Entropy-expansiveness and domination

M. J. Pacifico, J. L. Vieitez *

May, 5, 2006

Abstract

Let $f: M \to M$ be a C^r -diffeomorphism defined in a compact boundaryless surface M, d = 2, 3. We prove that if K is a compact f-invariant subset of M with a dominated splitting then f/K is h-expansive. Reciprocally, if there exists a C^r neighborhood of f, \mathcal{U} , such that for $g \in \mathcal{U}$ there exists K_g compact invariant such that g/K_g is h-expansive then there is a dominated splitting for K_g .

1 Introduction

In order to obtain results about the complexity of the dynamics: recurrence, existence of periodic orbits, SRB measures, etc., one usually try to express dynamic properties at the infinitesimal level, ie: precise definitions are given prescribing the behaviour of the tangent map $Df: TM \to TM$ of a diffeomorphism $f: M \to M$. Examples of that are the concepts of hyperbolicity and the existence of dominated splittings. On the other hand a robust dynamic property (i.e. a property that holds for a system and all nearby ones) should leave its *impromptus* in the behaviour of the tangent map of those differentiable systems sharing that property. In [PPV], [SV] and [PPSV] it has been studied the influence of expansiveness when it holds in a homoclinic class H associated to a hyperbolic periodic point p such that H and the corresponding homoclinic classes H_g , for all diffeomorphism g nearby f, are expansive. It is proved there that in that case there exists dominated splitting and moreover that it is hyperbolic in the codimension one case ([PPV], [PPSV]). In the general codimension case we also obtain hyperbolicity adding an extra hypothesis called germ-expansiveness (see [SV]).

In this paper we relax expansiveness asking what should be the properties of the

^{*}Partially supported by CNPq, FAPERJ, Pronex Dyn. Systems and CSIC-Uy 2000 Mathematics Subject Classification: 37D30

tangent map Df of a diffeomorphism f such that robustly exhibits h-expansiveness (entropy-expansiveness, see definitions below). We obtain that for such maps it exists a dominated splitting. On the other hand we prove that if K admits a dominated splitting then it is h-expansive. Thus robust h-expansiveness is equivalent to the existence of domination in the two dimensional case.

Moreover, we give here an example of a C^{∞} diffeomorphism that is not *h*-expansive. By a result of Buzzi (see [Bu]) such an example is asymptotically *h*-expansive since it is C^{∞} . The first examples of diffeomorphisms that are not *h*-expansive and even not asymptotically *h*-expansive were given by Misiurewicz in [Mi] answering a question posed by Bowen. We give our example here because of its good properties from various points of view. First it is clear that it has not a dominated splitting. Second it is defined on S^2 , is ergodic and even has Bernoulli property. Third it admitts analytic models a stronger property than being C^{∞} .

Let us now give precise definitions. Let M be a compact connected boundaryless Riemmanian d-dimensional manifold and $f: M \to M$ a homeomorphism. Let K be a compact invariant subset of M and dist $: M \times M \to \mathbb{R}^+$ a distance in Mcompatible with its Riemannian structure. For $E, F \subset K, n \in \mathbb{N}$ and $\delta > 0$ we say that $E(n, \delta)$ spans F with respect to f if for each $y \in F$ there is $x \in E$ such that dist $(f^j(x), f^j(y)) \leq \delta$ for all $j+0, \ldots, n-1$. Let $r_n(\delta, F)$ denote the minimum cardinality of a set that (n, δ) spans F. Since K is compact $r_n(\delta, F) < \infty$. We define

$$h(f, F, \delta) = \lim \sup_{n \to \infty} \frac{1}{n} \log(r_n(\delta, F))$$

and

$$h(f,F) = \lim_{\delta \to 0} h(f,F,\delta) \,.$$

The last limit exists since $h(f, F, \delta)$ increases as δ decreases to zero.

For $x \in K$ let us define

$$\Gamma_{\epsilon}(x) = \{ y \in M \, / \, d(f^n(x), f^n(y)) \le \epsilon \} \, .$$

Following Bowen (see [Bo]) we say that f/K is **entropy-expansive** or *h*-**expansive** iff there exists $\epsilon > 0$ such that

$$h_f^*(\epsilon) = \sup_{x \in K} h(f, \Gamma_\epsilon(x)) = 0.$$

The importance of f being *h*-expansive is that the topological entropy of f restricted to K, h(f/K), is equal to its estimate using ϵ : $h(f, K) = h(f, K, \epsilon)$. More precisely: **Theorem 1.1.** For all homeomorphism f defined in a compact invariant set K it holds

$$h(f,K) \le h(f,K,\epsilon) + h_f^*(\epsilon)$$
 in particular $h(f,K) = h(f,K,\epsilon)$ if $h_f^*(\epsilon) = 0$.

Proof. See [Bo], Theorem 2.4.

A weaker property of that of being *h*-expansive is that of being asymptotically *h*-expansive ([Mi]). Let K be a compact metric space and $f: K \to K$ an homeomorphism. We say that f is asymptotically *h*-expansive iff

$$\lim_{\epsilon \to 0} h_f^*(\epsilon) = 0$$

Thus we do not require that for a certain $\epsilon > 0$ $h_f^*(\epsilon) = 0$ but that $h_f^*(\epsilon) \to 0$ when $\epsilon \to 0$. It has been proved by Buzzi that any C^{∞} diffeomorphism defined on a compact manifold is asymptotically *h*-expansive. Hence our example although not *h*-expansive is asymptotically *h*-expansive.

