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Abstract: We show that, among arca contracting embeddings of the 2 disk, infinitely
renormalizable maps with a bounded geometry either have positive topological entrapy or

correspond to a cascade of period doubling
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[image: image3.jpg]1. Introduction

Let £ be a ' map from the unil interval I into itself and (aq)nzp 4 sequence of infegers
greater or cqual to 2. We say that the map f is (an)nzo-infinilely renormalizable if there
exists @ sequence of nested intervals 7 3 Zo(f) 3 Tu(f) D ... D Zulf)... such that, for
each n

FENNT()=0,for 1<i<apar...an—

and
Jooma (T, () C Tulf):

The intervals f{(Z,), for 0 < i < ag.a1...a, — 1, are called the atoms of generation n of

i
Maps w

ich satisfy this property but only for a finite sequence (a,)u—12uz0 are called
(tn)m—12wz0-renormalizable or m-times renormalizable when there is no ambiguity.

We say thal a iufinite renormalisable map is of bounded combinatorial type if the sequence
()0 is bounded. Notice that, in this case, the sequence (@, )u»o has an accumulation
point, i.e. there is an integer that appears infinitely many times in the sequence.

This type of maps occurs very naturally in one dimensional dynamics: actually lor any
sequence (ar)nso there exists a value of the parameter a for which the quadratic wap
£ 1= is (g )pso-infinitely renormalizable map. Since any continuous map on the
interval which possesses a periodic orbit whose period is not a power of 2, has positive
topological entropy [BF}, it follows casily that the only infinitely renormalizable maps
with topological entropy zero are the ones for which each element of the sequence (i )usu
is @ power of 2. The aim of Uhis paper is to prove a similar result for area contracting
maps of the 2-disk. But, before that, let us emphasize some recent results about infinitely
renarmalizable maps on the interval.

To 4 () zo-infinitely renormalizable map f, we can associate another map, that we call

the renormalized map of f, denote by R(f), and define by

R(f) =€ o f* o)

where £([) is an alline scaling which maps 7 onto Zo(/)
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[image: image4.jpg]The renormalized map R{/) is 2gain a (b, ), zn-infinitely renormalizable wap with b, =

g for all v, and its corr

onding sequence of nested intervals is given

TR()) = € ") (Zwpa () forall n > 0

From the independent discovery and explanation by Coullet and Tresser ([T, [TC]) and

Feigenhaum [Fe

1978, that infinitely renormalizable maps exhibit universal geometrical
behaviors, to the culminating work of Sullivan [Su] in 1992, a huge amount of works, both

numerical and theoretical, has been done in th

field. It is not our intention to give here a
panorama of the actnal knowledge. For this purpose, we refer the reader to {MS] and the
references quoted therein. We just want to focus an a key point of Sullivan’s theory, often
refered to as "real bounds”, that we present here, for sake of simplicity, in a very weakened

form:

Consider a smooth map, £, with a quadratic singularity: more precisely we consider the

set U'+! of the maps f

1] = {0, 1] that can be written as
f=90Q0¥,

where ¥ 1 [0,1] — [¢4(0), 1) is an orientation preserving difleomorphism such that ¥(0) is
in (=1,0), @ : [(0),1] — [0,1] is the quadratic map Q(z) = 22, ¢ : [0,1] — (0.1} is an
orientation reversing dilleamorplismi, and the two maps ¢ and ¥ are 1+, that is to say
€1 and the derivatives safisfy a Lipschitz condition. Sullivan proves the following “bean®
theorem

Theorem 1.1 [Su]: Let f € U™ be an infinitely renormalizable map with combinatorial
0

1- The renormalized maps R*(f) belong to ', their C'-norm and the Lipschits con-

type bounded by N. Then, for all 7

stants are bounded by a constant which depends only on f.
2- There exist two constants a; and by which depend only on f such that, if T ix an atomn
of the generation m of R™(f) and J C T is an atom of the generation m + 1, then.

