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Abstract: The elliptical stadium is a curve constructed by joining two half-ellipses,
with half axes a > 1 and b = 1, by two straight segments of equal length 2h.

Donnay [6] has shown that if 1 < a < \/2 and if h is big enough, then the
corresponding billiard map has a positive Lyapunov exponent almost everywhere;

moreover, h —> oo as a —> ^/2.

In this work we prove that if 1 < a < \/4 - 2\/2, then h > 2a2Va2 — 1 as-
sures the positiveness of a Lyapunov exponent. And we conclude that, for these
values of a and h, the elliptical stadium billiard mapping is ergodic and has the
AΓ-property.

1. Introduction

The plane billiard consists in the free motion of a point particle on a connected
bounded region in ^2, being reflected elastically at the boundary. The billiard de-
fines a 2-dimensional discrete dynamical system.

Depending on the boundary, this discrete dynamical system may have different
dynamical behaviour. For instance, if it is a circle or an ellipse, it is known that the
system is integrable, and the phase space is ordered by invariant curves (Fig. 1).

A quite different situation appears when the components of the boundary have
negative curvature. The system is, then, ergodic and almost every orbit is dense on
the phase space (as in Sinai billiards).

The first example of an ergodic billiard with convex boundary was given by
Bunimovich [3]. The boundary is the circular stadium, composed by joining two
half-circles by means of two straight segments of equal length.

A convex generalization is the elliptical stadium, composed by two half-ellipses,
with half axes a ^ 1 and b = 1, joined by two straight segments of equal length
2h. For a = 1, i.e., for the circular stadium billiard, h > 0 implies the existence
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Fig. 1. Phase space of the circular, the elliptical and the circular stadium billiards.

of a positive Lyapunov exponent almost everywhere. This will not be the case for
a φ 1 and small values of h, because the structure of the phase space of the elliptical
billiard is not as degenerate as that of the circular billiard (Fig. 1).

V. Donnay, in [6], proved that for the billiard on the elliptical stadium, if
1 < a < \/2 and h is sufficiently big, then there is a positive Lyapunov exponent
almost everywhere. Also that h must grow as a increases to \/2. And he gives a
challenge: "One could try to calculate bounds on these lengths."

In [4], Canale and Markarian studied this problem numerically and, varying α,
found a value h(a) such that if 0 ^ h < h(a), the billiard does not seem to be
chaotic and, if h > h(a), it seems ergodic.

In this article we give a partial answer to Donnay's challenge. We prove that if

1 < a < v 4 — 2Λ/2, then h > 2a2^/a2 — 1 assures the positiveness of a Lyapunov
exponent. To do so, we construct a cone-field, eventually strictly invariant under the
derivative of the billiard map, and apply Wojtkowski's Theorem [14]. The magic

number v4 —2\/2 is related to the structure of bifurcation of hyperbolic caustic
periodic orbits of the elliptical billiard (see Fig. 3).

The existence of a positive Lyapunov exponent, meaning sensitive dependence
on initial conditions, does not automatically imply ergodicity. However, in this
example, as the numerical experiments suggest, ergodicity (and K-property) can be
proved. In fact, the additional conditions required on the Fundamental Theorem of
Sinai and Chernov are satisfied by this system (see [10] and [8]).

2. Billiards

Let Γ be an oriented plane closed curve, or a finite set of (topologically) closed
curves on the plane, and Q the region enclosed by Γ. The billiard problem consists
in the free motion of a point particle on Q, being reflected elastically at the impacts
on Γ. At any instant, the state of the particle is determined by its position and
velocity. Since the motion is free on β, all the motion is determined either by two
consecutive points of reflection at Γ or by the point of reflection and the direction
of motion immediately after each reflection.

Let t e [0,L) be a parameter for Γ and the direction of motion be determined
by the angle θ with the tangent to the boundary. The billiard defines a map T from
the annulus si — [0,1) x (0,π) into itself. Let (*o,0o) and ( t \ , θ \ ) e rf be such that
Γ(fo,0o) — (*ι>0ι) As usual, we will call t either the value of the parameter or the
point Γ ( t ) at the boundary. If Γ is Ck, k ^ 2, in some neighborhoods of to and
/i, then Γ is a C^^-diffeomorphism in some neighborhoods of (fo,0o) and ( t \ , θ \ )
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[13]. T also preserves the measure dμ — sinθdθ^ds [2], where s is the arclength
parameter for Γ.

(j/,μ, T) defines a discrete dynamical system, whose orbits are given by
f (j. f\ \ TYl (-f £1 \ M / ^ ^ l
i I I pi, Oγι I — L I ίQ, "0 / j •' t ^/ r .

The polygonal on Q, whose vertices are Γ(tn\ n G Z, is often called the tra-
jectory of the particle. Because of the obvious correspondence between orbits and
trajectories, we will call both of them either orbits or trajectories.

2.7. The Elliptical Billiard. Given an orthogonal coordinate system in ^2, let Γ be

the ellipse ^ + jμ2 = 1, with a > 1. We will use the angle φ between the oriented
tangent and the c-axis as a parameter for Γ (Fig. 2). We will call half-ellipses the
pieces of Γ corresponding to 0 ^ φ ^ π and π ̂  φ ^ 2π.

Each trajectory has a conic caustic, confocal with Γ. If a segment of a given
trajectory cuts the segment joining the two foci, all the other segments of this
trajectory will cut it and the caustic will be a hyperbola. If it passes by one focus,
the trajectory will always pass by the foci, thus having the two foci as a degenerate
caustic. Otherwise, the caustic will be an ellipse (see, for instance [5]).

