly, ‹(dwÂB) ™ ‹(ex ÂB)flE . The next result provides

a relationship between completeness of these degreewise cotorsion pairs and the

remaining inclusions.
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If the pair (dw ÂA, (dw ÂA)‹) is com-

plete, then (dw ÂA)‹ = (ex ÂA)‹ fl E .

If the pair (‹(dwÂB), dwÂB) is com-

plete, then ‹(dwÂB) = ‹(ex ÂB) fl E .

Proposition 2.4.8

Proof .

We only prove the left statement. It su�ces to show the inclusion (ex ÂA)‹ fl E ™
(dw ÂA)‹. Let Y œ (ex ÂA)‹ fl E . Since (dw ÂA, (dw ÂA)‹) is complete, there is a

short exact sequence Y Òæ X ⇣ A, with X œ (dw ÂA)‹ and A œ dw ÂA. Note

that A œ dw ÂA fl E since X œ (dw ÂA)‹ ™ E , Y œ E and E is thick. It follows

Ext1(A, Y ) = 0 and that the previous sequence splits. We have that Y is a direct

summand of X œ (dw ÂA)‹, and hence Y œ (dw ÂA)‹ since (dw ÂA)‹ is closed under

direct summands.
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induced, from a cotorsion pair in C, the cotorsion pairs in Ch(C) involving the corresponding classes of di�erential

graded and degreewise complexes.





CHAPTER III

ABELIAN MODEL STRUCTURES AND HOMOLOGICAL
DIMENSIONS OF CHAIN COMPLEXES

“Science, my lad, is made up of mistakes, but

they are mistakes which it is useful to make,

because they lead little by little to the truth.”

Jules Verne.

Some of the first model structures that appeared in homological algebra are related

to the notions of projective, injective and flat modules. For example, if R is a

Frobenius ring (i.e. the classes of projective and injective modules coincide) then

there is an Abelian model structure on RMod where RMod itself is the class of

cofibrant and fibrant objects, and P0(RMod) = I0(RMod) is the class of trivial

objects. The reader can find the details in (36, Section 2.2).

On the category of chain complexes, one of the first model structures ever con-

structed was the projective model structure. In this case, the class of cofibrant

objects is given by the di�erential graded chain complexes, the class E of exact

chain complexes represents the trivial objects, and the whole category Ch(RMod)

forms the class of fibrant objects. This structure was discovered before Hovey’s

Correspondence was established. Cofibrations and fibrations are defined by using
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orthogonality with respect to certain classes of chain maps involving sphere and

disk complexes centred at R. The injective model structure is constructed in a

similar way, with the same trivial objects and the di�erential graded injective

complexes forming the class of fibrant objects (The reader can see the details in

(36)). James Gillespie was able to generalize, to the category of chain complexes,

the argument given by E. Enochs that shows that (F0, (F0)‹) is cogenerated by a

set. This allowed him to construct a model structure on Ch(RMod) where dg ÊF0

is the class of cofibrant objects, ( ÊF0)‹ the class of fibrant objects, and E the class

of trivial objects.

The goal of this chapter is to generalize these model structures for every homo-

logical dimension. We mean that the classes of di�erential graded n-projective,

n-injective and n-flat chain complexes appear as the classes of cofibrant and fi-

brant objects of certain Abelian model structures on Ch(RMod). We shall do the

same with the classes of degreewise n-projective, n-injective and n-flat complexes.

In the end we present some of the model structures obtained in a categorical

setting, using a functor known as Mitchell’s equivalence.

3.1 Cotorsion pairs and homological dimensions of modules

In this section, we study some relatively recent results concerning cotorsion pairs

and homological dimensions in the category of left R-modules. Namely, we shall

see that the classes of n-projective and n-flat modules constitute the left halves

of two complete cotorsion pairs. The idea in each case is to construct for every

n-projective (res. n-flat) module, a transfinite extension of “small” n-projective

(resp. “small” n-flat) modules. The construction of these transfinite extension is

based on a method, probably first introduced by Edgar Enochs and coauthors,

known as the zig-zag procedure. We shall explain how this method works in both
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the projective and flat cases, in order to study several generalizations to the cate-

gory of chain complexes in the following sections. In the case of injective objects,

the fact that In(C) is the right half of a cotorsion pair in a Grothendieck category

C is a consequence of Baer’s Criterion.

We start with the projective case. Given an Abelian category C, recall that

(P0(C), Ob(C)) is a cotorsion pair. We also know that C has enough projective

objects if, and only if, (P0(C), Ob(C)) is complete. The category of left R-modules

RMod is an example where this occurs. We use the notation P0(C) = P0 whenever

C = RMod or ModR. So (P0, Ob(RMod)) is complete. This result is also a

consequence of Eklof and Trlifaj’s Theorem, since (P0, Ob(RMod)) is cogenerated

by the set {R} (Recall that a module is projective if, and only if, it is a direct

summand of a free module).

For any projective dimension, denote Pn = Pn(C) whenever C is RMod or ModR.

We shall show that (Pn, (Pn)‹) is a complete cotorsion pair. In 2001, S. T.

Aldrich, E. E. Enochs, O. M. G. Jenda and L. Oyonarte proved this fact by giving

a generating set, which is deduced from the zig-zag procedure. We shall see later

that this result is valid in the category of modules over a ringoid (See Section 10

of Chapter 1).

As we mentioned above, (P0, Ob(RMod)) is cogenerated by {R}. Can we assert

a similar result in Abelian categories? The answer is yes, but imposing some

conditions on C. First, recall that R is a generator of RMod. So we ask our

category C to have a generator G. In general, G needs not to be projective. For

instance, the category C of sheaves of Abelian groups on a topological space X is

a Grothendieck category, and so it has a generator, but it needs not have enough

projective sheaves. The following result is easy to prove.
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If P is a projective object of an Abelian category C with generator G, then P

is a direct summand of a direct sum G(I) (for some index set I) of copies of G.

If G is projective, the converse holds.

Proposition 3.1.1

The following result is proven in (31, Lemma 3.1) for the category of left R-

modules, but the same argument works for any Abelian category.

Let S be a set of objects of a cocomplete Abelian category C, and let Add(S)

denote the class of direct sums of copies of objects from S. If D is a direct

summand of an object of Add(S), then there exists an object C œ Add(S) such

that D ü C = C.

Proposition 3.1.2 (Eilenberg’s Trick. See (31, Lemma 3.1))

Proof .

Note there exists an object Q such that E = D ü Q belongs to Add(S). Then the

module

C = D ü Q ü D ü Q ü D ü Q ü · · · = E ü E ü E ü · · ·

belongs to Add(S). The result follows since

C = Dü(QüDüQüDüQü · · · ) = Dü(DüQüDüQüDüQü · · · ) = DüC.

For every left (or right) projective R-module P there exists a free module F

such that P ü F ≥= F .

Corollary 3.1.3
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For a moment, we work in the category of left R-modules RMod. One of the

applications of the previous corollary is the construction free resolutions of finite

length for every n-projective module. Suppose X œ Pn and let

P = (0 æ Pn æ Pn≠1 æ · · · æ P1 æ P0 æ X æ 0)

be an exact and finite left projective resolution of length n. By Eilenberg’s Trick,

there is a free module L0 such that P0 ü L0 ≥= L0. If we take the direct sum of P

and D1(L0), we get the exact sequence

P1 = (0 æ Pn æ Pn≠1 æ · · · æ P1 ü L0 æ P0 ü L0 æ X æ 0)

= (0 æ Pn æ Pn≠1 æ · · · æ P1 ü L0 æ L0 æ X æ 0).

Since P1üL0 is projective, there exists a free module L1 such that (P1üL0)üL1 ≥=
L1. Taking the direct sum of P1 and D2(L1), we get the exact sequence

P2 = (0 æ Pn æ Pn≠1 æ · · · æ (P1 ü L0) ü L1 æ L0 æ X æ 0)

= (0 æ Pn æ Pn≠1 æ · · · æ L1 æ L0 æ X æ 0).

At the n ≠ 1th step, we have obtained an exact sequence

Pn≠1 = (0 æ Pn ü Ln≠1 æ Ln≠1 æ · · · æ L1 æ L0 æ X æ 0).

Finally, let Ln be a free module such that (Pn ü Ln≠1) ü Ln
≥= Ln. We obtain a

left free resolution of length n:

Pn = (0 æ (Pn ü Ln≠1) ü Ln æ Ln≠1 ü Ln æ · · · æ L1 æ L0 æ X æ 0)

= (0 æ Ln æ Ln≠1 ü Ln æ · · · æ L1 æ L0 æ X æ 0).

Hence, every n-projective module has an exact and finite left free resolution of

length n.
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Every n-projective left (or right) n-projective module has a free left resolution

of length n.

Corollary 3.1.4

By a map between left (or right) resolutions (by some class of objects) we shall

mean a chain map between the given resolutions. In this sense, the sequence

FÕ = (0 æ F Õ
n æ F Õ

n≠1 æ · · · æ F Õ
1 æ F Õ

0 æ X Õ æ 0) is said to be a subresolution

of F = (0 æ Fn æ Fn≠1 æ · · · æ F1 æ F0 æ X æ 0) if there is a monic map

from FÕ to F. We shall prove that given an x œ X, with X œ Pn, we can construct

a “small” left free subresolution of P of length n with x œ X Õ.

Definition 3.1.1. Let Ÿ Ø Card(R) be a fixed infinite cardinal number. A set

S is said to be Ÿ-small (or simply small) if Card(S) Æ Ÿ. For a given class of

modules F , we denote by FÆŸ the set of Ÿ-small modules which are in F .

The following result is due to Aldrich et al. (5, Proposition 4.1). It is a tool used

to prove that (Pn, (Pn)‹) is a complete cotorsion pair. For the reader convenience,

we present their proof to introduce the zig-zag procedure.

If X is an n-projective module and x œ X, then there exists a Ÿ-small n-

projective submodule X Õ ™ X containing x such that X/X Õ is also n-projective,

where Ÿ Ø Card(R) is a given infinite cardinal.

Lemma 3.1.5 (Aldrich, Enochs, Jenda & Oyonarte.)

Proof .

Consider a free resolution 0 æ Fn
ˆnæ Fn≠1 æ · · · æ F0

ˆ
0æ X æ 0. Let Bi be a

basis of Fi. We shall find small linearly independent sets Bi ™ Bi and construct
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an exact sequence of the form 0 æ ÈBnÍ æ · · · æ ÈB1Í æ ÈB0Í, and then take

X Õ = Im(ˆ0|ÈB
0

Í). For this, we use a technique called the zig-zag procedure. Since

ˆ0 is surjective, we can find a finite subset Z0 ™ B0 such that x œ ˆ0(ÈZ0Í). Now

we choose a small subset Z1 ™ B1 such that ˆ1(ÈZ1Í) ´ Ker(ˆ0|ÈZ
0

Í). Then we

choose a small subset Z2 ™ B2 such that ˆ2(ÈZ2Í) ´ Ker(ˆ1|ÈZ
1

Í). We continue

this procedure until we get a set a small subset Zn ™ Bn satisfying ˆn(ÈZnÍ) ´
Ker(ˆn≠1|ÈZn≠1

Í). Now choose a small subset Z
(1)
n≠1 ™ Bn≠1 containing Zn≠1 such

that ˆn(ÈZnÍ) ™< Z
(1)
n≠1 >. Then choose a small subset Bn≠2 ´ Z

(1)
n≠2 ´ Zn≠2

such that ˆn≠1(< Z
(1)
n≠1 >) ™< Z

(1)
n≠2 >. Continue this procedure to construct

small sets Z
(1)
n≠3, . . . , Z

(1)
0 with Bn≠i ´ Z

(1)
n≠i ´ Zn≠i, and ˆn≠i+1(< Z

(1)
n≠i+1 >) ™

< Z
(1)
n≠i >, where 3 Æ i Æ n. Now choose a small set Z

(1)
1 ™ Z

(2)
1 ™ B1 such

that ˆ1(< Z
(2)
1 >) ´ Ker(ˆ0|<Z

(1)

0

>
). Then enlarge Z

(1)
2 and so on. Continue this

zig-zag procedure indefinitely, and set Bi = tŒ
k=0 Z

(k)
i , where Z

(0)
i = Zi. Note that

each Bi is small. Let Â̂
i = ˆi|ÈBiÍ. By construction, we get an exact sequence

0 æ ÈBnÍ Â̂næ · · · Â̂
2æ ÈB1Í Â̂

1æ ÈB0Í. Let X Õ = ˆ0(ÈB0Í). We have a free (and hence

projective) resolution of X Õ given by the sequence

0 æ ÈBnÍ Â̂næ · · · Â̂
2æ ÈB1Í Â̂

1æ ÈB0Í Â̂
0æ X Õ æ 0.

Hence X Õ is n-projective. Note also that X Õ is small and that x œ X Õ. The

quotient of the resolutions of X and X Õ gives rise to a projective resolution of

X/X Õ of length n, and so X/X Õ is also n-projective.

Before generalizing the previous proposition to the category Mod(R), we need to

introduce some notation and recall the notion of a free module. It is important

that the reader checks Section 10 of Chapter 1 before continuing through the

rest of the current section, if he/she does not recall in detail the corresponding

terminology of modules over a ringoid.
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Definition 3.1.2. If M is a R-module we shall say that a submodule N ™ M

is generated by a family {xi}iœI of homogenous elements if N is the smallest

submodule of M which contains all the elements xi. Let N ™ M be a submodule

generated by a family {xi}iœI of homogenous elements of M . Then an element

x œ M(a) belongs to N(a) if and only if it is an admissible linear combination

x = q
iœI ri · xi (where ri = 0 for all but finitely many i œ I).

Definition 3.1.3. We shall say that a family {xi}iœI of homogenous elements of

M is a basis of M if every homogenous element x œ M can be written uniquely

as an admissible linear combination x = q
iœI ri · xi. We shall say that M is free

if it admits a basis.

We recall Yoneda’s Lemma.

If F : C æ Set is a functor from a locally small category C to Set, then

for every X œ Ob(C) there is a bijection Hom[C,Set](HomC(X, ≠), F ) æ F (X)

which sends each natural transformation – : HomC(X, ≠) æ F to the element

–X(idX) œ F (X).

Lemma 3.1.6 (Yoneda)

If R is a ringoid and M is a left R-module, then it follows from Yoneda’s Lemma

that for every a œ Ob(R) and every x œ M(a) there is a unique map of R-modules

– : HomR(a, ≠) æ M such that x = –a(ida). More generally, if {ai}iœI be a family

of objects of R, let us put

Èai : i œ IÍ :=
n

iœI

HomR(ai, ≠)

and [i] := (ui)ai(idai), where ui : HomR(ai, ≠) æ Èai : i œ IÍ is the inclusion.

Consider a family of elements {xi}iœI in r
iœI M(ai). Then for each i œ I we can

write xi = (–i)ai(idai), where –i : HomR(ai, ≠) æ M is a map of left R-modules.
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There exists a unique map f : Èai : i œ IÍ æ M such that the following triangle

commutes:
HomR(ai, ≠) Èai : i œ IÍ

M

ui

– i
÷! –

Note that –ai([i]) = –ai ¶ (ui)ai(idai) = (–i)ai(idai) = xi for every i œ I. It follows

that the R-module Èai : i œ IÍ is freely generated by the elements [i] of grade ai

for i œ I.

Definition 3.1.4. The family {ai}iœI is defining a map | ≠ | : I æ Ob(R) if

we put |i| = ai for i œ I. We shall say that the set I equipped with the map

| ≠ | : I æ Ob(R) is R-graded. If I is an R-graded set, then the R-module

ÈIÍ = m
iœI HomR(|i|, ≠) is freely generated by elements [i] of grade |i| for i œ I.

An R-module M is free if, and only if, it is isomorphic to a coprod-

uct of R-modules HomR(ai, ≠) for a family {ai}iœI of objects of R, M ≥=
m

iœI HomR(ai, ≠).

Proposition 3.1.7

Proof .

(≈=) Follows by the comments above.

(=∆) Suppose M is a free left module over R admitting a basis {xi}iœI . Consider the

natural transformation – : Èai : i œ IÍ æ M given above, where xi œ M(ai).

We check that – is a natural isomorphism, i.e. –b : m
iœI HomR(ai, b) æ M(b)

is an isomorphism for every b œ Ob(R). Let x œ M(b). We can write x as a

unique admissible linear combination x = q
iœI ri · xi, where ri œ HomR(ai, b)

for every i œ I. Since – is a natural transformation, we have that M(ri)¶–ai =
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–b ¶ Èai : i œ IÍ (ri). Then

x =
ÿ

iœI

ri · xi =
ÿ

iœI

M(ri)(xi) =
ÿ

iœI

M(ri)(–ai([i])) =
ÿ

iœI

–b ¶ Èai : i œ IÍ (ri)([i])

=
ÿ

iœI

–b(ri · [i]) = –b

A
ÿ

iœI

ri · [i]
B

, where q
iœI ri · [i] is unique

Every free (left) R-module is projective.

Corollary 3.1.8

Proof .

Since the direct sum of projective objects is projective, by the previous proposition

it su�ces to show that HomR(a, ≠) is projective in Mod(R). We prove that the

functor Hom
Mod(R)(HomR(a, ≠), ≠) : Mod(R) æ Ab is exact. Suppose we are

given a short exact sequence 0 æ M Õ æ M æ M ÕÕ æ 0 in Mod(R). The sequence

0 Hom
Mod(R)(HomR(a, ≠), M Õ) Hom

Mod(R)(HomR(a, ≠), M)

Hom
Mod(R)(HomR(a, ≠), M ÕÕ) 0

is exact since it is isomorphic (in Ab) to 0 æ M Õ(a) æ M(a) æ M ÕÕ(a) æ 0 by

Yoneda’s Lemma.

For every projective R-module P , there exists a free R-module F together with

an isomorphism P ü F ≥= F .

Proposition 3.1.9 (Eilenberg’s Trick for modules over a ringoid)
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Proof .

This is a consequence of Proposition 3.1.2 with S the set of representable functors

HomR(a, ≠).

Every n-projective (left) R-module has a free left resolution of length n.

Corollary 3.1.10

Definition 3.1.5. Let Ÿ be a regular cardinal strictly greater than the cardianlity

of HomR(a, b) for every a, b œ Ob(R). We shall say that a R-module M is Ÿ-small

if Card(M(a)) Æ Ÿ, for every a œ Ob(R). As we did in RMod, if X is a class of

modules over a ringoid R, then X ÆŸ shall denote the set of X œ X such that X

is Ÿ-small.

Let M be a n-projective R-module. Then for every homogeneous element x œ
M(a) there exists a Ÿ-small submodule N Òæ M such that:

(1) x œ N(a).

(2) The R-modules N and M/N are n-projective.

Lemma 3.1.11 (Generalization of Lemma 3.1.5)

Proof .

By the previous corollary, we start with a free resolution in Mod(R):

0 æ ÈInÍ ˆnæ ÈIn≠1Í æ · · · æ ÈI1Í ˆ
1æ ÈI0Í ˆ

0æ M æ 0,

where Ik is an R-graded set for every 0 Æ k Æ n.

The map (ˆ0)a : ÈI0Í (a) = m
iœI

0

HomR([i], a) æ M(a) is surjective, so we can

find a finite number of maps ri
1

: [i1] æ a, . . . , rik
: [ik] æ a such that x =
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(ˆ0)a(ri
1

+ · · · + rik
). Then Z0 = {i1, . . . , ik} is a finite subset of I0 such that

x œ ˆ0(ÈZ0Í) (by abuse of notation, this shall mean that x œ (ˆ0)a ¶ ÈZ0Í (a)).

Consider the natural transformation ˆ0|ÈZ
0

Í : ÈZ0Í æ M and let y œ Ker(ˆ0|ÈZ
0

Í)

of degree b. Since ÈI1Í (b) æ ÈI0Í (b) æ M(b) is exact, there exists yÕ œ ÈI1Í (b)

such that y = (ˆ1)b(yÕ). We can write yÕ = q
iœZy

1

ri · [i], where Zy
1 is a finite

subset of I1. Let Z1 = g{Zy
1 : y œ Ker(ˆ0|ÈZ

0

Í)}. In order to estimate the number

of elements of Zy
1 , note that for each y œ Ker(ˆ0|ÈZ

0

Í) we have a unique tuple

(fli : i œ Z0), with fli œ HomR([i], b). Then we have

Card(Z1) =
ÿ Ó

Card(Zy
1 ) : y œ Ker(ˆ0|ÈZ

0

Í)
Ô

Æ Card(Ker(ˆ0|ÈZ
0

Í)) since each Zy
1 is finite,

Æ Card({(ri : i œ Z0) : y œ Ker(ˆ0|ÈZ
0

Í)})

Æ Ÿ

iœZ
0

Card(HomR([i], b)) Æ Ÿ

Then we have Z1 is a Ÿ-small subset of I1 such that ˆ1(ÈZ1Í) ´ Ker(ˆ0|ÈZ
0

Í),

i.e. (ˆ1)b(ÈZ1Í (b)) ´ Ker((ˆ0)b|ÈZ
0

Í(b)) for every b œ Ob(R). In a similar way,

we can find a Ÿ-small subset Z2 ™ I2 such that ˆ2(ÈZ2Í) ´ Ker(ˆ1|ÈZ
1

Í). We

keep repeating this procedure until we get a Ÿ-small subset Zn ™ In such that

ˆ(ÈZnÍ) ´ Ker(ˆn≠1|ÈZn≠1

Í).

The next step in the zig-zag procedure consists in choosing a Ÿ-small subset Z
(1)
n≠1 ™

In≠1, containing Zn≠1, such that ˆn(ÈZnÍ) ™< Z
(1)
n≠1 >. Let y œ ˆn(ÈZnÍ) of degree

b. Then y = (ˆn)b(z), where z = q
iœZn

ri · [i]. We have y = q
iœZn

(ˆn)b(ri · [i]). On

the other hand, (ˆn)b(ri · [i]) = q
jœZ

(1),y,i
n≠1

qj · [j] for a finite subset Z
(1),y,i
n≠1 ™ In≠1.

Thus y = q
iœZn

q
jœZ

(1),y,i
n≠1

qj · [j] = q
jœZ

(1)

n≠1

qj · [j], where Z
(1)
n≠1 is the disjoint union

g{Z
(1),y,i
n≠1 : y œ ˆn(ÈZnÍ) and i œ Zn}. We have

Card(Z(1)
n≠1) =

ÿ Ó
Card(Z(1),y,i

n≠1 ) : y œ ˆn(ÈZnÍ) and i œ Zn

Ô

Æ Card({(ri : i œ Zn) : y œ ˆn(ÈZnÍ)}) Æ Ÿ.
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Then Z
(1)
n≠1 is a Ÿ-small subset of In≠1 such that ˆn(ÈZnÍ) ™< Z

(1)
n≠1 >. Note

that we can construct Z
(1)
n≠1 containing Zn≠1. Similarly, there is a Ÿ-small subset

Z
(1)
n≠2 ™ In≠2 containing Zn≠2 such that ˆn≠1(< Z

(1)
n≠1 >) ™< Z

(1)
n≠2 >.

At this point, we just need to mimic the argument given in the proof of Lemma

3.1.5, with the corresponding considerations for Mod(R). Set Jk := ZkfiZ
(1)
k fi· · ·

for every 0 Æ k Æ n. It is clear that ÈJkÍ := m
iœJk

HomR([i], ≠) is a Ÿ-small

submodule of ÈIkÍ. By construction, we have an exact sequence

0 æ ÈJnÍ ˆnæ ÈJn≠1Í æ · · · æ ÈJ1Í ˆ
1æ ÈJ0Í ˆ

0æ N æ 0,

where N = CoKer(ÈJ1Í ˆ
1æ ÈJ0Í). Note that x œ N and that each ÈJkÍ is projective

by Corollary 3.1.8. It is only left to show that M/N is n-projective. It su�ces to

take the quotient of the resolution of M by the resolution of N , to get an exact

sequence

0 æ ÈInÍ / ÈJnÍ æ ÈIn≠1Í / ÈJn≠1Í æ · · · æ ÈI1Í / ÈJ1Í æ ÈI0Í / ÈJ0Í æ M/N æ 0.

It is not hard to check that ÈIkÍ / ÈJkÍ ≥= ÈIk ≠ JkÍ. So the previous sequence is a

projective resolution of length n of M/N .

We are almost ready to show that the cotorsion pair (Pn(Mod(R)), (Pn(Mod(R)))‹)

is cogenerated by a set. This turns out to be a consequence of Proposition 3.1.14.

Let (A, B) be a hereditary cotorsion pair in an Abelian category C.
The class of left n-A-objects is

closed under extensions.

The class of right n-B-objects is

closed under extensions.

Lemma 3.1.12
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Proof .

We only prove the left assertion. First, note that X is a left n-A-object if, and

only if, Exti
C(X, B) = 0 for every i > n and for every B œ B. We verify this

for n = 1, the rest follows by using derived long exact sequences of the functor

Ext(≠, ≠) and syzygies of X. So suppose we are given a B œ B and a short

exact sequence A1 Òæ A0 ⇣ X, where A0, A1 œ A. Then we obtain a long

exact sequence · · · æ ⇠⇠⇠⇠⇠⇠⇠: 0
Ext1

C(A1, B) æ Ext2
C(X, B) æ ⇠⇠⇠⇠⇠⇠⇠: 0

Ext2
C(A0, B) æ · · · , where

Ext2
C(A0, B) = 0 by Proposition 2.2.1. Then Ext2

C(X, B) = 0. Now suppose the

last equality holds for every B œ B. There is an exact sequence K Òæ P ⇣ X

where P is a projective object (and so it is in A). Let B œ B, we have a long

exact sequence · · · æ ⇠⇠⇠⇠⇠⇠⇠: 0
Ext1

C(P , B) æ Ext1
C(K, B) æ ⇠⇠⇠⇠⇠⇠⇠: 0

Ext2
C(X, B) æ · · · where

Ext1
C(P , B) = 0 and Ext2

C(X, B) = 0. So K œ A and hence X is a left 1-A-object.

Now suppose we are given an exact sequence X Õ Òæ X ⇣ X ÕÕ, where X Õ and

X ÕÕ are left n-A-objects. Let B œ B. We have a derived long exact sequence

· · · æ Exti
C(X ÕÕ, B) æ Exti

C(X, B) æ Exti
C(X Õ, B) æ · · · , where for every i > n

we know Exti
C(X Õ, B) = 0 and Exti

C(X ÕÕ, B) = 0. It follows Exti
C(X, B) = 0 for

every B œ B and every i > n, i.e. X is a left n-A-object.

Let (A, B) be a hereditary cotorsion pair in Mod(R). Suppose for each n-A-

module X and each x œ X, there exists a Ÿ-small left n-A-module Xx ™ X

(with Ÿ as in the previous definition) such that x œ Xx and that X/Xx is also a

left n-A-module. Then every left n-A-module is a transfinite extension of the

set of Ÿ-small left n-A-modules.

Proposition 3.1.13
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Proof .

Let X be a left R-module as described in the statement. Choose any x0 œ X.

Then there exists a small left n-A-module X0 such that x0 œ X0 and such that

X/X0 is also a left n-A-module. Now choose a class x1 + X0 ”= 0 + X0. Then

there exists a small left n-A-module X1/X0 such that x1 + X0 œ X1/X0 and such

that X/X1 ≥= (X/X0)/(X1/X0) is left n-A. Note that X0 ™ X1 and that X1 is

small since Card(X1) = Card(X1/X0) · Card(X0). Since we have a short exact

sequence X0 Òæ X1 ⇣ X1/X0, where X0 and X1/X0 are left n-A-modules, by

the previous lemma X1 is also a left n-A-module. We used transfinite induction

to construct the desired transfinite extension. Suppose X– is constructed, for a

given (non limit) ordinal – > 1. Then we can obtain X–+1 from X– as we with

X1 from X0. Finally, if — > 0 is a limit ordinal, we set X— := t
–<— X–. Then X

is the transfinite extension X = CoLim–<⁄X–, for some ordinal ⁄ > 0.

Let (A, B) be a cotorsion pair in an Abelian category C. If S ™ A is a set

objects in C such that every object A œ A is a transfinite extension of S, then

(A, B) is cogenerated by S.

Proposition 3.1.14

Proof .

We need to show B = S‹. The inclusion B ™ S‹ is clear. So suppose Y œ S‹ and

let A œ A. By hypothesis, A is a transfinite extension of S, say A = CoLim–<⁄(S–)

for some ordinal ⁄. Since S0, S–+1/S– œ S for every non limit ordinal –, we have

Ext1
C(S0, Y ) = 0 and Ext1

C(S–+1/S–, Y ) = 0, it follows by Eklof’s Lemma that

Ext1
C(A, Y ) = 0, i.e. Y œ B.
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(Pn(Mod(R)), (Pn(Mod(R)))‹) is a hereditary complete cotorsion pair.

Theorem 3.1.15 (Generalization of (5, Theorem 4.2))

Proof .

We only need to show that Pn(Mod(R)) = ‹((Pn(Mod(R)))‹). The inclusion

Pn(Mod(R)) ™ ‹((Pn(Mod(R)))‹) is clear. For the other inclusion, consider

the set

(Pn(Mod(R)))ÆŸ := {S œ Pn(Mod(R)) : S is Ÿ-small},

and let B = m{S : S œ (Pn(Mod(R)))ÆŸ}. Since every n-projective left R-

module is a transfinite extension of (Pn(Mod(R)))ÆŸ by Lemma 3.1.11 and Propo-

sition 3.1.13, we have that Y œ (Pn(Mod(R)))‹ if, and only if, Ext1
R(B, Y ) = 0 1.

Let X œ ‹((Pn(Mod(R)))‹) and consider a short exact sequence K Òæ P ⇣ X,

where P is a projective left R-module. Applying the same procedure from the

proof of Eklof and Trlijaf’s Theorem 2, we can construct a short exact sequence

K Òæ A ⇣ L, where A is the union of a continuous chain (M– : – < ⁄) such

that M0 = K, M–+1/M–
≥= B and Ext1

R(B, A) = 0. By the previous com-

ments, A œ (Pn(Mod(R)))‹. On the other hand, L ≥= A/K, and so L is

the union of the continuous chain (L– : – < ⁄) where L– = M–/K for ev-

ery – < ⁄. Then L0 = 0 and L–+1/L–
≥= B œ Pn(Mod(R)). We show

L œ Pn(Mod(R)). Let N be any module. Since L0 and L–+1/L– are both

n-projective, for every i > n we have 0 = Exti
R(L0, N) = Ext1

R(L0, N Õ) and

0 = Exti
R(L–+1/L–, N) = Ext1

R(L–+1/L–, N Õ), where N Õ œ �i≠1(N). By Eklof’s

Lemma, we get 0 = Ext1
R(L, N Õ) = Exti

R(L, N) for every i > n and for every

N œ Ob(Mod(R)). Hence, L œ Pn(Mod(R)). Taking the pushout of K Òæ P

1. We are replacing Ext1
Mod(R)(≠, ≠) by Exti

R(≠, ≠) for simplicity.

2. Notice Mod(R) is a Grothendieck category since Ab is and R is small
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and K Òæ A, we get a commutative diagram:

K P X

A A
‡

K P X

L L

Note that Ext1
R(X, A) = 0, the central row splits and so X is a direct summand

of A
‡

K P . Since P , L œ Pn(Mod(R)) and the central column is exact, we have

that A
‡

K P œ Pn(Mod(R)) and hence X œ Pn(Mod(R)). By the previous

proposition, (Pn(Mod(R)), (Pn(Mod(R)))‹) is a complete cotorsion pair.

To show (Pn(Mod(R)), (Pn(Mod(R)))‹) is hereditary, we only need to check

that Pn(Mod(R)) is closed under taking kernels of epimorphisms. So suppose we

are given an exact sequence X Õ Òæ X ⇣ X ÕÕ with X, X ÕÕ œ Pn(Mod(R)). For any

module Y , we get a derived long exact sequence

· · · æ Exti
R(X, Y ) æ Exti

R(X Õ, Y ) æ Exti+1
R (X ÕÕ, Y ) æ · · · .

If i > n, then Exti
R(X, Y ) = 0 and Exti+1

R (X ÕÕ, Y ) = 0. It follows Exti
R(X Õ, Y ) =

0 for every i > n and every Y œ Ob(Mod(R)). Therefore, Pn(Mod(R)) is

resolving.

Now it is time to go back to the category RMod and study the relationship

between cotorsion pairs and flat dimensions of modules. We recall the arguments

given by Enochs to show that (F0, (F0)‹) is a complete cotorsion pair, and how

to adapt these arguments, via de zig-zag procedure, to obtain a similar result for

the class of n-flat modules.

Definition 3.1.6. Let ≠ ¢R ≠ : ModR ◊ RMod æ Ab be the usual tensor

product functor. A right R-module F is flat if the covariant functor ≠ ¢R F :
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RMod æ Ab is left exact. We shall denote by F0 the class of flat right R-modules.

Similarly, a left R-module F is said to be flat if the functor F ¢R ≠ : ModR æ Ab

is exact.

We can obtain left derived functors of ≠ ¢R ≠. Let M be a right R-module, and

consider a projective resolution of M , say · · · æ P2 æ P1 æ P0 æ M æ 0.

Applying the functor ≠ ¢R N , for a left R-module N , we get a complex

· · · æ P2 ¢R N æ P1 ¢R N æ P0 ¢R N æ M ¢R N æ 0.

After deleting M ¢R N we get · · · æ P2 ¢R N æ P1 ¢R N æ P0 ¢R N æ 0.

Definition 3.1.7. The n-th torsion group TorR
n (M, N) is defined as the n-th ho-

mology group of the previous complex:

TorR
n (M, N) :=

Y
_]

_[

Ker(Pn¢RNæPn≠1

¢RN)
Im(Pn+1

¢RNæPn¢RN) for n > 0,

P
0

¢RN
Im(P

1

¢RNæP
0

¢RN) for n = 0.

We summarize the most useful properties of TorR
n (≠, ≠). The reader can see the

proof, for instance, in (46) or (52). Recall that a module M is (left) n-flat if there

exists an exact left flat resolution of M of length n (Definition 1.7.1).
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(1) (46, Proposition 3.2 a)) TorR
0 (M, N) = M ¢R N , for every M œ Ob(ModR)

and N œ Ob(RMod).

(2) (46, Theorem 3.4 a)) If 0 æ M Õ æ M æ M ÕÕ æ 0 is a short exact sequence

in ModR, then there exists the following long exact sequence in Ab:
· · · TorR

2 (M ÕÕ, N)

TorR
1 (M Õ, N) TorR

1 (M, N) TorR
1 (M ÕÕ, N)

M Õ ¢R N M ¢R N M ÕÕ ¢R N 0

(3) (46, Proposition 4.5) The following conditions are equivalent for a left R-

module N .

(a) N is left n-flat.

(b) TorR
i (M, N) = 0 for every M œ Ob(ModR) and every i > n.

Proposition 3.1.16 (Properties of torsion functors)

Before constructing cotorsion pairs concerning the class of flat modules, we need

to recall the following isomorphism that relates extension and torsion.

Let R and S be rings, M a left R-module, and N an (S, R)-bimodule. If I is an

injective left S-module, then Exti
R(M, HomS(N, I)) ≥= HomS(TorR

i (N, M), I)

for all i Ø 0.

Theorem 3.1.17 (see (21, Theorem 3.2.1))

This theorem is very useful to check that the class of flat modules F0 is the left

half of a cotorsion pair. Instead of showing this, we prove the more general result

that the class Fn of n-flat modules is the left half of a cotorsion pair.
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Definition 3.1.8. Given a left R-module M , the Pontryagin or character module

of M is the right R-module M+ := HomR(M,Q/Z).

The class of left n-flat modules Fn is the left half a cotorsion pair (Fn, (Fn)‹).

Proposition 3.1.18

Proof .