0<ay < [T € by <1 (where || stands for the diameter).

All these bounds are. “bean” (hounded and eventually universally (bounded)), that is to say,

that for . big enough, these bounds can be chosen so that they depend only on N
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[image: image5.jpg]In the same way a¢ we did in the one-dimensional case. we can define infinitely renor

malizable maps in dimension 2. We say that a €1 map, [, of the 2.disk D juto itsell
is (@) sa-infinitely renormalizable il there exists a sequence of nested differentiable disks
D3P DDy ... DD, ... such that, for vach n

S (Pa)N Dy =8 for L < i< ag.ar.coan=1,
and

fr0000 (D) € Dy,
The sets fi(Dy,), for 0 < i < ag.ay...ay = 1, are called the atoms of generation n of |
They are not necessarily disks.
In dimension 2, infinitely renormalizable maps are also frequently observed. For instance.
they appear naturally in the infinitely dissipative situation for a map (x,y) — (g(2),0),
where g is an infinitely renormalisable map on the interval, and also in the area preserving
case of a map exhibiting resonant islands

T # (1t )nso-infinitely renormalizable map f of the 2-disk, we can again associate a renor-

malized map ol Jf, defined by:
RN =€ (f)o [ El)),

where £(f) is a C* scaling which maps D)? onto Dy(f).
The renormalized map R(f) is a (b )nzo-infinitely renormalizable map with by — a4 for

all n. and its corresponding sequence of nested disks is given by

Da(R(f)) = €N Pria(f)) forall n > 0.

Definition: By analogy with the one dimensional case, we say that a ¢! infinitely

renormalizable map of the 2-disk, has o bounded geometry if it satisfies the following two

conditions:

1- For all n 2 0, the renormalized maps R*(f), the scaling maps £(R™(f)), and their

inverse §(R"(f)) !, are C'*! and their C'norm and their Lipschitz constants are bounded

by a constant K7 which only depends on J.

2- There exist constants 0 < a; < by < 1 which depends only on f such that., for all n
if 7 is an atom of the generation m of R"(f) and 7 ¢ I is an atom of the generation

m+ 1, then | ay < |7|/|T| < by ( where || stands for the diameter).
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[image: image6.jpg]Remark 1t Those conditions foree [ (o lave a bounded combinatorial 1y pe
Remark 2: To Lave a bounded geometry is a very strong asumption. The above theoren

states that an infinitely renormalizable map f € 4'*!

with bounded cambinatorial type.
satisfics these asumptions. In fact, this is not known for the other one-dimensional maps
(see [Hu]) and abviously not for two-dimensional maps.

Unlike in dimension 1, for any sequence (a,).z0, We can find (a,), 30 infinitely renor
malizable (2 diffcomorphisms of the 2-disk with topological entropy zero; moreover if
the sequence {a,)n»0 is bounded, these maps can be construct with a honnded geometry
[GT2]

However, [or an area contracting map of the 2-disk the situation seems to be much more
rigid. One one hand, the only known examples of area contracting infinitely renormalizable
embeddings with topological entropy zero are such that the sequence (a,)s»0 is a sequence
of powers of 2 [GST). Actually, these maps are the only known area contracting embeddings
of the 2-disk with topological entropy zero, thal can be transformed by an arbitrary small
C-perturbation into maps with positive topological entropy. On the other hand, there
are some numerical evidences that show that for the Tlénon model, maps which belong
to the ("-houndary of positive lopological entropy, are geometrically hounded infinitely
renormalizable map of the 2-disk such that the sequence (u, ),z is eventually a sequence
of powers of 2[GT1]

The central result of this paper may be seen as

an explanation of these

a step towar

numerical evidences and can be stated as follows:
Theorem 1.2: Let [ be a (ax)nzo-infinilely renormalizable map of the 2-disk with o
bounded geometry, which contracts uniformly the arca. Then:

- cither, the topological entropy of f is positive,

- or, cventually the sequence (an)ns is a sequence of powers of 2.