The phase space of the elliptical billiard is the annulus sf = [0,2π) x (0,π),
with coordinates φ and θ. As Γ is C°°, the map Γ:s/ —> j/ is a C°°-diffeomor-
phism, where (φ\,θ\) = Γ(φ0?#o) is given by:

_ αtany —αtanφo _ 20tan(φ0 + #o)

(αtan(φ0 4- #o))2 '

θ} =φ\ -(<po + 0o), (1)

and the derivative of T is (see, for instance [13]):

oi
lol-R0smθQ-Rlsmθl lol

Fig. 2. Coordinates for the elliptical billiard.
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where /oi is the distance between (jt(φo), X<Po)) and (x(φ\), y(φ\)), and /?/ =
a2 /(a2 sin φ, -f cos2φ/)3/2 is the radius of curvature at φ/, / — 0, 1.

Γ has no fixed points and has exactly four two-periodic orbits, being two elliptic
(both eigenvalues of DT2 have moduli one) and two hyperbolic (the moduli of the
eigenvalues of DT2 are one smaller and the other greater than one).

The function F(φ,θ) = "»<>- η* 9 where ε - λ is me eccentricity of the
v*rs / l—εzcoszφ a J

ellipse Γ9 is a first integral for Γ, i.e., F is constant on orbits under T (see, for
instance, [7]). Physically, F may be interpreted as the product of angular momenta

about the two foci [1]. Geometrically, ^/|F(φo,#o)| measures the length of the
minor axis of the conical caustic [12]. So, for every a > 1, the phase space ^ is
foliated by the level curves of F (Fig. 1 ).

Let us call $ = {trajectories with elliptical caustic} and ffl = {trajectories with
hyperbolic caustic}. The obvious correspondence between trajectories on the con-
figuration space Q and orbits on the phase space $4 gives the following geometrical
interpretation:

- trajectories over the major axis <-> period 2, hyperbolic orbits, F = 0
- trajectories over the minor axis <->• period 2, elliptic orbits, F — 1 — a2

- trajectories that pass by the foci *-* saddle connection, F = 0
- trajectories on $ <-» orbits with F > 0
- trajectories on 3tf <-» orbits with 1 — a2 < F < 0.

Because of this interpretation, we will also call $ the set of orbits with F > 0 and
$e the set of orbits with 1 - a2 < F < 0.

Poncelet's theorem [5] assures that trajectories that share the same caustic have
the same dynamical behaviour. And to each conical caustic, or equivalently, to each
integral curve F — k, we can associate a rotation number (see, for instance, [11]).

For k > 0 (trajectories on <f) Jacobi coordinates (see, for instance [5]) give
a natural conjugation between <f and the trajectories of the circular billiard with
θή=π/2. It follows that, to each k > 0 we can associate a rotation number p(k) G
(0, 1 ), such that:

- p = - G Q, (n,p) = 1 corresponds to periodic orbits of period p, with

- p G ̂ \Q corresponds to dense orbits (dense on the level curve).
For 1 — a2 < k < 0 (trajectories on 3tf ) notice that every periodic orbit has

an even period and (0, π/2) and (π, π/2) are elliptic fixed points of the integrable,
measure preserving diffeomorphism Γ2, with eigenvalues

λj = e

2πiv'(a\ where v/α) = ̂  arctan ̂  ^^ J = ̂  2

Notice that for a = V2,λj = ±l.
So, to every level curve it is associated a rotation number τ such that

, λv(a) = - arctan — r — — < τ < 1 .
π a2 - 2

- τ = - G Q, («, p) = 1, corresponds to periodic orbits of period 2p, crossing

2n times the minor axis of Γ.
- τ G J*\Q corresponds to dense orbits (dense on the level curve).
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Notice that v(α) is strictly decreasing, v(a) —> 1, as a —> 1+ and v(a) —> 0+, as
a —» +00. This indicates the first difference between the trajectories on S and on
3tf\ for each β > 1, we have periodic orbits of every period on $9 but not on Jjf.
For instance, orbits of period 4 exist only for a > \/2, or there is no period 8 orbits

if a < \/4 - 2\/2. On Fig. 3, we show the bifurcation diagram for periodic orbits
on Jf.

Another difference lies on where the trajectory touches the conical caustic. The
tangency to the caustic on $ always occurs inside Q (i.e., inside the original ellipse)
and so, inside the segment of trajectory that joins two reflections at Γ. However,
on Jf7, the tangency may occur outside Q, i.e., you do not necessarily have the
point of tangency between two reflections at Γ. It may occur even at infinity, if a
segment of trajectory is contained on an asymptote of the caustic hyperbola.

The results below give conditions to allow tangencies on Q for trajectories
on tf.

Lemma 1. Suppose that a trajectory {Γ"(φo>$o)} £ 3? has two consecutive
reflections at the same half-ellipse. If 1 < a < Λ/2, then the tangency between
the segment joining those two reflections and the hyperbolic caustic occurs inside
the billiard.

Proof. Suppose that those two consecutive reflections are at φo € [0,π/2] and
φ\ G [π/2,π] (the other cases are symmetrical). We will call φ$φ\ the segment
joining Γ(φQ) to Γ(φ\).