Note that it su�ces to show that ‹(Fn
‹) ™ Fn. So let M œ ‹(Fn

‹) and N be

a right R-module. Consider the left R-module HomZ(N,Q/Z). For every n-flat

module L and every n-cosyzygy N Õ of HomZ(N,Q/Z), we have by the previous

theorem and dimension shifting that Ext1
R(L, N Õ) ≥= HomZ(TorR

n+1(N, L),Q/Z),

since Q/Z is an injective left Z-module. On the other hand, TorR
n+1(N, L) =

0, since L is n-flat (Proposition 3.1.16). So N Õ œ Fn
‹. Then we obtain 0 =

Ext1
R(M, N Õ) ≥= HomZ(TorR

n+1(N, M),Q/Z). The fact that Q/Z is a cogenerator

of Ab implies TorR
n+1(N, M) = 0 3 for every right R-module N , i.e. M is n-flat.

In the paper (8), Enochs proved that (F0, (F0)‹) is a complete cotorsion pair, by

specifying a set of generators for it. We shall recall Enochs’ proof, which mostly

consists in constructing transfinite extensions for flat modules F of pure small

submodules of F . This shall allow us to generalize part of his arguments to show

that (Fn, (Fn)‹) is also complete. In the proof of (31, Theorem 4.1.3), the reader

can find another argument for this, but we think the proof presented later is

simpler.

3. More generally, if G is a cogenerator of an Abelian category C and if X is an object of

C such that every morphism X æ G is zero, then X is the zero object. Using the dual of

Proposition 1.9.1, there exists a monomorphism X Òæ G[I], where G[I] is the product of copies

of G over the index set I = HomC(X, G). Since HomC(X, G) = {0}, we have an monomorphism

X Òæ G, which is zero and hence X has to be the zero object.
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Definition 3.1.9. A submodule S of a left R-module N is a pure submodule of

M if the sequence 0 æ M ¢R S æ M ¢R N is exact for every right R-module M .

Pure subcomules are important in the sense that they will give rise to a set of

generator for the cotorsion pair (F0, (F0)‹). We shall see that every flat module

F can be written as a transfinite extension of small pure submodules of F . Before

showing this, we present the following property of pure submodules.

If S is a pure submodule of a flat left R-module F , then both S and F/S are

also flat.

Proposition 3.1.19 (see (23, Lemma 9.1))

Proof .

The proof we give here is di�erent from that presented in the cited reference. We

need to show that ≠¢R S and ≠¢R F/S are left exact functors. Consider a short

exact sequence 0 æ M Õ æ M æ M ÕÕ æ 0. Since S is a pure submodule of F and

F is flat, we have the following diagram with exact rows and columns:

0

0 M Õ ¢R S M Õ ¢R F M Õ ¢R F/S 0

0 M ¢R S M ¢R F M ¢R F/S 0

0 M ÕÕ ¢R S M ÕÕ ¢R F M ÕÕ ¢R F/S 0

0 0 0

–Õ

fS

—Õ

fF fF /S

–

gS

—

gF gF /S

–ÕÕ —ÕÕ
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Note that fS is injective since the upper left square commutes and the morphisms

fF ¶–Õ and – are monic. It is only left to show that fF /S is also monic. We show this

by a diagram chasing argument. Let x œ Ker(fF /S). Since —Õ is epic, there exists

an element y œ M Õ ¢R F such that x = —Õ(y). Then 0 = fF /S(x) = fF /S ¶ —Õ(y) =

— ¶fF (y). Since the second row is exact, there exists an element zÕ œ M ¢R S such

that fF (y) = –(zÕ). We have –ÕÕ ¶ gS(zÕ) = gF ¶ –(zÕ) = gF ¶ fF (y) = 0, and so

gS(zÕ) = 0 (–ÕÕ is monic). Since the left column is exact, there exists yÕ œ M Õ ¢R S

such that zÕ = fS(yÕ). One can verify that y = –Õ(yÕ), using the fact that gF is

monic. It follows x = —Õ(y) = —Õ ¶ –Õ(yÕ) = 0. Therefore, fF /S is monic.

From now on, consider a fixed infinite cardinal Ÿ > Card(R).

Let F be a flat module. For each x œ F there exists a Ÿ-small pure submodule

S ™ F such that x œ S.

Lemma 3.1.20 (see (21, Lemma 5.3.12 & Proposition 7.4.3))

Using this lemma along with the previous proposition, it is possible to construct a

transfinite extension of Ÿ-small flat modules for every flat module F . It follows by

Proposition 3.1.14 and Eklof and Trlifaj’s Theorem that the Enochs cotorsion pair

(F0, (F0)‹) is complete. It is time to show that the same is true for (Fn, (Fn)‹).

We start with a generalization of the previous lemma.
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Let M œ Fn with a flat resolution

(1) = (0 æ Fn
fnæ Fn≠1 æ · · · æ F1

f
1æ F0

f
0æ M æ 0)

and N be a small submodule of M . Then there exists a flat subresolution (i.e.

a subcomplex)

0 æ S Õ
n æ · · · æ S Õ

1 æ S Õ
0 æ N Õ æ 0

of (1) such that S Õ
k is a Ÿ-small and pure submodule of Fk, for every 0 Æ k Æ n,

and such that N ™ N Õ. In this case, we shall say that N Õ is a n-pure submodule

of M . Moreover, if N is part of a subresolution of (1)

0 æ Sn æ · · · æ S1 æ S0 æ N æ 0

where Sk is a small and pure submodule of Fk, for every 0 Æ k Æ n, then the

above resolution of N Õ can be constructed in such a way that it contains the

resolution of N .

Lemma 3.1.21

Proof .

For every x œ N there exists yx œ F0 such that x = f0(yx). Consider the set Y :=

{yx : x œ N and f0(yx) = x} and the submodule ÈY Í ™ F0. Since ÈY Í is small,

there exists a small pure submodule S0(1) ™ F0 such that ÈY Í ™ S0(1). Note

that f0(S0(1)) ´ N . Now consider Ker(f0|S
0

(1)) and let A be a set of preimages of

Ker(f0|S
0

(1)) such that f1(ÈAÍ) ´ Ker(f0|S
0

(1)). It is easy to see that ÈAÍ is a small

submodule of F1, so we can embed it into a small pure submodule S1(1) ™ F1.

Hence we have f1(S1(1)) ´ Ker(f0|S
0

(1)). Now consider Ker(f1|S
1

(1)) and repeat

the same process above in order to find a small pure submodule S2(1) ™ F2 such

that f2(S2(1)) ´ Ker(f1|S
1

(1)). Keep doing this until find a small pure submodule

Sn(1) ™ Fn such that fn(Sn(1)) ´ Ker(fn≠1|Sn≠1

(1)). Now fn(Sn(1)) is a small

submodule of Fn≠1, so there is a small pure submodule Sn≠1(2) ™ Fn≠1 such

that fn(Sn(1)) ™ Sn≠1(2). Repeat this process until find a small pure submodule

S0(2) ™ F0 such that f1(S1(2)) ™ S0(2). If we now consider Ker(f0|S
0

(2)) ™ F0, we
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repeat the same argument above to find a small pure submodule S1(3) ™ F1 such

that f1(S1(3)) ´ Ker(f0|S
0

(2)). Keep repeating this zig-zag procedure infinitely

many times and set Sk = t
iØ1 Sk(i), for every 0 Æ k Æ n. Note that each Sk is a

pure submodule of Fk. By construction, we obtain an exact sequence of the form

(2) = (0 æ Sn æ Sn≠1 æ · · · æ S1 æ S0 æ Q æ 0),

where Q = CoKer(f1|S
1

) ™ M . If we take the quotient of (1) by (2), we get an

exact sequence 0 æ Fn/Sn æ · · · æ F1/S1 æ F0/S0 æ M/Q æ 0. Since each

Sk is a pure submodule of Fk, we know from the previous proposition that Sk

and Fk/Sk are flat modules, for every 0 Æ k Æ n. Therefore, Q is a small n-flat

submodule with N ™ Q such that M/Q is also n-flat. The rest of the statement

can be proven in a similar way.

Every left n-flat module M is a transfinite extension of a set of Ÿ-small left

n-flat modules. It follows (Fn, (Fn)‹) is cogenerated by the set

(Fn)ÆŸ := {S œ Fn : Card(S) Æ Ÿ}.

Corollary 3.1.22

There is more to say on cotorsion pairs involving the classes F0 and Fn. Since

(F0, (F0)‹) is complete, for every module M there exists an epimorphism F ⇣ M

with F œ F0 and its kernel in (F0)‹. This epimorphism is not necessarily a flat

cover. But recall that E. Enochs proved that for every M there is a flat cover.

This is a consequence of the fact that (F0, (F0)‹) is perfect.

Definition 3.1.10. A cotorsion pair (A, B) is said to be perfect if A is a covering

class and B is an enveloping class.
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If (A, B) is a complete cotorsion pair in RMod and A is closed under direct

limits, then (A, B) is perfect.

Theorem 3.1.23 (See (31, Corollary 5.32))

The arguments appearing in the proof from the given reference carry over to any

Grothendieck category. Since the torsion functor TorR
i (≠, ≠) preserves arbitrary

colimits, we have that F0 is closed under direct limits. It follows that (F0, (F0)‹)

is a perfect cotorsion pair and so the Flat Cover Conjecture is settled. By the

same argument, the pair (Fn, (Fn)‹) is also perfect, i.e. every left R-module has

an n-flat cover. This result also appears in (31, Theorem 4.1.3).

We close this section by showing that the class In(C) of n-injective objects in a

Grothendieck category C is the right half of a hereditary complete cotorsion pair.

Recall that if G is a generator of C, then an object Y is n-injective if, and only if,

Extn+1
C (G/J, Y ) = 0 for every subobject J ™ G (see Section 9 of Chapter 1).

If C is a Grothendieck category with generator G, then (‹(In(C)), In(C)) is a

cotorsion pair cogenerated by a set.

Proposition 3.1.24

Proof .

It su�ces to show (‹(In(C)))‹ ™ In(C). Let Y œ (‹(In(C)))‹ and J be a sub-

object of G. We have Extn+1
C (G/J, Y ) ≥= Ext1

C(S, Y ), where S œ �n(G/J). Note

that S œ ‹(In(C)). For if X is an n-injective object of C, then Ext1
C(S, X) ≥=

Extn+1
C (G/J, X) = 0. It follows Extn+1

C (G/J, Y ) = 0. By the Corollary 1.9.6,

(‹(In(C)), In(C)) is cogenerated by the set of all S œ �n(G/J) with J running

over the set of all subobjects of G.
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It is not hard to see that the class In(C) is coresolving, and hence (‹(In(C)), In(C))

is a hereditary cotorsion pair by Proposition 2.2.1.

3.2 n-Projective model structures

The goal in this section is to construct a new Abelian model structure on Ch(RMod)

where the class of cofibrant objects is given by the di�erential graded n-projective

complexes (with n > 0), and the trivial objects by the exact chain complexes.

The motivation of this problem comes from the case n = 0, for which we know

the existence of Hovey’s projective model structure (See Example 2.3.1).

There is a unique Abelian model structure on Ch(RMod) where the (trivial)

cofibrations are the monomorphisms with di�erential graded projective (resp.

projective) cokernel, the (trivial) fibrations are the epimorphisms (resp. with

exact kernel), and the trivial objects are the exact chain complexes.

Theorem 3.2.1 (Projective model structure)

For nonzero projective dimension, we want to prove the following result.

There is a unique Abelian model structure on Ch(RMod) where the (trivial)

cofibrations are the monomorphisms with cokernel in dg ÊPn (resp. ÊPn), the

(trivial) fibrations are the epimorphisms with kernel in ( ÊPn)‹ (resp. (dg ÊPn)‹),

and the trivial objects are the exact chain complexes.

Theorem 3.2.2 (n-Projective model structure)

Remark 3.2.1. If (Cof , Fib, Weak) is an Abelian model structure such that A,

B and E are the classes of cofibrant, fibrant and trivial objects, respectively,
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then Weak is the class of quasi-isomorphisms. For if h œ Weak, we can write

h = X
fæ Y

gæ Z where f œ Cof flWeak and g œ Fib flWeak. We have a short exact

sequence X
f

Òæ Y ⇣ A with A exact. It is known we can get a long homology exact

sequence · · · æ ⇠⇠⇠⇠⇠⇠: 0
Hn+1(A) æ Hn(X) Hn(f)æ Hn(Y ) æ ⇠⇠⇠⇠: 0

Hn(A) æ Hn≠1(X) æ · · · .

Then Hn(f) is an isomorphism, for every n œ Z. Similarly, one can show that

g is a quasi-isomorphism. Hence, h is also a quasi-isomorphism. Conversely, if

(Cof , Fib, Weak) is an Abelian model structure such that Weak is the class of quasi-

isomorphisms, then E is the class of trivial objects. For if X is a trivial object,

then 0 æ X is a quasi-isomorphism. This means 0 = Hn(0) ≥= Hn(X) for every

n œ Z, i.e. X is an exact complex.

In the previous section we showed that (Pn, (Pn)‹) is a complete and hereditary

cotorsion pair. Then by Theorems 2.4.3 and 2.4.5 we obtain two cotorsion pairs

( ÊPn, dg(̂Pn)‹) and (dg ÊPn, (̂Pn)‹), ÊPn = dg ÊPn fl E , (̂Pn)‹ = dg(̂Pn)‹ fl E and E is

the class of exact chain complexes. By Proposition 1.8.4, the class ÊPn represents

the class of n-projective chain complexes. We can apply Lemma 3.1.11 to show

that ( ÊPn, ( ÊPn)‹) is complete, after showing that Ch(RMod) is equivalent to the

category of left modules over certain ringoid.

Recall that the tensor product C ¢ D of two pre-additive categories C and D is

the pre-additive category defined by putting

(1) Ob(C ¢ D) = Ob(C) ◊ Ob(D);

(2) HomC¢D((C, D), (C Õ, DÕ)) = HomC(C, C Õ) ¢ HomD(D, DÕ).

If C, D and E are pre-additive categories then we have a canonical isomorphism

of pre-additive categories [C ¢ D, E ] ƒ [C, [D, E ]]. In particular, if K and R are

ringoids, then

[K, Mod(R)] = [K, [R, Ab]] ƒ [K ¢ R, Ab] = Mod(K ¢ R).
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If we consider a ring R and the ringoid S defined in Example 1.10.1, then we

have an isomorphism of additive categories [S, Mod(R)] ƒ Mod(S ¢ R). This

means that a chain complex of R-modules is a module over the ringoid S ¢ R,

i.e. Ch(RMod) ≥= Mod(S ¢ R). Hence the following result follows.

Remark 3.2.2 (Ÿ-small complexes, and some notations). Let R be a ringoid

and Ÿ be an infinite regular cardinal such that Ÿ > Card(HomR(a, b)) for every

a, b œ Ob(R).

(1) If R is the ringoid of Example 1.10.1 (1), then we have that Ÿ > Card(R).

Note that a left module M over R is Ÿ-small if, and only of, it is Ÿ-small as a

left R-module (See Definition 3.1.1).

(2) We just saw above that Ch(RMod) is equivalent to the category of left

modules over the ringoid S ¢ R, with S as in Example 1.10.1 (2). It is not

hard to see that Ÿ > Card(R) and that the following conditions are equivalent

for every chain complex X in Ch(RMod):

(a) X is Ÿ-small.

(b) Card(Xm) Æ Ÿ for every m œ Z.

(c) q
mœZ Card(Xm) Æ Ÿ.

Hence, we shall say for the rest of this work that a chain complex X in

Ch(RMod) is Ÿ-small if each Xm is a Ÿ-small module, where Ÿ is an (infinite)

regular cardinal satisfying Ÿ > Card(R).

The cotorsion pair ( ÊPn, ( ÊPn)‹) is hereditary and complete.

Theorem 3.2.3

Before continuing in our proof of Theorem 3.2.2, we want to comment some things

on the theorem above. In (49, Theorem 4.7), the author proved Theorem 3.2.3
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without using the theory of modules over ringoids. The proof given there is more

complicated, and it consists in a sort of iteration of the zig-zag argument in a

finite free 4 resolution of an n-projective complex to show Lemma 3.1.11 for the

category Ch(RMod).

In order to apply Hovey’s correspondence to obtain the model structure described

in Theorem 3.2.2, it is only left to show that (dg ÊPn, dg(̂Pn)‹ flE) is also complete.

One way is to use Proposition 2.3.6, but after proving that E is the right and left

half of two complete cotorsion pairs (‹E , E) and (E , E‹). This is and immediate

consequence of Hovey’s correspondence applied to the projective and injective

model structures in Example 2.3.1 (2) and (3).

(‹E , E) and (E , E‹) are two complete cotorsion pairs in Ch(RMod).

Proposition 3.2.4 (See also (24, Section 2.3))

Although we already know that (dg ÊP0, E) is a complete cotorsion pair, we present

a cogenerating set given by J. Rada and other authors in (12, Lemma 5.1), since

we shall need this fact in the next chapter.

The cotorsion pair (dg ÊP0, E) is cogenerated by a set.

Lemma 3.2.5 (See (12, Lemma 5.1))

Proof .

Consider the disk complex D1(R) œ ÊP0 and the sphere complex S0(R). Note that

the quotient D1(R)/S0(R) is isomorphic to the suspension �≠1(S0(R)). Then we

4. In (49), a complex is defined to be free if it is exact and if every cycle group is a free left

R-module.
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have a partial projective resolution 0 æ S0(R) æ D1(R) æ �≠1(S0(R)) æ 0,

from which we can compute the extension group Ext1
Ch(RMod)(�≠1(S0(R)), Y ),

for every chain complex Y œ Ob(Ch(RMod)). One can show Hom(S0(R), Y ) ≥=
Z0(Y ). Moreover, a map S0(R) fæ Y has an extension D1(R) gæ Y if, and only if,

x = f0(1) œ Z0(Y ) is a boundary in Y . It follows Ext1
Ch(RMod)(�≠1(S0(R)), Y ) ≥=

H0(Y ). One can generalize this isomorphism to Ext1
Ch(RMod)(�k≠1(S0(R)), Y ) ≥=

Hk(Y ), for every k œ Z. So Y is exact if, and only if, Ext1
Ch(RMod)(�k≠1(S0(R)), Y )

is 0 for every k œ Z. Therefore, E = S‹, where S = {�k≠1(S0(R)) : k œ Z}.

It follows (dg ÊPn, dg(̂Pn)‹ fl E) is a complete cotorsion pair in Ch(RMod). We

have obtained two compatible and complete cotorsion pairs (dg ÊPn fl E , dg(̂Pn)‹)

and (dg ÊPn, dg(̂Pn)‹ flE), so by Hovey’s correspondence we obtain the n-projective

model structure described in Theorem 3.2.2.

Another way to conclude that (dg ÊPn, dg(̂Pn)‹flE) is complete is using (26, Propo-

sition 3.8), where J. Gillespie shows that if (A, B) is a cotorsion pair cogenerated

by a set in a Grothendieck category C, then so is (dg ÂA, ÂB). With respect to

the class ÂA, the author imposes an extra condition on the class A to prove that

( ÂA, dgÂB) is also a cotorsion pair cogenerated by a set (See (26, Proposition 4.8

and 4.11)). One of the conditions needed is that A is closed under direct limits.

However, concerning the particular case F = Pn, it is not true in general that

Pn is closed under direct limits. This condition seems to be very related to the

ring R. For example, H. Krause proved in (42, Lemma 5) that if R is a two-sided

artinian ring, then Pn is closed under direct limits. Hence, in this case we can use

Gillespie’s results get the n-projective model structure on Ch(RMod).
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3.3 Degreewise n-projective model structures

We study the construction of another model structure on Ch(RMod) from n-

projective objects in RMod. In (12), the authors proved the existence of the

following model structure on Ch(RMod).

There exists a unique Abelian model structure on Ch(RMod) such that the

(trivial) cofibrations are the monomorphisms with cokernel in dw ÊP0 (resp.

ex ÊP0), the (trivial) fibrations are the epimorphisms with kernel in (ex ÊP0)‹

(resp. (dw ÊP0)‹), and the weak equivalences are the quasi-isomorphisms.

Theorem 3.3.1 (Degreewise projective model structure)

Our goal in this section is to show that the classes dw ÊPn and ex ÊPn = dw ÊPn fl E of

degreewise and exact degreewise n-projective chain complexes, respectively, form

two compatible complete cotorsion pairs (dw ÊPn, (dw ÊPn)‹) and (ex ÊPn, (ex ÊPn)‹).

A consequence of this result is the existence of the following new Abelian model

structure on Ch(RMod).

There exists a unique Abelian model structure on Ch(RMod) where the (triv-

ial) cofibrations are the monomorphisms with cokernel in dw ÊPn (resp. ex ÊPn),

the (trivial) fibrations are the epimorphisms with kernel in (ex ÊPn)‹ (resp.

(dw ÊPn)‹), and the weak equivalences are the quasi-isomorphisms.

Theorem 3.3.2 (Degreewise n-projective model structure)

The completeness of the cotorsion pairs (dw ÊP0, (dw ÊP0)‹) and (ex ÊP0, (ex ÊP0)‹) is

based on a theorem by I. Kaplansky, namely:
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Every projective module is a direct sum of countably generated projective mo-

dules.

Theorem 3.3.3 (Kaplansky’s Theorem. See (41))

So when one thinks of the completeness of the cotorsion pairs (dw ÊPn, (dw ÊPn)‹)

and (ex ÊPn, (ex ÊPn)‹), a good question would be if it is possible to generalize Ka-

plansky’s Theorem for n-projective modules. Let M œ Pn be an n-projective

module along with a projective resolution of length n, say

0 æ Pn æ · · · æ P1 æ P0 æ M æ 0.

We shall denote by (Pn)›
0 the set of all modules M having a projective resolution

as the previous one in which each Pi is countably generated.

By Kaplansky’s Theorem we can write Pk = m
iœIk

P i
k, where P i

k is a countably

generated projective module, for every i œ Ik and every 0 Æ k Æ n. Then we can

rewrite the previous resolution as

0 æ n

iœIn

P i
n æ · · · æ n

iœI
1

P i
1 æ n

iœI
0

P i
0 æ M æ 0.

From now on we shall write any projective resolution of length n by using such

direct sum decompositions. Notice that every module M having a finite projective

resolution as the previous one belongs to (Pn)›
0 if Ik is a countable set for every

0 Æ k Æ n.

The fact that (dw ÊPn, (dw ÊPn)‹) is a cotorsion pair in Ch(RMod) is a consequence

of Theorem 2.4.6. We shall prove that (dw ÊPn, (dw ÊPn)‹) is cogenerated by the set

dw(̂Pn)›
0 , by constructing a transfinite extension of dw(̂Pn)›

0 for every degree-

wise n-projective complex. Then the completeness of (dw ÊPn, (dw ÊPn)‹) shall be

a consequence of Proposition 3.1.14. We need the following generalization of Ka-

plansky’s Theorem:
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Let R be a Noetherian ring. Let M œ Pn and N be a countably generated

submodule of M . Then there exists a transfinite extension of (Pn)›
0 for M , say

(M– : – < ⁄) with ⁄ > 1, such that M1 œ (Pn)›
0 and N ™ M1.

Lemma 3.3.4 (Kaplansky’s Theorem fon n-projective modules)

Proof .

Let M œ Pn and

0 æ n

iœIn

P i
n æ · · · æ n

iœI
1

P i
1

f
1æ n

iœI
0

P i
0

f
0æ M æ 0

be a projective resolution of M . We use transfinite induction. For – = 0 set

M0 = 0. Now we construct M1. Let G be a countable set of generators of

N . Since f0 is surjective, for every g œ G we can choose yg œ m
iœI

0

P i
0 such

that g = f0(yg). Consider the set Y = {yg : g œ G}. Since Y is a count-

able subset of m
iœI

0

P i
0, we have that ÈY Í is a countably generated submodule

of P0. Choose a countable subset I1,0
0 ™ I0 such that ÈY Í ™ m

iœI1,0
0

P i
0. Then

f0(ÈY Í) ™ N . Consider Ker(f0|m
iœI

1,0
0

P i
0

). Since m
iœI1,0

0

P i
0 is countably generated

and Ker(f0|m
iœI

1,0
0

P i
0

) is a submodule of m
iœI1,0

0

P i
0, we have that Ker(f0|m

iœI
1,0
0

P i
0

)

is also countably generated, since R is Noetherian. Let B be a countable set

of generators of Ker(f0|m
iœI

1,0
0

P i
0

). Let b œ B, then f(b) = 0 and by exact-

ness of the above sequence there exists yb œ m
iœI

1

P i
1 such that b = f1(yb). Let

Y Õ = {yb : b œ B}. Note that Y Õ is a countable subset of (f1)≠1(Ker(f0|m
iœI

1,0
0

P i
0

)).

Then ÈY ÕÍ is a countably generated submodule of m
iœI

1

P i
1. Hence there exists a

countable subset I1,0
1 ™ I1 such that m

iœI1,0
1

P i
1 ´ ÈY ÕÍ. Thus f1(

m
iœI1,0

1

P i
1) ´

f1(ÈY ÕÍ). Now let z œ Ker(f0|m
iœI

1,0
0

P i
0

). Then z = r1b1 + · · · + rmbm, where

each bj œ B. Since bj = f1(ybj ) with ybj œ Y Õ, we get z = f1(r1yb
1

+ · · · +

rmybm) œ f1(ÈY ÕÍ). Hence, Ker(f0|m
iœI

1,0
0

P i
0

) ™ f1(ÈY ÕÍ) ™ f1(
m

iœI1,0
1

P i
1). Use the

same argument to find a countable subset I1,0
2 ™ I2 such that f2(

m
iœI1,0

2

P i
2) ´

Ker(f1|m
iœI

1,0
1

P i
1

). Repeat the same argument until find a countable subset I1,0
n ™
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In such that fn(m
iœI1,0

n
P i

n) ´ Ker(fn≠1|m
iœI

1,0
n≠1

P i
n≠1

). Now, fn(m
iœI1,0

n
P i

n) is a

countably generated submodule of m
iœIn≠1

P i
n≠1. Then choose a countable subset

I1,0
n≠1 ™ I1,1

n≠1 ™ In≠1 such that fn(m
iœI1,0

n
P i

n) ™ m
iœI1,1

n≠1

P i
n≠1. Repeat this process

until find a countable subset I1,0
0 ™ I1,1

0 ™ I0 satisfying f1(
m

iœI1,1
1

P i
1) ™ m

iœI1,1
0

P i
0.

Now choose a countable subset I1,1
1 ™ I1,2

1 ™ I1 such that f1(
m

iœI1,2
2

P i
1) ´

Ker(f0|m
iœI

1,1
0

P i
0

). What we have been doing so far is called the zig-zag procedure.

Keep repeating this procedure infinitely many times, and set I1
k = t

mØ0 I1,m
k , for

every 0 Æ k Æ n. By construction, we get the following exact sequence

0 æ n

iœI1

n

P i
n æ · · · æ n

iœI1

1

P i
1 æ n

iœI1

0

P i
0 æ M1 æ 0

where x œ M1 := CoKer(m
iœI1

1

P i
1 æ m

iœI1

0

P i
0) ™ M and N ™ M1. We take the

quotient of the resolution of M by the resolution of M Õ, and get the following

commutative diagram:

0 0 0 0

0 m
iœI1

n
P i

n · · · m
iœI1

1

P i
1

m
iœI1

0

P i
0 M1 0

0 m
iœIn

P i
n · · · m

iœI
1

P i
1

m
iœI

0

P i
0 M 0

0 m
iœIn≠I1

n
P i

n · · · m
iœI

1

≠I1

1

P i
1

m
iœI

0

≠I1

0

P i
0 M/M1 0

0 0 0 0

where the third row is an exact sequence since the class of exact complexes is thick.

Then we have a projective resolution of length n for M/M1. Repeat the same

procedure above for M/M1, by choosing the class x1 + M1 œ M/M1 ≠ {0 + M1},
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in order to get an exact sequence

0 æ n

iœI2

n≠I1

n

P i
n æ · · · æ n

iœI2

1

≠I1

1

P i
1 æ n

iœI2

0

≠I1

0

P i
0 æ M2/M1 æ 0,

for some M1 ™ M2 ™ M , with I2
k ≠ I1

k is countable for every 0 Æ k Æ n. Note

that we have a projective resolution

0 æ n

iœI2

n

P i
n æ · · · æ n

iœI2

1

P i
1 æ n

iœI2

0

P i
0 æ M2 æ 0

of M2, since we have a commutative diagram:

0 0 0 0

0 m
iœI1

n
P i

n · · · m
iœI1

1

P i
1

m
iœI1

0

P i
0 M1 0

0 m
iœI2

n
P i

n · · · m
iœI2

1

P i
1

m
iœI2

0

P i
0 M2 0

0 m
iœI2

n≠I1

n
P i

n · · · m
iœI2

1

≠I1

1

P i
1

m
iœI2

0

≠I1

0

P i
0 M2/M1 0

0 0 0 0

where the first and third rows are exact sequences, and then so is the second since

the class of exact complexes is closed under extensions. We have that M1 and M2

are n-projective modules such that M1, M2/M1 œ (Pn)›
0 . Now suppose that there

is an ordinal — such that:

(1) M– is an n-projective module, for every – < —.

(2) M– ™ M–Õ whenever – Æ –Õ < —.

(3) M–+1/M– œ (Pn)›
0 whenever – + 1 < —.

(4) M“ = t
–<“ M– for every limit ordinal “ < —.

If — is a limit ordinal, then set M— = t
–<— M–. Otherwise there exists an ordinal
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– < — such that — = – + 1. In this case, construct M–+1 œ Pn from M– as

we constructed M2 from M1, such that M–+1/M– œ (Pn)›
0 . By the Principle of

Transfinite Induction, the result follows.

If R is a Noetherian ring, every n-projective chain complex is a transfinite

extension of dw(̂Pn)›
0 .

Theorem 3.3.5 (Generalization of (12, Theorem 4.4))

Proof .

Let X œ dw ÊPn and write

X = · · · æ Xk+1
ˆk+1æ Xk

ˆkæ Xk≠1 æ · · · .

For each k one has a projective resolution of

0 æ n

iœIn(k)
P i

n(k) æ · · · æ n

iœI
1

(k)
P i

1(k) æ n

iœI
0

(k)
P i

0(k) æ Xk æ 0

of length k. We shall construct a transfinite extension of dw(̂Pn)›
0 for X by using

transfinite induction. For – = 0 set X0 = 0. For – = 1, choose m œ Z. Let

S be a countably generated submodule of Xm. By the previous lemma, there

exists a submodule (Pn)›
0 – X1

m ™ Xm such that S ™ X1
m. Note that X1

m is also

countably generated. Then ˆm(X1
m) is a countably generated submodule of Xm≠1,

and so there exists (Pn)›
0 – X1

m≠1 ™ Xm≠1 such that ˆm(X1
m) ™ X1

m≠1. Repeat

the same procedure infinitely many times in order to obtain a subcomplex

X1 := · · · æ X1
k+1 æ X1

k æ X1
k≠1 æ · · ·

of X such that X1
k œ (Pn)›

0 for every k œ Z (we are setting X1
k = 0 for every

k > m). Hence X1 œ dw(̂Pn)›
0 . Note from the proof of the previous lemma that
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the quotient X/X1 is in dw ÊPn. We have

X/X1 = · · · æ Xk+1/X1
k+1 æ Xk/X1

k æ Xk≠1/X1
k≠1 æ · · · ,

where for every k Æ m one has the following projective resolutions of length n for

X1
k and Xk/X1

k :

0 æ n

iœI1

n(k)
P i

n(k) æ · · · æ n

iœI1

1

(k)
P i

1(k) æ n

iœI1

0

(k)
P i

0(k) æ X1
k æ 0,

0 æ n

iœIn(k)≠I1

n(k)
P i

n(k) æ · · · æ n

iœI
0

(k)≠I1

0

(k)
P i

0(k) æ Xk/X1
k æ 0.

Apply the same procedure above to the complex X/X1, in order to obtain a chain

subcomplex

X2/X1 = · · · æ X2
k+1/X1

k+1 æ X2
k/X1

k æ X2
k≠1/X1

k≠1 æ · · ·

of X/X1, such that for each k œ Z one has a projective resolution

0 æ n

iœI2

n≠I1

n

P i
n(k) æ · · · æ n

iœI2

0

≠I1

0

P i
0(k) æ X2

k/X1
k æ 0

of length n for X2
k/X1

k , where each I2
j ≠ I1

j ™ Ij is countable. Now consider the

chain complex

X2 := · · · æ X2
k+1 æ X2

k æ X2
k≠1 æ · · · .

As we did in the proof of the previous lemma, we have that

0 æ n

iœI2

n(k)
P i

n(k) æ · · · æ n

iœI2

1

(k)
P i

1(k) æ n

iœI2

0

(k)
P i

0(k) æ X2
k æ 0

is an exact sequence. So X2
k œ Pn for every k œ Z, and hence X2 œ dw ÊPn, with

X2/X1 œ dw(̂Pn)›
0 . The rest of the proof follows by transfinite induction, as in

the proof of the previous lemma.
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Consider the class of exact degreewise n-projective complexes ex ÊPn = dw ÊPn fl E .

By Theorem 2.4.7 we know (ex ÊPn, (ex ÊPn)‹) is a cotorsion pair. We shall prove

its completeness by constructing transfinite extension for ex ÊPn of some subset of

ex ÊPn.

Definition 3.3.1. Given a module M œ Pn, consider a projective resolution

(ú) =
Q

a0 æ n

iœIn

P i
n æ · · · æ n

iœI
1

P i
1 æ n

iœI
0

P i
0 æ M æ 0

R

b ,

where each P i
k is a countably generated projective module. We shall say that a

projective resolution

(úú) =
Q

a0 æ n

iœIÕ
n

P i
n æ · · · æ n

iœIÕ
1

P i
1 æ n

iœIÕ
0

P i
0 æ N æ 0

R

b

is a nice subresolution of (ú) if I Õ
k ™ Ik for every 0 Æ k Æ n and N ™ M .

Let Ÿ be an infinite cardinal with Ÿ Ø Card(R). We shall say that the resolution

(ú) above is Ÿ-small if Card(Ik) Æ Ÿ for every 0 Æ k Æ n. Moreover, we say that

(úú) is a nice Ÿ-small subresolution of (ú) if each I Õ
k is a Ÿ-small subset of Ik. We

shall denote by Pn(Ÿ) the set of n-projective modules with a Ÿ-small projective

resolution. Note that Pn(Ÿ) ™ (Pn)ÆŸ.

We shall prove that every exact degreewise n-projective complex a transfinite

extension of exP̂n(Ÿ) ™ (ex ÊPn)ÆŸ.
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Let M œ Pn with a projective resolution given by (ú). For every submodule

N ™ M with Card(N) Æ Ÿ, there exists a nice Ÿ-small subresolution

(ú ú ú) =
Q

a0 æ n

iœIÕ
n

P i
n æ · · · æ n

iœIÕ
1

P i
1 æ n

iœIÕ
0

P i
0 æ N Õ æ 0

R

b

of (ú) such that N ™ N Õ. Moreover, if N has an nice Ÿ-small subresolution of

M given by (úú), then (ú ú ú) can be constructed in such a way that (úú) is a

nice subresolution of (ú ú ú).

Lemma 3.3.6

Proof .

Since f0 is surjective, for every x œ N choose yx œ m
iœI

0

P i
0 with x = f0(yx).

Let Y = {yx : x œ N}. Note that ÈY Í is a Ÿ-small submodule of m
iœI

0

P i
0.