Our main results are the following:

Definition 1.1. We say that a compact f-invariant set Λ admits a dominated splitting if the tangent bundle $T_{\Lambda}M$ has a continuous f-invariant splitting $E \oplus F$ and there exist $C > 0, 0 < \lambda < 1$ such that

$$\|Df^n|E(x)\| \cdot \|Df^{-n}|F(f^n(x))\| \le C\lambda^n \ \forall x \in \Lambda, \ n \ge 0.$$

Theorem A. Let M be a compact boundary-less C^{∞} surface and $f : M \to M$ be a C^r diffeomorphism such that $K \subset M$ is a compact f-invariant subset with a dominated splitting $E \oplus F$. Then f/K is h-expansive.

Since the property of having a dominated splitting is open we may conclude that any $g C^1$ close to f is such that g/K_g is *h*-expansive.

In case M is a d-dimensional manifold with $d \ge 3$ dominance alone is not enough to guarantee h-expansiveness as it is shown in the examples.

Reciprocally one has

Theorem B. Let M and $f : M \to M$ be as in Theorem A and H(p) an f-homoclinic class associated to the f-hyperbolic periodic point p. Assume that there is a C^1 neighborhood \mathcal{U} of f such that for any $g \in \mathcal{U}$ it holds that there is a continuation $H(p_g)$ of H(p) such that $H(p_g)$ is h-expansive. Then H(p) has a dominated splitting.

References

[BDP]	BONATTI, CH, DIAZ, L.J., PUJALS, E., $A C^1$ -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math., Vol. (1999), p
[Bo]	R. BOWEN, <i>Entropy-expansive maps</i> , Transactions of the American Mathematical Society, vol 164 (February 1972), p. 323-331.
[Bu]	J. BUZZI, Intrinsic ergodicity for smooth interval map, Israel J. Math., 100 (1997), p. 125-161.
[DPU]	L.J. DIAZ, E.R. PUJALS, R. URES, <i>Partial hyperbolicity and robust transitivity</i> , Acta Mathematica, Vol. 183 (1999), p. 1-43.
[DRV]	L.J. DIAZ, J. ROCHA, M. VIANA, Strange attractors in saddle- node cycles: prevalence and globality, Invent. Math., Vol. 125 No 1 (1996), p. 37-74.
[Fr]	J. FRANKS, Necessary conditions for stability if diffeomorphisms, Trans. Amer. Math. Soc., 158 (1971), p. 301-308.
[Ge]	MARLIES GERBER, Conditional stability and real analytic pseudo- Anosov maps, Mem. Amer. Math. Soc., 54 1985.321
[LL]	J. LEWOWICZ, E. LIMA DE SÁ, Analytic models of pseudo-Anosov maps, Erg. Th. Dynam. Sys, 6 (1986), p. 385-392.
[Ma1]	R. MAÑÉ, An ergodic closing lemma, Annals of Mathematics, 116 (1982), p. 503-540.
[Mi]	M. MISURIEWICZ, Diffeomorphisms without any measure with maximal entropy, Bull. Acad. Polon. Sci., 21 (1973), p. 903-910.
[Nh]	S. NEWHOUSE, New phenomena associated with homoclinic tan- gencies, Ergod. Th. & Dynam. Sys., 24 (2004), p. 1725-1738.
[Nh2]	S. NEWHOUSE, The abundance of wild hypebolic sets and non- smooth stable sets for diffeomorphisms, Inst. Haute Études Sci. Publ. Math., 50 (1979), p. 101-151.
[Pl1]	V. A. PLISS, Analysis of the necessity of the conditions of Smale and Robbin for structural stability of periodic systems of differential equations, Diff. Uravnenija, 8 (1972), p. 972-983.

[PS1]	E. PUJALS, M. SAMBARINO, Homoclinic tangencies and hyperbol- icity for surface diffeomorphisms, Annals of Mathematics, 151 (2000), p. 961-1023.
[PS2]	E. PUJALS, M. SAMBARINO, On the Dynamics of Dominated Split- ting, Preprint, (2002), p
[PPV]	M. J. PACIFICO, E. R. PUJALS, J. L. VIEITEZ, <i>Robust expansive homoclinic classes</i> , Ergodic Theory and Dynamical Systems, 25 (2005), p. 271-300.
[PPSV]	M. J. PACIFICO, E. PUJALS, M. SAMBARINO, J. VIEITEZ, <i>Robustly expansive codimension-one homoclinic classes are hyperbolic</i> , submitted in Ergodic Theory and Dynamical Systems, preprint (), p
[Sm]	S. SMALE, <i>Diffeomorphisms with many periodic points</i> , Differential and Combinatorial Topology, Princeton University Press 1965.
[SV]	M. SAMBARINO, J. VIEITEZ, On C ¹ -persistently Expansive Homo- clinic Classes, Discrete and Continuous Dynamical Systems, 14, No.3 (2006), p. 465-481.