For a fixed φo> if $o = π/2 — Φo> then φ$φ\ touches the caustic at its vertex
(and so, inside Q). Suppose that there is a θ such that φ\ G [π/2, π], and φ$φ\

touches the caustic outside Q. Then there is a 00 such that φ\ e [π/2,π], and ψoφ\
has the tangency exactly at the boundary. But this means that either Γ(φ0) or Γ(φι)
is the intersection of the hyperbolic caustic and the elliptical boundary and, since
they form an orthogonal family, either ΘQ or θ\ = π/2.

period 8
r = 3/4

period 6
τ = 2/3

period 4
r = l2

period 6
τ = 1/3

period 8
r = 1/4

/4-2v/2 2Λ/3/3 χ/2 2 -y/4 + 2^2

Fig. 3. Diagram of bifurcation of periodic orbits on
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But if 1 < a < >/2, φ0 € [fou/2, (* + l)π/2]
[(& + 2)π/2, (& + 3)π/2] [6], and this implies that φo
half-ellipse.

and Θ0 = π/2, then φi G
and <pι are not on the same

Lemma 2. Suppose that a trajectory {Tn(φQ, #0)} € ̂  has two consecutive reflect-

ions, φ0 and φ\,at the same half -ellipse. If\<a< Λ/4 — 2\/2, //ze« //?£ tangency
between each one of the segments φ-\(pQ and φ$φ\ and the hyperbolic caustic
occurs ίnisde the billiard.

Proof. {Tn(φQ,θQ)} G 2tf . So, F(φ0,θo) = k0 < 0. Fix this hyperbolic caustic ICQ.
Call θ(φ) the solution of F(φ,θ(φ)) = &0. The piece of trajectory (φ_ι,0(φ_ι)),
(0,0(0)), ( < p ι , θ ( φ ι ) ) is such that 0 and φ\ G [0,π], and φ_\ and 0 G [π,2π]. So,

by Lemma 1, and since \/4 — 2\/2 < Λ/2, 0<pι and φ_ιO touch the hyperbola in-
side Q. Suppose that for a given φo € [0, π/2], F(φo>0o) = ^o? φi ^ [π/2, π] and
ψ-\φQ touches the hyperbola outside £λ Then, there exists a φ0 G [0, π/2], with

) = &o, G [π/2,π], and φ-\φ0 has the tangency exactly at the bound-

ary. Since φ\ G [π/2,π] and a < Λ/2, θ(φ-\) — π/2.
Fix now the configuration (φ_ι,π/2) i-> (φ0, #o) ^^ (φi^iX φ-i ^ [3π/2,π],

φo € [0,π/2], φi G [π/2,π]. There exists a k\, 0 > A:j > AQ> such that F(φo,θo) =
k\, and the piece of trajectory is (φ_ι,π/2) »— > (φ0,0o) μ^ (^^ι) Completing this
trajectory, we see that it has period 8 and crosses the minor axis 6 times, or has

τ = 3/4 that exists only if a > \/4 — 2\/2.

Corollary 1. Suppose that a trajectory {Tn(φQ,θo)} G Jf /z<xs ίwo consecutive

reflections φ0 ^^^ φi ^^ fλe ^αm^ half-ellipse. If I < a < ^/4 — 2\/2, /A^w ίA^
tangency between each one of the segments φ-\φo, (poφ\ and ~φ\φϊ and the hyper-
bolic caustic occurs inside the billiard.

Proof. Apply Lemma 2 twice.

2.2. The Billiard on the Elliptical Stadium. The boundary of the elliptical stadium
is a curve Γ constructed by joining two half-ellipses, with major axes a > 1 and
minor axes b = 1, by two segments of equal length 2h, as shown in Fig. 4.

Γ is a Jordan curve, convex, but not strictly convex, globally C1 but not C2,
and piecewise C°°. We parametrize Γ by the angle φ on the half-ellipses and by
the arclength parameter on the straight parts.

Fig. 4. Elliptical stadium.



Chaotic Properties of the Elliptical Stadium

The billiard map associated to Γ

S : [0, 2π + 4A] x (0, π) -> [0, 2π + 4A] x (0, π)

667

is piecewise C°°, but globally only C°.
The derivative of S is

- if fe and t\ belong to the elliptical part, then DS^ΘQ) is equal to (2);
- if f0 belongs to the elliptical part and f i to the straight part, then

DS,
_

'(/0'"o)~"

/oi
-sinθ,

(3)

- if to belongs to the straight part and t\ belongs to the elliptical part, then

_
(ί°'%) " ~

i
—k\ sin0ι k\h\ — smθ\

- if to and t\ belong to the straight part, then

DS<
-1 /oι/sinθι

0 -1

(4)

(5)

where &/ is the curvature of the ellipse at φz and /Oι is the length of the segment tQt\.

It is easy to see that for every (f0,0o), with tQ G (0,π) (resp. (π -f 2A, 2π -f 2A)),
there exists an /ι = /ι(f0,θo) such that 5lf(ί0,θo) = (^θπ), with ίn G (π + 2A, 2π + 2A)
(resp. (0,π)), i.e., if we begin in a half-ellipse, we will reach the other one on a
finite number of iterations.

This allows us to construct a restricted map

(φo9θo)*-+ (<Pι,θι)>

where ^ = {[0,π] U [π + 2 A, 2π -h 2h]} x (0,π), φi is the next reflection at a half-
ellipse and θ\ is the direction of motion immediately after the reflection at φ\.

0 IT τH-2fc 2π+2fc

Fig. 5. Integral curves and caustics in the half-ellipses.
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Notice that while the reflections remain at the same half-ellipse, R is just Γ,
the diffeomorphism associated to the elliptical billiard. So, for those reflections, the
orbit will stay on an integral curve of the elliptical billiard.

3. Main Tools

3.1. Cone-fields and consequences. Let Γ = {y(t) = (x(t\y(t)\t G [0,L)} be a Ck-
piecewise Jordan curve in R2, k ^ 1, Q the region of R2 bounded by Γ and «*/ the
annulus [0,L) x (0, π).

Let T : s$ — > #0 be the local Ck~l measure preserving diffeomorphism associ-
ated to the billiard on Q.

Definition 1. For each (t,θ) G J/, the Lyapunov exponents of T at (t,θ) are given
by

λ+(t,θ)= lim !lnp>r(f,θ)||,
n^oo n

λ-(t,θ)= -λ+(t,θ).