So there exists a Ÿ-small subset I0
0 ™ I0 such that ÈY Í ™ m

iœI0

0

P i
0. We have

f0(
m

iœI0

0

P i
0) ´ N . Now consider the submodule Ker(f0|m

iœI0

0

P i
0) of f0(

m
iœI0

0

P i
0),

which is Ÿ-small since f0(
m

iœI0

0

P i
0) is. Then we can choose a Ÿ-small subset I0

1 ™ I1

such that f1(
m

iœI0

1

P i
1) ´ Ker(f0|m

iœI0

0

P i
0

). Repeat the same argument until find

a Ÿ-small subset I0
n ™ In such that fn(m

iœI0

n
P i

n) ´ Ker(fn≠1|m
iœI0

n≠1

P i
n≠1

). Since

fn(m
iœI0

n
P i

n) is a Ÿ-small submodule of m
iœIn≠1

P i
n≠1, we can choose a Ÿ-small

subset I0
n≠1 ™ I1

n≠1 ™ In≠1 such that fn(m
iœI0

n
P i

n) ™ m
iœI1

n≠1

P i
n≠1. From this

point just use the zig-zag procedure to get Ÿ-small subsets I Õ
k = t

jØ0 Ij
k ™ Ik and

an exact sequence

0 æ n

iœIÕ
n

P i
n æ · · · æ n

iœIÕ
1

P i
1 æ n

iœIÕ
0

P i
0 æ N Õ æ 0

where N Õ := CoKer(m
iœIÕ

1

P i
1 æ m

iœIÕ
0

P i
0) and N ™ N Õ ™ M .
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Now suppose

0 æ n

iœIÕN
n

P i
n æ · · · æ n

iœIN
1

P i
1 æ n

iœIN
0

P i
0 æ N æ 0

is a nice Ÿ-small subresolution of (ú). Take the quotient of (ú) by this resolution

and get the following resolution of M/N :

0 æ n

iœIn≠IN
n

P i
n æ · · · æ n

iœI
1

≠IN
1

P i
1 æ n

iœI
0

≠IN
0

P i
0 æ M

N
æ 0.

Repeat the argument above using this sequence and the Ÿ-small submodule Èz + NÍ,
where z ”œ N . Then we get a projective subresolution

0 æ n

iœIÕ
n≠IN

n

P i
n æ · · · æ n

iœIÕ
1

≠IN
1

P i
1 æ n

iœIÕ
0

≠IN
0

P i
0 æ N Õ

N
æ 0

of the previous one, where each set I Õ
k ≠ IN

k is a Ÿ-small set. As we did in the

proof of Lemma 3.3.4, we have that

(ú ú ú) =
Q

a0 æ n

iœIÕ
n

P i
n æ · · · æ n

iœIÕ
1

P i
1 æ n

iœIÕ
0

P i
0 æ N Õ æ 0

R

b

is the desired nice Ÿ-small subresolution of (ú).

Let X œ dw ÊPn and Y be a bounded above Ÿ-small subcomplex of X. Then

there exists a (bounded above) subcomplex Y Õ of X such that Y ™ Y Õ and

Y Õ œ dwP̂n(Ÿ).

Lemma 3.3.7

Proof .

We are given the following commutative diagram

Y = · · · 0 Ym Ym≠1 · · ·

X = · · · Xm+1 Xm Xm≠1 · · ·

ˆm

ˆm+1 ˆm
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Since Xm is an n-projective module, we can consider a projective resolution for

each m of the form

0 æ n

iœIn(m)
P i

n(m) æ · · · æ n

iœI
1

(m)
P i

1(m) æ n

iœI
0

(m)
P i

0(m) æ Xm æ 0.

By the previous lemma, there exists a submodule Y Õ
m of Xm containing Ym, along

with a nice Ÿ-small subresolution

0 æ n

iœIÕ
n(m)

P i
n(m) æ · · · æ n

iœIÕ
1

(m)
P i

1(m) æ n

iœIÕ
0

(m)
P i

0(m) æ Y Õ
m æ 0.

Note that Card(ˆm(Y Õ
m) + Ym≠1) Æ Ÿ and Ym≠1 ™ ˆm(Y Õ

m) + Ym≠1 ™ Xm≠1. Now

choose a submodule Y Õ
m≠1 ™ Xm≠1 such that ˆm(Y Õ

m) + Ym≠1 ™ Y Õ
m≠1 and Y Õ

m≠1

has a nice Ÿ-small subresolution of a fixed resolution of Xm≠1. Repeat this process

infinitely many times to obtain a complex Y Õ := · · · æ 0 æ Y Õ
m æ Y Õ

m≠1 æ · · ·
such that Y ™ Y Õ ™ X and Y Õ œ dwP̂n(Ÿ).

In (12, Theorem 4.6), the authors proved that every exact degreewise projective

chain complex is a transfinite extension of (ex ÊP0)ÆŸ. The previous lemmas allow

us to prove that this is also valid for every projective dimension.

Every exact n-projective chain complex is a transfinite extension of exP̂n(Ÿ).

Theorem 3.3.8 (Generalization of (12, Theorem 4.6))

Proof .

Let X œ ex ÊPn. We construct a transfinite extension of exP̂n(Ÿ) for X using trans-

finite induction. For – = 0 set X0 = 0. For the case – = 1 let m œ Z be arbitrary

and let T1 ™ Xm be a Ÿ-small submodule of Xm. Then there exists a Ÿ-small sub-

module Y 1
m of Xm such that T1 ™ Y 1

m and that Y 1
m has a nice Ÿ-small projective

subresolution of a given resolution of Xm. Note that ˆm(Y 1
m) is a submodule of
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Xm≠1 with cardinality Æ Ÿ, so there exists a submodule Y 1
m≠1 of Xm≠1 such that

ˆm(Y 1
m) ™ Y 1

m≠1 and that Y 1
m≠1 has a nice Ÿ-small projective subresolution of a

given resolution of Xm≠1. Keep repeating this argument infinitely many times.

We obtain a chain complex Y 1 of the form · · · æ 0 æ Y 1
m æ Y 1

m≠1 æ · · · which

is a subcomplex of X and Y 1 œ dwP̂n(Ÿ). Note that Y 1 is not necessarily exact.

We shall construct a complex X1 from Y 1 such that X1 ™ X and X1 œ exP̂n(Ÿ).

The rest of this proof uses an argument similar to the one used in (12, The-

orem 4.6). Fix any p œ Z. Then Card(Y 1
p ) Æ Ÿ and so Card(Zp(Y 1)) Æ Ÿ.

Since X is exact and Card(Zp(Y 1)) Æ Ÿ, there exists a submodule U ™ Xp+1

with Card(U) Æ Ÿ such that Zp(Y 1) ™ ˆp+1(U). Let C1 be a Ÿ-small subcom-

plex of X such that U ™ Cp+1, Cj = 0 for every j > p + 1, and that each Cj

with j Æ p has a nice Ÿ-small projective subresolution of a given resolution of

Xj. Since Y 1 + C is a bounded above subcomplex of X, by the previous lemma

there exists a Ÿ-small subcomplex Y 2 of X such that Y 1 + C ™ Y 2 and that

each Y 2
j has a nice Ÿ-small projective subresolution of a given resolution of Xj.

Note that Zp(Y 1) ™ ˆp+1(Y 2
p+1). Construct Y 3 from Y 2 as we just constructed

Y 2 from Y 1, and so on, making sure to use the same p œ Z at each step. Set

X1 := tŒ
j=1 Y j ™ X. Note that X1 is exact at p. Repeat this argument to get

exactness at any level. So we may assume that X1 is an exact complex. Every

X1
k has a nice Ÿ-small projective subresolution of the given resolution of Xk. For

every j one has a projective subresolution of the form

0 æ n

iœIj
n(k)

P i
n(k) æ · · · æ n

iœIj
1

(k)

P i
1(k) æ n

iœIj
0

(k)

P i
0(k) æ Y j

k æ 0,

where I1
l (k) ™ I2

l (k) ™ · · · for every 0 Æ l Æ n, by Lemma 3.3.6. If we take the

union of all of the previous sequences, then t
jØ1 Ij

l (k) ™ Il(k) for every 0 Æ l Æ n,

and so we obtain the exact sequence

0 æ n

iœ
t

jØi
Ij

n(k)

P i
n(k) æ · · · æ n

iœ
t

jØ1

Ij
0

(k)

P i
0(k) æ €

jØ1
Y j

k = X1
j æ 0.
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Hence, X1 œ exP̂n(Ÿ). Now consider the quotient

X

X1 = · · · æ Xk+1

X1
k+1

æ Xk

X1
k

æ Xk≠1

X1
k≠1

æ · · · .

Note that each Xk/X1
k is n-projective and that X/X1 is exact. We apply the same

procedure above to the complex X/X1 in order to get a complex X2/X1 ™ X/X1

such that X2/X1 œ exP̂n(Ÿ). Note that X2 is an exact complex since the class of

exact complexes is closed under extensions, and so X2 œ ex ÊPn. The rest of the

proof follows by using transfinite induction.

The previous theorem implies that (ex ÊPn, (ex ÊPn)‹) is a complete cotorsion pair,

since it is cogenerated by exP̂n(Ÿ). Note that for this result we did not need R to

be Noetherian.

In the case where R is a Noetherian ring, we have two complete cotorsion pairs

(dw ÊPn, (dw ÊPn)‹) and (ex ÊPn, (ex ÊPn)‹). By Proposition 2.4.8, (ex ÊPn)‹ fl E =

(dw ÊPn)‹, since (dw ÊPn, (dw ÊPn)‹) is complete. It follows these two complete co-

torsion pairs are compatible, and thus we obtain a proof of Theorem 3.3.2 in

the case where R is a Noetherian ring. We shall see later a proof where R is

not necessarily Noetherian. Note that we could have used Proposition 2.3.6 and

2.4.8 to show that the pair (ex ÊPn, (ex ÊPn)‹) is complete. However, we consider

of more interest to generalize the arguments given in (12) on the completeness of

(ex ÊP0, (ex ÊP0)‹).

3.4 n-Injective and degreewise n-injective model structures

The objective in this section is to get the dual of the n-projective and degreewise

n-projective model structures on Ch(RMod). The results are summarized in the

following two theorems.
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There exists a unique Abelian model structure on Ch(RMod), where the (triv-

ial) fibrations are the epimorphisms with kernel in dgÊIn (resp. ÊIn), the (trivial)

cofibrations are the monomorphisms with cokernel in ‹(ÊIn) (resp. ‹(dgÊIn)),

and the weak equivalences are the quasi-isomorphisms.

Theorem 3.4.1 (n-Injective model structure)

There exists a unique Abelian model structure on Ch(RMod), where the (triv-

ial) fibrations are the epimorphisms with kernel in dwÊIn (resp. exÊIn), the

(trivial) cofibrations are the monomorphisms with cokernel in ‹(exÊIn) (resp.
‹(dwÊIn)), and the weak equivalences are the quasi-isomorphisms.

Theorem 3.4.2 (Degreewise n-injective model structure)

In a Grothendieck category C with enough projective objects, Proposition 3.1.24

and Theorem 2.4.3 imply that (dg ^‹(In(C)), În(C)) and ( ^‹(In(C)), dgÎn(C)) are co-

torsion pairs in Ch(C). These pairs are also compatible since (‹(In(C)), In(C)) is

hereditary (see Theorem 2.4.5). By Proposition 1.8.4, we know În(C) = In(Ch(C)).

It follows (dg ^‹(In(C)), În(C)) is complete. In the case C = RMod or ModR,

we have two complete cotorsion pairs (E , E‹) and (‹E , E). For simplicity, write

In(RMod) = In. Hence, by Proposition 2.3.6 (2), (‹̂(In), dgÊIn) is a complete

cotorsion pair. Then Theorem 3.4.1 follows by Hovey’s correspondence. Theorem

3.4.2 follows in a similar way, we only need to prove the following proposition.

Let C be a Grothedieck category with a generator G. Then the cotorsion pair

(‹(dwÎn(C)), dwÊIn(C)) is cogenerated by a set.

Proposition 3.4.3
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Proof .

We show that dwÎn(C) = S‹, where S is the set of all disk complexes Dm(C) with

C œ �n(G/J) and J running over the set of subobjects of G. First, we see that

S ™ ‹(dwÎn(C)). Let Dm(C) œ S and Y œ dwÎn(C). Using Proposition 1.6.2, we

have Ext1
Ch(C)(Dm(C), Y ) ≥= Ext1

C(C, Ym) ≥= Extn+1
C (G/J, Ym) = 0, since Ym is n-

injective. Then, Dm(C) œ ‹(dwÎn(C)). This implies dwÎn(C) = (‹(dwÎn(C)))‹ ™
S‹. The other inclusion follows in the same way.

There is not much to say regarding these two model structures. As the reader can

appreciate, the proof of the first theorem is just a consequence of more general

results, while the arguments given for the previous proposition are mainly appli-

cations of basic homological algebra. Actually, the existence of the degreewise

n-injective model structure is a consequence of a more general result proven by

J. Gillespie in (25, Theorem 4.7). We decided to include this section due to some

applications in the next chapter.

3.5 Degreewise n-flat model structures

So far in this chapter we have obtain Abelian model structures on Ch(RMod)

from projective and injective dimensions in RMod. So, it is only left to analyze

the flat case. This part of this thesis is motivated by early investigations due

to S. T. Aldrich, E. E. Enochs, J. R. García Rozas and L. Oyonarte, on the

completeness of the cotorsion pairs (dw ÊF0, (dw ÊF0)‹) and (ex ÊF0, (ex ÊF0)‹), where

dw ÊF0 and ex ÊF0 are the classes of degreewise flat and exact degreewise flat chain

complexes, respectively. Since these two cotorsion pairs turn out to be compatible

and complete, we have the following model structure on Ch(RMod).
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There exists a unique Abelian model structure on Ch(RMod) where the (triv-

ial) cofibrations are the monomorphisms with cokernel in dw ÊF0 (resp. ex ÊF0),

the (trivial) fibrations are the epimorphisms with kernel in (ex ÊF0)‹ (resp.

(dw ÊF0)‹), and the weak equivalences are the quasi-isomorphisms.

Theorem 3.5.1 (Degreewise flat model structure)

In this section, we prove that the induced cotorsion pairs (dw ÊFn, (dw ÊFn)‹) and

(ex ÊFn, (ex ÊFn)‹) are complete, by using a method that we call the stairway zig-

zag. This modified zig-zag procedure also works to show the completeness of the

pair (dw ÊPn, (dw ÊPn)‹) and (ex ÊPn, (ex ÊPn)‹) (without assuming R Noetherian, as

in Section 3.3). After showing that (dw ÊFn, (dw ÊFn)‹) and (ex ÊFn, (ex ÊFn)‹) are

also compatible, the following result shall follow.

There exists a unique Abelian model structure on Ch(RMod) where the (triv-

ial) cofibrations are the monomorphisms with cokernel in dw ÊFn (resp. ex ÊFn),

the (trivial) fibrations are the epimorphisms with kernel in (ex ÊFn)‹ (resp.

(dw ÊFn)‹), and the weak equivalences are the quasi-isomorphisms.

Theorem 3.5.2 (Degreewise n-flat model structure)

For the rest of this section, let A denote either the class of projective modules or

flat modules, and An denote the class of left n-A-modules, where A0 = A.

Remark 3.5.1. From Lemmas 3.3.6 and 3.1.21, we have that for every A œ An

and for every small submodule 0 ”= N ™ A, there exists a small submodule AÕ ™ A

in An such that N ™ AÕ and A/AÕ œ An.
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Let X œ exÁAn and x œ X (i.e. x œ Xm for some m œ Z). Then there exists a

complex X ´ Y œ (exÁAn)ÆŸ such that x œ Y and X/Y œ exÁAn.

Theorem 3.5.3

The following proof is based on an argument given in (4, Proposition 4.1), where

the authors prove that (dw ÊF0, (dw ÊF0)‹) and (ex ÊF0, (ex ÊF0)‹) are complete cotor-

sion pairs.

Proof of Theorem 3.5.3 .

Assume without loss of generality that x œ X0. Consider the submodule ÈxÍ ™ X0.

Since X0 œ An and ÈxÍ is small, we can embed ÈxÍ into a submodule (An)ÆŸ –
Y 1

0 ™ X0 such that X0/Y 1
0 œ An. We can construct a Ÿ-small and exact subcom-

plex

L1 := (· · · æ L1
2 æ L1

1 æ Y 1
0 æ ˆ0(Y 1

0 ) æ 0 æ · · · ),

since X is exact. The fact that ˆ0(Y 1
0 ) is Ÿ-small implies that it is contained in

a submodule (An)ÆŸ – Y 2
≠1 ™ X≠1 such that X≠1/Y 2

≠1 œ An. As above, we can

construct a Ÿ-small and exact subcomplex of the form

L2 := (· · · æ L2
2 æ L2

1 æ L2
0 æ Y 2

≠1 æ ˆ≠1(Y 2
≠1) æ 0 æ · · · ).

Note that it is possible to construct L2 containing L1. Now embed L2
0 into a

submodule (An)ÆŸ – Y 3
0 ™ X0 such that X0/Y 3

0 œ An. Again, construct a

subcomplex

L3 := (· · · æ L3
2 æ L3

1 æ Y 3
0 æ Y 2

≠1 + ˆ0(Y 3
0 ) æ ˆ≠1(Y 2

≠1) æ 0 æ · · · )

containing L2, which is Ÿ-small and exact. Now let Y 4
1 œ (An)ÆŸ be a submodule

of X1 containing L3
1 such that X1/Y 4

1 œ An, and construct an exact and Ÿ-small

complex L4 containing L3 of the form

L4 := (· · · æ L4
2 æ Y 4

1 æ Y 3
0 + ˆ1(Y 4

1 ) æ Y 2
≠1 + ˆ0(Y 3

0 ) æ ˆ≠1(Y 2
≠1) æ 0 æ · · · ).
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Embed Y 3
0 + ˆ1(Y 4

1 ) into a submodule (An)ÆŸ – Y 5
0 ™ X0 such that X0/Y 5

0 œ An.

Construct an exact and Ÿ-small subcomplex

L5 := (· · · æ L5
2 æ L5

1 æ Y 5
0 æ Y 2

≠1 + ˆ0(Y 5
0 ) æ ˆ≠1(Y 2

≠1) æ 0 æ · · · )

containing L4. In a similar way, construct Ÿ-small and exact complexes

L6 := (· · · æ L6
1 æ L6

0 æ Y 6
≠1 æ ˆ≠1(Y 6

≠1) æ 0 æ · · · )

and

L7 := (· · · æ L7
1 æ L7

0 æ L7
≠1 æ Y 7

≠2 æ ˆ≠2(Y 7
≠2) æ 0 æ · · · ),

such that Y 6
≠1 œ An is a Ÿ-small submodule of X≠1 containing Y 2

≠1 + ˆ0(Y 5
0 ), and

Y 7
≠2 œ An is a small submodule of X≠2 containing ˆ≠1(Y 6

≠1). We have the following

commutative diagram of subcomplexes of X where the k + 1-th complex can be

constructed in such a way that it contains the k-th complex:
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0 0 0 0 0 0

L1
2 L1

1 Y 1
0 ˆ0(Y 1

0 ) 0 0

L2
2 L2

1 L2
0 Y 2

≠1 ˆ≠1(Y 2
≠1) 0

L3
2 L3

1 Y 3
0 ˆ0(Y 3

0 ) + Y 2
≠1 ˆ≠1(Y 2

≠1) 0

L4
2 Y 4

1 Y 3
0 + ˆ1(Y 4

1 ) ˆ0(Y 3
0 ) + Y 2

≠1 ˆ≠1(Y 2
≠1) 0

L5
2 L5

1 Y 5
0 Y 2

≠1 + ˆ0(Y 5
0 ) ˆ≠1(Y 2

≠1) 0

L6
2 L6

1 L6
0 Y 6

≠1 ˆ≠1(Y 6
≠1) 0

L7
2 L7

1 L7
0 L7

≠1 Y 7
≠2 ˆ≠2(Y 7

≠2)

L8
2 L8

1 L8
0 Y 8

≠1 ˆ≠1(Y 8
≠1) + Y 7

≠2 ˆ≠2(Y 7
≠2)

L9
2 L9

1 Y 9
0 ˆ0(Y 9

0 ) + Y 8
≠1 ˆ≠1(Y 8

≠1) + Y 7
≠2 ˆ≠2(Y 7

≠2)

L10
2 Y 10

1 ˆ1(Y 10
1 ) + Y 9

0 ˆ0(Y 9
0 ) + Y 8

≠1 ˆ≠1(Y 8
≠1) + Y 7

≠2 ˆ≠2(Y 7
≠2)

Y 11
2 ˆ2(Y 11

2 ) + Y 10
1 ˆ1(Y 10

1 ) + Y 9
0 ˆ0(Y 9

0 ) + Y 8
≠1 ˆ≠1(Y 8

≠1) + Y 7
≠2 ˆ≠2(Y 7

≠2)

... ... ... ... ... ...

Note that the submodules Y k
i appear according to the following “stairway-like”

pattern:
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2 1 0 ≠1 ≠2
1st step •
2nd step •
3rd step •
4th step •
5th step •
6th step •
7th step •
8th step •
9th step •
10th step •
11th step •

Figure 3.1: Stairway zig-zag.

The previous diagram is sort of inspired in the following painting.

Figure 3.2: Stairway to heaven. c• Paul Taylor.
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Let Y := t
nØ1 Ln, where Yi := t

nØ1(Ln)i. It is clear that Y is an exact complex.

We check that Y is also in (dwÁAn)ÆŸ. For example,

Y0 = Y 1
0 fi L2

0 fi Y 3
0 fi (Y 3

0 + ˆ1(Y 4
1 )) fi Y 5

0 fi · · · = Y 1
0 fi Y 3

0 fi Y 5
0 fi · · ·

is Ÿ-small.

At this point, we split the proof into two cases:

(1) A = P0: Consider

(1) =
Q

a0 æ n

iœIn

P i
n æ · · · æ n

iœI
1

P i
1 æ n

iœI
0

P i
0 æ X0 æ 0

R

b

a projective resolution of X0 of length n, where each direct sum consists of

countably generated projective modules. By Lemma 3.3.6, we can construct

Y 1
0 containing ÈxÍ with a subresolution of the form

(2) =

Q

ca0 æ n

iœI1

n

P i
n æ · · · æ n

iœI1

1

P i
1 æ n

iœI1

0

P i
0 æ Y 1

0 æ 0

R

db ,

where each I1
k µ Ik is Ÿ-small. Note that the quotient of (1) by (2) yields a

projective resolution of X0/Y 1
0 of length n, so X0/Y 1

0 œ Pn. Using Lemma

3.3.6 again, we can construct a subresolution containing (2), say

(3) =

Q

ca0 æ n

iœI3

n

P i
n æ · · · æ n

iœI3

1

P i
1 æ n

iœI3

0

P i
0 æ Y 3

0 æ 0

R

db

such that X0/Y 3
0 œ Pn. We keep applying Lemma 3.3.6 to get an ascending

chain of subresolutions of (1):

0 æ m
iœI1

n
P i

n æ · · · æ m
iœI1

1

P i
1 æ m

iœI1

0

P i
0 æ Y 1

0 æ 0,

0 æ m
iœI3

n
P i

n æ · · · æ m
iœI3

1

P i
1 æ m

iœI3

0

P i
0 æ Y 3

0 æ 0,

0 æ m
iœI5

n
P i

n æ · · · æ m
iœI5

1

P i
1 æ m

iœI5

0

P i
0 æ Y 5

0 æ 0, . . .



202

Now we take the union of this ascending chain and get the exact complex

(4) =

Q

ca0 æ €

j

n

iœIj
n

P i
n æ · · · æ €

j

n

iœIj
1

P i
1 æ €

j

n

iœIj
0

P i
0 æ €

j

Y j
0 æ 0

R

db

=

Q

ca0 æ n

iœ
t

j
Ij

n

P i
n æ · · · æ n

iœ
t

j
Ij

1

P i
1 æ n

iœ
t

j
Ij

0

P i
0 æ Y0 æ 0

R

db

Since each t
j Ij

k is a small subset of Ik, we have that the previous sequence

is a (P0)ÆŸ-subresolution of (1). Note also that the quotient of (1) by (4)

yields a projective resolution of X0/Y0 of length n. Then Y0 œ (Pn)ÆŸ. In

a similar way, we can show that Ym œ (Pn)ÆŸ and Xm/Ym œ Pn, for every

m œ Z. Hence, Y œ (ex ÊPn)ÆŸ. It follows X/Y œ ex ÊPn since the class of exact

complexes is thick.

(2) A = F0: Consider a left flat resolution of length n,

(1) = (0 æ Fn æ · · · æ F1 æ F0 æ X0 æ 0).

By Lemma 3.1.21, we can construct a subresolution

0 æ S1
n æ · · · æ S1

1 æ S1
0 æ Y 1

0 æ 0,

where ÈxÍ ™ Y 1
0 , and each S1

k is a small and pure submodule of Fk. As we did

in the previous case, applying Lemma 3.1.21 infinitely many times, we can get

an ascending chain of subresolutions

0 æ S1
n æ · · · æ S1

1 æ S1
0 æ Y 1

0 æ 0,

0 æ S3
n æ · · · æ S3

1 æ S3
0 æ Y 3

0 æ 0,

0 æ S5
n æ · · · æ S5

1 æ S5
0 æ Y 5

0 æ 0,
...

Taking the union of these subresolutions yields an exact sequence

(2) =
Q

a0 æ €

j

Sj
n æ · · · æ €

j

Sj
1 æ €

j

Sj
0 æ Y0 æ 0

R

b ,
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where each t
j Sj

k is a small and pure submodule of Fk and the quotient

Fk/
t

j Sj
k is flat. Then we have that Y0 œ (Fn)ÆŸ and X0/Y0 œ Fn (take

the quotient of (1) by (2)). In a similar way, we have Ym œ (Fn)ÆŸ and

Xm/Ym œ Fn, for every m œ Z. It follows Y œ (ex ÊFn)ÆŸ and X/Y œ ex ÊFn.

It follows from the previous result that (ex ÊPn, (ex ÊPn)‹) and (ex ÊFn, (ex ÊFn)‹) are

complete cotorsion pairs. Using a similar argument one can show that the pairs

(dw ÊPn, (dw ÊPn)‹) and (dw ÊFn, (dw ÊFn)‹) are also complete. By Proposition 2.4.8,

the pairs (dw ÊFn, (dw ÊFn)‹) and (ex ÊFn, (ex ÊFn)‹) are compatible. Therefore, The-

orem 3.5.2 follows. Similarly, we can get another proof of Theorem 3.3.2.

3.6 n-Flat model structures

This section is devoted to study the completeness of the two cotorsion pairs

( ÊFn, dg(̂Fn)‹) and (dg ÊFn, (̂Fn)‹), induced by (Fn, (Fn)‹). Specifically, we show

that ( ÊFn, dg(̂Fn)‹) is cogenerated by a set, based on an argument given by S. T.

Aldrich, E. E. Enochs, J. R. García Rozas and L. Oyonarte in (4), where authors

proved that every flat complex is a transfinite extension of a set of Ÿ-small flat com-

plexes. For the case n = 0, the completeness of ( ÊF0, dg(̂F0)‹) and (dg ÊF0, (̂F0)‹)

was proven by J. Gillespie in (27), using the notions of pure and dg-pure subcom-

plexes. The compatibility of these two pairs and Hovey’s correspondence allowed

Gillespie to find the following model structure 5 on Ch(RMod).

5. The same author also constructed the flat model structure on the category of complexes

of O-modules on a topological space T , where O is a sheaf of rings on T . See (28, Corollary

4.12).
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There exists a unique Abelian model structure on Ch(RMod) where the (triv-

ial) cofibrations are the monomorphisms with cokernel in dg ÊF0 (resp. ÊF0), the

(trivial) fibrations are the epimorphisms with kernel in ( ÊF0)‹ (resp. (dg ÊF0)‹),

and the weak equivalences are the quasi-isomorphisms.

Theorem 3.6.1 (Flat model structure)

Once we settle the completeness and compatibility of the pairs ( ÊFn, dg(̂Fn)‹) and

(dg ÊFn, (̂Fn)‹), we shall deduce the following theorem.

There exists a unique Abelian model structure on Ch(RMod) where the (triv-

ial) cofibrations are the monomorphisms with cokernel in dg ÊFn (resp. ÊFn), the

(trivial) fibrations are the epimorphisms with kernel in ( ÊFn)‹ (resp. (dg ÊFn)‹),

and the weak equivalences are the quasi-isomorphisms.

Theorem 3.6.2 (n-Flat model structure)

First, we recall the definition of the standard tensor product on Ch(RMod), from

which one can define another tensor product on Ch(RMod) more appropriate to

define flat complexes. Given two chain complexes X œ Ch(ModR) and Y œ
Ch(RMod), the tensor product complex X ¢ Y is the chain complex (of Abelian

groups groups) given by

(X ¢ Y )n := m
kœZ Xk ¢R Yn≠k,

where the boundary maps (X ¢ Y )n æ (X ¢ Y )n≠1 are defined by

ˆX¢Y
n (x ¢ y) := ˆX(x) ¢ y + (≠1)|x|x ¢ ˆY (y).

This construction defines a functor ≠ ¢ ≠, from which one constructs the left

derived functors Tori(≠, ≠), with i Ø 0.
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The bar tensor product of X and Y is the complex of groups X¢Y given by

(X¢Y )n := (X ¢ Y )n/Bn(X ¢ Y ),

for every n œ Z, whose boundary maps (X¢Y )n æ (X¢Y )n≠1 are given by

ˆX¢Y
n (x ¢ y) := ˆX(x) ¢ y.

As far as the author knows, the definition of this tensor product appeared first in

(24). The left derived functors of ≠¢≠ shall be denoted by Tori(≠, ≠).

Definition 3.6.1. A chain complex X in Ch(RMod) is said to be flat if the

functor ≠¢X : Ch(ModR) æ Ab is left exact.

Why does one consider ¢ instead of ¢ to define flat complexes? The answer is

given by the following proposition.

A chain complex X in Ch(RMod) is flat if, and only if, X œ ÊF0.

Proposition 3.6.3 (see (24, Proposition 5.1.2))

As we did in Proposition 1.8.4, we have the following result.

A chain complex X is n-flat if, and only if, it is exact and Zm(X) œ Fn, for

every m œ Z.

Proposition 3.6.4

In (4, Proposition 3.1), the authors prove that each element of a flat chain complex

F is contained in a Ÿ-small flat subcomplex L ™ F such that the quotient F/L

is also flat. The following theorem is a generalization of this assertion, for n-flat

complexes. As in previous sections, fix an infinite regular cardinal Ÿ satisfying

Ÿ Ø Card(R).
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For any left n-flat complex X œ ÊFn and any element x œ X (i.e. x œ Xk for

some k œ Z), there exists a Ÿ-small n-flat subcomplex L ™ X such that x œ L

and X/L œ ÊFn.

Theorem 3.6.5

Proof .

Without loss of generality, assume k = 0. Write

X = (· · · æ X1 æ X0 æ X≠1 æ · · · ).

Consider the submodule ÈxÍ ™ X0. We show there exists a Ÿ-small submodule

L1
1 ™ X1 such that ˆ1(L1

1) = Ker(ˆ0|ÈxÍ). Let rx œ Ker(ˆ0|ÈxÍ). Since X is exact,

there exists br œ X1 such that rx = ˆ1(br). Let

B = {br : rx œ Ker(ˆ0|ÈxÍ) and rx = ˆ1(br)},

and set L1
1 = ÈBÍ. It is clear that ˆ1(L1

1) = Ker(ˆ0|ÈxÍ). Also, Card(L1
1) Æ

›0 · Card(R) Æ ›0 · Ÿ = Ÿ. Now consider Ker(ˆ1|L1

1

). As we did before, we can

construct a submodule L1
2 ™ X2 such that ˆ2(L1

2) = Ker(ˆ1|L1

1

) and Card(L1
2) Æ Ÿ.

Keep repeating this procedure infinitely many times in order to get a Ÿ-small and

exact complex

L1 := (· · · æ L1
3

ˆ
3æ L1

2
ˆ

2æ L1
1

ˆ
1æ ÈxÍ ˆ

0æ ˆ0(ÈxÍ) æ 0 æ · · · ).

Notice that x œ L1.

Now consider Ker(ˆ0|ÈxÍ) as a submodule of the left n-flat module Z0(X). Then, by

Lemma 3.1.21, Ker(ˆ0|ÈxÍ) can be embedded into a Ÿ-small and n-pure submodule

S2
0 of Z0(X). Repeat the procedure above to get a Ÿ-small complex

L2 := (· · · æ L2
3

ˆ
3æ L2

2
ˆ

2æ L2
1

ˆ
1æ ÈxÍ + S2

0
ˆ

0æ ˆ0(ÈxÍ) æ 0 æ · · · ),



207

which is exact at L2
i for every i. Moreover, L2

1 is constructed in such a way

that ˆ1(L2
1) = Ker(ˆ0|ÈxÍ+S2

0

). Note also that ˆ0(ÈxÍ + S2
0) = ˆ0(ÈxÍ). Finally,

S2
0 ™ Ker(ˆ0|ÈxÍ) ™ Ker(ˆ0|ÈxÍ+S2

0

). Now if rx + s œ Ker(ˆ0|ÈxÍ+S2

0

), then we

have 0 = ˆ0(rx) + ˆ0(s) = ˆ0(rx) and so rx œ Ker(ˆ0|ÈxÍ) ™ S2
0 . It follows

that Ker(ˆ0|ÈxÍ+S2

0

) = S2
0 . Hence L2 is an exact complex. Note also that L2

can be constructed in such a way that L1
1 ™ L2

1. For if we have the sequence

ÈxÍ + S2
0 æ ˆ0(ÈxÍ) æ 0, then for any rx + s œ Ker(ˆ0|ÈxÍ+S2

0

) there exists br,s such

that rx + s = ˆ1(br,s). For every rx + s with s = 0, choose br,0 as the br chosen in

the construction of L1. Thus, we get L2
1 ´ L1

1. Repeating this procedure, we may

assume L1 ™ L2.

Using the Lemma 3.1.21 again, we can embed ˆ0(ÈxÍ) into a Ÿ-small and n-pure

submodule S3
≠1 ™ Z≠1(X). Then construct an exact complex

L3 := (· · · æ L3
2

ˆ
2æ L3

1
ˆ

1æ L3
0

ˆ
0æ S3

≠1 æ 0 æ · · · ) ´ L2.

Now embed Ker(ˆ0|L3

0

) into a Ÿ-small and n-pure submodule S4
0 ™ Z0(X) and

construct an Ÿ-small and exact complex

L4 := (· · · æ L4
2

ˆ
2æ L4

1
ˆ

1æ L3
0 + S4

0
ˆ

0æ S3
≠1 æ · · · ) ´ L3.

Notice Ker(ˆ0|L3

0

+S4

0

) = S4
0 .

Consider Ker(ˆ1|L4

1

) ™ Z1(X) and let S5
1 be a n-pure and Ÿ-small submodule of

Z1(X) such that Ker(ˆ1|L4

1

) ™ S5
1 . Then construct a small and exact complex L5

containing L4 having the form

L5 := (· · · æ L5
2

ˆ
2æ L4

1 + S5
1

ˆ
1æ L3

0 + S4
0

ˆ
0æ S3

1 æ 0 æ · · · )

with Ker(ˆ1|L4

1

+S5

1

) = S5
1 . Now find a Ÿ-small n-pure submodule S6

2 ™ Z2(X) such

that Ker(ˆ2|L5

2

) ™ S6
2 . Construct a small and exact complex
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L6 := (· · · æ L6
3

ˆ
3æ L5

2 + S6
2

ˆ
2æ L4

1 + S5
1

ˆ
1æ L3

0 + S4
0

ˆ
0æ S3

≠1 æ 0 æ · · · ) ´ L5,

where Ker(ˆ2|L5

2

+S6

2

) = S6
2 .

Keep repeating this process, an we have that for any n Ø 4 there exists a Ÿ-small

an exact complex

Ln := (· · · æ Ln
n≠3

ˆn≠3æ Ln≠1
n≠4+Sn

n≠4 æ · · · æ L4
1+S5

1
ˆ

1æ L3
0+S4

0
ˆ

0æ S3
≠1 æ 0 æ · · · )

such that Ker(ˆn≠j|Ln≠j+3

n≠j +Sn≠j+4

n≠j
) = Sn≠j≠4

n≠j is a n-pure (and so n-flat) submodule

of Zn≠j(X), for every 3 < j Æ n. Now consider the complex L = t
nØ4 Ln. It is

easy to see that L is Ÿ-small and exact, and that it has the form

L := (· · · æ L6
3 + S7

3
ˆ

3æ L5
2 + S6

2
ˆ

2æ L4
1 + S5

1
ˆ

1æ L3
0 + S4

0
ˆ

0æ S3
≠1 æ 0 æ · · · ).

Also, Zn(L) is an n-pure submodule of Zn(X), so it is n-flat. Hence, L œ ÊFn.