Definition 2. Given two linearly independent vector fields X\(t,θ) and Xj(t, θ) in
the tangent space T^o^ « R2, a cone in T^stf is defined by

C(t, θ} = {r*ι(f, θ) + sX2(t, θ\ r - s ^ 0} .

Its interior is

int(C(f, θ)) = {rX\(t, θ) + sX2(t, θ\ r s > 0 or r = s = 0} .

A measurable cone-field is a family of cones {C(t,θ)} C TA defined μ-almost
everywhere, and such that the vectors X\(t,θ) and X2(t,θ) vary measurably
with (t,θ).

Theorem (Wojtkowski, [14]). Let C(t,θ) be a measurable cone field such that for
almost every (t,θ),

DT(C(t,θ))cC(T(t,θ))

and for almost every (t,θ) there exists a k(t,θ} for which

)) C

Then the Lyapunov exponents λ+(t, θ) are positive for almost every (t, θ\

(Such a cone-field is called eventually strictly invariant.)
Our goal is to construct a measurable cone-field, eventually strictly invariant un-

der the derivative DS of the map associated to the billiard on the elliptical stadium.
But S is not differentiable at t = 0, π, π + 2A, 2π + 2A.

For α G [0,2π + 4A], let

^α - {(*o,0o) e [0,2π + 4A] x (0,π) such that 3/ι G Z, S"(f0,0o) = (α,0Λ)}
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i.e., the images of a vertical line on [0,2π -\-4h] x (0, π). μ(JFα) — 0 because
μ({(α, 0), 0 £ (0, π)}) = 0 and S is measure preserving. Let W = WQ U Wπ U JΓπ+2Λ
U ίF2π+2Λ Then μ(fΓ) = 0 and we will work on [0,2π + 4h] x (0,π)\W.

On the other hand, on the straight part of the elliptical stadium, DS is just
a translation and an inversion. So, it is enough to construct a cone-field strictly
invariant under DR, the derivative of the restricted map R, on @$\(W Π <3$\

Finally, if a given trajectory, between ((/>o,0o) and ( φ \ , θ \ ) = R(φo,θo) hits #
times the straight part of the elliptical stadium, then

(-1)* ( /oι-#osin0 0 /oi \
(φoΛ) Λ,s in0, V / o i -Λo s inΘ 0 -Λι sin0, Im-R}smθj ' ( }

So, the image under /)/? of a cone C(φo,0o) can be inverted when arriving at
(<pι,0ι). But, as -C = {r(-Ari)-r-5(-Ar

2), r s- ^ 0} = {r*i + .sA^, r j^O} = C,
all that will interest us is the slope of the boundaries of the cone.

3.2. A little bit of optics. We are going to follow Donnay's ideas [6], giving an
optical interpretation of the tangent space.

From now on, we are going to suppose that Γ is strictly convex (although the
elliptical stadium is not strictly convex, we are going to reduce our problem to the
elliptical part of the boundary, looking only to the restricted map R).

Definition 3. A pencil of rays is a Cl curve in the phase space j/, given by
η : (—ε,ε) —» j/, η(σ) = (φ(σ\θ(σ)). The base point of the pencil is f7(0) = (φo>0o)>
the span is η'(Q) = (α,j8) £ Γ((po^0)j/ and the slope is β/α.

To each σ 6 (—ε,ε), we can associate a straight line r(σ), passing by Γ(φ(σ)\
with slope tan(φ(σ) + 0(σ)). The core of the pencil is the straight line ΓQ = r(0).
Let P(σ) = r(σ)Πr 0, σΦO. A pencil η focus at PQ = limσ-+QP(σ), if the limit
exists.

If PQ = (x,y) exists, it is given by the equations

/ /? \
sec2Oo + 0o) f 1 + - ) (x ~ XQ) = (tan(^0 + 0o) cos φQ - sin

y - yo = tan(φ0 + 0o)(* -

where (JCG,^O) — ^(φo)» ^o = 0(0) and RG is the radius of curvature of Γ at φ0

So PO depends only on the base point (φo?0o) and the slope j?/α. From the
point of view of focusing properties, we may identify pencils with the same base
point and slope to either the linear pencil η(σ) = (φo + ασ,0o + βσ) or to the point

. We can also define and calculate the focusing distance

Notice that RQ sin 00 is the length of the intersection of the core of the pencil
with the half-osculating circle at ψQ (the half-osculating circle is the circle with
radius Ro/2, tangent to Γ at

3.3. Pencils of rays and beams of trajectories. When we give a pencil of rays, we
give a collection of initial conditions of the billiard ball problem inside Γ. So, to a
pencil of rays there corresponds a beam of trajectories.
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We may have to check if a given beam of trajectories η(σ) = (φ(σ),θ(σ)) «
(φo 4- ασ, ΘQ + βσ) focuses forward and backward, after and before the reflections
at Γ(φ(σ)). The forward focusing distance is given by

_ RO sin θp
Js — ~~β~ \ I)

α

and the backward,

Λ =
1 ~~ α

because going backward is the same as going forward for the pencil

η(σ) = (φ(σ), π — θ(σ)) ~ (φo + &σ, π — (θo + βσ)) = (φo + ασ, π — ΘQ — βσ) .

To compare the image of a pencil with another pencil, we will use Donnay's
Focusing Lemma [6], rewritten as

Focusing Lemma. Let T : j/ —» jtf be the map associated to the billiard problem at
Γ. Let (φo,θo), (φ\,θ\) G j&9 (φ\,θ\) = T(φo,θo). Let η(σ) be a pencil with base
point (φo,θo), focusing forward at PO and ξ(σ), a pencil with base point ( φ \ 9 θ \ ) 9

focusing backward at P\. If PQ appears before P\ when going from Γ(φo) to
Γ(φι) along the trajectory, then

slope(Γ o η(σ))

4. Construction of a cone-field on TB

4.1. Zones of the phase space B. Take R : $ — > J*, the restricted map defined in
Subsect. 2.2. St = »\ U ̂ 2, ^i = [0, π] x (0, π), ̂ 2 = [π + 2A,2π + 2A] x (0, π) «
[π,2π] x (0,π), each one corresponding to the reflections at one half-ellipse.
Let B = &\(W Π ̂ ), W the measure zero set defined in Subsect. 3.1. B = B\ U B2,
B, =@i\(Wn@i), i= 1,2.

Let BI = U\ U MI where

U\ = {(φo,θo) e 5ι such that R(φ0,θQ) e B2 and R~l(φo,θo) G 52} ,

MI = {OoA) ^ ̂ i such that either R(φQ,θQ) e B\ or R~~l(φQ9θQ) G ^1} .

The boundary of C/i is composed by two curves φ*-*θ±(φ) such that R(φ, θ+(φ)) =
(π,θι) and R~l(φ,θ-(φ)) = (0,θι) with equation

tan(φ

Notice that this boundary is contained on JF.
By symmetry, we define U2 and M29 with 52 — U2 UM2.

4.2. Caustic, Vertical and Horizontal Pencils. If (φo,θo) € M\ (resp. M2), there
exist / w , / ι G Z , m ^ 0 ^ w, mφ« such that Rm(φo,θo), ^m+1(φ0,^o),...,
Rn-{(φQ,θQ),Rn(φ0,θQ) GMi (resp. M2) [6]. And Λ1' = Γ, m ^ i ^ n, because
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MI C B\ (resp. MI C BΊ), So, there is a piece of the orbit of (φo>$o) that behaves
exactly as it would on the elliptical billiard. It will stay on an integral curve F = k
of the elliptical billiard and this piece of trajectory will have a caustic.

Definition 4. The caustic pencil at (φo.θo) is a curve η : (— ε,ε) -^ B\, η(σ) =
(φ(σ\θ(σ)\ ?7(0) = (φo>$o) and F(η(σ)) = F(<po,$o) °r> by identification, a
tangent vector at (φo?^o) to the integral curve F —

Clearly, a caustic pencil focuses forward and backward at the point of tangency
of its core with the conic caustic. Also, caustic pencils are transformed by T on
caustic pencils.

Lemma 3. On the elliptical billiard, with a < \/2, choose a trajectory on $ such
that (po G [π/2, π], φ0 + #o ^ π and φ\ G [π,2π]. The point PQ of tangency of φ$φ\
with the elliptical caustic is contained in the interior of the half -osculating circle
at φ = π.

Proof. Let us fix one elliptical caustic. To each (φ,θ)9 φ G [π/2,π], φ + φ ^ π,
we associate P(φ), the point of tangency with the caustic. Let φQ be such that
P(φo) is the upper vertex of the elliptical caustic. Ordering the elliptical caustic via
the counter-clockwise orientation, we have that P(φ0) ^ P(φ) ^ P(π) It is clear
that P(φQ) is contained in the interior of the half-osculating circle at φ = π. The
integral curve associated to this caustic has a minimum at φ — π. So the maximum
of the forward focusing distance for the caustic pencil is fs = RI\+Q° = a2 sin θ.

Definition 5. The vertical pencil is defined by v(σ) = (φo,#o + tf) or by the vector

The vertical pencil ι (σ) focuses forward and backward at Γ(φ0), i.e., at the

boundary of the billiard, since α = 0, β=l and fSt€ - <xR°*±β° = 0.

Lemma 4. Let a < \/2, h > 0 and (φ\,θ\) = R(φQ,θo). Let vo(σ) and v\(σ) be the
vertical pencils at (φQ9θβ) and ( φ \ , θ \ ) 9 respectively. Let η(σ) = (φ\+oισ,θι+βσ)

be the linearization of the pencil R(v$(σ)\ Then αφO and f > 0.

Proof. (α,^) = D / ? ( φ o , 0 o ) ( 0 , l ) = ( / 0 ι , / o ι - ^ ι s i n θ 1 ) . So, α Φ O and =
IQ\-R\ sinθ]

/Ol

If a < \/2, the half-osculating circles of an ellipse with half axes a and 1 are

totally contained in the ellipse [6]. So, /oi > R\ sinθi and f > 0.

Notice that, geometrically, this lemma shows that R deviates the vertical to
the right.

Definition 6. The horizontal pencil is defined by h(σ) = (ψo + σ, ΘQ) or by the
vector (!,0)eΓ ( φ o Λ )A

The horizontal pencil focuses forward and backward at a distance RQ sin ΘQ, i.e.,
at the intersection of the core with the half-osculating circle at φo
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4.3. A cone field on TB

Definition 7. For each (φ,θ) e B, define the measurable cone field {C(φ,θ)} C TB
by

- ι/(<M)eC/ι or 1/2, C(φ9θ) = {rXv + sXh, r - s £ 0},
- i/ O, θ) e M, or M2, C(φ, 0) = {rZ, + Λζ., r - s ^ 0},

where X^ = ( 1 , 0 ) is the horizontal pencil at (φ,θ), Xv = (0,l) is the vertical

pencil at (φ, θ) and Xc— ( 1, - |S|f j , where F is the first integral of the elliptical

billiard, is the caustic pencil at (φ/θ).

Remember that the elliptical stadium is defined by two parameters: a and h. The
two half-ellipses have minor axes equal to 1 and major axes equal to a > 1, and
the straight parts have length 2h.