We obtained a short exact sequence of chain complexes L Òæ X ⇣ X/L. Note

that X/L is exact, since L and X are. By Lemma 1.8.3, we have an exact se-

quence Zn(L) Òæ Zn(X) ⇣ Zn(X/L). It follows that Zn(X/L) ≥= Zn(X)/Zn(L),

which is n-flat since Zn(X) is n-flat and Zn(L) is an n-pure submodule of Zn(X).

Therefore, X/L œ ÊFn.

The previous theorem provides a cogenerating set for the pair ( ÊFn, ( ÊFn)‹), namely

the set of Ÿ-small n-flat complexes ( ÊFn)ÆŸ, by Propositions 3.1.13 and 3.1.14. So

we have a complete cotorsion pair ( ÊFn, ( ÊFn)‹). For every fixed chain complex

X œ Ob(Ch(ModR)), the functor Tor1(X, ≠) preserves direct limits (We shall

see later this fact in the proof of Proposition 4.7.18). It follows the class ÊFn is

closed under direct limits, and hence the pair ( ÊFn, ( ÊFn)‹) is perfect by Theorem

3.1.23. It follows that every chain complex in Ch(RMod) has an n-flat cover. The



209

first approaches to this result are given in (24) in the case n = 0, for complexes

over a commutative Noetherian ring with finite Krull dimension.

We conclude this section by giving a description for exact chain complexes whose

cycles are pure submodules.

Definition 3.6.2 (see (27, Definition 4.3)). We shall say that S œ Ob(Ch(RMod))

is a pure subcomplex of a complex X if the sequence 0 æ Y ¢S æ Y ¢X is exact,

for every Y œ Ob(Ch(ModR))

S is a pure subcomplex of a flat complex F if, and only if, S is exact and Zm(S)

is a pure submodule of Zm(F ), for every m œ Z.

Proposition 3.6.6

Proof .

Suppose S is a pure subcomplex of F . Then S is flat (See (27, Lemma 4.7)).

Since flat complexes are exact, it follows S is exact. It su�ces to show Zm(S) is

a pure submodule of Zm(F ). Let M be a right R-module. Consider the sphere

complex S0(M). Since S is a pure subcomplex of F , we have an exact sequence

S0(M)¢S Òæ S0(M)¢F . At each n œ Z, we have (S0(M) ¢ X)m = M ¢R Xm,

for every complex X œ Ob(Ch(RMod)). Recall the boundary map ˆ
S0(M)¢X
m+1

is given by y ¢ x ‘æ y ¢ ˆX
m+1(x) on generators. It is easy to see the equality

Bm(S0(M) ¢ X) = M ¢R Bm(X). It follows M ¢R Bm(X) æ M ¢R Xm is

injective and so (S0(M)¢X)m
≥= (S0(M)¢X)m

Bm(S0(M)¢X) = M¢RXm

M¢RBm(X)
≥= M ¢R

Xm
Bm(X) . Since

S and F are exact, we get (S0(M)¢S)m
≥= M ¢R Zm≠1(S) and (S0(M)¢F )m

≥=
M ¢R Zm≠1(F ). For every m œ Z, the sequence (S0(M)¢S)m Òæ (S0(M)¢F )m

is exact, so M ¢R Zm(S) Òæ M ¢R Zm(F ) is an exact sequence by the previous

isomorphism. Hence, Zm(S) is a pure submodule of Zm(F ).



210

Now suppose S is an exact subcomplex of F such that Zm(S) is a pure submodule

of Zm(F ). Let A be a complex in Ch(ModR). We want to show the sequence

A¢S Òæ A¢F is exact. Since Zn≠k(S) is a pure submodule of Zn≠1(F ), we have

Ak ¢R Zn≠k(S) Òæ Ak ¢R Zn≠k(F ) is exact. Since S and F are exact complex, we

obtain the following commutative diagram where the top and the bottom row are

exact (Recall Lemma 1.8.3):

0 0

0 Ak ¢R Zn≠k(S) Ak ¢R Zn≠k(F )

0 Ak ¢R Sn≠k Ak ¢R F n≠k

0 Ak ¢R Zn≠k≠1(S) Ak ¢R Zn≠k≠1(F )

0 0

The columns of this diagram are also exact since Zn≠k(S), Zn≠k(F ) and Zn≠k(F/S)

are flat modules. Since the class of short exact sequences is closed under exten-

sions, we have that the sequence Ak ¢R Sn≠k Òæ Ak ¢R F n≠k is exact. It follows

(A ¢ S)n Òæ (A ¢ F )n is exact. Then A ¢ S Òæ A ¢ F is an exact sequence

of complexes, and so Bn(A ¢ S) Òæ Bn(A ¢ F ) is exact. Since the class of

short exact sequences is thick, we have that (A¢S)n

Bn(A¢S) Òæ (A¢F )n

Bn(A¢F ) is exact. Hence,

A¢S Òæ A¢F is exact.

Using this characterization, we may say that given an n-flat complex X, for each

x œ X there exists a small n-pure subcomplex L ™ X such that x œ L 6. From

Section 3.1 we know that (Fn, (Fn)‹) is a cotorsion pair. This, along with the fact

that RMod is a category with enough projective and injective modules, implies

6. n-pure subcomplexes are defined in the same way as n-pure submodules.
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that (dg ÊFn flE , ( ÊFn)‹) and (dg ÊFn, ( ÊFn)‹ flE) are compatible cotorsion pairs. The

former pair is complete and so by Proposition 2.3.6, the later is also complete.

Therefore, Theorem 3.6.2 follows.

3.7 Model structures on complexes over Abelian categories with

a progenerator

In this chapter, we have constructed Abelian model structures on Ch(RMod)

from the notion of homological dimensions of modules. Our way to proceed has

consisted in generalizing results in the zero dimensional case (i.e. results on pro-

jective, injective and flat modules or complexes) to the nonzero dimensional case,

or from the module case to the chain complex case. In this sense, we have applied

several zig-zag-like techniques in order to remark the construction of transfinite

extensions of Ÿ-small (- exact or not - degreewise) n-projective and (- exact or

not - degreewise) n-flat complexes. Very recently in (15), the authors have proven

that ( ÂA, dgÂB) is a cotorsion pair in Ch(RMod) cogenerated by a set if (A, B)

is also cogenerated by a set in RMod. The author is not aware if such a result

still holds in the context of modules over ringoids. The techniques applied in the

given reference are di�erent and more complicated from the ones we have shown

throughout this chapter. We have preferred to keep our particular approach to

this problem from the notion of homological dimensions, due to the applications

(Chapter 4) of some of the notions and procedures given so far.

We devote this last section to present some categorical versions of the model

structures concerning the projective and injective homological dimensions, by us-

ing Mitchell’s and Freyd’s equivalences (See Sections 1.9 and 1.10).

Note that every equivalence of Abelian categories C æ D induces an equivalence

of the corresponding categories of chain complexes Ch(C) æ Ch(D).



212

Let C Fæ D GΩ C be an equivalence of categories. By abuse of notation, given a

class of objects X in C, F (X ) shall denote the class of objects Y œ Ob(D) such

that Y ≥= F (X) for some X œ X . The class G(Y) is defined similarly.

Let C Fæ D GΩ C be an equivalence of Abelian categories categories.

(1) F and G preserves exact sequences in C and D, respectively.

(2) For every X, Y œ Ob(C) and Z, W œ Ob(D), there exist group monomor-

phisms:

Ext1
C(X, Y ) Òæ Ext1

D(F (X), F (Y )) and Ext1
D(Z, W ) Òæ Ext1

C(G(Z), G(W )).

(3) (A, B) is a cotorsion pair in C if, and only if, (F (A), F (B)) is a cotorsion

pair in D.

(4) (A, B) is cogenerated by a set in Ob(C) if, and only if, (F (A), F (B)) is

cogenerated by a set in Ob(D).

(5) (A, B) is complete in C if, and only if, (F (A), F (B)) is complete in D.

(6) (A, B) is hereditary in C if, and only if, (F (A), F (B)) is hereditary in D.

Proposition 3.7.1 (Some properties of equivalence of categories)

We do not give a proof of this properties since (1) is well known and the rest

are straightforward. Concerning equivalences of categories and induced cotorsion

pairs, we have the following properties.

Let C Fæ D GΩ C be an equivalence of categories, Ch(C) ÂFæ Ch(D) ÂGΩ Ch(C),

and (A, B) be a cotorsion pair in C. Then ]F (A) = ÂF ( ÂA), ÂF (dg ÂA) = dg ]F (A),
ÂF (dw ÂA) = dw ]F (A), and ÂF (ex ÂA) = ex ]F (A). The same equalities also hold for

the class B.

Proposition 3.7.2
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Let C be an Abelian category with a progenerator P and arbitrary coproducts

of copies of P .

(1) There is a unique Abelian model

structure on Ch(C) such that

dgP̂n(C) is the class of cofibrant

objects, (P̂n(C))‹ the class of fi-

brant objects, and E the class of

trivial objects.

(2) There is a unique Abelian model

structure on Ch(C) such that

dwP̂n(C) is the class of cofibrant

objects, (exP̂n(C))‹ the class of

fibrant objects, and E the class of

trivial objects.

(1’) There is a unique Abelian

model structure on Ch(C) such

that dgÎn(C) is the class of

fibrant objects, ‹(În(C)) the

class of cofibrant objects, and E
the class of trivial objects.

(2’) There is a unique Abelian

model structure on Ch(C) such

that dwÎn(C) is the class of fi-

brant objects, ‹(exÎn(C)) the

class of cofibrant objects, and E
the class of trivial objects.

Corollary 3.7.3

Proof .

We only prove the left half. First, we need to note that since P is a projective

generator of C, then m
mœZ Dm+1(P ) is a projective generator of Ch(C), but not

necessarily a progenerator. However, G = {Dm+1(P ) : m œ Z} is a set of finite

projective generators of Ch(C), and so Ch(C) is equivalent to the category of right

modules over the ringoid R = EndC(G). It follows some of the results presented in

this chapter and the previous one, for Grothendieck categories, are valid in Ch(C)

for our particular choice of C.

(1) Consider the n-projective model structure on Ch(ModR), where R = HomC(P, P ).

In this occasion, let ER and E the classes of exact chain complexes in Ch(ModR)
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and Ch(C), respectively. We have two compatible and complete cotorsion

pairs (dg ÊPn fl ER, ( ÊPn)‹) and (dg ÊPn, ( ÊPn)‹ fl ER). Consider Mitchell’s equiv-

alence (Theorem 1.9.3) F : C æ ModR and let G : ModR æ C be its nat-

ural inverse, i.e. GF and FG are naturally isomorphic to idC and id
ModR ,

respectively. By Proposition 3.7.1, we have two complete cotorsion pairs

( ÂG(dg ÊPn fl E), ÂG(( ÊPn)‹)) and ( ÂG(dg ÊPn), ÂG(( ÊPn)‹ fl E)). It is not hard to

see that G(Pn) = Pn(C). Using this and Proposition 3.7.1 (2), we can also

show that G((Pn)‹) = (Pn(C))‹. On the one hand, note that ÂG(dg ÊPn flER) =
ÂG(dg ÊPn)flE and ÂG(( ÊPn)‹ flE) = ÂG(( ÊPn)‹)flE . On the other hand, by Propo-

sition 3.7.2 (2) we have ÂG(dg ÊPn) = dgĜ(Pn) = dgP̂n(C) and ÂG(( ÊPn)‹) =
ÂG(dg(̂Pn)‹) = dg ^G((Pn)‹) = dg ^(Pn(C))‹ = (P̂n(C))‹. It follows we have two

compatible and complete cotorsion pairs of the form (dgP̂n(C) fl C, (P̂n(C))‹)

and (dgP̂n(C), (P̂n(C))‹ flE). Finally, the result follows by Hovey’s correspon-

dence.

(2) Starting from the degreewise n-projective model structure and using some

arguments similar to (1), we have two compatible and complete cotorsion

pairs (dwP̂n(C) fl E , ÂG((ex ÊPn)‹)) and (dwP̂n(C), ÂG((ex ÊPn)‹) fl E). It su�ces

to show ÂG((ex ÊPn)‹) = (exP̂n(C))‹. Let X œ ÂG((ex ÊPn)‹). Write X ≥= ÂG(X Õ)

for some complex X Õ œ (ex ÊPn)‹. For every complex Z œ exP̂n(C), we

have Ext1
Ch(C)(Z, X) embedded into the group Ext1(F (Z), FG(X Õ)), where

F (Z) œ ex ÊPn. Then Ext1(F (Z), FG(X Õ)) ≥= Ext1(F (Z), X Õ) = 0, and hence

Ext1(Z, X) = 0, i.e. X œ (exP̂n(C))‹. The other inclusion follows in a similar

way.



215

trivially trivially

model structure cofibrant fibrant trivial cofibrant fibrant

objects objects objects objects objects

On chain complexes over a ring

n-projective dg ÊPn ( ÊPn)‹ E ÊPn (dg ÊPn)‹

degreewise n-projective dw ÊPn (ex ÊPn)‹ E ex ÊPn (dw ÊPn)‹

n-injective ‹(ÊIn) dgÊIn E ‹(dgÊIn) ÊIn

degreewise n-injective ‹(exÊIn) dwÊIn E ‹(dwÊIn) exÊIn

n-flat dg ÊFn ( ÊFn)‹ E ÊFn (dg ÊFn)‹

degreewise n-flat dw ÊFn (ex ÊFn)‹ E ex ÊFn (dw ÊFn)‹

Table 3.1: SUMMARY OF MODEL STRUCTURES





CHAPTER IV

ABELIAN MODEL STRUCTURES AND GORENSTEIN
HOMOLOGICAL DIMENSIONS

“I have noticed even people who claim every-

thing is predestined, and that we can do nothing

to change it, look before they cross the road.”

Stephen Hawking.

In the previous chapter, we studied how model structures and homological di-

mensions are related. In most of the results, we did not need to impose spe-

cial conditions on the ring R. However, if R is a Gorenstein ring, we have the

chance to work with another type of homological algebra, described in terms of

Gorenstein-projective, Gorenstein-injective and Gorenstein-flat modules. Goren-

stein homological algebra can also be done in certain categories known as Goren-

stein categories, which are basically Grothendieck categories with a generator of

finite projective dimension, with some axioms concerning projective and injective

dimensions of its objects. This chapter describes some connections between the

theory of model categories and Gorenstein homological algebra, mainly the con-

struction of Abelian model structures by proving completeness of certain cotorsion

pairs obtained from classes of objects with finite Gorenstein homological dimen-
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sions. Several results are presented in a categorical setting, but there are some

cases where it is more convenient to give the definitions and statements for mod-

ules and chain complexes (for instance, during our study of the Gorenstein-flat

dimension).

If R is a Gorenstein ring, one of the interesting things that occurs is that a left

R-module has finite projective dimension if, and only if, it has finite injective

dimension. The author is not aware where the notion of Gorenstein category

comes from, but one possible guess could be that Gorenstein rings are motivated

in the concept of quasi-Frobenius rings. Recall that in the category of modules over

a quasi-Frobenius ring, the classes of projective and injective modules coincide.

So Gorenstein rings seem to be a generalization of quasi-Frobenius rings. In this

sense, does the model structure presented in Example 2.3.1 has a generalization

in RMod, with R a Gorenstein ring? Settling this question shall be the starting

point to study how to construct new Abelian model structures from Gorenstein

homological dimensions.

4.1 Gorenstein categories

Throughout this section, C shall be a Gorenstein category. The author knows two

definitions of this type of category. The first one (in chronological order) was given

by J. R. García Rozas and appears in (24, Definition 3.1.1). For our purposes, it

is better to drop this definition and use the one given by E. E. Enochs, S. Estrada

and the same García Rozas in (20, Definition 2.18). The author is not aware if

these two definitions are equivalent or not.

Definition 4.1.1. A Grothendieck category C is said to be a Gorenstein category

if the following conditions are satisfied:

(1) For any object X of C, pd(X) < Œ if, and only if, id(X) < Œ.
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(2) The supremum FDP (C) := sup{pd(X) : pd(X) < Œ} and FDI(C) :=

sup{id(X) : id(X) < Œ} are both finite.

(3) C has a generator of finite projective dimension.

Remark 4.1.1.

(1) If C =R Mod, then FDP (C) is called the big finitistic dimension of R.

(2) Every Gorenstein category has enough projective object. For let X œ Ob(C)

and G be a generator of C of finite projective dimension, say n. Then by Propo-

sition 1.9.1 there exists an epimorphism G(I) ⇣ X, where I = HomC(G, X).

On the other hand, there exists a projective object P and an epimorphism

P ⇣ G, since G has finite projective dimension. Then we get an epimorphism

P (I) ⇣ G(I). Hence, we have obtain an epimorphism P (I) ⇣ X, where P (I) is

a projective object. It follows by Proposition 1.9.1 again, that P is a projec-

tive generator of C, so condition (3) in the previous definition can be replaced

by: (3’) C has a projective generator.

Example 4.1.1.

(1) A ring R is an Iwanaga-Gorenstein ring if it is left and right Noetherian, and it

has finite injective dimension as a left and right R-module. It can be show that

both injective dimensions are equal to some nonnegative integer n. Then R is

called an n-Iwanaga-Gorenstein ring. In (21, Section 9.1) it is proven that if P ,

I, and F are the classes of left R-modules with finite projective, finite injective,

and finite flat dimension, respectively, then P = I = F = Pn = In = Fn.

(2) Every quasi-Frobenius ring R is a 0-Gorenstein ring, and so RMod is a Goren-

stein category. Note first that since R is projective (as a left or right R-

module), then it is injective (i.e., R is a self-injective ring). On the other

hand, in the definition of quasi-Frobenius rings given Example 2.3.1 (1), it is

not mentioned that R is left and right Noetherian, but it is known that a ring
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if quasi-Frobenius if, and only if, it is left (or right) Noetherian and left (resp.

right) self-injective.

(3) Consider the category RMod where R is a field K. So RMod = VectK is

the category of K-vector spaces. Then every vector space is projective and

injective. It follows that K is a quasi-Frobenius ring and that VectK is a

Gorenstein category.

(4) If C is a Gorenstein category, then so is Ch(C). For conditions (1) and (2) of

the previous definition, it su�ces to notice that if X is a complex with finite

projective dimension, then X œ P̂n(C), for n = FDP (C), by Proposition 1.8.4.

To check condition (3’), if G is a projective generator of C, then m
mœZ Dm(G)

is a generator of Ch(C) (see Example 1.9.1 (5)), which is projective since

each Dm(G) is. In particular, Ch(RMod) is a Gorenstein category if R is a

Gorenstein ring.

4.2 Gorenstein-projective and Gorenstein-injective objects and

model structures

This section consists in giving the Gorenstein-like version of Examples 2.3.1 (2)

and (3). In (35, Theorem 8.6), M. Hovey constructs a unique Abelian model

structure on RMod (with R a Gorenstein ring) where the cofibrant objects are the

Gorenstein-projective modules and the trivial objects are the modules with finite

projective dimension. There is also another model structure with the same trivial

objects such that the Gorenstein-injective modules form the class of fibrant ob-

jects. Hovey’s method consists in proving that the classes of Gorenstein-projective

and Gorenstein-injective modules are the left and right halves, respectively, of two

cotorsion pairs cogenerated by a set. We shall present Hovey’s results in the con-

text of Gorenstein categories. Let W(C) denote the class of objects in a Gorenstein

category with finite projective dimension (eq. finite injective dimension). It is easy
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to see that this class is thick and closed under direct summands.

Definition 4.2.1. An object X in a Gorenstein category C is said to be Gorenstein-

projective if there exists an exact sequence of projective objects

· · · æ P1 æ P0 æ P 0 æ P 1 æ · · ·
such that X = Ker(P 0 æ P 1), which is also HomC(≠, P0(C))-exact (See Definition

1.4.2).

If C is a Gorenstein category, then there exists a unique Abelian model structure

on C, where the (trivial) cofibrations are the monomorphisms with Gorenstein-

projective (resp. projective) cokernel, the (trivial) fibrations are the epimor-

phisms (resp. whose kernel has finite projective dimension), and W(C) is the

class of trivial objects.

Theorem 4.2.1 (M. Hovey. Gorenstein-projective model structure)

Definition 4.2.2. An object X in a Gorenstein category C is said to be Gorenstein-

injective if there exists an exact sequence of injective objects

· · · æ I1 æ I0 æ I0 æ I1 æ · · ·
such that X = Ker(I0 æ I1), which is also HomC(I0(C), ≠)-exact.

If C is a locally Noetherian Gorenstein category, then there exists a unique

Abelian model structure on C, where the (trivial) fibrations are the epimor-

phisms with Gorenstein-injective (resp. injective) kernel, the (trivial) cofibra-

tions are the monomorphisms (resp. whose cokernel has finite injective dimen-

sion), and W(C) is the class of trivial objects.

Theorem 4.2.2 (M. Hovey. Gorenstein-injective model structure)
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We denote by GP0(C) and GI0(C) the classes of Gorenstein-projective and Gorenstein-

injective objects of C, respectively.

We first focus on Theorem 4.2.1. The first step is to show that the classes GP0(C)

and W(C) form a complete cotorsion pair (GP0(C), W(C)). Since FDI(C) < Œ,

there exists a nonnegative integer N > 0 such that W(C) = IN(C). On the other

hand, from the previous chapter we know that (‹(IN(C)), IN(C)) is a complete

cotorsion pair. It follows (‹(W(C)), W(C)) is a complete cotorsion pair in any

Gorenstein category C. So it su�ces to show that the classes GP0(C) and ‹(W(C))

coincide.

If C is a Gorenstein category, then GP0(C) = ‹(W(C)).

Proposition 4.2.3 (see (20, Theorem 2.25))

Proof .

If X is a Gorenstein-projective object, then there is an exact and HomC(≠, P0(C))-

exact sequence · · · æ P1 æ P0 æ P 0 æ P 1 æ · · · such that X = Ker(P0 æ P 0).

Let W œ W(C). Using the exact left projective resolution

· · · æ P2 æ P1 æ X æ 0,

we can compute Ext1
C(X, W ). Since W has finite projective dimension, we have

K œ �k(W ) is projective, for some k Ø 0. Since the sequence

0 æ HomC(X, K) æ HomC(P1, K) æ HomC(P2, K) æ · · ·

is exact, it follows Exti
C(X, K) = 0, for every i > 0. Then for k = 0, the result

follows immediately. In the case k = 1, we are given a short exact sequence

0 æ Q1 æ Q0 æ W æ 0, with Q0 and Q1 projective. Then we have a long

exact sequence · · · æ⇠⇠⇠⇠⇠⇠⇠: 0
Ext1

C(X, Q0) æ Ext1
C(X, W ) æ⇠⇠⇠⇠⇠⇠⇠: 0

Ext2
C(X, Q1) æ · · · . Hence,

Exti
C(X, W ) = 0 for every i > 0. The general result follows similarly.
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The other implication is based on the arguments given in (20, Theorem 2.25).

Suppose X œ ‹(W(C)). Since C has enough projective objects by Remark 4.1.1,

we have an exact left projective resolution · · · æ P1
f

1æ P0
f

0æ X æ 0. Since

(‹(W(C)), W(C)) is complete, there exists an embedding X
g0

Òæ W 0, for some

W 0 œ W(C) (such an embedding is a W(C)-pre-enveloping). Consider a short

exact sequence K0 Òæ P 0 ⇣ W 0, where P 0 is projective. Since the class W(C)

is thick, we have K0 œ W(C). Since Ext1
C(X, K0) = 0, there exists a morphism

X
f0æ P 0 such that the following diagram commutes:

X

K0 P 0 W 0

f
0

g0

It is not hard to show that f 0 is also a W(C)-pre-envelope. In a similar way,

construct a W(C)-pre-envelope CoKer(f 0) fl1æ P 1 and set f 1 := fl1 ¶ j1, where j1

is the cokernel P 0 æ CoKer(f 0) of f 0. Repeating this procedure, we get an exact

sequence 0 æ X æ P 0 æ P 1 æ · · · . Then we obtain a long exact sequence

· · · æ P1 æ P0 æ P 0 æ P 1 æ · · ·

of projective objects with X = Ker(P 0 æ P 1). It is only left to show that this

sequence is HomC(≠, P0(C))-exact. For P projective, we have a sequence

0 æ HomC(X, P ) fú
0æ HomC(P0, P ) fú

1æ HomC(P1, P ) æ · · · .

Since X œ ‹(W(C)) and W(C) is coresolving, we have Exti
C(X, P ) = 0 for every

i > 0. Hence, the previous sequence is exact. Now consider

· · · æ HomC(P 1, P ) (f1)úæ HomC(P 0, P ) (f0)úæ HomC(X, P ) æ 0.

First, we show (f 0)ú is onto. For a morphism X
hæ P , there exists a morphism

P 0 hÕæ P such that hÕ ¶ f 0 = h, i.e. h = (f 0)ú(hÕ), since f 0 is a W(C)-pre-envelope.
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Finally, we show Im(f 1)ú = Ker(f 0)ú (the rest of the equalities follow in the same

way). It su�ces to show Ker(f 0)ú ™ Im(f 1)ú. Let P 0 hæ P be a morphism such

that h ¶ f 0 = 0. Then there exists a morphism CoKer(f 0) hÕæ P such that the

following diagram commutes:

X P 0 CoKer(f 0)

P
h hÕ

j1

Since CoKer(f 0) fl1æ P 1 is a W(C)-pre-envelope, there exists a morphism P 1 hÕÕæ P

such that hÕÕ ¶ fl1 = hÕ. Then we have h = hÕ ¶ j1 = hÕÕ ¶ fl1 ¶ j1 = hÕÕ ¶ f 1 =

(f 1)ú(hÕÕ).

From the previous result, we have that (GP0(C), W(C)) is a complete cotorsion

pair. Recall also that (P0(C), Ob(C)) is complete in any Abelian category with

enough projectives. We shall see that these two pairs are also compatible. In (21,

Proposition 10.2.3), it is proven that the projective dimension of a Gorenstein-

projective left R-module is either zero of infinite. So if we denote by GP0 the class

of Gorenstein-projective modules in RMod, and by W the class of modules (over

an Iwanaga-Gorenstein ring R) with finite projective dimension, then we obtain

the equality P0 = GP0 fl W. The arguments to show this equality easily carry

over to any Gorenstein category.

Let C be a Gorenstein category. Then P0(C) = GP0(C) fl W(C).

Proposition 4.2.4 (see (35, Corollary 8.5) for the case C =R Mod)

Proof .

The inclusion P0(C) ™ GP0(C) fl W(C) is clear. Now suppose X is a Gorenstein-
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projective object with finite projective dimension. Then there is an exact sequence

W Òæ P ⇣ X, where P is projective and W has finite projective dimension. Since

Ext1
C(X, W ) = 0, the previous sequence splits and so P ≥= W ü X. It follows X is

projective, since P0(C) is closed under direct summands.

We have obtained two compatible and complete cotorsion pairs (GP0(C), W(C))

and (P0(C), Ob(C)) in any Gorenstein category. Therefore, Theorem 4.2.1 follows

by Hovey’s correspondence.

The rest of this subsection shall be devoted to prove that the class GI0(C) of

Gorenstein-injective objects generates a complete cotorsion pair (W(C), GI0(C)),

provided C is a locally Noetherian Gorenstein category.

Definition 4.2.3. Let C be a Grothendieck category with a generator G. Then

the class sub(G) of subobjects of G is a set (See (47, Lemma 1, page 111)). We

say that C is locally Noetherian if each nonempty subset U of sub(G) contains a

maximal subobject, where a subobject Y œ U is said to be maximal in U if Y Õ œ U
and Y ™ Y Õ always imply Y = Y Õ.

Remark 4.2.1. The notion of locally Noetherian Grothendieck category depends

on the choice of a generator.

In (35, Theorem 8.4), Hovey proves that (W , GI0) is a cotorsion pair in RMod

cogenerated by the set of all ith syzygies of indecomposable injective objects,

provided R is a Gorenstein ring. The proof uses the fact that every injective

left R-module can be decomposed into a direct sum of indecomposable injective

modules, provided R is left Noetherian. The generalization of this property to

any locally Noetherian category is due to E. Matlis.
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Definition 4.2.4. An injective object X in a Grothendieck category C is said

to be indecomposable if X ”= 0 and if, for each decomposition X = X1 ü X2

into a direct sum of injective objects, either X = X1 or X = X2. If X is not

indecomposable, then it is said to be decomposable.

Let C be a locally Noetherian category. Each injective object I in C may be

decomposed into a coproduct of indecomposable injective objects I = m
–œA I–.

Theorem 4.2.5 (E. Matlis (47, Theorem 4, page 208))

Hovey also uses a corollary of Eklof and Trlijaf’s Theorem given in (31, Corollary

3.2.3). Doing some slight modifications, we get the following generalization to any

Grothendieck category.

Let X be an object of a Grothendieck category with enough projective objects.

Let ZX denote the class of all objects Z such that there is an exact sequence

P Òæ Z ⇣ W , where P is projective and W is a transfinite extension of {X}.

Let (A, B) be a cotorsion pair in C. The following conditions are equivalent:

(1) (A, B) is cogenerated by {X}.

(2) A consists of all direct summands of elements of ZX .

Lemma 4.2.6 ((31, Corollary 3.2.3) for Grothendieck categories)

Proof .

First, we show (1) =∆ (2). Suppose B = X‹ and let A œ A. Since C has

enough projectives, there exists an exact sequence K Òæ P ⇣ A, where P is

projective. By the proof of Eklof and Trlijaf’s Theorem, we can construct for K

an exact sequence K Òæ B ⇣ W , where B œ B and W is a transfinite extension

(W– : – < ⁄) of the class of direct sums of copies of X. Taking the pushout of

K Òæ P and K Òæ B, we get the following diagram with exact rows and columns:
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K P A

B B
‡

K P A

W W

Since A œ A and B œ B, the second row splits and so A is a direct summand of

B
‡

K P œ ZX .

Let Y be a direct summand of an element in Z œ ZX . Then there is a short exact

sequence P Òæ Z ⇣ W , where P is projective and W is a transfinite extension

(W– : – < ⁄) of the class of direct sums of copies of X. Then there are index

sets I0 and I– such that W0 ≥= X(I
0

) and W–+1/W–
≥= X(I–). For B œ B, we have

Ext1
C(W0, B) ≥= Ext1

C(X(I
0

), B) ≥= r
I

0

Ext1
C(X, B) = 0 and Ext1

C(W–+1/W–, B) ≥=
Ext1

C(X(I–), B) ≥= r
I–

Ext1
C(X, B) = 0. By Eklof’s Lemma, Ext1

C(W, B) = 0. It

follows Ext1
C(Z, B) = 0, for every B œ B, i.e. Z œ A. We have that Y is a direct

summand of an element in A, and hence Y œ A since A is closed under direct

summands.

Now we show (1) ≈= (2). In the previous part, we proved that ZX ™ A. Note

that X œ ZX . It follows B ™ X‹. Now let Y œ X‹ and A œ A. Let Z œ ZX such

that A is a direct summand of Z. We are given an exact sequence P Òæ Z ⇣ W

as in the definition of ZX . Using Eklof’s Lemma, one can show Ext1
C(W, Y ) = 0.

On the other hand, Ext1
C(P , Y ) = 0. It follows Ext1

C(Z, Y ) = 0, i.e. Z œ ‹Y .

Since ‹Y is closed under direct summands, we get A œ ‹Y . Hence Y œ B.
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Let C be a locally Noetherian Gorenstein category with a projective generator

G. Let S denote the set of all objects S œ �i(J), where i Ø 0 and J runs over

the set of indecomposable injective objects of C. Then S fi {G} cogenerates a

cotorsion pair (W(C), (W(C))‹).

Proposition 4.2.7 ((35, Theorem 8.4) for Gorenstein categories)

Proof .

First, we show the inclusion W(C) ´ ‹((S fi {G})‹). Let Y œ ‹((S fi {G})‹).

By the previous lemma, Y is a direct summand of a element Z œ ZX , where

X = m{S : S œ S fi {G}}. Thus, there is an exact sequence P Òæ Z ⇣ W ,

where P is projective and W is a transfinite extension (W– : – < ⁄) of the class

of direct sums of copies of X. For each S œ S, we have an exact sequence

0 æ S æ Pi≠1 æ · · · æ P1 æ P0 æ J æ 0, for some i Ø 0 and some in-

decomposable injective object J , where each Pk is projective. Since J, Pk œ W ,

for every 0 Æ k Æ i ≠ 1, and W is thick, we have S is also in W . On the

other hand, G œ W . It follows X œ W . Then, W0, W–+1/W– œ W for every

– < ⁄, since W is closed under direct sums. Let C be an object of C. We can

find a nonnegative integer n such that Ext1
C(W0, C Õ) ≥= Extn+1

C (W0, C) = 0 and

Ext1
C(W–+1/W–, C Õ) ≥= Extn+1

C (W–+1/W–, C) = 0 where C Õ œ �≠n(C). By Eklof’s

Lemma, we have Extn+1
C (W, C) ≥= Ext1

C(W, C Õ) = 0, i.e. W œ W . Since W is

closed under extensions, we conclude Z œ W . Hence, Y œ W since W is closed

under direct summands.

Finally, we prove the inclusion W ™ ‹((S fi {G})‹). Let W œ W and Y œ
(S fi {G})‹. We need to show Ext1

C(W, Y ) = 0. Let I be an injective object.

By Matlis Theorem, we have a decomposition I = m
–œA I–, where each I– is

an indecomposable injective object. For every i Ø 0, we have Exti+1
C (I–, Y ) ≥=

Ext1
C(I–

Õ, Y ) = 0, where I–
Õ œ �i(I–). It follows Exti+1

C (I, Y ) = 0 for every i Ø 0
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and for every injective object I. Suppose W has injective dimension at most 1

(the general case follows by induction). Then we have a short exact sequence

W Òæ I0 ⇣ I1. Using the long exact sequence

· · · æ Ext1
C(I0, Y ) æ Ext1

C(W, Y ) æ Ext2
C(I1, Y ) æ · · · ,

we get Ext1
C(W, Y ) = 0 since Ext1

C(I0, Y ) = 0 and Ext2
C(I1, Y ) = 0. Hence,

W ™ ‹((S fi {G})‹).

As we did in the Gorenstein-projective case, one can show that (W(C))‹ = GI0(C).

By the previous proposition, (W(C), GI0(C)) is a complete cotorsion pair. We can

also show that I0(C) = GI0(C) fl W(C). Hence, Theorem 4.2.2 follows.

Remark 4.2.2. The completeness of the pairs (GP0(C), W(C)) and (W(C), GI0(C))

is also proven in (20, Theorems 2.24 and 2.25) for every Gorenstein category C
(without assuming that C is locally Noetherian for the latter pair). The proofs

given there consist in constructing for every object X in C a short exact sequence

0 ≠æ W ≠æ C ≠æ X ≠æ 0 with C œ GP0(C) and W œ W(C), and in showing

that (W(C), GI0(C)) is a small cotorsion pair. At some points in the rest of this

chapter we shall assume that C is locally Noetherian, in order to use the given

cogenerating set S fi {G} of (W(C), GI0(C)).

4.3 Cotorsion pairs from Gorenstein-projective and Gorenstein-

injective dimensions

In this section we are going to study the notions and some properties of Gorenstein-

projective and Gorenstein-injective dimensions, before constructing two cotor-

sion pairs involving the classes of objects with bounded Gorenstein-projective and

Gorenstein-injective dimension.
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Let C be a Gorenstein category. Since (GP0(C), W(C)) is a complete cotorsion

pair, for every object X of C there exists an epimorphism C0 ⇣ X where C0 is a

Gorenstein-projective object. This allows us to construct an exact sequence

· · · C1 C0 X 0

W1 W0

f0 f0

i 1 i 0
p1

where Ck is a Gorenstein-projective object for every k Ø 0, W0
i
0

Òæ C0 is the

kernel of f0, and Wk
ik
Òæ Ck is the kernel of pk≠1 for every k > 0. Dually, we

can construct a long exact sequence 0 æ X æ D0 æ D1 æ · · · , where Dk is a

Gorenstein-injective object for every k Ø 0.