Theorem I. If I < a < \/4 - 2\/2 and h > 2a2Va2 - 1, then {C(φ,θ)} is even-
tually strictly invariant under DR.

Outline of the proof. If (φo,θo) £ M, , / = 1,2, the trajectory associated to (φo>$o)
has at least two consecutive reflections at the same half-ellipse, being φo one of
them. So, the orbit remains on the integral curve F = F(φ0,#o) anί* tne trajectory
has, while staying on the same half-ellipse, a conic caustic. Taking

M(i,$) — {(ΨQ,ΘQ) such that the caustic is an ellipse}

and

ΘQ) such that the caustic is a hyperbola} ,

we have B, = (M(/,<ί)) U (M(i,JV)) U Ui9 i = 1,2 .

Our aim is to prove that for almost every (φQ, ΘQ) G B, with (φn, θn) — Rn(ψQ, ΘQ),
DRn(C(φo,θo)) C C(φn,θn) and, for almost every (φo,θo)eB, we can find a
k = k(φ0,θo) such that DRk(C(φ0,θ0)) C intC(^,^)

The cones C(φ,θ) are bounded by the vertical pencil and by either the horizontal
or the caustic pencil. If a < \/2, the vertical pencil is deviated to the right under
DR (Lemma 4). Since det(DR(φoβ0)) > 0, all we have to do is to compare the slope
of the image of Xc(φβ, ΘQ) or Xh(φ^θ^\ under DR, with the slope of Xc(R(φQ,θo))
or Xh(R(φo, ΘQ)), depending on where R(<PQ,ΘQ) is. We have to look for the point of
tangency with a conical caustic or for the intersection with a half-osculating circle,
forward or backward, in order to apply Donnay's Focusing Lemma. All the possible
situations are analysed in 7 propositions in the appendix, and we conclude that

if 1 < a < \/4 — 2\/2 and h > 2a2Va2 — 1, the forward focusing point appears
before the backward one.

5. Main Results

Take S : j/ —* stf the map associated to the billiard on the elliptical stadium.
s/ = [0,2π + 4A] x (0,π) = &{ U &\ U J>2 U J^, where: JΊ = [0,π] x (0,π),

J î = [π + h,π + 2h] x (0,π), &2 = [π H- 2/*,2π + 2h] x (0, π) and J^ = [2π -h 2/z,
2π + 4A] x (0,π), the ^/ corresponding to the reflections at the elliptical part and
the J^ corresponding to the reflections at the straight part.



Chaotic Properties of the Elliptical Stadium 673

Let A — s$\(W Π j/), where W is the measure zero set defined in Subsect. 3.1;
A = B} \JPι U£ 2 UF 2 , Bt =SSi\(WΓ(Άi) Ft = ^\(W Γ\^\ i= 1,2.

As in Subsect. 4.1, let ί/f = {(*o,θo) € £/ such that Sfaθo) and S~l(tQ9θQ)
£ Bi] and M, = {(to9θQ) € Bt such that either S(to,θQ) G Bl or S"1^,^) £ #J

Corollary 2. fbr eαcA (f,0) eA, define the measurable cone field {C(t,θ)} C TA
by

- if (t, θ) G Mi U M2, C(f, (9) - {rXΌ + sXc, r s ^ 0}.

- if (ί, 0) G ί/i U C/2, C(f, θ) = {rλ; + ̂ , r s ^ 0}.

If 1 < a < \/4 - 2V5 α/ιrf A > 2a2Va2 - 1, ί/zefl (C(ί,θ)} is eventually
strictly invariant under DS.

Applying Wojtkowski's theorem, it follows that for those values of a and A, the
Lyapunov exponents are non-vanishing μ-almost everywhere. In ([8], Sect. 14.A),
Liverani and Wojtkowski proved that the strictly invariance of the cone-field implies
the non-contraction property of its vectors. And also that the other conditions on
the dynamical behaviour of the singularity curves (the vertical lines on the phase
space, given by WQ, Wπ, Wπ+2h and 0^+2/0 have been satisfied. All those additional
conditions allow to prove that the system is not only chaotic, i.e., has non- vanishing
Lyapunov exponents, but also ergodic and (see [10], Sect. 4) is a AΓ-system.

So, we have

Theorem 2. If a < v4 — 2\/2, then Mh > 2a2\/a2 — 1, the map associated to the
elliptical stadium has non-vanishing Lyapunov exponents μ-almost everywhere, is
ergodic and has the K-property.

6. Final Remarks

Actually, the numerical simulations suggest much more about the dynamical
behaviour, as we present below.

1) 2a2Va2 — 1 does not seem to be an optimal lower bound for h. The
phase space seems "chaotic" for values of h smaller than this bound, at least for

a < Λ/4 - 2>/2.

The dependence on \fa2 — 1 seems reasonable, since it measures the focal dis-
tance of the half ellipses. What seems to be unnecessarily big is the factor 2a2 that
is clearly an overestimation for A, used on the proof of Proposition 9, to assure
that the focusing points of orbits from M(l, Jjf) to M(2,3tf) are separated by a
reflection at the straight part.

In any case, the lower bound curve h(a) = 2a2\/a2 — 1 is in agreement with
what we expected for a ~ 1. For the circular stadium billiard, or a = 1, A > 0
implies ergodicity. This will not be the case for α Φ l , because the structure of the
phase space of the elliptical billiard is not as degenerate as that of the circular
billiard. The vertical tangent at a — 1 reflects this fact.
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Fig. 6. α = 1.07 and h = 0.01, A = 0.1, h = 0.815.

Fig. 7. 20,000 points of a unique orbit and the unstable manifold, for a = 1.07 and h = 0.15.

2) Vα > 1 and VΛ > 0, it seems that a neighbourhood of the boundaries θ = 0
and θ = π is invariant. As shown in Proposition 2, the behaviour of the cone field
there is analogous to the behaviour of the cone field constructed by Donnay [6] for
the circular stadium. And this, perhaps, invariant neighbourhood is a chaotic zone
of positive measure, even for small A's (Fig. 7).

3) Vα > 1 and V/z > 0, some initial conditions near θ — 0 (or θ = π), after
a finite number of iterations, come near θ = π (resp. θ = 0), showing that the
trajectory changes orientation in relation to the orientation of the boundary of the
billiard. This indicates that the invariant manifolds of the hyperbolic 2-periodic
orbit {(π/2,π/2), (3π/2+ 2λ,π/2)} (which have corners) cross and that there are
homoclinic points and, then, non-integrability (Fig. 7).

4) Canale and Markarian [4] have proved the existence of symmetric periodic
orbits for the elliptical stadium and have pointed out that for a > 1, h > 0, there
exists a 4-periodic orbit, which is elliptic if h < \Ja2 — 1 and hyperbolic if h >
Va2 - 1. The numerical simulations they carried out show that, while it is elliptic, it
is encircled by elliptic islands of positive measure and, fixing a < \/2 and increasing
h, those elliptic islands seem to be the last to disappear, among all those that can
be observed, at least, for small values of h. For a > \/2, the elliptic islands remain,
even if h is very big.

5) In the construction of the cone field, as in Donnay's proof [6], it becomes
clear why the lower bound for h must increase to infinity as a approaches \/2. As

a approaches \/2 , there is a trajectory on M ΠJf that has two reflections at the
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same half-ellipse and cuts the minor axis of the half-ellipse closer and closer to the
center of the half-ellipse, i.e., with a direction near the direction of the asymptote
of the hyperbolic caustic. This means that the focusing distance of the caustic
pencil goes to infinity and, so, we need to put the half-ellipses farther and farther
apart to assure that the caustic pencil will have enough space to focus and to
open again.

This also shows that h(a) = 2a2Va2 — 1 cannot be the lower bound for a ~ \/2.
h(d) must be determined by pieces. We believe that the determination of h(a) is
closely related to the structure of bifurcation of periodic orbits with hyperbolic
caustic on the elliptical billiard (Fig. 3).

Appendix

We analyse, here, all the possibilities for a piece of orbit {(φo, #o) ?(<Pι>#o)}

Proposition 1. Suppose that (φ\,θ\) = R(φo,θo) = Γ(φ0?θ0), i.e., φ\ and φo are
in the same half-ellipse. If 1 < a and Vh ^ 0, then DR(C(φ0,θ0)) C C(φι,θι),
but the invariance is not strict.

Proof. If (φ\,θ\) — Γ(φo, $0), then (φo>#o) and (φ\9θ\) are on an integral curve
of the elliptical billiard and (φo,θo)> (φ\,θ\) e M/, / = 1,2. The cones are

θj) + s X c ( φ j 9 θ j ) 9 r s ^ 0}, 7 = 0, 1 .

And DR(φθtθo)(Xc(φo,θo)) = DT(

Proposition 2. Suppose that (φQ9θQ) €M(19£) (resp. M(2,<f)) and (φ\9θ\) e
M(2,S)(resp. M(l,<f)). If Vα > 1 and Mh > 0, thenDR(C(φ^9θ^)C.\\AC(φ\9θ\\

Proof. (φθ9θo)9 (φ\9θ\) EM/, / = 1,2, and

C(φj9θj) - {rXυ(φjθj) + sXc(φJ9θj)9 r j ^ 0}, j = 0, 1 .

The caustic pencil Xc(φo,θo) focuses forward at PQ, the point of tangency of the
forward segment of the trajectory with the elliptical caustic; and the caustic pencil
^c(φijβι) focuses backward at P\, the point of tangency of the backward segment
of the trajectory with a new elliptical caustic. These two elliptical caustics are no
longer confocal, but have the same focusing distance c = \/α2 - 1 and their foci
lie on the same straight line.

If the trajectory between φ0 and φ\ does not hit the straight part of the elliptical
stadium, elementary geometry of ellipses plus the Focusing Lemma give us that

If it hits the straight part, P0 clearly appears before P\ when going from φQ to φ\,
and the Focusing Lemma gives us that
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Proposition 3. Suppose that either

a) (<?o,0o) E Af(l,<?) (resp. M(2,<^)) and (φ\9θ\) eλf(293ί?) (resp.

If 1 < a < v 4 — 2^/2 and h > 2a2\/a2 — 1, ί/ze/2

DR(φθtθQ)(C(φo9θo)) C intC(<jPι,0ι)

/ (of a) (φι,0ι), (<]Po > 0o)EΛf l , i = 1,2. And

^>y,0y) + s X c ( ( p j 9 θ j \ r s ^ 0}, y = 0,1 .

The situation is equivalent to that of the last proposition, except that now the
caustic defined backward by (φ\,θ\) is a hyperbola.

The proof is based on the following results

i) if 1 < a < v/2 and (φ\9θ\) G M(/,^f ), / = 1,2, then this part of the trajectory
has exactly two reflections at the same half-ellipse, before leaving it [6].
ii) On the elliptical billiard, take a trajectory on Jf having two consecutive reflec-

tions (po and φ\ at the same half-ellipse. If 1 < a < γ4 - 2\/2, then the caustic
pencils at φ0 and φ\ focuses forward and backward inside the ellipse (Corollary

1).
iii) if h > 2α2A/α2 — 1, then every trajectory on Mz n Jf , i = 1,2 has at least one
reflection at the straight part of the elliptical stadium before and after the two
consecutive reflections at the same half-ellipse. (Proof. We should calculate the
distance d from φ = 0 to the reflection at the straight part of the elliptical stadium.
The worst situation is that of a trajectory that leaves φ = 0 in the direction of the
focus. Straightforward calculations lead to d = 4ca2.)