Let C be a Gorenstein category.
Every object has an exact left

GP0(C)-resolution.

Every object has an exact right

GI0(C)-resolution.

Proposition 4.3.1

Proof .

We only prove the left statement. Let C be a Gorenstein-projective object. We

show that the sequence · · · æ HomC(C, C1) æ HomC(C, C0) æ HomC(C, X) æ 0

is exact. Consider the short exact sequence W0
i
0

Òæ C0
f

0⇣ X. Since Ext1
C(C, W0) =

0, the morphism HomC(C, C0) æ HomC(C, X) is onto. It is only left to show that

Ker((fk)ú) ™ Im((fk+1)ú). Let C
hæ Ck be a morphism such that 0 = fk ¶ h =

ik ¶ pk ¶ h. Note pk ¶ h = 0 since ik is monic. The exactness of Wk
ik
Òæ Ck

pk≠1⇣ Wk≠1

implies there exists a morphism C
hÕæ Wk such that ik ¶ hÕ = h. On the other

hand, Ext1
C(C, Wk+1) = 0 implies there exists a morphism C

hÕÕæ Ck+1 such that

the following diagram commutes:
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C

Wk+1 Ck+1 Wk

hÕh
ÕÕ

ik+1 pk

We have h = ik ¶ hÕ = ik ¶ pk ¶ hÕÕ = fk ¶ hÕÕ = (fk)ú(hÕÕ).

Now we know that every object X in a Gorenstein category C with enough pro-

jectives has an exact left GP0(C)-resolution. The class of left r-GP0(C)-objects

(with r Ø 0) shall be denoted by GPr(C). We shall refer to an object in GPr(C) as

a Gorenstein-r-projective object (See Definition 1.7.1). We call the left GP0(C)-

dimension the Gorenstein-projective dimension, and it is denoted by Gpd. Dually,

the class of right r-GI0(C)-objects (with r Ø 0) shall be denoted by GIr(C). We

shall refer to an object in GIr(C) as a Gorenstein-r-injective object. We call the

right GI0(C)-dimension the Gorenstein-injective dimension, and it is denoted by

Gid.

The following are equivalent in a Gorenstein category C.

(1) X œ GPr(C).

(2) Exti
C(X, W ) = 0 for every

i > r and every W œ W(C).

(3) Extr+1
C (X, W ) = 0 for every

W œ W(C).

(4) �r
GP

0

(C)(X) ™ GP0(C).

(5) �r(X) ™ GP0(C).

(1’) Y œ GIr(C).

(2’) Exti
C(W, Y ) = 0 for every

i > r and every W œ W(C).

(3’) Extr+1
C (W, Y ) = 0 for every

W œ W(C).

(4’) �≠r
GI

0

(C)(Y ) ™ GI0(C).

(5’) �≠r(Y ) ™ GI0(C).

Proposition 4.3.2 ((21, Proposition 11.5.7) and (21, Proposition 11.2.5))
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If C is a Gorenstein category, then:

(1) sup{Gpd(X) : X œ Ob(C)} Æ
FDI(C).

(2) Pr(C) = GPr(C) fl W(C)

for every 0 Æ r Æ FDI(C).

(1’) sup{Gid(Y ) : Y œ Ob(C)} Æ
FDP (C).

(2’) Ir(C) = GIr(C) fl W(C)

for every 0 Æ r Æ FDP (C).

Corollary 4.3.3

Proof .

We only prove the left statement. Let X œ Ob(C) and W œ W(C). Then id(W ) Æ
FDI(C), and so ExtF DI(C)+1

C (X, W ) = 0. We have that every X is Gorenstein-n-

projective. Hence (1) follows.

The inclusion Pr(C) ™ GPr(C)flW(C) is clear. Now let X œ GPr(C)flW(C). Then

every K œ �r(X) is in GP0(C). Since W(C) is thick, we also have K œ W(C).

Then K œ GP0 fl W(C) = P0(C). It follows X œ Pr(C). Therefore, (2) holds.

We are ready to show that the classes GPr(C) and GIr(C) are the left and right

halves, respectively, of two cotorsion pairs.

Let C be a Gorenstein category.
(GPr(C), (GPr(C))‹) is a cotorsion

pair for every 0 Æ r Æ FDI(C).

(‹(GIr(C)), GIr(C)) is a cotorsion

pair in for every 0 Æ r Æ FDP (C).

Proposition 4.3.4

Proof .

We only prove the left statement. It su�ces to show that ‹((GPr(C))‹) ™ GPr(C).

Let X œ ‹((GPr(C))‹) and 0 æ K æ Pr≠1 æ · · · æ P1 æ P0 æ X æ 0 be a
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partial left projective resolution of X. By Proposition 4.3.2, we only need to show

that K is Gorenstein-projective.

We use induction on r. Suppose r = 1 and let W œ W(C). We have the long

exact sequence · · · æ ⇠⇠⇠⇠⇠⇠⇠: 0
Ext1

C(P0, W ) æ Ext1
C(K, W ) æ Ext2

C(X, W ) æ · · · . On

the other hand, Ext2
C(X, W ) ≥= Ext1

C(X, L), where L œ �≠1(W ). We show L œ
(GP1(C))‹. Let Y œ GP1(C) and consider a short exact sequence W Òæ I ⇣ L

where I is injective. Then · · · æ ⇠⇠⇠⇠⇠⇠: 0
Ext1

C(Y, I) æ Ext1
C(Y, L) æ ⇠⇠⇠⇠⇠⇠⇠: 0

Ext2
C(Y, W ) æ · · ·

is the derived long exact sequence, where Ext2
C(Y, W ) = 0 since Y œ GP1(C) and

W œ W(C). Then Ext1
C(Y, L) = 0 for every Y œ GP1(C), i.e. L œ (GP1(C))‹.

It follows Ext2
C(X, W ) = 0. Hence Ext1

C(K, W ) = 0 for every W œ W(C), i.e.

K œ GP0(C).

Suppose the result is true for every 1 Æ j Æ r ≠ 1. We have exact sequences

L Òæ P0 ⇣ X and 0 æ K æ Pr≠1 æ · · · æ P1 æ L æ 0 for L œ �1(X). If

Y œ (GPr≠1(C))‹, we have Ext1
C(L, Y ) ≥= Ext1

C(X, Y Õ) where Y Õ œ �≠1(Y ). Given

Z œ GPr(C), note Z Õ œ GPr≠1(C) for every Z Õ œ �1(Z). We have Ext1
C(Z, Y Õ) ≥=

Ext1
C(Z Õ, Y ) = 0. So Y Õ œ (GPr(C))‹. It follows Ext1

C(L, Y ) ≥= Ext1
C(X, Y Õ) = 0

for every Y œ (GPr≠1(C))‹. Hence L œ ‹((GPr≠1(C))‹) = GPr≠1(C) and X œ
GPr(C).

Recall that in the third chapter we proved that (Pr, (Pr)‹) is a cotorsion pair,

from the fact that every r-projective module is a transfinite extension of the set of

Ÿ-small r-projective modules, where Ÿ > Card(R) is an infinite regular cardinal.

Using the advantages provided by Gorenstein categories, we get the same result

without constructing such transfinite extensions.



234

If C is a Gorenstein category, then (Pr(C), (Pr(C))‹) is a cotorsion pair.

Corollary 4.3.5

Proof .

We only need to show ‹((Pr(C))‹) ™ Pr(C), which follows by the following impli-

cations:

Pr(C) ™ GPr(C) =∆ ‹((Pr(C))‹) ™ ‹((GPr(C))‹) = GPr(C),

Pr(C) ™ W(C) =∆ ‹((Pr(C))‹) ™ ‹((W(C))‹) = W(C).

We know how to write Pr(C) and Ir(C) in terms of GPr(C), GIr(C) and W(C).

Now we give similar equalities for (GPr(C))‹ and ‹(GIr(C)).

The following equalities hold in every Gorenstein category C and for every

0 Æ r Æ FDI(C):

(GPr(C))‹ = (Pr(C))‹ fl W(C). ‹(GIr(C)) = ‹(Ir(C)) fl W(C).

Proposition 4.3.6

Proof .

The inclusion (GPr(C))‹ ™ (Pr(C))‹ fl W(C) follows as in the previous corollary.

Now let Y œ (Pr(C))‹ fl W(C) and X œ GPr(C). Since (GP0(C), W(C)) is com-

plete, there exists a short exact sequence X Òæ W ⇣ C with C œ GP0(C) and

W œ W(C). Note W also belongs to GPr(C), and thus W œ Pr(C). We get an

exact sequence · · · æ⇠⇠⇠⇠⇠⇠⇠: 0
Ext1

C(W, Y ) æ Ext1
C(X, Y ) æ⇠⇠⇠⇠⇠⇠⇠: 0

Ext2
C(C, Y ) æ · · · . It follows

Y œ (GPr(C))‹.
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4.4 Gorenstein-r-projective model structures on modules over a

Gorenstein ring

It is time to study the completeness of (GPr(C), (GPr(C))‹) in the case C =

RMod, where R is an n-Gorenstein ring. To simplify notation, we shall write

GPr(RMod) = GPr. Notice that (‹W , W) is a complete cotorsion pair, and that

(Pr, (Pr)‹) and (GPr, (GPr)‹) are compatible. So by Proposition 2.3.6 we have

that (GPr, (GPr)‹) is cogenerated by a set, since (Pr, (Pr)‹) is.

If R is an n-Gorenstein ring, then (GPr, (GPr)‹) is a complete cotorsion pair

for every 0 Æ r Æ n.

Proposition 4.4.1

Therefore, the following result follows by Hovey’s correspondence.

If R is an n-Gorenstein ring, then for each 0 Æ r Æ n there exists a unique

Abelian model structure on RMod where the (trivial) cofibrations are the

monomorphisms with cokernel in GPr (resp. Pr), the (trivial) fibrations are

the epimorphisms with kernel in (Pr)‹ (resp. (GPr)‹), and W is the class of

trivial objects.

Theorem 4.4.2 (Gorenstein-r-projective model structure)

4.5 Gorenstein-r-injective model structures on Gorenstein cat-

egories

Unlike the previous section, we can obtain the dual of the previous theorem in

every locally Noetherian Gorenstein category. In such a category C, we know there



236

are two compatible cotorsion pairs (‹(GIr(C)), GIr(C)) and (‹(Ir(C)), Ir(C)).

Since the second pair is complete, we can use Proposition 2.3.6 to conclude that

(‹(GIr(C)), GIr(C)) is complete. Then the theorem below follows. However, we

take the opportunity to prove that (‹(GIr(C)), GIr(C)) is complete by providing

a cogenerating set.

Let C be a locally Noetherian Gorenstein category. Then for each 0 Æ r Æ
FDP (C) there exists a unique Abelian model structure on C, where the (triv-

ial) fibrations are the epimorphisms with kernel in GIr(C) (resp. Ir(C)), the

(trivial) cofibrations are the monomorphisms with cokernel in ‹(Ir(C)) (resp.

in ‹(GIr(C))), and W(C) is the class of trivial objects.

Theorem 4.5.1 (Gorenstein-r-injective model structure on C)

If C is a locally Noetherian Gorenstein category, then (‹(GIr(C)), GIr(C)) is a

cotorsion pair cogenerated by a set, for every 0 Æ r Æ FDP (C).

Theorem 4.5.2

Proof .

Recall that (W(C), GI0(C)) is cogenerated by the set S of all S œ �i(J) where

i Ø 0 and J runs over the set of all indecomposable injective objects of C.

Consider the set S(r) of all S œ �i(J) where i Ø r and J as above. We

shall see that (‹(GIr(C)), GIr(C)) is cogenerated by S(r). First, we check that

S(r) ™ ‹(GIr(C)). Let S œ S(r) and consider Y œ GIr(C). Then S œ �i(J), for

some i Ø r and some indecomposable injective object J . We have Ext1
C(S, Y ) ≥=

Exti+1
C (J, Y ) = 0, since J œ W(C), Y œ GIr and i + 1 Ø r + 1.

Since S(r) ™ ‹(GIr(C)) implies GIr(C) = (‹(GIr(C)))‹ ™ (S(r))‹, it su�ces to

show that (S(r))‹ ™ GIr(C). Let Y œ (S(r))‹ and consider an exact partial right
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injective resolution of D, say 0 æ Y æ I0 æ I1 æ · · · æ Ir≠1 æ D æ 0. By

Proposition 4.3.2, we only need to prove that D is Gorenstein-injective. Let S œ S,

i.e. S œ �i(J) for some indecomposable injective object J and i Ø 0. Consider

the short exact sequence Y Õ Òæ Ir≠1 ⇣ D where Y Õ œ �1≠r(Y ). We have a long

exact sequence · · · æ ⇠⇠⇠⇠⇠⇠⇠⇠: 0
Ext1

C(S, Ir≠1) æ Ext1
C(S, D) æ Ext2

C(S, Y Õ) æ · · · , where

Ext2
C(S, Y Õ) ≥= Extr+1

C (S, Y ) ≥= Ext1
C(S Õ, Y ), where S Õ œ �r(S). Since S œ �i(J),

we have S Õ œ �r(�i(J)) = �r+i(J) with r + i Ø r, and so S Õ œ S(r). Hence

Ext2
C(S, Y Õ) ≥= Ext1

C(S Õ, Y ) = 0. It follows Ext1
C(S, D) = 0 for every S œ S, i.e. D

is Gorenstein-injective.

4.6 Gorenstein-flat dimension and model structures on modules

Throughout this section, R shall denote an n-Iwanaga-Gorenstein ring. We devote

the next lines to study the Gorenstein-flat dimension and its relation to the notion

of model structures. The idea, as for the other model structures we have obtained

so far, is to construct to compatible complete cotorsion pairs concerning flat and

Gorenstein-flat dimensions.

In (30), J. Gillespie and M. Hovey constructed the following new Abelian model

structure on RMod.

Definition 4.6.1. A left R-module M œ RMod is said to be Gorenstein-flat if

there exists an exact sequence

· · · æ F1 æ F0 æ F 0 æ F 1 æ · · ·

of flat modules with M = Ker(F 0 æ F 1), which is (I0 ¢R ≠)-exact sequence. We

shall denote by GF0 the class of Gorentein flat modules.
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If R is an n-Gorenstein ring, then there exists a unique Abelian model struc-

ture on RMod where the (trivial) cofibrations are the monomorphisms with

Gorenstein-flat (resp. flat) cokernel, the (trivial) fibrations are the epimor-

phisms with kernel in (F0)‹ (resp. in (GF0)‹), and W is the class of trivial

objects.

Theorem 4.6.1 (Gorenstein-flat model structure on RMod)

In RMod, with R a Gorenstein ring, we shall see it is possible to obtain exact

left Gorenstein-flat resolutions for every left R-module. Then we can compute the

Gorenstein-flat dimension of every module M , denoted by Gfd(M). We denote

by GF r the class of left r-GF0-modules. As it occurs with other homological

dimensions, GF r = {M œ RMod : Gfd(M) Æ r}.

The goal of this section is to prove the following generalization of the previous

theorem.

If R is an n-Gorenstein ring, then for each 0 Æ r Æ n there exists a unique

Abelian model structure on RMod where the (trivial) cofibrations are the

monomorphisms with cokernel in GF r (resp. in Fr), the (trivial) fibrations

are the epimorphisms with kernel in (Fr)‹ (resp. (GF r)‹), and W is the class

of trivial objects.

Theorem 4.6.2 (Gorenstein-r-flat model structure on RMod)

We recall the construction of the model structure described in Theorem 4.6.1, and

later on we study the concept of the Gorenstein-flat dimension in order to obtain

Theorem 4.6.2. Recall that the character module of M œR Mod is defined by the

right R-module M+ := HomR(M,Q/Z) (Definition 3.1.8).
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(1) (21, Theorem 3.2.10) A left R-module F is flat if, and only if, its character

module F + is an injective right R-module.

(2) [Corollary of (1)] A left R-module N is r-flat if, and only if, its character

module N+ is an r-injective right R-module.

Lemma 4.6.3

Let R be an n-Gorenstein ring. Then the following conditions are equivalent:

(1) M is a Gorenstein-flat left R-module.

(2) M+ is a Gorenstein-injective right R-module.

(3) TorR
i (I, M) = 0 for all i Ø 1 and all injective right R-modules I.

(4) TorR
i (W, M) = 0 for all i Ø 1 and all right R-modules W œ W .

Theorem 4.6.4 (see (21, Theorem 10.3.8))

We shall call (GF0)‹ the class of Gorenstein-cotorsion modules. In (30), the

authors mention that (GF0, (GF0)‹) is a complete cotorsion pair. We shall prove

this fact in this section, by giving a cogenerating set.

(GF0, (GF0)‹) is a cotorsion pair if R is an n-Gorenstein ring.

Proposition 4.6.5

Proof .

It su�ces to show ‹((GF0)‹) ™ GF0. Let M œ ‹((GF0)‹). By Theorem

4.6.4, we only need to show TorR
1 (W, M) = 0 for every right R-module W œ

W . By Theorem 3.1.17, we have TorR
1 (W, M)+ = HomZ(TorR

1 (W, M),Q/Z) ≥=
Ext1

R(M, HomZ(W,Q/Z)) = Ext1
R(M, W +) (ú). We also have Ext1

R(E, W +) ≥=
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TorR
1 (W, E)+ = 0 for every E œ GF0. It follows W + œ (GF0)‹ and hence

Ext1
R(M, W +) = 0. By the equality (ú), TorR

1 (W, M) = 0 for every W œ W .

The next step is to construct for every Gorenstein-flat module a transfinite ex-

tension of the set of Ÿ-small Gorenstein-flat modules, where Ÿ is a infinite regular

cardinal satisfying Ÿ Ø Card(R). The procedure is very similar to that applied

for the cotorsion pair (F0, (F0)‹), where the main di�erence resides in a slight

modification of the definition of pure submodules, specifically:

Definition 4.6.2. A submodule N of a left R-module M is said to be W-pure if

for every right R-module W œ W , the sequence

0 æ W ¢R N æ W ¢R M æ W ¢R M/N æ 0

is exact. The short exact sequence N Òæ M ⇣ M/N is called a W-pure exact

sequence.

Let S be a W-pure submodule of a Gorenstein-flat left R-module E, with R an

n-Gorenstein ring. Then S and E/S are also Gorenstein-flat.

Proposition 4.6.6

Proof .

Consider the short exact sequence S Òæ E ⇣ E/S. Then, given a right R-module

W œ W , we have the long exact sequence

· · · æ TorR
1 (W, E/S) æ W ¢R S æ W ¢R E æ W ¢R E/S æ 0.

Since S is a W-pure submodule of E, we have that the map W ¢R S æ W ¢R E

is injective. So TorR
1 (W, E/S) = 0 for every W œ W . Hence E/S is Gorenstein-

flat. Now we know TorR
1 (W, E) = 0 and TorR

1 (W, E/S) = 0. On the other
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hand, TorR
2 (W, E/S) = TorR

1 (K, E/S) where K œ �1(W ). We are given an exact

sequence K Òæ P ⇣ W , where K œ W since W is thick, so TorR
1 (K, E/S) = 0.

It follows TorR
2 (W, E/S) = 0. Since

· · · æ⇠⇠⇠⇠⇠⇠⇠⇠⇠:0
TorR

2 (W, E/S) æ TorR
1 (W, S) æ⇠⇠⇠⇠⇠⇠⇠:0

TorR
1 (W, E) æ · · ·

is exact, we finally obtain TorR
1 (W, S) = 0 for every W œ W .

Definition 4.6.3. We say a left R-module L is W-pure injective if for every

W-pure exact sequence N Òæ M ⇣ M/N , the sequence

0 æ HomR(M/N, L) æ HomR(M, L) æ HomR(N, L) æ 0

is exact.

The proof of the following result is similar to Lemma 3.1.20.

Given an infinite regular cardinal Ÿ Ø Card(R), a Gorenstein-flat module E

and an element x œ E, there exists a W-pure submodule S ™ E such that

x œ S and Card(S) Æ Ÿ.

Proposition 4.6.7

(GF0, (GF0)‹) is a cotorsion pair cogenerated by the set

(GF0)ÆŸ := {S œ GF0 : Card(S) Æ Ÿ}.

Corollary 4.6.8

Remark 4.6.1. It is straightforward to show that Gorenstein-flat modules are

closed under direct limits. Since (GF0, (GF0)‹) is a complete cotorsion pair with
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GF0 closed under direct limits, it follows that (GF0, (GF0)‹) is a perfect cotor-

sion pair, i.e. every left R-module has a Gorenstein-flat cover and a Gorenstein-

cotorsion cover (see (31) for details).

On the other hand, if we consider the class (F0)‹ of cotorsion modules, then

(F0, (F0)‹) is a complete cotorsion pair cogenerated by (F0)ÆŸ, with Ÿ as above

(21, Proposition 7.4.3). The pairs (GF0, (GF0)‹) and (F0, (F0)‹) are compatible

by the following result.

Let R be an n-Gorenstein ring.

(1) (21, Corollary 10.3.4): The flat dimension of a Gorenstein-flat module is

either zero or infinite. In other words, F0 = GF0 fl W .

(2) (GF0)‹ = (F0)‹ fl W .

Proposition 4.6.9

Proof .

We only prove (1), since (2) is similar to Proposition 4.3.6 (Also proven in (30,

Proof of Theorem 3.12)). It is clear that F0 ™ W . By Theorem 4.6.4, F0 ™
GF0. So F0 ™ GF0 fl W . Now let E œ GF0 fl W . By Theorem 4.6.4, E+ is a

Gorenstein-injective right R-module. On the other hand, we are given a left exact

flat resolution 0 æ Fk æ Fk≠1 æ · · · æ F0 æ E æ 0 for some k Ø 0, since

E œ W . Note that Q/Z is an injective left Z-module, so we get an exact sequence

0 æ E+ æ F0
+ æ · · · æ Fk≠1

+ æ Fk
+ æ 0 after applying the exact functor

HomZ(≠,Q/Z). By (21, Theorem 3.2.10), a left R-module is flat if, and only if,

its character module is injective. Thus the previous sequence turns out to be an

exact right injective resolution of E+. It follows E+ œ W . So E+ œ GI0flW = I0.

Using again the theorem just cited, we conclude E œ F0.
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We have obtained two compatible and complete cotorsion pairs (GF0, (GF0)‹)

and (F0, (F0)‹). Hence, Theorem 4.6.1 follows by Hovey’s correspondence.

Now we study the notion of Gorenstein-flat dimension. The completeness of

(GF0, (GF0)‹) allows us to construct exact left Gorenstein-flat resolutions for

every left R-module. So the notion of Gorenstein-flat dimension makes sense in

RMod, with R a Gorenstein ring. The following proposition follows easily using

the proposition above and basic homological algebra.

The following conditions are equivalent for every left R-module M over an

n-Gorenstein ring R:

(1) Gfd(M) Æ r.

(2) TorR
i (W, M) = 0 for all i Ø r + 1 and all W œ W .

(3) TorR
i (I, M) = 0 for all injective modules I and all i Ø r + 1.

(4) Every rth Gorenstein-flat syzygy is Gorenstein-flat.

(5) Every rth flat syzygy of Gorenstein-flat.

(6) Gid(M+) Æ r.

Theorem 4.6.10 (see (21, Proposition 11.7.5))

Let R be an n-Gorenstein ring. If M ™ N is a W-pure submodule of the left

R-module N , then Gfd(M) Æ Gfd(N).

Proposition 4.6.11

Proof .

Suppose Gfd(N) = k < Œ. We show TorR
k+1(W, M) = 0 for every W œ W . Let

W œ W and S œ �k+1(W ). First, note that S œ W , since W is thick. Consider a
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partial projective resolution of W , say 0 æ S æ Pk æ · · · æ P1 æ P0 æ W æ 0.

We have the following commutative diagram:

0 0 0 0

0 S ¢R M Pk ¢R M · · · P0 ¢R M W ¢R M 0

0 S ¢R N Pk ¢R N · · · P0 ¢R N W ¢R N 0

g

l r

f

Since S, Pi œ W for every 0 Æ i Æ k and M is a W-pure submodule of N , we have

that the columns are exact. Now consider the short exact sequence S Òæ Pk ⇣ S Õ,

where S Õ œ �k(W ). Then we have the derived long exact sequence⇠⇠⇠⇠⇠⇠⇠: 0
TorR

1 (S Õ, N) æ
S ¢R N æ Pk ¢R N æ S Õ ¢R N æ 0, where TorR

1 (S Õ, N) = TorR
k+1(W, N) = 0. So

f is monic. It follows that g is also monic, since r ¶ g = f ¶ f , where l and r are

monic. Therefore, TorR
k+1(W, M) ≥= TorR

1 (S Õ, M) = 0 and so Gfd(M) Æ k.

As we did in Proposition 4.6.5, one can show that (GF r, (GF r)‹) is a cotorsion

pair. We shall see that it is also complete. Recall that for every Gorenstein-flat

module E and every x œ E, one can construct a W-pure submodule S ™ E with

Card(S) Æ Ÿ, such that x œ S. One can apply the same reasoning to show that

every submodule E Õ ™ E with Card(E Õ) Æ Ÿ can be embedded into a W-pure

submodule S ™ E with Card(S) Æ Ÿ. From this fact, one deduces the following

result. The following lemma can be proven as Lemma 3.1.21. Then one can

construct transfinite extensions of (GF r)ÆŸ for every Gorenstein-r-flat module.
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Let R be an n-Gorenstein ring and M be in GF r with a Gorenstein-flat resolu-

tion

(1) = (0 æ Er
fræ Er≠1 æ · · · æ E1

f
1æ E0

f
0æ M æ 0)

and N be a submodule of M with Card(N) Æ Ÿ. Then there exists a Gorenstein-

flat subresolution

0 æ S Õ
r æ S Õ

r≠1 æ · · · æ S Õ
1 æ S Õ

0 æ N Õ æ 0

of (1) such that S Õ
k is a W-pure submodule of Ek and Card(S Õ

k) Æ Ÿ, for every

0 Æ k Æ r, and such that N ™ N Õ. Moreover, if N has a subresolution of (1)

0 æ Sr æ Sr≠1 æ · · · æ S1 æ S0 æ N æ 0

where Sk is a W-pure submodule of Ek with Card(Sk) Æ Ÿ, for every 0 Æ k Æ r,

then the above resolution of N Õ can be constructed in such a way that it contains

the given resolution of N .

Lemma 4.6.12

If R is an n-Gorenstein ring, then (GF r, (GF r)‹) is a cotorsion pair cogenerated

by (GF r)ÆŸ, for every 0 Æ r Æ n.

Theorem 4.6.13

As we did in the case r = 0, we can show that Fr = GF r fl W and (GF r)‹ =

(Fr)‹flW. Then we have two compatible and complete cotorsion pairs (Fr, (Fr)‹)

and (GF r, (GF r)‹). Therefore, Theorem 4.6.2 follows.

4.7 Model structures on complexes over Gorenstein rings

In this section we present the analogues of the Gorenstein-r-projective and Goren-

stein-r-flat model structures on the category of chain complexes over a Gorenstein

ring.
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The next result provides a characterization of the Gorenstein-projective and Go-

renstein-injective chain complexes. This is also proven by García Rozas in (24,

Theorem 3.3.5 & Corollary 3.2.3) for complexes over Iwanaga-Gorenstein rings.

In the author’s opinion, the proof given next is shorter and easier.

If C is a Gorenstein category, then:

GP0(Ch(C)) = dw(GP0(C)). GI0(Ch(C)) = dw(GI0(C)).

Proposition 4.7.1 (see (24, Theorem 3.3.5 & Corollary 3.2.3))

Proof .

We only prove the left statement, since the right one is dual 1. Suppose C is

a Gorenstein-projective complex. For every W œ W(C), note that Dm+1(W ) œ
Ŵ(C). So 0 = Ext1

Ch(C)(C, Dm+1(W )). By Proposition 1.6.2, we have the iso-

morphism Ext1
Ch(C)(C, Dm+1(W )) ≥= Ext1

C(Cm, W ). Hence, Cm is Gorenstein-

projective in C, for every m œ Z.

Now suppose X is a complex with Xm œ GP0(C) for every m œ Z. By know from

the proof of Proposition 4.2.3 that it su�ces to show that Exti+1
Ch(C)(X, P ) = 0, for

every i Ø 0 and for every projective complex P . Write P = m
mœZ Dm+1(Zm(P )).

Note that in this case, P = r
mœZ Dm+1(Zm(P )). We have Exti+1

Ch(C)(X, P ) ≥=
Exti+1

Ch(C)(X,
r

mœZ Dm+1(Zm(P ))) ≥= r
mœZ Exti+1

Ch(C)(X, Dm+1(Zm(P )), where 0 =

Exti+1
C (Xm, Zm(P )) ≥= Exti+1

Ch(C)(X, Dm+1(Zm(P )) for every m œ Z, by Proposition

1.6.2, since Xm is Gorenstein-projective in C and Zm(P ) is projective.

1. Note that we do not ask Ch(C) to be locally Noetherian, since indecomposable injective

complexes are described in terms of indecomposable injective objects in C.
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If R is an n-Iwanaga-Gorenstein ring, we know by the previous example that

Ch(RMod) is a Gorenstein category. In this case, denote GP0(Ch(RMod)) =
‰GP0 to simplify, and notice that W(Ch(RMod)) = ÊW . In this case, we can show

that ( ‰GP0, ÊW) is cogenerated by the union X of
Ó
�k(S0(R)) : k œ Z

Ô
and the of

all nth syzygies X œ �n(Sm(R/I)) with m œ Z and I running over the set of

left ideals of R. On the one hand, recall from the previous chapter that a com-

plex W is exact if, and only if, it is right orthogonal to
Ó
�k(S0(R)) : k œ Z

Ô
.

On the other hand, Zm(W ) œ W if, and only if, 0 = Ext1
R(M, Zm(W )) ≥=

Extn+1
R (R/I, Zm(W )) ≥= Extn+1(Sm(R/I), W ) ≥= Ext1(X, W ), for some M œ

�n(R/I) and where X œ �n(Sm(R/I)) (recall Proposition 1.6.3).

The following lines are devoted to some comments on the Gorenstein-injective

case. We can obtain decompositions as above of injective chain complexes in

terms of indecomposable injective left R-modules. Let I be an injective chain

complex. Then we can write I ≥= m
mœZ Dm+1(Zm(I)). For every m œ Z,

Zm(I) ≥= m
–mœ�m

J–m , where J–m is an indecomposable injective module. Hence

Dm+1(Zm(I)) ≥= m
–mœ�m

Dm+1(J–m), and so we have

I ≥=
n

mœZ

Q

a
n

–mœ�m

Dm+1(J–m)
R

b =
n

Y
]

[Dm+1(J–m) : (–m+k)kœZ œ €

mœZ

Q

a
Ÿ

kœZ
�m+k

R

b

Z
^

\ ,

where each Dm+1(J–m) is an indecomposable injective complex.

A complex J is an indecomposable injective complex if, and only if, J is the

disk complex of an indecomposable injective module. For if J is an indecom-

posable injective complex then write J = m
mœZ Dm+1(Zm(J)). Note that each

Dm+1(Zm(J)) is an injective complex, so it follows Dm
0

+1(Zm
0

(J)) = J for some

m0 œ Z, and Dm+1Zm(J) = 0 for every m ”= m0. It is only left to show that

Zm
0

(J) is an indecomposable injective module. Suppose Zm
0

(J) = A ü B, where

A and B are injective submodules of Zm
0

(J). Then J = Dm
0

+1(A) ü Dm
0

+1(B).

Since Dm
0

+1(A) and Dm
0

+1(B) are injective complexes and J is indecomposable,
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we get Dm
0

+1(A) = J and Dm
0

+1(B) = 0, or Dm
0

+1(B) = J and Dm
0

+1(A) = 0.

Then A = Zm
0

(J) and B = 0, or A = 0 and B = Zm
0

(J). Hence, Zm
0

(J) is an

indecomposable injective module. Now let Dm+1(J) be a disk complex, where J

is an indecomposable injective module. It is clear that Dm+1(J) is an injective

complex. Suppose Dm+1(J) = X ü Y , where X and Y are injective complexes.

Then J = Am ü Bm, J = Am+1 ü Bm+1, and Ak, Bk = 0 for every k ”= m, m + 1.

It follows Am = Am+1, Bm = Bm+1 and that Am and Bm are injective modules.

Since J is indecomposable, we get Am = J and Bm = 0, or Am = 0 and Bm = J .

Hence A = Dm+1(J) and B = 0, or A = 0 and B = Dm+1(J). In a similar

way, one can show that these results hold for complexes over a locally Noetherian

category.

With respect to Gorenstein-projective and Gorenstein-injective dimensions, we

have the following characterization which follows from Proposition 4.7.1.

If C is a Gorenstein category, then:

GPr(Ch(C)) = dw(GPr(C)). GIr(Ch(C)) = dw(GIr(C)).

Corollary 4.7.2

Proof .

We only prove the Gorenstein-projective case. Let X be a Gorenstein-r-projective

chain complex. There exists an exact sequence

0 æ Cr æ Cr≠1 æ · · · æ C1 æ C0 æ X æ 0

in Ch(C) such that Ci is Gorenstein-projective for every 0 Æ i Æ r. For each

m œ Z, we have an exact sequence

0 æ (Cr)m æ (Cr≠1)m æ · · · æ (C1)m æ (C0)m æ Xm æ 0
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in C. Since each Ci is Gorenstein-projective in Ch(C), we have (Ci)m is Gorenstein-

projective in C by Proposition 4.7.1. It follows Xm œ GPr(C).

Now suppose Xm œ GPr(C) for every m œ Z. Consider a partial exact left

projective resolution

0 æ Cr æ Pr≠1 æ · · · æ P1 æ P0 æ X æ 0.

It su�ces to show that Cr is a Gorenstein-projective chain complex, by Proposition

4.3.2. For every integer m, we have an exact sequence

0 æ (Cr)m æ (Pr≠1)m æ · · · æ (P1)m æ (P0)m æ Xm æ 0.

Note that each (Pi)m is projective in C. Since Xm œ GPr(C), we have (Cr)m œ
�r(Xm) ™ GP0(C) by Proposition 4.3.2. Hence Cr is a Gorenstein-projective

complex by Proposition 4.7.1.

Let’s study the completeness of (GPr(C), (GPr(C))‹) in the case C = Ch(RMod),

with R an n-Gorenstein ring. We write GPr(Ch(RMod)) = ‰GPr to simplify the

notation. As we did in Section 4.4, we can deduce that ( ‰GPr, ( ‰GPr)‹) is complete,

since the pair (ÊPr, (ÊPr)‹) is also complete (See Theorem 3.2.3).

If R is an n-Gorenstein ring, then for each 0 Æ r Æ n the pair ( ‰GPr, ( ‰GPr)‹) is

complete.

Proposition 4.7.3

Hence, the following result follows by Hovey’s correspondence.
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If R is an n-Gorenstein ring, then for each 0 Æ r Æ n there exists a unique

Abelian model structure on Ch(RMod) where the (trivial) cofibrations are the

monomorphisms with cokernel in ‰GPr (resp. ÊPr), the (trivial) fibrations are

the epimorphisms with kernel in (ÊPr)‹ (resp. ( ‰GPr)‹), and ÊW is the class of

trivial objects.

Theorem 4.7.4 (Gorenstein-r-projective model structure)

We devote the rest of the section to study the Gorenstein-flat dimension and

its relationship with to the notion of model structures in the context of chain

complexes. We shall need to work with a special extension functor Ext(≠, ≠)

derived from Hom(≠, ≠). Cotorsion pairs defined by orthogonality in the sense of

this extension functor shall be called bar-cotorsion pairs.

Definition 4.7.1. Let X and Y be two chain complexes in Ch(RMod). From

HomÕ(X, Y ) (see Definition 2.4.2) we construct the bar-Hom functor by setting

the complex Hom(X, Y ) as

Hom(X, Y )n := Zn(HomÕ(X, Y )), for every n œ Z.