The interior of the elliptical stadium may be seen as the union of the interior of
two ellipses, with half-axes a and 1 , and the interior of a rectangle, with sides 2h

and 2. Notice that, if h > \/<?2 — 1 = c, the foci of the two ellipses are separated.
Let us call E\ and E2 the interior of the ellipses, and β the interior of the rectangle.
Notice that the straight parts of the elliptical stadium are not contained in E\ U^

From the results above, it is clear that the trajectory from φo to φ\ touches
an elliptical caustic at P0 in E\ (or E2), hits the straight part, and then touches a
hyperbolic caustic at P\ in E2 (or E\ ).

The Focusing Lemma now gives that

The proof of b) is, by symmetry, equivalent to a); the proof of^) is analogous.

Proposition 4. Suppose that either

a) (φo,0o) eM(l,<f) (resp. M(29δ)) and (φι,θι) e U2 (resp. Uι)
or

b) (φ0,0o) € E/i (resp. U2) and (φλ9θλ) G M(2,<f) (resp.
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If 1 < a < v/2 and h > \fa2 - 1, then

DR(φo,θo)(C(<PM) c intC(φι,0,) .

Proof, (of a) (φ0,#o) ^ ̂  an(* (ψι^\) ^ '̂> z ~ 1>2. So, the cones are

sXc(φQ, 00), r - s ^ 0} ,

θ1), r •* ^ 0} .

We have to compare the positions of the forward focusing point PQ of the
pencil Xc(φQ9θo) and the backward focusing point P\ of the pencil Xh(φ\9θ\). PQ
is the point of tangency with the elliptical caustic and PI is the intersection of the
backward segment of trajectory with the half-osculating circle at φ\.

If the trajectory between φo and φ\ hits the straight part of the elliptical stadium,
this reflection separates P0 and P\, and the Focusing Lemma gives

Now suppose that it does not. Suppose also that φo G [π/2, π) (the other cases
being analogous by symmetry).

If (po + ΘQ ^ π, PQ is contained in the interior of the half-osculating circle of
φ = π (Lemma 3).

On the other hand, call ΘΨQ the union of the half-osculating circles, from φ = φo

to φ — (po + π/2. If a < \/2 and h > c = Vα2 — 1, $π/2 and &}π/2 are disjoint

and contained in the interior of the elliptical stadium1. Then, if φ0 € [π/2,π),
Φo + ^0 = π and φi G [3π/2,2π), the Focusing Lemma applies and

If φo G [π/2, π), φ0 + θo ^ π and φi G [π,3π/2), the segment of trajectory does
not cross the line containing the foci of the caustics. So, it touches a new elliptical
caustic on the other half-ellipse. Besides, Xc(φ\9θ\) has positive slope (because the
integral curves on $ are increasing for φ G (π, 3π/2)).

As it was shown in Proposition 2,

and

} 9 θ l ) ) > 0 = Aope(Xh(φl9θι)) .

If φo + ^o < π and h > c — Va2 - 1, ^o is contained on the interior of the
half-ellipse (i.e., Et\(Ej Π <g)) and PI is contained in $π. So, s\opQ(Xc(φ\,θ\)) >
0 = slope(Ar

Λ(φ1,ΘO).
The proof of b) is analogous to a) (by symmetry).

Proposition 5. Suppose that either

a) ( < p o , O o ) e M ( l 9 j r ) (resp. M(2, Jf7)) UTK/ (φι,^ι) G ί/2 (resp. ί/i),

1 Given an ellipse with half-axis 1 and α, 1 < a < \/2, centered at (0,0), the intersection of

(9n/2 with the c-axis C [—Va2 — l,tf] and of ί%π/2 with the ^-axis C [—β, \/fl2 — 1]. So, on the

elliptical stadium, if /z > \/α2 — 1, (Pπ/2 and (9^/2 are disjoint.
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or

b) (φo,θo) € E/i (resp. U2) and ( φ \ 9 0 λ ) G M(2, Jf) (resp.

intC(φι,θι) .

(of a) The proof is analogous to the first situation in Proposition 4, but
notice that if (<po,00) G M(l, Jf) (resp. Af(2, Jf )) and (<pι,θι) G ί/2 (resp. £/0, if

1 < a < v4-2\/2 and h > 2a2\/a2 — 1, then the trajectory touches a hyperbolic
caustic at PQ in £Ί (or £"2)? hits the straight part, and then cuts the half-osculating
circle at φ\.

The proof of b) is analogous to a) (by symmetry).

Proposition 6. Suppose that (φo>#o) G U\ (resp. ί/2) and (φ\,θ\) G C/2 (resp. U\).
Ifl<a<V2andh> Va2 - 1, fλew DR(φoM(C(φQ9θQ)) C intC(<pι,0ι).

Proof. The cones are

), r 5 ^ 0} .

Suppose that φG G [π/2,π) (the other cases being analogous by symmetry). The
forward focusing point PQ of Xh(φQ,θo) G C?π/2.

If φi G [3π/2,2π), the backward focusing point PI of Xh(φ\,θ\) G $3π/2 Since

α < Λ/2 and A > Λ/02 - 1, ^π/2 and (9^/2 are disjoint, and the result follows.
If φ\ G (π, 3π/2], the trajectory does not cut the line containing the foci. So, the

trajectory touches backward an elliptic caustic on the other half-ellipse at P\. As in
Proposition 4,

But Xc(φ\,θ\) has positive slope (because the integral curves are increasing for
φ G (π,3π/2)). So
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