Let f = (fk)kœZ œ Hom(X, Y )n. Note that for n = 0 we have ˆY
k ¶ fk = fk≠1 ¶ ˆX

k ,

i.e. f is a chain map and Hom(X, Y )0 = Hom(X, Y ). For n = 1, we have

ˆY
k+1 ¶ fk + fk≠1 ¶ ˆX

k = 0, i.e. f is a chain homotopy from 0 to 0. The set of

homomorphisms f = (fk)kœX œ Hom(X, Y )n is known as a map of degree n. The

boundary maps of the complex Hom(X, Y ) are given by

ˆHom(X,Y )
n (f) := (ˆY

k+n ¶ fk)kœZ, for every f œ Hom(X, Y )n.

We shall denote the right derived functor obtained from Hom(≠, ≠) by Exti(≠, ≠).
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For every pair of complexes X, Y œ Ch(RMod) and for every i Ø 0, Exti(X, Y )

is a complex of the form

· · · æ Exti(X, �k+1(Y )) æ Exti(X, �k(Y )) æ Exti(X, �k≠1(Y )) æ · · · .

Lemma 4.7.5 (Mentioned in (24, Page 87), no proof given)

Proof .

We use induction on i. It su�ces to prove the case i = 0, i.e. we need to show

that Hom(X, Y ) is the chain complex given by

· · · æ Hom(X, �k+1(Y )) æ Hom(X, �k(Y )) æ Hom(X, �k≠1(Y )) æ · · · .

Every element f = (fk)kœZ œ ZmHomÕ(X, Y ) satisfies the equality ˆY
k+m ¶ fk =

(≠1)mfk≠1 ¶ ˆX
k . On the other hand, g œ Hom(X, �≠m(Y )) makes the following

diagram commute for every k œ Z:

Xk Xk≠1

Ym+k Ym+k≠1

ˆX
k

gk gk≠1

(≠1)mˆY
m+k

Then Zm(HomÕ(X, Y )) = Hom(X, �≠m(Y )) for every m œ Z. Moreover, the

di�erential map ”m : Hom(X, �≠m(Y )) æ Hom(X, �≠m+1(Y )) is given by ”(g) =

(ˆY
m+k ¶ gk)kœZ. The result follows.

Now consider a short exact sequence K Òæ P ⇣ X, where P is a projective chain

complex. We have a commutative diagram:
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... ... ... ...

0 Hom(X, �≠m≠1(Y )) Hom(P , �≠m≠1(Y )) Hom(K, �≠m≠1(Y )) Ext1(X, �≠m≠1(Y )) 0

0 Hom(X, �≠m(Y )) Hom(P , �≠m(Y )) Hom(K, �≠m(Y )) Ext1(X, �≠m(Y )) 0

0 Hom(X, �≠m+1(Y )) Hom(P , �≠m+1(Y )) Hom(K, �≠m+1(Y )) Ext1(X, �≠m+1(Y )) 0

... ... ... ...

Also, there is an exact sequence

0 æ Hom(X, Y ) æ Hom(P , Y ) æ Hom(K, Y ) æ Ext1(X, Y ) æ 0.

It follows Ext1(X, Y ) is the complex given by the right column of the previous

diagram.

Some interesting results arise when we replace Ext by Ext in the definition of

cotorsion pair.

Definition 4.7.2. Given two classes A and B of chain complexes in Ch(RMod),

we shall say that A and B form a bar-cotorsion pair (A | B) if:

(1) A = ‹B = {A œ Ch(RMod) : Ext1(A, B) = 0, for every B œ B}, and

(2) B = A‹ = {B œ Ch(RMod) : Ext1(A, B) = 0, for every A œ A}.

Definition 4.7.3. A class D of complexes is said to be closed under suspensions

if �k(D) œ D for every D œ D and every k œ Z.



253

Let (A | B) be a bar-cotorsion pair. Then A is closed under suspensions if, and

only if, B is. The same result holds if (A, B) is a cotorsion pair.

Lemma 4.7.6

Proof .

We only prove (=∆). Suppose (A | B) is a bar-cotorsion pair and that A is

closed under suspensions. First, note that Exti(X, �k(Y )) and Exti(�≠k(X), Y )

are isomorphic, for every pair of complexes X and Y and every k œ Z. Let B œ B,

A œ A and m œ Z. The complexes

· · · æ Ext1(A, �k+1(�m(B))) æ Ext1(A, �k(�m(B))) æ Ext1(A, �k≠1(�m(B))) æ · · · ,

· · · æ Ext1(�≠m(A), �k+1(B)) æ Ext1(�≠m(A), �k(B)) æ Ext1(�≠m(A), �k≠1(B)) æ · · ·

are isomorphic. Then by the previous lemma Ext1(A, �m(B)) ≥= Ext1(�≠m(A), B) =

0, for every A œ A, since B œ B and A is closed under suspensions. Hence the

result follows.

Let A and B be two classes in Ch(RMod) such that A is closed under suspen-

sions. Then (A | B) is a bar-cotorsion pair if, and only if, (A, B) is a cotorsion

pair.

Theorem 4.7.7

Proof .

Suppose (A | B) is a bar-cotorsion pair. Let A œ A and B œ B. Then Ext1(A, B) =

0. By Lemma 4.7.5, we have Ext1(A, B) = 0 and so A ™ ‹B and B ™ A‹. Now

if A œ ‹B, we have Ext1(A, B) = 0 for every B œ B. Since B is closed un-

der suspensions by Lemma 4.7.6, we have �k(B) œ B for every k œ Z. Then

Ext1(A, �k(B)) = 0 for every k œ Z. It follows Ext1(A, B) = 0 for every
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B œ B and so ‹B ™ ‹B = A. Now we show B ´ A‹. Let B œ A‹. Then

Ext1(A, B) = 0 for every A œ A. Since A is closed under suspensions, we have

Ext1(�≠k(A), B) = 0 for every k œ Z. Then Ext1(A, B) ≥= Ext1(A, �k(B)) = 0

for every k œ Z, and so B œ A‹ = B. The converse can be proven in a similar

way.

Definition 4.7.4. A bar-cotorsion pair (A | B) is bar-cogenerated by a set S ™ A
if B = S‹.

Let A and B be two classes in Ch(RMod), and S ™ A be a set closed under

suspensions. If (A, B) is a cotorsion pair cogenerated by S, then (A | B) is a

bar-cotorsion pair bar-cogenerated by S. The converse is also true.

Theorem 4.7.8

Proof .

Suppose (A, B) is cogenerated by S. Then B = S‹, which is closed under sus-

pensions by Lemma 4.7.6 (since S is closed under suspensions). By the same

lemma, A is also closed under suspensions, and hence by Theorem 4.7.7 we

have (A | B) is a bar-cotorsion pair. It is only left to show that B = S‹.

Let B œ B. Then Ext1(S, B) = 0 for every S œ S. Since S is closed under

suspensions, we have �≠k(S) œ S for every k œ Z and every S œ S. Then

Ext1(S, �k(B)) ≥= Ext1(�≠k(S), B) = 0, for every k œ Z and every S œ S. It

follows Ext1(S, B) = 0 for every S œ S, i.e. B œ S‹. Now if D œ S‹ then

Ext1(S, D) = 0 for every S œ S and so D œ S‹ = B. The converse follows

similarly.
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Let Y be a chain complex in Ch(RMod). If X is a transfinite extension (X–)–<⁄

of the class ‹{Y }, then Ext1(X, Y ) = 0.

Lemma 4.7.9 (Eklof’s Lemma for Ext1(≠, ≠))

Proof .

It su�ces to note that Ext1(X–+1/X–, Y ) = 0 implies Ext1(X–+1/X–, �k(Y )) = 0,

for every k œ Z. By the original Eklof’s Lemma, Ext1(X, �k(Y )) = 0 for every

k œ Z, and so Ext1(X, Y ) = 0.

Let (A | B) be a bar-cotorsion pair in Ch(RMod), and S ™ A be a set. If

every X œ A has an S-filtration, then (A | B) is bar-cogenerated by S.

Proposition 4.7.10 (Proposition 3.1.14 for bar-cotorsion pairs)

Assume throughout the rest of this section that R is a commutative ring.

Definition 4.7.5. A chain complex X œ Ch(RMod) is said to be Gorenstein-flat

if there exists a (ÊI0¢≠)-exact sequence · · · æ F1 æ F0 æ F 0 æ F 1 æ · · · of

flat complexes such that X = Ker(F 0 æ F 1). We shall denote the class of all

Gorenstein-flat complexes by ‰GF0.

Definition 4.7.6. Given a complex X = · · · æ Xm+1
ˆX

m+1æ Xm
ˆX

mæ Xm≠1 æ · · ·
in Ch(RMod), the Pontryagin or character complex of X is the complex X+ œ
Ch(ModR) given by

X+ := (· · · æ HomZ(X≠m≠1,Q/Z) ˆX+

mæ HomZ(X≠m,Q/Z)
ˆX+

m≠1æ HomZ(X≠m+1,Q/Z) æ · · · )

where the boundary maps are defined by ˆX+

m := (≠1)m≠1HomZ(ˆX
≠m,Q/Z).
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X+ ≥= HomZ(X, D0(Q/Z)).

Proposition 4.7.11

Proof .

Recall Hom(X, D0(Q/Z))m is the kernel of the di�erential

HomÕ(X, D0(Q/Z))m
”mæ HomÕ(X, D0(Q/Z)).

Moreover,

HomÕ(X, D0(Q/Z))m =
Ÿ

kœZ
HomZ(Xk, D0(Q/Z)k+m)

= HomZ(X≠m≠1,Q/Z) ◊ HomZ(X≠m,Q/Z),

HomÕ(X, D0(Q/Z))m≠1 =
Ÿ

kœZ
HomZ(Xk, D0(Q/Z)k+m≠1)

= HomZ(X≠m,Q/Z) ◊ HomZ(X≠m+1,Q/Z).

Every f = (fk)kœZ œ Hom(X, D0(Q/Z))m has the form f = (· · · , 0, f≠m≠1, f≠m, 0, · · · ).

Now suppose ”m(f) = 0. Then we have ˆ
D0(Q/Z)
k+m ¶ fk ≠ (≠1)mfk≠1 ¶ ˆX

k = 0 for

every k œ Z. In particular:

• For k = ≠m: 0 = ˆ
D0(Q/Z)
0 ¶ f≠m ≠ (≠1)mf≠m≠1 ¶ ˆX

≠m and so we have f≠m =

(≠1)mf≠m≠1 ¶ ˆX
≠m.

• For k = ≠m + 1: 0 = ˆ
D0(Q/Z)
1 ¶ f≠m+1 ≠ (≠1)mf≠m ¶ ˆX

≠m+1 = f≠m ¶ ˆX
≠m+1.

We have the following commutative diagram:

· · · X≠m+1 X≠m X≠m≠1 X≠m≠2 · · ·

· · · 0 Q/Z Q/Z 0 · · ·

ˆX
≠m+1 ˆX

≠m

f≠m f≠m≠1
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Define a map Ïm : Hom(X, D0(Q/Z))m ≠æ (X+)m = HomZ(X≠m≠1,Q/Z) by

setting Ïm(f) = (≠1)mf≠m≠1 for every m œ Z. It is clear that Ïm is an isomor-

phism. We show that Ï = (Ïm)mœZ is a chain map, i.e. that the following diagram

commutes for every m œ Z:

Hom(X, D0(Q/Z))m Hom(X, D0(Q/Z))m≠1

(X+)m (X+)m≠1

ˆHom(X,D0(Q/Z))
m

Ïm Ïm≠1

ˆX+

m

For f = (fk)kœZ œ Hom(X, D0(Q/Z))m we have:

ˆX+

m ¶ Ïm(f) = (≠1)m≠1 · (≠1)mHomZ(ˆX
≠m,Q/Z)(f≠m≠1)

= (≠1)m≠1 ·
Ë
(≠1)mf≠m≠1 ¶ ˆX

≠m

È

= (≠1)m≠1f≠m = Ïm≠1(· · · , 0, f≠m, 0, · · · )

= Ïm≠1((ˆD0(Q/Z)
m+k ¶ fk)kœZ)

= Ïm≠1 ¶ ˆHom(X,D0(Q/Z))
m (f).

Given three chain complexes X, Y and Z, we have the following isomorphisms

of complexes:

(1) Hom(X¢Y, Z) ≥= Hom(X, Hom(Y, Z)).

(2) If R is commutative, then X¢Y ≥= Y ¢X.

(3) X¢(Y ¢Z) ≥= (X¢Y )¢Z.

Moreover, for every i > 0:

(4) Exti(X, Y +) ≥= Tori(X, Y )+.

(5) If R is commutative, then Tori(X, Y ) ≥= Tori(X, Y ).

Proposition 4.7.12
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Proof .

Parts (1), (2) and (3) are proven in (24, Proposition 4.2.1). We only prove (4),

since (5) follows similarly. The case i = 1 is stated in (24, Lemma 5.4.2). We use

induction on i > 0. Suppose i = 1 and consider an exact sequence K Òæ P ⇣ X

with P projective. Derive Hom(≠, Y +) and ≠¢Y to obtain long exact sequences

0 æ Hom(X, Y +) æ Hom(P , Y +) æ Hom(K, Y +) æ Ext1(X, Y +) æ · · ·

and

· · · æ Tor1(X, Y ) æ K¢Y æ P¢Y æ X¢Y æ 0.

Then apply Hom(≠, D0(Q/Z)) to the first sequence, since D0(Q/Z) is an injective

chain complex, we get the long exact sequence

0 Hom(X¢Y, D0(Q/Z)) = (X¢Y )+ Hom(P¢Y, D0(Q/Z)) = (P¢Y )+

Hom(K¢Y, D0(Q/Z)) = (K¢Y )+ Hom(Tor1(X, Y ), D0(Q/Z)) = Tor1(X, Y )+ · · ·

Using the first isomorphism of Proposition 4.7.12, we get a commutative diagram

0 (X¢Y )+ (P¢Y )+ (K¢Y )+ Tor1(X, Y )+ · · ·

0 Hom(X, Y +) Hom(P , Y +) Hom(K, Y +) Ext1(X, Y +) · · ·

≥= ≥= ≥=

By the Five Lemma, Tor1(X, Y )+ æ Ext1(X, Y +) is an isomorphism. Now sup-

pose Tori≠1(X, Y )+ ≥= Exti≠1(X, Y +) for i > 1. We have the following commuta-

tive diagram

· · · Tori≠1(P , Y )+ Tori≠1(K, Y )+ Tori(X, Y )+ Tori(P , Y )+ · · ·

· · · Exti≠1(P , Y +) Exti≠1(K, Y +) Exti(X, Y +) Exti(P , Y +) · · ·

≥=
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Since P is flat, we have Torj(P , Y )+ = 0 and Extj(P , Y +) = 0, for every j Ø 1.

It follows that Tori(X, Y )+ ≠æ Exti(X, Y +) is an isomorphism.

Let X œ Ch(RMod) be a chain complex. The following conditions are equiva-

lent if R is an commutative n-Gorenstein ring:

(1) X is a Gorenstein-flat complex.

(2) X+ is a Gorenstein-injective complex in Ch(ModR).

(3) Xm is a Gorenstein-flat module, for every m œ Z.

(4) Tor1(W, X) = 0 for all W œ ÊW ™ Ch(ModR).

Theorem 4.7.13 (see (24, Theorem 5.4.3))

Definition 4.7.7. A chain complex Y œ Ch(RMod) is Gorenstein-cotorsion if

Ext1(X, Y ) = 0 for every X œ ‰GF0. We denote by ( ‰GF0)‹ the class of Gorenstein-

cotorsion complexes.

Let R be a commutative n-Gorenstein ring. The classes ‰GF0 and ( ‰GF0)‹ form

a bar-cotorsion pair ( ‰GF0 | ( ‰GF0)‹).

Proposition 4.7.14

Proof .

We only have to show that ‹(( ‰GF0)‹) ™ ‰GF0. Let X œ ‹(( ‰GF0)‹). So let

W œ ÊW . By Proposition 4.7.12, we have Tor1(W, X)+ ≥= Tor1(X, W )+ ≥=
Ext1(X, W +). Now let E be a Gorenstein-flat complex. Then Ext1(E, W +) ≥=
Tor1(W, E)+ = 0, i.e. W + œ ( ‰GF0)‹ and so Ext1(X+, W ) ≥= Ext1(X, W +) = 0,

i.e. X+ is a Gorenstein-injective complex. Hence X is Gorenstein-flat by the

previous theorem.
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By Theorem 4.7.13, a complex X is Gorenstein-flat if, and only if, Xm is a

Gorenstein-flat module, for every m œ Z. Using this equivalence, it follows that
‰GF0 is closed under suspensions. So by the previous proposition, Lemma 4.7.6 and

Theorem 4.7.7, ( ‰GF0, ( ‰GF0)‹) is a cotorsion pair. Recall that in (4, Proposition

4.1) it is proven that for every chain complex X œ dw ÊF0 and every x œ X, there

exists a subcomplex S ™ X in (dw ÊF0)ÆŸ (where Ÿ is a fix regular cardinal number

with Card(R) < Ÿ) such that x œ S and X/S œ dw ÊF0. The same arguments

can be applied to ‰GF0. So using this result, one can show that every Gorenstein-

flat complex is a transfinite extension of ( ‰GF0)ÆŸ, and hence ( ‰GF0, ( ‰GF0)‹) is a

cotorsion pair cogenerated by ( ‰GF0)ÆŸ.

Given a commutative n-Gorenstein ring R. Let E be a Gorenstein-flat complex

and x œ E. Then there exists a Gorenstein-flat subcomplex E Õ ™ E with

Card(E Õ) Æ Ÿ, such that x œ E Õ and E/E Õ is also Gorenstein-flat.

Proposition 4.7.15

If R is a commutative n-Gorenstein ring, then

(1) ÊF0 = ‰GF0 fl ÊW .

(2) ( ‰GF0)‹ = ( ÊF0)‹ fl ÊW .

Proposition 4.7.16

Proof .

(1) Let F be a flat complex. Then ≠¢F is an exact functor, and so Tor1(W, F ) =

0 for every W œ ÊW . Hence F is Gorenstein-flat. On the other hand, it is clear

that F œ ÊW .

Now let E œ ‰GF0 fl ÊW . Then E+ œ ‰GI0. On the other hand, fd(E) = k < Œ,

so there exists an exact sequence 0 æ Fk æ Fk≠1 æ · · · æ F1 æ F0 æ E æ 0
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where Fi is flat for every 0 Æ i Æ k. Then

0 æ E+ = Hom(X, D0(Q/Z)) æ F0
+ æ F1

+ æ · · · æ Fk≠1
+ æ Fk

+ æ 0

is exact since D0(Q/Z) is an injective complex (notice that Ext1(Y, D0(Q/Z)) = 0

implies Ext1(Y, D0(Q/Z)) = 0, for every complex Y ), and Fi
+ is an injective

complex for every 0 Æ i Æ k (the version of (21, Theorem 3.2.10) for chain

complexes is a direct consequence of Proposition 4.7.12 (4)). So id(E+) Æ k < Œ
and E+ œ ÊW . We have E+ œ ‰GI0 fl ÊW = ÊI0. It follows E is flat.

(2) Similar to Proposition 4.6.9 (2).

From this result, we have ( ‰GF0, ( ‰GF0)‹) and ( ÊF0, ( ÊF0)‹) are compatible and

complete cotorsion pairs. Hence the following theorem follows.

If R is an n-Gorenstein ring, then there exists a unique Abelian model structure

on RMod where the (trivial) cofibrations are the monomorphisms with cokernel

in ‰GF0 (resp. in ÊF0), the (trivial) fibrations are the epimorphisms with kernel

in ( ÊF0)‹ (resp. in ( ‰GF0)‹), and ÊW is the class of trivial objects.

Theorem 4.7.17 (Gorenstein-flat model structure)

We say a few things more with respect to the class ‰GF0.

Let R be a commutative n-Gorenstein ring. The class ‰GF0 is closed under

direct limits.

Proposition 4.7.18

Proof .

Let X œ Ch(RMod) be a chain complex which is the direct limit of a direct system



262

of Gorenstein-flat complexes, say (Ei)iœI . Let W œ ÊW , we have Tor1(W, X) ≥=
lim≠æiœI

Tor1(W, Ei) = 0, since Tor1(W, ≠) preserves direct limits. We prove this

last assertion. Let Y be any chain complex which is the direct limit of a direct

system (Yi)iœI . In (24, Proposition 4.2.1 5), it is proven that (lim≠æiœI
Yi)¢W ≥=

lim≠æiœI
Yi¢W . Since R is commutative, W¢(lim≠æiœI

Yi) ≥= lim≠æiœI
W¢Yi (ú). Let

K Òæ P ⇣ X be a short exact sequence where P is a projective complex. Then

for every i œ I, we have an exact sequence

Si = 0 æ Tor1(X, Yi) æ K¢Yi æ P¢Yi æ X¢Yi æ 0.

Direct limits commute with homology, so the direct limit of a direct system of

exact sequences is an exact sequence. Hence

0 æ lim≠æ
iœI

Tor1(X, Yi) æ lim≠æ
iœI

K¢Yi æ lim≠æ
iœI

P¢Yi æ lim≠æ
iœI

X¢Yi æ 0

is an exact sequence since (Si)iœI is a direct system of exact sequences. By (ú),

we have the following commutative diagram with exact rows:

0 lim≠æiœI
Tor1(X, Yi) lim≠æiœI

K¢Yi lim≠æiœI
P¢Yi lim≠æiœI

X¢Yi 0

0 Tor1(X, lim≠æiœI
Yi) K¢ lim≠æiœI

Yi P¢ lim≠æiœI
Yi X¢ lim≠æiœI

Yi 0

≥= ≥= ≥=

By the Five Lemma, lim≠æiœI
Tor1(X, Yi) ≠æ Tor1(X, lim≠æiœI

Yi) is an isomorphism.

Using induction, one can show that lim≠æiœI
Torj(X, Yi) ≥= Torj(X, lim≠æiœI

Yi) for

every j œ ZØ0.

We have that ( ‰GF0, ( ‰GF0)‹) is a complete cotorsion pair where the class ‰GF0

is closed under direct limits. So the pair ( ‰GF0, ( ‰GF0)‹) is perfect by Theorem

3.1.23. The following result follows.
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Every chain complex X œ Ch(RMod) has a Gorenstein-flat cover, provided

that R is a commutative n-Iwanaga-Gorenstein ring.

Corollary 4.7.19 (see (24, Theorem 5.8.4))

In the author’s point of view, the proof we just gave is simpler that the one

appearing in the cited reference.

As it occurred in RMod, we can consider in Ch(RMod) the class ‰GF r of left

r- ‰GF0-complexes (or simply Gorenstein-r-flat complexes). It is easy to note that
‰GF r = {X œ Ch(RMod) : Gfd(X) Æ r}. We prove that ‰GF r cogenerates a

complete cotorsion pair in Ch(RMod).

Let X œ Ch(RMod). Then fd(X) Æ r if, and only if, id(X+) Æ r, for every

r > 0.

Proposition 4.7.20

Proof .

Suppose X is a chain complex. If fd(X) Æ r, for every chain complex Y œ
Ch(RMod) and every i > r, we have Tori(Y, X)+ = 0. Hence Exti(Y, X+) = 0,

i.e. id(X) Æ r. The other implication follows similarly.

The following proposition is easy to prove.
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The following conditions are equivalent for any chain complex X œ Ch(RMod)

over a commutative n-Gorenstein ring R:

(1) X is a Gorenstein-r-flat complex.

(2) Tori(W, X) = 0 for all i Ø r + 1 and all W œ ÊW .

(3) Every Gorenstein-rth flat syzygy is Gorenstein-flat.

(4) Every rth flat syzygy is Gorenstein-flat.

(5) Xm is a Gorenstein-r-flat module for every m œ Z.

(6) X+ is a Gorenstein-r-injective complex.

Proposition 4.7.21

The class ‰GF r of Gorenstein-r-flat complexes cogenerates a complete cotorsion

pair. In fact, we have a bar-cotorsion pair ( ‰GF r | ( ‰GF r)‹). Since the class
‰GF r is closed under suspensions, it follows ( ‰GF r, ( ‰GF r)‹) is a cotorsion pair

and ( ‰GF r)‹ = ( ‰GF r)‹. So ( ‰GF r, ( ‰GF r)‹) is a cotorsion pair. By Lemma 4.6.12,

along with some arguments used in the previous chapter for the class dw ÊFr, we

have that ( ‰GF r, ( ‰GF r)‹) is a cotorsion pair cogenerated by ( ‰GF r)ÆŸ. Moreover,

it is easy to show that ÊFr = ‰GF r fl ÊW and ( ‰GF r)‹ = ( ÊFr)‹ fl ÊW . Hence, we

obtain the chain complex version of Theorem 4.6.2.

If R is an n-Gorenstein ring, then for each 0 Æ r Æ n there exists a unique

Abelian model structure on RMod where the (trivial) cofibrations are the

monomorphisms with cokernel in ‰GF r (resp. in ÊFr), the (trivial) fibrations

are the epimorphisms with kernel in ( ÊFr)‹ (resp. in ( ‰GF r)‹), and ÊW is the

class of trivial objects.

Theorem 4.7.22 (Gorenstein-r-flat model structure)
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It is also easy to see that the pair ( ‰GF r, ( ‰GF r)‹) is perfect, since ‰GF r is closed un-

der direct limits. Therefore, every chain complex over a commutative Gorenstein

ring has a Gorenstein-r-flat cover, by Theorem 3.1.23.

4.8 Gorenstein homological dimensions and di�erential graded

complexes

In this section, we shall consider an associative ring R with unit and the graded

ring A := R[x]/(x2). We first show that AMod and Ch(RMod) are isomorphic

categories, in order to prove later that Gorenstein-r-projective A-modules and

dg-r-projective chain complexes over R are in one-to-one correspondence, pro-

vided R satisfies certain conditions. The same holds for Gorenstein-r-injective

and Gorenstein-r-flat A-modules. This was initially proven by M. Hovey and J.

Gillespie for r = 0.

Definition 4.8.1. Recall that a Z-graded ring A is a ring that has a direct sum

decomposition into (Abelian) additive groups

A =
n

nœZ
An = · · · A≠1 ü A0 ü A1 ü · · ·

such that the ring multiplication · satisfies Am · An ™ Am+n, for every m, n œ
Z. A graded module is left module over a Z-graded ring A with a direct sum

decomposition M = m
nœZ Mn such that the product · : A · M æ M satisfies

Am · Mn ™ Mm+n, for every m, n œ Z.

If we consider the ring of polynomials R[x] and the ideal (x2), the quotient A :=

R[x]/(x2) is a Z-graded ring with a direct sum decomposition given by R[x]/(x2) =

· · · ü 0 ü (x) ü R ü 0 ü · · · , where the scalars r œ R are the elements of degree 0,

and the elements in the ideal (x) form the terms of degree ≠1. Every A-module

can be viewed as a chain complex over R, and vice versa.
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Let � : AMod æ Ch(RMod) be the application defined as follows:

• Given a graded A-module M = m
nœZ Mn, note that if y œ Mn then x ·y œ Mn≠1,

since x has degree ≠1. Denote by �(M)n the set Mn endowed with the structure

of R-module provided by the graded multiplication. Let ˆn : �(M)n æ �(M)n≠1

be the map y ‘æ x · y. It is clear that ˆn is an R-homomorphism. Moreover,

ˆn≠1 ¶ ˆn(y) = x · (x · y) = x2 · y = 0 · y = 0. Then, �(M) = (�(M)n, ˆn)nœZ is a

chain complex over R.

• Let M
fæ N be a homomorphism of graded A-modules. Then f(Mn) ™ Nn and

f |Mn is an R-homomorphism, for every m œ Z. Let �(f)n : �(M)n æ �(N)n be

f |Mn . We have �(f)n≠1 ¶ ˆM
n (y) = f |Mn≠1

(x · y) = x · f |Mn(y) = ˆN
n ¶ �(f)n(y).

So �(f) = (�(f)n)nœZ is a chain map.

Note that � : AMod æ Ch(RMod) defines a covariant functor. We show � is

an isomorphism, by giving an inverse functor � : Ch(RMod) æ AMod.

• Let M = (Mn, ˆn)nœZ be a chain complex over R. Let y œ Mn and define the

product r · y = ry œ Mn for every r œ R, and x · y = ˆn(y) œ Mn≠1. This

gives rise to a graded A-module, that we denote by �(M) = (�(M)n)nœZ, where

�(M)n = Mn as sets.

• Given a chain map f : M æ N , we have x ·f(y) = ˆ ¶f(y) = f ¶ˆ(y) = f(x ·y).

Then f gives rise to a graded A-module homomorphism denoted by �(f).

Note that � : Ch(RMod) æ AMod is a functor. It is easy to show � ¶ � =

IdAMod

and � ¶ � = Id
Ch(RMod). It follows that � and � map projective and

injective objects into projective and injective objects, respectively. It is also easy

to check that both � and � preserves exact sequences. Concerning flat objects,

it is important to recall how tensor products are defined for Z-graded A-modules.

Given two graded A-modules M = (Mn)nœZ and N = (Nm)mœZ, the tensor product
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M ¢Z N = (m
n+m=k Mn ¢Z Nm)kœZ has also a Z-graduation. Let Q be the sub-

Z-module generated by the elements (a · y) ¢ z ≠ y ¢ (a · z) where a œ A, y œ M

and z œ N . The tensor product of M and N over A is defined by M ¢A N =

(M ¢ZN)/Q. It is clear that M ¢AN ≥= �(M)¢�(N) and X¢Y ≥= �(X)¢A�(Y )

for every M, N œ AMod and X, Y œ Ch(RMod). So it follows that M is flat in

AMod if, and only if, �(M) is in Ch(RMod). Similarly, X is flat in Ch(RMod)

if, and only if, �(X) is flat in AMod.

The following lemma is straightforward.

We have the following isomorphisms for every i Ø 1, M, N œ AMod, and

Y, Z œ Ch(RMod):

(1) Exti
A(M, N) ≥= Exti(�(M), �(N)).

(2) TorA
i (M, N) ≥= Tori(�(M), �(N)).

(3) Exti(Y, Z) ≥= Exti
A(�(Y ), �(Z)).

(4) Tori(Y, Z) ≥= TorA
i (�(Y ), �(Z)).

Lemma 4.8.1

There is a one-to-one correspondence between the flat objects of AMod and

the flat objects of Ch(RMod), given by the functor �.

Corollary 4.8.2
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The functor � : Ch(RMod) æ AMod maps:

(1) dg-projective complexes into Gorenstein-projective A-modules,

(2) dg-injective complexes into Gorenstein-injective A-modules, and

(3) dg-flat complexes into Gorenstein-flat A-modules.

If R is a left and right Noetherian ring of finite global dimension, then the

inverse functor � : AMod æ Ch(RMod) maps:

(1’) Gorenstein-projective A-modules into dg-projective complexes,

(2’) Gorenstein-injective A-modules into dg-injective complexes, and

(3’) Gorenstein-flat A-modules into dg-flat complexes.

Theorem 4.8.3 (J. Gillespie and M. Hovey (30, Prop. 3.6, 3.8 and 3.10))

Such a result can be extended to any homological dimension, but before stating

and proving a generalization, it is important to note the following correspondence.

Let R be an n-Iwanaga-Gorenstein ring. Then there is a one-to-one correspon-

dence between the exact chain complexes over R and the A-modules in W .

Corollary 4.8.4

Proof .

Let E be an exact complex over R. Then Ext1(X, E) = 0 for every dg-projective

complex X. Consider �(E) and let C be a Gorenstein-projective A-module. By

the previous theorem, there exists a unique X œ dg ÊP0 such that C = �(X).

We have Ext1
A(C, �(E)) = Ext1

A(�(X), �(E)) ≥= Ext1(X, E) = 0. It follows

�(E) œ W , since (GP0, W) is a cotorsion pair. The mapping E ‘æ �(E) gives

the desired correspondence.
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The functor � : Ch(RMod) æ AMod maps:

(1) dg-r-projective complexes into Gorenstein-r-projective A-modules,

(2) dg-r-injective complexes into Gorenstein-r-injective A-modules, and

(3) dg-r-flat complexes into Gorenstein-r-flat A-modules.

If R is a left and right Noetherian ring of finite global dimension, then the

inverse functor � : AMod æ Ch(RMod) maps:

(1’) Gorenstein-r-projective A-modules into dg-r-projective complexes,

(2’) Gorenstein-r-injective A-modules into dg-r-injective complexes, and

(3’) Gorenstein-r-flat A-modules into dg-r-flat complexes.

Theorem 4.8.5

Proof .

We only prove (1) and (1’), since the other assertions can be shown in a similar

way. Let X œ dg ÊPr. Consider a partial left projective resolution

0 æ C æ Pr≠1 æ · · · æ P1 æ P0 æ �(X) æ 0.

We show that C is a Gorenstein-projective A-module. Consider the complex �(C)

and let E be an exact complex. We have Ext1(�(C), E) ≥= Ext1(X, E Õ), where

E Õ œ �≠r(E). Note that E Õ œ (ÊPr)‹. If fact, if Z œ ÊPr then Ext1(Z, E Õ) ≥=
Extr+1(Z, E) = 0. Also, it is easy to check that E Õ œ E . So E Õ œ (ÊPr)‹ fl E =

(dg ÊPr)‹. It follows Ext1(�(C), E) ≥= Ext1(X, E Õ) = 0, for every E œ E . In other

words, �(C) is dg-projective, where C = �(�(C)) is a Gorenstein-projective A-

module.

Now suppose that R is a left and right Noetherian ring of finite global dimension.

Note that � and � define an one-to-one correspondence between r-projective

complexes over R and r-projective A-modules. Let X œ (ÊPr)‹ and consider �(X).
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Let M be an r-projective A-module. Then �(M) is an r-projective complex. We

have Ext1
A(M, �(X)) ≥= Ext1(�(M), X) = 0. It follows �(X) œ (Pr(AMod))‹.

Hence, � and � give rise to a one-to-one correspondence between (ÊPr)‹ and

(Pr(AMod))‹. Also, by the previous corollary, we have the same correspondence

between E and W . Since (dg ÊPr)‹ = (ÊPr)‹ fl E and (Pr)‹ fl W = (GPr(AMod))‹,

we have that a complex Y is in (dg ÊPr)‹ if and only if �(Y ) is in (GPr(AMod))‹.

Since dg ÊPr = ‹((dg ÊPr)‹) and GPr(AMod) = ‹((GPr(AMod))‹), we have that

� maps Gorenstein-r-projective A-modules into dg-r-projective complexes.
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trivially trivially

model structure cofibrant fibrant trivial cofibrant fibrant

objects objects objects objects objects

On Gorenstein categories

Gorenstein-projective GP0(C) C W(C) P0(C) W(C)

Gorenstein-injective C GI0(C) W(C) W(C) I0(C)

On locally Noetherian Gorenstein categories

Gorenstein-r-injective ‹(Ir(C)) GIr(C) W(C) ‹(GIr(C)) Ir(C)

where 0 < r Æ FDP (C)

On modules over an n-Gorenstein ring

Gorenstein-r-projective GPr (Pr)‹ W Pr (GPr)‹

Gorenstein-flat GF0 (F0)‹ W F0 (GF0)‹

Gorenstein-r-flat GF r (Fr)‹ W Fr (GF r)‹

where 0 < r Æ n

On chain complexes over an n-Gorenstein ring

Gorenstein-r-projective ‰GPr (ÊPr)‹ ÊW ÊPr ( ‰GPr)‹

where 0 < r Æ n

On chain complexes over a commutative n-Gorenstein ring

Gorenstein-flat ‰GF0 ( ÊF0)‹ ÊW ÊF0 ( ‰GF0)‹

Gorenstein-r-flat ‰GF r ( ÊFr)‹ ÊW ÊFr ( ‰GF r)‹

where 0 < r Æ n

Table 4.1: SUMMARY OF MODEL STRUCTURES





CONCLUSION

We have established a connection between Abelian model structures and two theo-

ries of homological algebra. In some cases, such a connection provides an easy way

to construct covers and envelopes of modules and complexes for certain (Goren-

stein) homological dimensions. We emphasized the construction of n-projective

and n-flat transfinite extensions of modules and complexes, since they give an

interesting way to generalize techniques and results which hold in dimension 0,.

Examples are the zig-zag arguments and Kaplansky’s Theorem.

Most of our results are presented in a category theoretical setting. We also have

rewritten some known results in the context of Abelian and Grothendieck cate-

gories (Chapter 2). For example, the author does not know a reference for Eklof

and Trlifaj’s Theorem besides the version given for modules. On the other hand,

we wanted to take advantage of the definition of weak factorization systems, since

model structures can be defined from them. The connection between complete

cotorsion pairs and cotorsion factorization systems turns out to be an easier way

to explain Hovey’s Correspondence. From the author’s point of view, this thesis

provides, apart from the results we have gotten so far, a useful reference for the

further study of the theory of Abelian model structures.
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Figure C.1: Conclusions in the projective case.
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Figure C.2: Conclusions in the injective case.
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Figure C.3: Conclusions in the flat case.
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The study of model structures on modules over specific rings does not only concern

the case when R is a Gorenstein ring. There exists a certain class of rings that

comprises the class of Gorenstein rings under a specific assumption. These rings

are known nowadays as Ding-Chen rings (first introduced by N. Ding and J. Chen

as n-FP rings). A ring R is said to be a Ding-Chen ring if it is both left and

right coherent and FP-id(RR) = FP-id(RR) = n, where FP-id(≠) denotes the

FP-injective dimension, defined as

FP-id(M) := min{n Ø 0 : Extn+1
R (F, M) = 0 ’ finitely presented left R-module F}.

For Ding-Chen rings there is an equivalence involving FP-injective and flat di-

mensions, namely:

Let R be an n-FC ring and M be a right R-module. Then

fd(M) < Œ ≈∆ fd(M) Æ n ≈∆ FP-id(M) < Œ ≈∆ FP-id(M) Æ n.

Theorem (N. Ding and J. Chen)

If W denotes the class of modules with finite FP-injective dimension, then W
turns out to be the left and right halves of two complete cotorsion pairs. This

result was proven by Ding and Lao in (17, Theorems 3.4) and (16, Theorem 3.8).

In (29), J. Gillespie proves that ‹W and W‹ coincide with the classes of Ding-

projective and Ding-injective modules, respectively (see Corollaries 4.5 and 4.6 of

the cited reference). Moreover, he also establishes the equalities ‹W fl W = P0

and W‹ fl W = I0. The following theorem follows.
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Let R be a Ding-Chen ring. Then there are two cofibrantly generated Abelian

model structures on RMod each having W as the class of trivial objects. In

the first model structure, each module is cofibrant while the (trivially) fibrant

objects are the Ding-injective (resp. injective) modules. In the second model

structure, each module is fibrant while the (trivially) cofibrant objects are the

Ding-projective (resp. projective) modules.

Theorem (see (29, Theorem 4.7))

It is known that Noetherian Ding-Chen rings are Gorenstein rings. So (35, The-

orem 8.6) follows from the previous theorem in the particular case when R is

Noetherian.

Question: Do there exist Ding analogues of the Gorenstein-r-projective and

Gorenstein-r-injective modules structures in RMod?

From the completeness of (‹W , W) and (W , W‹) we can certainly do homological

algebra in terms of Ding-projective and Ding-injective dimensions. Let DPr (resp.

DIr) denote the class of modules with Ding-projective (resp. Ding-injective)

dimension at most r. As in the Gorenstein case, one can show that (DPr, (DPr)‹)

and (‹(DIr), DIr) are cotorsion pairs.

We believe it is likely that some of the arguments in (16) and (17), along with

results of this thesis, can be applied to show that the two cotorsion pairs above

are complete. The corresponding compatibility equalities probably are not hard

to prove. Hence, we are interested in giving a positive answer for the previous

question in a near future, along with their respective generalizations to chain

complexes.
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Throughout this thesis we have only worked with model structures on the cate-

gory of chain complexes Ch(RMod) over a ring R with identity. The key element

in the definition of chain complex is the relation ˆ2 = 0. But what if we replace

this relation by ˆk = 0, for some fixed k > 2? A sequence of modules and ho-

momorphisms X = (· · · æ Xn+1
ˆæ Xn

ˆæ Xn≠1 æ · · · ) is called a k-complex

if ˆk = 0. This notion has already been considered by several authors. In (25,

Page 688), the reader can find some recommended references for the study of

the category kCh(RMod) of k-complexes. In (25, Theorem 4.5), M. Hovey and

J. Gillespie construct the analogue of the projective model structure on the cat-

egory of k-complexes. Moreover, they also show that the (trivial) cofibrations

in kCh(RMod) are in one-to-one correspondence with the monomorphisms in

R[x]/(xk)Mod with Gorenstein-projective (resp. projective) cokernel, provided R is

left and right Noetherian and of finite global dimension.

The author is also interested in studying possible analogues of the (degreewise) r-

projective, r-injective and r-flat model structures in the category of k-complexes,

and their corresponding equivalence with the Gorenstein-r-projective, Gorenstein-

r-injective and Gorenstein-r-flat model structures on R[x]/(xk)Mod, with R as

above.

Never a dull moment
Barry Karr

Skeptical Odysseys





APPENDIX I

COMMENTS ON MONOIDAL MODEL CATEGORIES AND
HOMOLOGICAL DIMENSIONS

One question about the Abelian model structures we have obtained so far is that

if they are monoidal with respect to a tensor product in the given category. In his

paper (35, Theorem 7.2), M. Hovey gives necessary and su�cient conditions to

check if an Abelian model category equipped with a closed symmetric monoidal

structure is a monoidal model category. Those conditions concern certain closure

and absorption properties for the classes of cofibrant objects with respect to the

given tensor product. Namely, the product of cofibrant objects has to be cofibrant,

and trivially cofibrant if one of them is trivial.

Definition A.1. A symmetric monoidal structure on a category C is given by a

tensor product bifunctor ≠¢≠ : C ◊C æ C, a unit object S œ Ob(C), and natural

isomorphisms:

• associativity: (≠ ¢ ≠) ¢ ≠ aæ ≠ ¢ (≠ ¢ ≠) where

aX,Y,Z : (X ¢ Y ) ¢ Z ‘æ X ¢ (Y ¢ Z),

• left unit: S ¢ ≠ læ idC where lY : S ¢ Y ‘æ Y ,

• right unit: ≠ ¢ S
ræ idC where rX : X ¢ S ‘æ X,

• braiding: ≠¢≠ bæ ≠¢op≠ where X¢opY = Y ¢X and bX,Y : X¢Y æ Y ¢X,
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such that the following diagrams, called coherence diagrams, commute:

(1) Pentagon identity:

(W ¢ X) ¢ (Y ¢ Z)

((W ¢ X) ¢ Y ) ¢ Z W ¢ (X ¢ (Y ¢ Z))

(W ¢ (X ¢ Y )) ¢ Z W ¢ ((X ¢ Y ) ¢ Z)

aW
¢X,Y,Z

aW,X,Y ¢ idZ

a
W,X,Y ¢Z

aW,X¢Y,Z

idW ¢ aX,Y,Z

(2) Triangle identity:

(X ¢ S) ¢ Y X ¢ (S ¢ Y )

X ¢ Y

aX,S,Y

rX ¢ id
Y idX

¢ lY

(3) Hexagon identity:

X ¢ (Y ¢ Z)

(X ¢ Y ) ¢ Z (Y ¢ Z) ¢ X

(Y ¢ X) ¢ Z Y ¢ (Z ¢ X)

Y ¢ (X ¢ Z)

aX,Y,Z

bX,Y ¢ idZ

bX,Y ¢Z

aY,Z,X

aY,X,Z idY
¢ bX,Z
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(4)

X ¢ Y Y ¢ X

X ¢ Y

bX,Y

id
X¢Y

bY,X

We denote the symmetric monoidal structure on C by the quintuple (¢, a, b, r, l).

The following definitions appear in (36, Sections 4.1 and 4.2), which provides a

detailed study of monoidal model categories.

Definition A.2. A symmetric monoidal structure (¢, a, b, l, r) on C is said to be

closed if for every object Y œ Ob(C) the functor ≠¢Y : C æ C has a right adjoint

functor [Y, ≠] : C æ C. This means that for all X, Y, Z œ Ob(C) we have a natural

isomorphism HomC(X ¢ Y, Z) ≥= HomC(X, [Y, Z]). Some authors call the right

adjoint [≠, ≠] the internal hom.

Example A.1. Let R be a commutative ring. The following are examples of

closed symmetric monoidal categories:

(1) (RMod, ¢R), where ¢R is the usual tensor product of modules, and R is the

unit object.

(2) (Ch(RMod), ¢), where ¢ is the usual tensor product of complexes, and the

unit object is given by S0(R). The internal hom is given by HomÕ
Ch(RMod)(≠, ≠)

(see (36, Proposition 4.2.13) for details).

(3) (Ch(RMod), ¢), where the unit is given by the 1-disk complex D1(R) (see

(24, Proposition 4.2.1 4)). The internal hom is given by the bar-hom functor

Hom
Ch(RMod)(≠, ≠).



284

Definition A.3. A monoidal model category is a model category C equipped with

a symmetric monoidal structure (¢, a, b, l, r) and an adjunction of two variables

(Homl, Homr, Ïl, Ïr) : C ◊ C æ C such that the following conditions are satisfied:

(1) For every quadruple of objects U, V, W, X œ Ob(C), we have an induced mor-

phism f⇤g : (V ¢ W ) ‡
U¢W (U ¢ X) æ V ¢ X making the following diagram

commute:

U ¢ W U ¢ X

V ¢ W (V ¢ W ) ‡
U¢W (U ¢ X)

V ¢ X

idU ¢ g

f ¢ idW

f⇤g

If, given cofibrations f : U æ V and g : W æ X in C, the induced map f⇤g

is a cofibration, which is trivial if either f or g is.

(2) Using functorial factorizations, write 0 æ S as the composition 0ÒæQ(S) ≥⇣S

of a cofibration followed by a trivial fibration. The map q : Q(S) ≥⇣S is called

the cofibrant replacement for S. Then the maps q ¢ X : Q(S) ¢ X æ S ¢ X

and X ¢q : X ¢Q(S) æ X ¢S are weak equivalences for all cofibrant objects

X.

Example A.2 (see (36, Prpopsotion 4.2.13)). The projective model structure

is monoidal with respect to ¢. However, the injective model structure is not

monoiodal in general. For R = Z, the cofibrations S0(Z)ÒæS0(Q) and 0 æ S0(Z2)

induce the map (S0(Z)ÒæS0(Q))⇤(0 æ S0(Z2)) = S0(Z2) æ 0, which is not a

cofibration.

The conditions given in the definition above could be di�cult to check when we

want to know if a given model structure is monoidal. In order to state Hovey’s
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principal result on monoidal model categories, we recall the concept of proper

exact sequences in the following definition taken from (44, Page 367), we adapt

the notation to that used in this work.

Definition A.4. A class P of short exact sequences in an Abelian category C is

said to be proper if the following conditions are satisfied:

(1) Any short exact sequence isomorphic to an element in P is also in P , i.e. P
is closed under isomorphisms.

(2) For any objects X and Y in C, the sequence X Òæ X ü Y ⇣ Y is proper.

Consider a defined composition X
fæ Y

gæ Z:

(3) If f and g are monic and X
f

Òæ Y ⇣ CoKer(f) and Y
g

Òæ Z ⇣ CoKer(g) are

proper, then so is X
g¶f
Òæ Z ⇣ CoKer(g ¶ f).

(4) If f and g are epic and Ker(f) Òæ X
f⇣ Y and Ker(g) Òæ Y

g⇣ Z are proper,

then so is Ker(g ¶ f) Òæ X
g¶f⇣ Z.

(5) If f and g are monic and X
g¶f
Òæ Z ⇣ CoKer(g ¶ f) proper, then so is the

sequence X
f

Òæ Y ⇣ CoKer(f).

(6) If f and g are monic and Ker(g¶f) Òæ X
g¶f⇣ Z proper, then so is the sequence

Ker(g) Òæ Y
g⇣ Z.

Definition A.5. Given a proper class P , an Abelian model structure on an

Abelian category C is said to be compatible with P if the short exact sequences

X
f

Òæ Y ⇣ CoKer(f) and Ker(g) Òæ W
g⇣ Z are proper for every cofibration f

and every fibration g.
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Let P be a proper class of short exact sequences in a closed symmetric monoidal

Abelian category C, and that C is equipped with an Abelian model structure

compatible with P . Let A, B and W denote the classes of cofibrant, fibrant

and trivial objects, respectively. Then C is a monoidal model category if the

following conditions are satisfied:

(1) The sequence X
f

Òæ Y ⇣ CoKer(f) is pure for every cofibration f .

(2) If X, Y œ A, then X ¢ Y œ A.

(3) If X, Y œ A and one of them is in W , then X ¢ Y œ A fl W .

(4) The unit S of the monoidal structure is in A.

Conversely, if the model structure above is monoidal, then the above conditions

hold.

Theorem A.1 (M. Hovey. (35, Theorem 7.2))

Example A.3. J. Gillespie used the previous result to show that the flat model

structure on (Ch(RMod), ¢) is monoidal, with R a commutative ring. The class

P in the theorem is the class of all short exact sequences (see (27, Corollary

5.1)). Gillespie also showed in (25, Subsection 5.2) that the degreewise flat model

structure is not monoidal on (Ch(RMod), ¢) in general. For the ring Z4, the

complex Y = · · · æ Z4
◊2æ Z4

◊2æ Z4 æ · · · is an exact degreewise flat complex,

but Y ¢ Y ”œ ex ÊF0, since it is not even exact.

When the degreewise flat model structure is monoidal?:

We shall see that the degreewise flat model structure is monoidal for certain class

of rings. It is clear that the unit S0(R) is cofibrant and that the tensor product

of two degreewise flat chain complexes is degreewise flat (note that the tensor

product of flat modules is flat). We study flatness with respect to the usual

tensor product of complexes.
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A chain complex X œ Ch(RMod) over a commutative ring R is flat with

respect to ¢ if, and only if, it is degreewise flat.

Proposition A.2

Proof .

Let Y be a chain complex such that ≠ ¢ Y is exact. Consider an exact sequence

of modules 0 æ A
–æ B

—æ C æ 0. Then 0 æ S0(A) S0(–)æ S0(B) S0(—)æ S0(C) æ 0

is exact in Ch(RMod). It follows

0 æ S0(A) ¢ Y
S0(–)¢Yæ S0(B) ¢ Y

S0(—)¢Yæ S0(C) ¢ Y æ 0

is also exact. So for each n œ Z we have the exact sequence

0 æ (S0(A) ¢ Y )n = A ¢R Yn
–¢RYnæ B ¢R Yn

—¢RYnæ C ¢R Yn æ 0.

Now suppose Y œ dw ÊF0. Consider a short exact sequence of chain complexes

0 æ A
–æ B

—æ C æ 0 and apply ≠ ¢ Y . We need to check

0 æ (A ¢ Y )n
(–¢Y )næ (B ¢ Y )n

(—¢Y )næ (C ¢ Y )n æ 0

is exact, for every n œ Z. In other words, we shall see

(ú) =
Q

a0 æ n

kœZ
Ak ¢R Yn≠k

m
kœZ –k¢RYn≠kæ n

kœZ
Bk ¢R Yn≠k

m
kœZ —k¢RYn≠kæ n

kœZ
Ck ¢R Yn≠k æ 0

R

b

is exact. For every k œ Z, the sequence

0 æ Ak ¢R Yn≠k
–k¢RYn≠kæ Bk ¢R Yn≠k

—k¢Yn≠kæ Ck ¢R Yn≠k æ 0

is exact since Yn≠k is flat. It follows (ú) is exact since the direct sum of exact

sequences is exact (homology commutes with direct sums).
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Choose P the class of all short exact sequences. By the previous proposition, it

follows that if X
fæ Y is a cofibration in the degreewise flat model structure, then

0 æ X
fæ Y æ CoKer(f) æ 0 is a P-pure sequence. Hence, the degreewise

model structure satisfies conditions (1) and (2) and (4) of Theorem A.1. We

already know that (3) is not true in general, but for certain rings, it happens that

the tensor product of degreewise chain complexes turns out to be exact if one of

them is exact.

Suppose R is a ring, with weak dimension at most 1. Suppose F and F Õ are

degreewise flat chain complexes in Ch(ModR) and Ch(RMod), respectively.

Then for every n œ Z, there exists a exact sequence

0 æ n

i+j=n

Hi(F ) ¢ Hj(F Õ) æ Hn(F ¢ F Õ) æ n

i+j=n≠1
TorR

1 (Hi(F ), Hj(F Õ)) æ 0.

Theorem A.3 (Künneth Exact Sequence, (46, Theorem 9.16))

Recall that the weak dimension of a ring is defined as sup{fd(M) : M œR Mod}
where fd(M) = inf{n Ø 0 : TorR

n+1(≠, M) © 0}. The problem with the ring Z4

considered by Gillespie is that Z2 is a Z4-module with infinite flat dimension, since

TorZ4

n (Z2,Z2) ≥= Z2 ”= 0 for every n Ø 0 (46, Chapter 3, Example 9).

If X and Y are degreewise flat chain complexes over a ring R with weak dimension

at most 1, such that one of them is exact, then the previous theorem implies that

X ¢ Y has null homology, i.e. X ¢ Y is exact. Therefore, the degreewise flat

model structure on complexes over such a ring is monoidal. The same reasoning

applies to the degreewise projective model structure (Recall the tensor product of

projective modules is projective).
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Gorenstein homological model structures are not monoidal:

We show the Gorenstein-projective model structure on modules over Z4 is not

monoidal. First, we have to say that Z4 is a quasi-Frobenius ring, that is the classes

of projective and injective Z4-modules coincide. Note that every module over such

a ring is Gorenstien projective. For if M is a left R-module with R quasi-Frobinius,

consider a left projective resolution and a right injective resolution of M , say

· · · æ P1
f

1æ P0
f

0æ M æ 0 and 0 æ M
g0æ I0 g1æ I1 æ · · · . Taking the composition

g0 ¶ f0, we have an exact sequence · · · æ P1
f

1æ P0
g0¶f

0æ I0 g1æ I1 æ · · · such that

M = Ker(g1). It is clear that this sequence is HomR(≠, P0) = HomR(≠, I0)-exact.

Hence M is Gorenstein-projective.

Back to the example R = Z4. There exists a left Z4-module with infinite pro-

jective dimension. Recall that the left global dimension of a ring R is defined

as sup{pd(M) : M œR Mod}. It is known that if R is a left Noetherian ring,

then the left global dimension and the weak dimension of R coincide (46, Corol-

lary 4.21). So Z4 has infinite left global dimension since it is left Noetherian

with infinite weak dimension. It follows there exists a Gorenstein-projective Z4-

module C with infinite projective dimension, and so M is not projective since

P0 = GP0 fl W . Note also Z4 is a 0-Gorenstein ring, since Z4 is injective and left

and right Noetherian.

The Gorenstein-projective model structure on modules over Z4 is not monoidal

since condition (3) of Theorem A.1 does not hold: Z4 ¢Z
4

C ≥= C ”œ GP0 fl W
although Z4 œ GP0 fl W and C œ GP0.

These arguments also work to show that the Gorenstein-projective model structure

on Ch(RMod) is not monoidal in general. It su�ces to consider D1(Z4) and

S0(C), where D1(Z4) ¢ S0(C) ≥= D1(C), which is not projective but Gorenstein-

projective.
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In a similar way, one can show that the Gorenstein-injective and Gorenstein-flat

model structures are not monoidal on modules or chain complexes over Z4.

Are the n-projective and n-flat model structures monoidal?:

The answer is that they are not in general if n Ø 1. Consider the case R = Z.

Note that Z2 is a Z-module in P1, since it is not projective and there exists a

short exact sequence 0 æ Z 2◊æ Z fiæ Z2 æ 0 where 2◊ is the map x ‘æ 2 ◊ x

and fi is the canonical projection x ‘æ x œ {0, 1}. Now let X be the complex

given by the previous sequence, where X1 = Z, X0 = Z and X≠1 = Z2. We

have X œ ÊP1 ™ ÊPn. Consider also the complex S0(Z2), which is in dg ÊPn since

Ext1
Ch(Z)(S0(Z2), Y ) ≥= Ext1

Z(Z2, Z0Y ) = 0 for every Y œ (̂Pn)‹. Now we compute

S0(Z2) ¢ X:

(S0(Z2) ¢ X)m =
n

kœZ
S0(Z2)k ¢Z Xm≠k = Z2 ¢ Xm =

Y
________]

________[

Z2 ¢Z Z if m = 1,

Z2 ¢Z Z if m = 0,

Z2 ¢Z Z2 if m = ≠1,

0 otherwise.

It is not hard to see that ˆ
S0(Z

2

)¢X
1 is the zero map, so the sequence

· · · æ 0 æ Z2 ¢Z Z
ˆ

S0

(Z
2

)¢X
1 æ Z2 ¢Z Z

ˆ
S0

(Z
2

)¢X
0 æ Z2 ¢Z Z2 æ 0 æ · · ·

is not exact. We have that 0 æ S0(Z2) is a cofibration, 0 æ X is a trivial

cofibration, but the induced map (0 æ S0(Z2))⇤(0 æ X) = 0 æ S0(Z2) ¢ X

is cofibration but not a weak equivalence. Therefore, the n-projective model

structure on Ch(Z) is not monoidal with respect to the tensor product ¢.

We show also that the n-projective model structure on Ch(Z), with n Ø 1, is not

monoidal with respect to ¢. Consider the complex X given above. We have
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(S0(Z2)¢X)m =

Y
________]

________[

(S0(Z2) ¢ X)1/B1(S0(Z2) ¢ X) if m = 1,

(S0(Z2) ¢ X)0/B0(S0(Z2) ¢ X) if m = 0,

(S0(Z2) ¢ X)≠1/B≠1(S0(Z2) ¢ X) if m = ≠1,

0 otherwise.

=

Y
_____]

_____[

Z2 ¢Z Z if m = 1,

Z2 ¢Z Z if m = 0,

0 otherwise.

Then S0(Z2)¢X = · · · æ 0 æ Z2 ¢Z Z ˆ
S0

(Z
2

)¢X
1 æ Z2 ¢Z Z æ 0 æ · · · where

ˆ
S0(Z

2

)¢X
1 is the zero map. Hence S0(Z2)¢X is not an exact complex, and so the

induced chain map 0 æ S0(Z2)¢X = (0 æ S0(Z2))⇤(0 æ X) is not a trivial

cofibration.

These counterexamples also work for the n-flat model structure.





APPENDIX II

RELATIVE EXTENSIONS AND NATURAL
TRANSFORMATIONS FROM DISK AND SPHERE CHAIN

COMPLEXES

The extension functors Exti
C(≠, ≠) have their analogues in Gorenstein homolog-

ical algebra. Suppose C is a Gorenstein category. As an application of the com-

pleteness of (GP0(C), W(C)), for every object X we can construct an exact left

Gorenstein-projective resolution of the form

· · · C1 C0 X 0

W1 W0

f0 f0

i 1 i 0
p1

Let C• be the deleted complex · · · æ C1 æ C0 æ 0. Given an object Y œ Ob(C),

the mth cohomology of the complex HomC(C•, Y ) is denoted by GExtm
C (X, Y ).

Similarly, for every object Y œ Ob(C) we can construct a right Gorenstein-injective

resolution 0 æ Y æ D0 æ D1 æ · · · . If D• denotes the deleted complex

0 æ D0 æ D1 æ · · · , then for every object X œ Ob(C), the mth cohomology

group of the complex HomC(X, D•) coincides with GExtm
C (X, Y ). We shall later

give a proof of this fact.
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We shall call the functors GExtm
C (X, ≠) and GExtm

C (≠, Y ) the Gorenstein-extension

functors.

The objective of this appendix is to construct Gorenstein-like versions of Propo-

sitions 1.6.2 and 1.6.3. We do this by expressing GExt1
C(X, Y ) as the subgroup of

EC(X, Y ) composed by the classes of short exact sequences Y Òæ Z ⇣ X which

are also HomC(GP0(C), ≠)-exact.

Definition B.1. Let C, D and E be Abelian categories and T : C ◊ D æ E be

an additive functor contravariant in the first variable and covariant in the second.

Let F and G be classes of objects of C and D, respectively. Then T is said to be

right balanced by F ◊ G if:

(1) For every object X of C, there is a T (≠, G)-exact complex

· · · æ F1 æ F0 æ X æ 0

with Fi œ F for every i Ø 0.

(2) For every object Y of D, there is a T (F , ≠)-exact complex

0 æ Y æ G0 æ G1 æ · · ·

with Gi œ G for every i Ø 0.

If, on the other hand, the complexes

· · · æ F1 æ F0 æ X æ 0 and 0 æ Y æ G0 æ G1 æ · · ·

are T (G, ≠)-exact and T (≠, F)-exact, respectively, then T is said to be left balanced

by G ◊ F .

Example B.1.

(1) Let C be an Abelian category with enough projective and injective objects.

The functor HomC(≠, ≠) is right balanced on C ◊ C by P0(C) ◊ I0(C).
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(2) If R is a left Noetherian ring, then HomR(≠, ≠) is left balanced on RMod ◊
RMod by I0 ◊ I0.

(3) Recall that a left (or right) R-module M is finitely presented if there is an

exact sequence 0 æ K æ F æ M æ 0 where F and K are finitely generated

left R-modules and F is free. A ring R is left (resp. right) coherent if every

finitely generated left (resp. right) ideal of R is finitely presented. For such

an R, HomR(≠, ≠) is left balanced on ModR ◊ ModR by F0 ◊ F0.

The first example is a well know fact. For (2) and (3), the reader can see the

details in (21, Examples 8.3.4 & 8.3.6). The following result is proven in (21,

Theorem 12.1.4) for the case C =R Mod with R an n-Iwanaga-Gorenstein ring.

Let C, D and E be Abelian categories and T : C ◊ D æ E be a functor con-

travariant in the first variable and covariant in the second. If F and G are

classes of objects of C and D, respectively, and T is right balanced on C ◊ D by

F ◊ G, then the complexes T (F•, Y ) and T (X, G•) have isomorphic homology,

for every pair of objects X, Y œ Ob(C).

Theorem B.1 (see (21, Theorem 8.2.14))

We shall see in the next lemma that the Hom functor is right balanced by GP0(C)◊
GI0(C). As a consequence, we have that the right derived functors GExti

C(X, Y )

of HomC(X, Y ) can be computed by using left Gorenstein-projective resolutions

of X or right Gorenstein-injective resolutions of Y .



296

Let C be a Gorenstein category. Then HomC(≠, ≠) is right balanced on C ◊ C
by GP0(C) ◊ GI0(C).

Lemma B.2

Proof .

We only prove that for every object X œ Ob(C) there exists an exact and HomC(≠, GI0(C))-

exact left Gorenstein-projective resolution

· · · æ C1 æ C0 æ X æ 0.

A proof of the dual statement can be found in (21, Lemma 12.1.2) for the category

RMod. Let X be an object of C. Let · · · æ C1
f

1æ C0
f

0æ X æ 0 be an exact left

Gorenstein-projective resolution of X such that:

(1) Ker(f0) = W0 œ W(C).

(2) For every k > 0 there are short exact sequences Wk
ik
Òæ Ck

pk⇣ Wk≠1 with

fk = ik≠1 ¶ pk.

Let D œ GI0(C). We show

0 æ HomC(X, D) æ HomC(C0, D) æ HomC(C1, D) æ · · ·

is exact. Note that the sequence

0 æ HomC(Wk≠1, D) æ HomC(Ck, D) æ HomC(Wk, D) æ 0

is exact for every k > 0, since Wk≠1 œ W(C) and D œ GI0(C). So it su�ces to

show that the sequence

0 æ HomC(X, D) æ HomC(C0, D) æ HomC(W0, D) æ 0

is exact (Actually, we only need to show that HomC(C0, D) æ HomC(W0, D) is

surjective). Since D is Gorenstein-injective, there exists an exact sequence of
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injective objects · · · æ I1
g

1æ I0
g

0æ I0 g0æ I1 g1æ · · · such that D = Ker(I0 æ I1).

On the other hand, there exists m Ø 0 and an exact finite left projective resolution

of W0, say 0 æ Pm
rmæ Pm≠1 æ · · · æ P1

r
1æ P0

r
0æ W0 æ 0 for some nonnegative

m œ Z, since W0 œ W(C). Consider a map W0
hæ D. Since P0, . . . , Pk are

projective, we can find fillers Pj
hjæ Ij for 0 Æ j < m and Pm

hmæ DÕ = Ker(gm≠1),

to obtain a commutative diagram

0 Pm Pm≠1 · · · P1 P0 W0 0

0 DÕ Im≠1 · · · I1 I0 D 0

rm

hm hm≠1

r1

h1

r0

h0 h

k g1 g0

Consider the short exact sequence

0 æ Pm
rmæ Pm≠1

dmæ Im(rm≠1) æ 0.

We have Ext1
C(Im(rm≠1), DÕ) ≥= Extm

C (W0, DÕ) = 0 since Im(rm≠1) œ �m≠1(W0)

and so DÕ is Gorenstein-injective. It follows there exists a morphism Pm≠1
Ïm≠1æ DÕ

such that Ïm≠1 ¶ rm = hm. Working with the same exact sequence, we have

(hm≠1≠gm¶Ïm≠1)¶rm = 0 and so there is a unique morphism Im(rm≠1)
Ï̂m≠1æ Im≠1

such that ]Ïm≠1 ¶ dm = hm≠1 ≠ gm ¶ Ïm≠1. In a similar way, we can find a map

Pm≠2
Ïm≠1æ Im≠1 such that the following diagram commutes:

0 Ker(rm≠2) Pk≠2 Im(rm≠2) 0

Im≠1

]Ïm≠1
Ïm≠2

We keep on repeating this procedure until we find a map W0
Ï≠1æ I0 such that

Ï≠1 ¶ r0 = h0 ≠ g1 ¶ Ï0. Note (g0 ¶ Ï≠1 ≠ h) ¶ r0 = g0 ¶ Ï≠1 ¶ r0 ≠ h ¶ r0 =

g0 ¶ (h0 ≠ g1 ¶ Ï0) ≠ h ¶ r0 = g0 ¶ h0 ≠ h ¶ r0 = 0. It follows h = g0 ¶ Ï≠1 since r0 is

epic. On the other hand, since I0 is injective, there exists a unique map C0
s

0æ I0

such that the following diagram commutes:
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0 W0 C0 X 0

I0

i0

Ï≠1

f0

s 0

It follows h = (g0 ¶ s0) ¶ i0, and hence HomC(C0, D) æ HomC(W0, D) is onto.

Remark B.2.1 (see (21, Section 12.1)). We have the following properties:

(1) GExt0
C(X, Y ) ≥= HomC(X, Y ) for every pair X, Y œ Ob(C).

(2) X is a Gorenstein-projective object if, and only if, GExtm
C (X, Y ) = 0 for every

m > 0 and every Y œ Ob(C).

(3) Y is a Gorenstein-injective object if, and only if, GExtm
C (X, Y ) = 0 for every

m > 0 and every X œ Ob(C).

(4) Since GP0(C) is a pre-covering class closed under finite direct sums, by The-

orem 1.4.2 (2), if 0 æ X Õ æ X æ X ÕÕ æ 0 is a HomC(GP0(C), ≠)-exact

sequence, then there is a long exact sequence for every Y œ Ob(C):

· · · æ GExtm
C (X, Y ) æ GExtm

C (X Õ, Y ) æ GExtm+1
C (X ÕÕ, Y ) æ · · ·

(5) Since GI0(C) is a pre-enveloping class closed under finite direct sums, by the

dual of Theorem 1.4.2 (1), if 0 æ Y Õ æ Y æ Y ÕÕ æ 0 is a HomC(≠, GI0(C))-

exact sequence, then there is a long exact sequence for every X œ Ob(C):

· · · æ GExtm
C (X, Y ) æ GExtm

C (X, Y ÕÕ) æ GExtm+1
C (X, Y Õ) æ · · ·

Recall that in Chapter 1 we saw that for every pair of objects X and Y of

an Abelian category C with enough projective and injective objects, the group

Ext1
C(X, Y ) is isomorphic to the group EC(X, Y ) of classes of short exact sequences

Y Òæ Z ⇣ X under certain equivalence relation. Let F and G be classes of objects

of C and define FE(X, Y ) (resp. EG(X, Y )) as the subset of EC(X, Y ) composed
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by the classes of short exact sequences Y Òæ Z ⇣ X which are HomC(F , ≠)-

exact (resp. HomC(≠, G)-exact). After showing that these subsets are actually

subgroups of EC(X, Y ), we shall give a relationship between them and the right

derived functors of HomC(X, Y ) obtained by using left F -resolutions of X and

right G-resolutions of Y .

Let S1 = Y Òæ Z1 ⇣ X and S2 = Y Òæ Z2 ⇣ X be two short exact sequences

in an Abelian category C, and F and G be classes of objects of C.
If S1 and S2 are HomC(F , ≠)-exact,

then so is S1 +B S2.

If S1 and S2 are HomC(≠, G)-exact,

then so is S1 +B S2.

Proposition B.3

Proof .

First we prove the left statement. Suppose S1 and S2 are HomC(F , ≠)-exact. For

the Baer sum S1 +B S2 = Y
–

1

+B–
2

Òæ Z1 +B Z2
—

1

+B—
2⇣ X, recall we have the pullback

diagram
Y Y

Y Z1 ◊X Z2 Z2

Y Z1 X

„–2 –2
„–1

–1

flZ
1

flZ
2

—2

—1

Recall also that –1 +B –2 = fi¶ „–1 = fi¶ „–2, and that —1 +B —2 is the filler satisfying

(—1 +B —2) ¶ fi = —1 ¶ flZ
1

= —2 ¶ flZ
2

. To show

0 æ HomC(F, Y ) æ HomC(F, Z1 +B Z2) æ HomC(F, X) æ 0

is exact for every F œ F , it su�ces to verify that HomC(F, Z1+BZ2) æ HomC(F, X)

is onto. Let h œ HomC(F, X). Since the maps HomC(F, Z1) æ HomC(F, X) and
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HomC(F, Z2) æ HomC(F, X) are surjective, there exist morphisms F
f

1æ Z1 and

F
f

2æ Z2 such that h = —1 ¶ f1 and h = —2 ¶ f2. By the universal property of

pullbacks, there exists a unique map F
f

12æ Z1 ◊X Z2 such that flZ
1

¶ f12 = f1 and

flZ
2

¶ f12 = f2. Set f := fi ¶ f12 : F æ Z1 +B Z2. We have (—1 +B —2) ¶ f = h.

For the right statement, there is no need to use the universal property of pullbacks.

Let G œ G. We show HomC(Z1 +B Z2, G) æ HomC(Y, G) is surjective. For

i = 1, 2, let Zi
liæ G be maps such that li ¶–i = h. Then the sum l1 ¶flZ

1

+ l2 ¶flZ
2

:

Z1◊XZ2 æ G satisfies (l1¶flZ
1

+l2¶flZ
2

)¶(„–1≠„–2) = 0. So by the universal property

of cokernels, there is a unique map Z1+B Z2
læ G such that l¶fi = l1¶flZ

1

+l2¶flZ
2

.

It follows that l ¶ (–1 +B –2) = h.

Notice FE(X, Y ) and EG(X, Y ) are not empty since Y Òæ Y ü X ⇣ X is both

HomC(F , ≠)-exact and HomC(≠, G)-exact. After restricting +B on the products

FE(X, Y ) ◊ FE(X, Y ) and EG(X, Y ) ◊ EG(X, Y ), we get binary operations

FE(X, Y ) ◊ FE(X, Y ) æ FE(X, Y ) and EG(X, Y ) ◊ EG(X, Y ) æ EG(X, Y ).

With these restrictions, both FE(X, Y ) and EG(X, Y ) are subgroups of EC(X, Y ).

Assume F is a pre-covering class of C. Let X œ Ob(C) and F• be a deleted left

F -resolution of X. For every object Y œ Ob(C), denote the right nth derived

functor of HomC(≠, Y ) evaluated at X by

F -Extn
C(X, Y ) := Rn(HomC(≠, Y ))(X).

Dually, if G is a pre-enveloping class of C, then for every object Y œ Ob(C) and

every deleted right G-resolution G• of Y , we denote the right nth derived functor

of HomC(X, ≠) evaluated at Y by

Extn
C-G(X, Y ) := Rn(HomC(X, ≠))(Y ).
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Let F and G be the left and right halves of two complete cotorsion pairs

(F , F‹) and (‹G, G) (so they are closed under finite biproducts, and F (resp.

G) is pre-covering (resp. pre-enveloping)). There are group isomorphisms:

F -Ext1
C(X, Y ) ≥= FE(X, Y ). Ext1

C-G(X, Y ) ≥= EG(X, Y ).

Theorem B.4

Proof .

We only construct the left isomorphism. Consider a representative

S = Y
–

Òæ Z
—⇣ X

of a class in FE(X, Y ). Since (F , (F)‹) is a complete cotorsion pair, we can

obtain an exact left F -resolution · · · æ F1
f

1æ F0
f

0æ X æ 0 (apply the reasoning

given in Proposition 4.3.1). Recall F -Ext1
F(X, Y ) = Ker(fú

2

)
Im(fú

1

) , where f ú
1 : g œ

HomC(F0, Y ) ‘æ g ¶ f1 œ HomC(F1, Y ) and f ú
2 : h œ HomC(F1, Y ) ‘æ h ¶ f2 œ

HomC(F2, Y ). Since S is HomC(F , ≠)-exact, the sequence HomC(F0, S) is also

exact. So there exists a morphism g0 : F0 æ Z such that f0 = — ¶ g0. Note

that — ¶ (g0 ¶ f1) = 0, and since S is exact, there exists a unique homomorphism

gS : F1 æ Y such that – ¶ gS = g0 ¶ f1.

Y

Z

· · · F2 F1 F0 X 0
f2 f1 f0

g 0

gS

–

—

On the other hand, f ú
2 (gS) = gS ¶f2, and –¶(gS ¶f2) = (–¶gS)¶f2 = (g0¶f1)¶f2 =

g0 ¶ (f1 ¶ f2) = 0. Since – in a monomorphism, we have gS ¶ f2 = 0. Then

gS œ Ker(f ú
2 ). One can check that the map � : FE(X, Y ) æ F -Ext1

C(X, Y ) defined
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by �([S]) := gS + Im(f ú
1 ), where gS + Im(f ú

1 ) is the class of gS in F -Ext1
C(X, Y ),

is a well defined group homomorphism.

Now we show � is monic. Suppose S = Y
–

Òæ Z
—⇣ X is a representative such that

gS +Im(f ú
1 ) = �([S]) = 0+Im(f ú

1 ). Then gS = r ¶f1 for some morphism F0
ræ Y .

It follows (g0 ≠ – ¶ r) ¶ f1 = 0 and — ¶ (g0 ≠ – ¶ r) = f0. Hence we may assume

gs = 0. Note that there is a unique morphism X
k

0æ Z such that k0 ¶f0 = g0, since

g0 ¶ f1 = 0 and the left F -resolution of X is exact. It follows (— ¶ k0) ¶ f0 = f0

and so — ¶ k0 = idX , since f0 is epic.

To show that � is also epic, let h œ F -Ext1
C(X, Y ). Then we have h ¶ f2 = 0,

and so there exists a unique morphism Ker(f0) hÕæ Y such that hÕ ¶ „f1 = h, where

f1 = F1
‚f
1æ Im(f1)

j
0æ Y .

Im(f2) F1 Ker(f0)

Y

j1
„f1

h ÷! hÕ

Taking the pushout of j0 and hÕ, we get the following commutative diagram with

exact rows:

Ker(f0) F0 X

Y Y
‡

Ker(f
0

) F0 X

j0

–

f0

—

hÕ i

One can check that the following diagram commutes:
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Y

Y
‡

Ker(f
0

) F0

· · · F2 F1 Ker(f0) F0 X 0

–

—
f2

„f1 j0 f0

h
Õ ¶„f1

h
Õ

i

f1

We have the following commutative diagram with exact rows:

· · · F2 F1 F0 X 0

0 Y Y
‡

Ker(f
0

) F0 X 0

f2 f1

h

f0

i

– —

To show that the bottom row is HomC(F , ≠)-exact, it su�ces to verify that the

homomorphism HomC(F, Y
‡

Ker(f
0

) F0) æ HomC(F, X) is surjective, for every F œ
F . The diagram

· · · HomC(F, F2) HomC(F, F1) HomC(F, F0) HomC(F, X) 0

0 HomC(F, Y ) HomC(F, Y
‡

Ker(f
0

) F0) HomC(F, X) 0

is commutative in Ab, where the top row is exact, so

HomC

Q

aF, Y
·

Ker(f
0

)
F0

R

b æ HomC(F, X)

is onto. Then h + Im(f ú
1 ) = hÕ ¶ „f1 + Im(f ú

1 ) = �
1Ë

Y Òæ Y
‡

Ker(f
0

) F0 ⇣ X
È2

.
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Let C be a Gorenstein category. There are group isomorphisms:

GExt1
C(X, Y ) ≥= GP

0

(C)E(X, Y ). GExt1
C(X, Y ) ≥= EGI

0

(C)(X, Y ).

Corollary B.5

We shall present some natural isomorphisms for Gorenstein-extension functors

involving disk and sphere chain complexes. Let F and G as in the previous theo-

rem. In the case of disk complexes, we consider the subgroup ÂFE(X, Dn+1(M)) of

ECh(C)(X, Dn+1(M)), in order to construct an isomorphism to FE(Xn, M). For

example, if F = GP0(C), this situation seems to be inappropriate at a first glance,

since we cannot replace the group GExt1
Ch(C)(X, Dn+1(M)) by ^GP

0

(C)E(X, Dn+1(M)).

However, we shall see ^GP
0

(C)E(X, Dn+1(M)) and GP
0

(Ch(C))E(X, Dn+1(M)) turn

out to be the same group if C is a Gorenstein category.

Let C be an Abelian category and F and G be classes of objects of C. If

M œ Ob(C) and X, Y œ Ch(C), then we have natural isomorphisms:
FE(Xn, M) (1)æ dw ÂFE(X, Dn+1(M)).

EG(Xn, M) (2)æ EdwÂG(X, Dn+1(M)).
FE(M, Yn) (1Õ)æ dwÂF E(Dn(M), Y ).

EG(M, Yn) (2Õ)æ EdwÂG(Dn(M), Y ).

Proposition B.6

Proof .

The maps constructed in (27, Lemma 3.1) work to define (1), (2), (1’) and (2’).

(1) Let [S] = [0 æ Dn+1(M) æ Z æ X æ 0] œ dw ÂFE(X, Dn+1(M)). Since

the sequence 0 æ Dn+1(M) æ Z æ X æ 0 is exact in Ch(C), we have

0 æ M æ Zn æ Xn æ 0 is exact in C. We show it is also HomC(F , ≠)-

exact. Let F œ F . Then Dn(F ) œ dw ÂF . We have the following commutative

diagram:
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0 HomC(F, M) HomC(F, Zn) HomC(F, Xn) 0

0 Hom
Ch(C)(Dn(F ), Dn+1(M)) Hom

Ch(C)(Dn(F ), Z) Hom
Ch(C)(Dn(F ), X) 0

≥= ≥= ≥=

Since the bottom row is exact and the vertical arrows are isomorphisms, we

have that the top row is also exact. So [0 æ M æ Zn æ Xn æ 0] œ
FE(Xn, M).

Define a map � : dw ÂFE(X, Dn+1(M)) æ FE(Xn, M) by setting

[0] Dn+1(M) Z X [0]

[0 M Zn Xn [0]
�

It is not hard to verify that � is a well defined group homomorphism.

Now we construct an inverse � : FE(Xn, M) æ dwÂF E(X, Dn+1(M)) for �.

Consider a class [S] = [0 æ M
–æ Z

—æ Xn æ 0] œ FE(Xn, M). Consider

the pullback of — and ˆX
n+1. We get the following commutative diagram with

exact rows:

0 M Z ◊Xn Xn+1 Xn+1 0

0 M Z Xn 0

Â–n+1

=

Â—n+1

ˆ ÂZ
n+1 ˆX

n+1

– —

Let ÂZ be the complex · · · æ Xn+2
ˆX

n+2æ Z ◊Xn Xn+1
ˆÂZ

n+1æ Z
ˆÂZ

næ · · · , where

ˆ ÂZ
n := ˆX

n ¶ —, ˆ ÂZ
n+2 is the map induced by the universal property of pullbacks

satisfying Â—n+1 ¶ˆ ÂZ
n+2 = ˆX

n+2, and ˆ ÂZ
k = ˆX

k for every k ”= n, n+1, n+2. From

this we get an exact sequence Dn+1(M) –̃
Òæ Z̃

—̃⇣ X in Ch(C), where –̃ and —̃

are the chain maps given by:
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Â–k =

Y
_____]

_____[

– if k = n,

Â–n+1 if k = n + 1,

0 otherwise.

and Â—k =

Y
_____]

_____[

— if k = n,

Â—n+1 if k = n + 1,

idXk
otherwise.

We prove that the previous sequence is Hom(dw ÂF , ≠)-exact. Let F œ dw ÂF
and suppose we are given a map F

fæ X. We want to find a chain map

g : F ≠æ Z̃ such that —̃ ¶ g = f :
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. . .

. . . . . . . . .

Fn+2

0 Z̃n+2 Xn+2

Fn+1

M Z̃n+1 Xn+1

Fn

M Z̃n Xn

Fn≠1

0 Z̃n≠1 Xn≠1

. . .

. . . . . . . . .

ˆ Fn+2

f
n+

2

ˆ Fn+1

f
n+

1

ˆ Fn

f
n

f
n≠

1

ˆ ÂZn+2

ˆ Xn+2

–n+1 —n+1

ˆ ÂZn+1

ˆ Xn+1

–n —n

ˆ ÂZn

ˆ Xn

gn+2

gn+1

gn

gn≠1
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We set gm = fm if m Ø n + 2 or m Æ n ≠ 1. Since the nth sequence is

HomC(F , ≠)-exact, there exists gn : Fn æ Z such that —n ¶ gn = fn. We

have ˆ ÂZ
n ¶ gn = ”n ¶ gn = ˆX

n ¶ —n ¶ gn = ˆX
n ¶ fn = fn≠1 ¶ ˆF

n = gn≠1 ¶ ˆF
n .

Now by the universal property of pullbacks, there exists a homomorphism

gn+1 : Fn+1 æ Z ◊Xn Xn+1 such that the following diagram commutes:

Fn+1

Z ◊Xn Xn+1 Xn+1

Z Xn

g
n ¶

ˆ F
n+1

fn+1

g
n+1

Â—n+1

ˆ
ÂZn+

1

—

ˆ
Xn+

1

In order to show that g = (gm)mœZ is a chain map, it is only left to show that

gn+1 ¶ ˆF
n+1 = ˆ ÂZ

n+2 ¶ gn+2 = ˆ ÂZ
n+2 ¶ fn+2. Note that the following diagram

commutes:

Fn+2

Z ◊Xn Xn+1 Xn+1

Z Xn

fn+1 ¶ ˆ F
n+2

0

g
n+1 ¶ ˆ F

n+1ˆ ÂZ
n+2 ¶ f

n+2
Â—n+1

ˆ
ÂZn+

1

ˆ
Xn+

1

—

By the universal property of pullbacks, we get gn+1 ¶ ˆF
n+2 = ˆ ÂZ

n+2 ¶ fn+2.

Hence, we have a chain map g : F æ Z̃ such that —̃ ¶ g = f .
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We set a map � : FE(Xn, M) æ dw ÂFE(X, Dn+1(M)) by

[0] M Z Xn [0]

[0 Dn+1(M) ÂZ X [0]

– —

–̃ —̃

�

It is not hard to see that � is a well defined group homomorphism such that

id
dwÂF E(X,Dn+1(M)) = � ¶ � and idF E(Xn,M) = � ¶ �.

(2) We use the same construction given in (1). Given a class

[0 æ Dn+1(M) æ Z æ X æ 0]

in EdwÂG(X, Dn+1(M)), one can show as in (1) that the sequence

0 æ M æ Zn æ Xn æ 0

is HomC(≠, G)-exact, by using Proposition 1.3.1 (2).

Now if we are given an exact and HomC(≠, G) sequence

0 æ M
–æ Z

—æ Xn æ 0,

we show that the short exact sequence of complexes obtained by taking the

pullback of — and ˆX
n+1 is Hom

Ch(C)(≠, dw ÂG)-exact. Let G œ dw ÂG. We con-

struct a chain map ÂZ hæ G such that the following diagram commutes for a

given chain map Dn+1(M) fæ G:
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. . . . . . . . .

. . . 0 Xn+2 Xn+2

Gn+2 M ÂZn+1 Xn+1

Gn+1 M Z Xn

Gn 0 Xn≠1 Xn≠1

Gn≠1
. . . . . . . . .

. . .

ˆ G
n+2

ˆ G
n+1

ˆ G
n

hn+1

0
hn+2

hn

ˆ ÂZ
n+2

ˆ X
n+2

ˆ ÂZ
n+1

ˆ X
n+1fn+1

fn

ˆ ÂZ
n

ˆ X
n

fn≠1
hn≠1

Â–n+1

–

Â—n+1

—

For every k ”= n, n + 1, we set hk = 0. Since the sequence

0 æ M æ Z æ Xn æ 0

is HomC(≠, G)-exact, there exists a map Z
hÕ

n+1æ Gn+1 such that fn+1 = hÕ
n+1¶–.

Set hn+1 := hÕ
n+1 ¶ ˆ ÂZ

n+1 and hn := ˆG
n+1 ¶ hÕ

n+1. We have:

hn+1 ¶ Â–n+1 = hÕ
n+1 ¶ ˆ

ÂZ
n+1 ¶ ‚– = hÕ

n+1 ¶ – = fn+1,

hn ¶ – = ˆG
n+1 ¶ hÕ

n+1 ¶ – = ˆG
n+1 ¶ fn+1 = fn,

hn+1 ¶ ˆ
ÂZ
n+2 = hÕ

n+1 ¶ ˆ
ÂZ
n+1 ¶ ˆ

ÂZ
n+2 = 0 = ˆG

n+1 ¶ hn+2,

hn ¶ ˆ
ÂZ
n+1 = ˆG

n+1 ¶ hÕ
n+1 ¶ ˆ

ÂZ
n+1 = ˆG

n+1 ¶ hn+1,

hn≠1 ¶ ˆ
ÂZ
n = 0 = ˆG

n ¶ ˆG
n+1 ¶ hÕ

n+1 = ˆG
n ¶ hn.
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Hence, h = (hk : k œ Z) is a chain map satisfying h ¶ Â– = f , and so

Dn+1(M) Â–
Òæ ÂZ

Â—⇣ X is Hom
Ch(C)(≠, dw ÂG)-exact.

In the previous proof, note that when we chose Dn(F ) with F œ F , we have

that Dn(F ) is actually a complex in ÂF . So we can restrict � and get a map

ÂFE(X, Dn+1(M)) æ FE(Xn, M). On the other hand, if we assume F is closed

under extensions, we have that Fn œ F for every F œ ÂF (it su�ces to consider

the sequence Zn(F ) Òæ Fn ⇣ Zn≠1(F ) for each n œ Z). So under this additional

hypothesis, we can obtain an inverse FE(Xn, M) æ ÂFE(X, Dn+1(M)) of the map

ÂFE(X, Dn+1(M)) æ FE(Xn, M). We have the following result:

Let C be an Abelian category and F and G be classes of objects of C which

are closed under extensions. If M œ Ob(C) and X, Y œ Ch(C), then we have

natural isomorphisms:
FE(Xn, M) (1)æ ÂFE(X, Dn+1(M)).

EG(Xn, M) (2)æ EÂG(X, Dn+1(M)).
FE(M, Yn) (1Õ)æ ÂF E(Dn(M), Y ).

EG(M, Yn) (2Õ)æ EÂG(Dn(M), Y ).

Proposition B.7

It follows that when F and G are closed under extensions, ÂFE(X, Dn+1(M)) ≥=
dw ÂFE(X, Dn+1(M)), EÂG(X, Dn+1(M)) ≥= EdwÂG(X, Dn+1(M)), ÂF E(Dn(M), Y ) ≥=
dwÂF E(Dn(M), Y ), and EÂG(Dn(M), Y ) ≥= EdwÂG(Dn(M), Y ). This seems to be

a weird behaviour at a first glance, but this can be clarified in the following

statement.
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Let C be an Abelian category and F and G be classes of objects of C which

are closed under extensions. Suppose we are given short exact sequences

S = 0 æ Dn+1(M) æ Z æ X æ 0 and S Õ = 0 æ Y æ Z æ Dn(M) æ 0.

Then:

(1) S is Hom(dw ÂF , ≠)-exact i� it is

Hom( ÂF , ≠)-exact.

(2) S is Hom(≠, dw ÂG)-exact i� it is

Hom(≠, ÂG)-exact.

(1’) S Õ is Hom(dw ÂF , ≠)-exact i� it

is Hom( ÂF , ≠)-exact.

(2’) S Õ is Hom(≠, dw ÂG)-exact i�, it

is Hom(≠, ÂG)-exact.

Proposition B.8

Proof .

We only prove (1). The implication (=∆) is clear, since ÂF ™ dw ÂF if F is

closed under extensions. Now suppose S is Hom
Ch(C)( ÂF , ≠)-exact. Note that

S and the sequence 0 æ Dn+1(M) æ ÊZn æ X æ 0 constructed in Propo-

sition B.6 are equivalent, so the result will follow if we show that the latter

sequence is Hom
Ch(C)(dw ÂF , ≠)-exact. Since 0 æ Dn+1(M) æ ÊZn æ X æ 0

is Hom
Ch(C)( ÂF , ≠)-exact, we know the sequence 0 æ M æ Zn æ Xn æ 0 is

HomC(F , ≠)-exact. Then as we did is the proof of Proposition B.6, we have that

0 æ Dn+1(M) æ ÊZn æ X æ 0 is Hom
Ch(C)(dw ÂF , ≠)-exact.

Let C be an Abelian category. Let M œ Ob(C) and X, Y œ Ch(C). We have

the following natural isomorphisms:
GP

0

E(Xn, M) (1)æ GP
0

E(X, Dn+1(M)).

EGI
0

(Xn, M) (2)æ EGI
0

(X, Dn+1(M)).

EGI
0

(M, Yn) (1Õ)æ EGI
0

(Dn(M), Y ).

GP
0

E(M, Yn) (2Õ)æ GP
0

E(Dn(M), Y ).

Corollary B.9
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Proof .

It su�ces to show that GP0(Ch(C)) ™ dwĜP0(C) in any Abelian category (not

necessarily Gorenstein), and apply the argument used in Proposition B.6. If C is a

Gorenstein-projective complex, then there exists a Hom
Ch(C)(≠, P0(Ch(C)))-exact

and exact sequence · · · æ P1 æ P0 æ P 0 æ P 1 æ · · · of projective complexes

such that C = Ker(P 0 æ P 1). Let P be a projective object of C. Then Dn+1(P )

is a projective complex. We have a commutative diagram

· · · Hom
Ch(C)(P 0, Dn+1(P )) Hom

Ch(C)(P0, Dn+1(P )) · · ·

· · · HomC((P 0)n, P ) HomC((P0)n, P ) · · ·
≥= ≥=

where the top row is exact. It follows

· · · æ (P1)n æ (P0)n æ (P 0)n æ (P 1)n æ · · ·

is an exact and HomC(≠, P )-exact sequence of projective objects of C such that

Cn = Ker(P 0 æ P 1)n = Ker((P 0)n æ (P 1)n), i.e. Cn is Gorenstein-projective.

Remark B.1.

(1) If C is a Gorenstein category, we can give an easier proof of the previous

corollary. Given a complex X, there is an exact sequence W Òæ C ⇣ X where

C œ GP0(Ch(C)) and W œ Ŵ(C). At the nth level we have an exact sequence

W n Òæ Cn ⇣ Xn, with Cn œ GP0(C) and W n œ W(C). Since the former and

latter sequences are Hom
Ch(C)(GP0(Ch(C)), ≠)-exact and HomC(GP0(C), ≠)-

exact, respectively, by Theorem 1.4.2, Corollary B.5, and Proposition 1.3.1,

we have a commutative diagram
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Hom(X, Dn+1(M)) Hom(C, Dn+1(M)) Hom(W, Dn+1(M)) GP
0

(Ch(C))E(X, Dn+1(M))

Hom(Xn, M) Hom(Cn, M) Hom(W n, M) GP
0

(C)E(Xn, M)

≥= ≥= ≥=

The rightmost arrow is the only map induced by the universal property of cok-

ernels making the right square commutative. It is not hard to see that this ar-

row is an isomorphism. It follows GExt1
Ch(C)(X, Dn+1(M)) ≥= GExt1

C(Xn, M),

and similarly, GExt1
Ch(C)(Dn(M), Y ) ≥= GExt1

C(M, Yn).

(2) The same reasoning works to give a simpler proof of the isomorphisms given

in Proposition 1.6.2, assuming C has enough projective and injective objects.

Note that in the case where F = P0(C), we have ECh(C)(X, Dn+1(M)) =

P̂
0

(C)E(X, Dn+1(M)) ≥= P
0

(C)E(Xn, M) = EC(Xn, M). The same applies for

the class G = I0(C).

Let C be an Abelian category, and F and G be two classes of objects of C
which are closed under extensions. Let M œ Ob(C) and X, Y œ Ob(Ch(C)).

There exist natural monomorphisms:
FE( Xn

Bn(X) , M)
(1)
Òæ ÂF E(X, Sn(M)).

EG( Xn
Bn(X) , M)

(2)
Òæ EÂG(X, Sn(M)).

FE(M, Zn(Y ))
(1Õ)
Òæ ÂFE(Sn(M), Y ).

EG(M, Zn(Y ))
(2Õ)
Òæ EÂG(Sn(M), Y ).

Proposition B.10

Proof .

(1) We consider the dual of the isomorphism given by J. Gillespie in (25, Lemma

4.2). Suppopse 0 æ M
–æ Z

—æ Xn
Bn(X) æ 0 is an exact and HomC(F , ≠)-exact

sequence. Taking the pullback of — and fiX
n : Xn æ Xn

Bn(X) , we can construct

the following commutative diagram with exact rows
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... ... ...

0 0 Xn+2 Xn+2 0

0 0 Xn+1 Xn+1 0

0 M ÂZn Xn 0

0 0 Xn≠1 Xn≠1 0

0 0 Xn≠2 Xn≠2 0

... ... ...

ˆX
n+2 ˆX

n+2

ˆ ÂZ
n+1 ˆX

n+1
Â–n

Â—n

ˆ ÂZ
n

ˆX
n

ˆX
n≠1 ˆX

n≠1

where Â–n and Â—n are the morphisms appearing in the pullback diagram

0 M ÂZn Xn 0

0 M Z Xn
Bn(X) 0

Â–n
Â—n

flZ fiX
n

– —

The arrow ˆ ÂZ
n+1 is the map induced by the universal property of pullbacks such

that Â—n ¶ˆ ÂZ
n+1 = ˆX

n+1 and flZ ¶ˆ ÂZ
n+1 = 0, and ˆ ÂZ

n := ˆX
n ¶ Â—. The central column

is a complex and so we have an exact sequence 0 æ Sn(M) Â–æ ÂZ
Â—æ X æ 0

in Ch(C). We show this sequence is also Hom
Ch(C)( ÂF , ≠)-exact. Let F œ ÂF

and consider a chain map F
fæ X. We construct a chain map F

hæ ÂZ such

that the following diagram commutes:
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. . .

. . . . . . Fn+1

Xn+1 Xn+1 Fn

ÂZn Xn Fn≠1

Xn≠1 Xn≠1
. . .

. . . . . .

ˆ F
n+1

ˆ F
n

fn+1

fn

fn≠1

ˆ ÂZ
n+1

ˆ ÂZ
n

Â—n

hn+1

hn

hn≠1

Note that fiX
n ¶ fn ¶ ˆF

n+1 = 0. Factoring ˆF
n+1 as iBn(F ) ¶ ‰ˆF

n+1, where iBn(F ) :

Bn(F ) æ Fn is the inclusion and ‰ˆF
n+1 is epic, we have fiX

n ¶fn ¶ iBn(F ) = 0. By

the universal property of cokernels, there is a unique map fn : Fn
Bn(F ) æ Xn

Bn(X)

such that the following diagram commutes:

Bn(F ) Fn
Fn

Bn(F )

Xn
Bn(X)

fi X
n ¶ f

n

iBn(F ) fiX
n

÷! fn

On the other hand, we have Fn
Bn(F )

≥= Zn≠1(F ) œ F . Since the sequence

M
–

Òæ Z
—⇣ Xn

Bn(X) is HomC(F , ≠)-exact, there exists a morphism Fn
Bn(F )

hÕ
næ Z

such that the following diagram commutes:
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Fn
Bn(F )

M Z Xn
Bn(X)

fn

– —

÷ h
Õ
n

Since F is closed under extensions and F is exact, we have Fn œ F . Using the

universal property of pullbacks, we get the following commutative diagram

Fn

Z ◊ Xn
Bn(X)

Xn Xn

Z Xn
Bn(X)

fn

h Õ
n ¶

fi F
n

Â—n

flZ fiX
n

—

÷! h
n

Set hk = fk for every k ”= n. We have Â—k ¶ hk = fk for every k œ Z. We check

h = (hk : k œ Z) is a chain map. The equality hn ¶ ˆF
n+1 = ˆ ÂZ

n+1 ¶ fn+1 follows

by the commutativity of the following diagram:

Fn+1

Z ◊ Xn
Bn(X)

Xn Xn

Z Xn
Bn(X)

h
n ¶ ˆ F

n+1
ˆ ÂZ
n+1 ¶ f

n+1

fn ¶ ˆ F
n+1

0

Â—n

flZ

—

fiX
n

On the other hand, ˆ ÂZ
n ¶ hn = ˆX

n ¶ Â—n ¶ hn = ˆX
n ¶ fn = fn≠1 ¶ ˆF

n . Therefore,

h is a chain map satisfying Â— ¶ h = f , i.e. 0 æ Sn(M) æ ÂZ æ X æ 0 is

Hom
Ch(C)( ÂF , ≠)-exact.
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Since the map E( Xn
Bn(X) , M) æ E(X, Sn(M)) constructed by Gillespie is monic,

the restriction FE( Xn
Bn(X) , M) æ ÂFE(X, Sn(M)) is also monic.

(2) Suppose 0 æ M æ Zn
Bn(Z) æ Xn

Bn(X) æ 0 is an exact and HomC(≠, G)-exact

sequence. Let G œ ÂG and consider a chain map Sn(M) fæ G. We construct

a chain map ÂZ hæ G such that h ¶ Â– = f , i.e. such that the diagram in the

following page commutes.

Since ˆG
n ¶ fn = 0, there exists a unique map fn in completing the following

commutative diagram

Zn(G) Gn Zn≠1(G)

M
fn

fn

iZn(G) „̂G
n

On the other hand, M Òæ Z ⇣ Xn
Bn(X) is HomC(≠, G)-exact and Zn(G) œ G, so

there is a morphism Z
hÕ

næ Zn(G) such that hÕ
n ¶ – = fn. Set hk = 0 for every

k ”= n and hn := iZn(G) ¶ hÕ
n ¶ flZ .

ˆG
n ¶ hn = 0 = hn≠1 ¶ ˆ ÂZ

n ,

hn ¶ ˆ ÂZ
n+1 = iZn(G) ¶ hÕ

n ¶ flZ ¶ ˆ ÂZ
n+1 = 0 = ˆG

n+1 ¶ hn+1,

hn ¶ Â–n = iZn(G) ¶ hÕ
n ¶ flZ ¶ Â–n = iZn(G) ¶ hÕ

n ¶ – = iZn(G) ¶ fn = fn.

Hence, h is a chain map satisfying h ¶ Â– = f .
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. . . . . .

. . . 0 Xn+2

Gn+2 0 Xn+1

Gn+1 M ÂZn

Gn 0 Xn≠1

Gn≠1 0 Xn≠2

Gn≠2
. . . . . .

. . .

fn+2

ˆ G
n+2

ˆ G
n+1

ˆ G
n

ˆ G
n≠1

ˆ X
n+2

ˆ X
n+1

ˆ X
n

ˆ X
n≠1

Â–n

fn+1

fn

fn≠1

fn≠2

hn+2

hn+1

hn

hn≠1

hn≠2

Similarly, the map EG( Xn
Bn(X) , M)

(2)
Òæ EÂG(X, Sn(M)) is also monic.

Remark B.2. If the complex X in the previous theorem is exact and HomC(F , ≠)-

exact, then the map FE( Xn
Bn(X) , M) Òæ ÂFE(X, Sn(M)) is invertible.

First, note that given a class of objects F in an Abelian category C, if X is an exact

and HomC(F , ≠)-exact complex, then the sequence Zm(X) Òæ Xm ⇣ Zm≠1(X) is

also HomC(F , ≠)-exact. Since the sequence
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· · · æ HomC(F, Xm+1) æ HomC(F, Xm) æ HomC(F, Xm≠1) æ · · ·

is exact for every F œ F , we obtain the exact sequence

Ker(HomC(F, ˆX
m)) Òæ HomC(F, Xm) ⇣ Ker(HomC(F, ˆX

m≠1))

for every m œ Z. It is not hard to see that Ker(HomC(F, ˆX
m)) ≥= HomC(F, Zm(X)).

Then the result follows.

In the case F is a class closed under extensions, the inverse of the homomorphism

EC( Xn
Bn(X) , M) Òæ ECh(C)(X, Sn(M)) restricted to the group ÂFE(X, Sn(M)) yields

the inverse of FE( Xn
Bn(X) , M) Òæ ÂFE(X, Sn(M)) if the complex X is exact and

HomC(F , ≠)-exact. For if 0 æ Sn(M) æ Z æ X æ 0 is exact and Hom( ÂF , ≠)-

exact, then we can deduce that the sequence 0 æ M æ Zn æ Xn æ 0 is

HomC(F , ≠)-exact, by considering disk complexes Dn(F ) with F œ F and using

Proposition 1.3.1. We show 0 æ M æ Zn
Bn(Z)

—næ Xn
Bn(X) æ 0 is also HomC(F , ≠)-

exact. Consider a map F
fæ Xn

Bn(X) with F œ F . By the previous comments, there

exists a map F
f Õæ Xn such that the following diagram commutes:

F

0 Bn(X) Xn
Xn

Bn(X) 0
f

fiX
n

÷ f
Õ

It follows the existence of a map F
hÕæ Zn making the following diagram commute:

F

0 M Zn Xn 0
f Õ

—n

÷ h
Õ

Set h := ˆZ
n ¶ hÕ. We have —n ¶ h = —n ¶ ˆZ

n ¶ hÕ = ˆX
n ¶ —n ¶ hÕ = ˆX

n ¶ f Õ = f , and

hence 0 æ M æ Zn
Bn(Z)

—næ Xn
Bn(X) æ 0 is HomC(F , ≠)-exact.
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Dually, if Y is exact and HomC(≠, G)-exact, then EG(M, Zn(Y )) æ EÂG(Sn(M), Y )

is invertible.

Let C be an Abelian category. Let M œ Ob(C) and X and Y be exact chain

complexes. There exist natural monomorphisms:

EdwÂG(X, Sn(M)) Òæ EG( Xn
Bn(X) , M). dw ÂFE(Sn(M), Y ) Òæ FE(M, Zn(Y )).

Proposition B.11

Proof .

We only prove the left statement. It su�ces to show that the restriction on

EdwÂG(X, Sn(M)) of the isomorphism ECh(C)(X, Sn(M)) Òæ EC( Xn
Bn(X) , M) is well

defined. So consider an exact and Hom
Ch(C)(≠, dw ÂG)-exact sequence

0 æ Sn(M) æ Z æ X æ 0.

If G œ G, then Sn(G) œ dw ÂG. By Proposition 1.3.1, we have the following

commutative diagram

0 Hom
Ch(C)(X, Sn(G)) Hom

Ch(C)(Z, Sn(G)) Hom
Ch(C)(Sn(M), Sn(G)) 0

0 HomC( Xn
Bn(X) , G) HomC( Zn

Bn(Z) , G) HomC(M, G) 0

≥= ≥= ≥=

where the top row is exact. It follows the bottom row is also exact.

The previous two propositions can be used to obtain an isomorphism between

GExt1
Ch(C)(X, Sn(M)) and GExt1

C( Xn
Bn(X) , M), but we also need the following lemma:
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Let C be a Gorenstein category and 0 æ Y
–æ Z

—æ X æ 0 be an exact

sequence in Ch(C).
If X is exact, then this sequence

is Hom(GP0(Ch(C)), ≠)-exact if, and

only if, it is Hom(ĜP0(C), ≠)-exact.

If Y is exact, then this sequence

is Hom(≠, GI0(Ch(C)))-exact if, and

only if, it is Hom(≠, ĜI0(C))-exact.

Lemma B.12

Proof .

We prove the left statement. The implication =∆ is clear. Now suppose the

sequence 0 æ Y æ Z æ X æ 0 is Hom
Ch(C)(ĜP0(C), ≠)-exact and that we

are given a chain map C
fæ X with C œ GP0(Ch(C)). Since C is Gorenstein,

the pair (GP0(Ch(C)), Ŵ(C)) is complete (see Proposition 4.2.3). So there ex-

ists a short exact sequence 0 æ W æ C Õ ræ X æ 0, where W œ Ŵ(C)

and C Õ œ GP0(Ch(C)). On the one hand, we have the induced cotorsion pairs

(ĜP0(C), dgŴ(C)) and (dgĜP0(C), Ŵ(C)), since (GP0(C), W(C)) is complete. On

the other hand, GP0(Ch(C)) = ‹(Ŵ(C)) = dgĜP0(C). It follows ĜP0(C) =

dgĜP0(C) fl E = GP0(Ch(C)) fl E . Since W and X are exact, we have C Õ œ
GP0(Ch(C)) fl E = ĜP0(C). Using the fact that 0 æ Y æ Z æ X æ 0 is

Hom
Ch(C)(ĜP0(C), ≠)-exact, we find a map C Õ hæ Z such that — ¶ h = r. Further-

more, the sequence 0 æ W æ C Õ ræ X æ 0 is Hom
Ch(C)(GP0(Ch(C)), ≠)-exact,

so there is a map C
gæ C Õ such that r ¶g = f . We have the following commutative

diagram:
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0

W

C Õ C

0 Y Z X 0

0

r

g

f

—

h

Therefore, f = —¶(h¶g) and 0 æ Y æ Z æ X æ 0 is Hom
Ch(C)(GP0(Ch(C)), ≠)-

exact.

Remark B.3.

(1) As we did in Remark B.1, we can prove that GExt1
Ch(C)(X, Sn(M)) and

GExt1
C( Xn

Bn(X) , M) are isomorphic assuming that X is an exact chain com-

plex over a Gorenstein category C. We start with a short exact sequence

W Òæ C ⇣ X where C œ GP0(Ch(C)) and W œ Ŵ(C). Notice that this

sequence is HomC(GP0(Ch(C)), ≠)-exact. By Lemma 1.8.2, we have the short

exact sequence W n
Bn(W ) Òæ Cn

Bn(C) ⇣ Xn
Bn(X) , with Cn

Bn(C)
≥= Zn≠1(C) œ GP0(C)

(since C œ GP0(Ch(C)) fl E ≥= ĜP0(C)) and W n
Bn(W )

≥= Zn≠1(W ) œ W(C). The

previous sequence is HomC(GP0(C), ≠)-exact. Then the existence of the fol-

lowing commutative diagram follows:

Hom
Ch(C)(X, Sn(M)) Hom

Ch(C)(C, Sn(M)) Hom
Ch(C)(W, Sn(M)) EGP

0

(Ch(C))(X, Sn(M))

HomC( Xn
Bn(X) , M) HomC( Cn

Bn(C) , M) HomC( W n
Bn(W ) , M) EGP

0

(C)( Xn
Bn(X) , M)

≥= ≥= ≥= ≥=
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The dual statement can be proven similarly.

(3) The same reasoning used in (2) works to give a simpler proof of the iso-

morphisms given in Proposition 1.6.3, assuming C has enough projective or

injective objects.
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