[image: image7.jpg]1. Proof of the Theorem

Let us start with some notations. Tor any positive &, we denote by /() the set of (111
maps from the disk D? into itsell, whose derivatives are Lipschitz, with Lipschitz constant
smaller than &, Thanks fo the Arzela-Ascoli theorem, any sequence of maps in U(K)
has a converging subsequence in the C'' topology. All alang the proof, we shall frequently
make use of this property

Consider now an (@n)ayo infinitely renormalizable map f of the 2.disk with a bounded
geometry, §;

point iu UK ).

e the sequence (R™(/))nzo remains in U(K ;), it possesses an accunulation

Lemma 3.1: Let o be an accumulation point of the sequence (au)uzo. Then, there is
map go in UK ;) which is an accumulation point of the sequence (R™(f))nzo and which
satisfies:

(i) go is I-time renormalizable, more precisely there exists a differentiable disk Dy(go) C D
such that Da(ga). go(Dalgn)). - gb~ ' (Dolga)) are disjoint and gi*(Da(gn)) C Dofgo).

(ii) Every atom J of the first generation of go satisfies |J| < 2by (where by is the bound
given in the above definition)

Proof: Let py be an accumulation point of the sequence (an)azo. Then, there exists a

subsequence (ag(x))uza which is constant and equal to po. From the sequences REM{f)
and £(RM (), we can extract subsequences R¥™)(f) and §(R¥1") (1)) which respectively
converge to maps go and € in U(K7)

For each n > 0, we have:

Do(R¥I(f)) = ERV())(D?).
Since the maps R¥(™)(f) are 1-time renormalizable, we get:
(R¥Y N (DRI A D (R¥YUD(F)) = Bfor 1 <i < po— 1.

(RN (DRI € Do(RYM(1)).
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[image: image8.jpg]By setting

Dolgo) = &(DY).

we gel by continuity

(g5(Dal(g0)) N Dafgo) = Bfor 1 < i< po—

and
95°(Po(Pa(g0)) C Dolgo)-

The fact that Do(go) is a dilferentiable disk comes from the uniform estimates on the norm
of the derivative of the inverse scaling functions.

Since £ has bounded geometry, we know that, for each n > 0 and for each atom J of the
first generation of R7(f), we have:

|J] < 2by.

By continuity we get the same estimate for go
(qed.)
Lemma 3.1 is actually the first step of an inductive process:

Lemma 3.2:

Let po be an accumulation point of the scquence (au)uzo. Then, there

cxists a sequence of maps (g

(R™(f))nno and which satisfy, for cach !> 0:

inU(K ;) which ere accumulation points of the sequence

(i) gu is [+1 times renormalizable. More precisely, there exists a sequence (app)iznzo with
ai = po, such that i s (ay, )iswzo-renormalizable.
(i) R(g)

(iii) Every atom T of the n' generalion of g, 0 < n < I+ 1, satisfies |J| < 207

Proof: Let po be an accumulation point of the sequence (an)nzo. There exists a sub-
sequence (g(n))uzo which is constant and equal to po. The subsequence (wg(m_1)uzn
lias also an accumulation point, say py. By iterating this process [ times, we can find a
subsequence (ag,(n) Jazo which is such that:

@) i conslant and equal Lo pj,

- g,(n)41 15 constant and equal to p_y,




[image: image9.jpg]Geyinyet i constant and equal to po.

Dy a diagonal process, we can extract from the sequences R f) and (R™C( ),

subsequences R\ (f) and E(R¥("(f)) which respectively converge to maps g; and & in
UK f) and g is such that R(g) = gi—1. From this point, we can use the same techniques
as in the proof of Lemma 3.1, to terminate the proof of Lemma 3.2.

(qed.)
Lemma 8.8: For each I > 0, there czist an atom J;, of the I** generation of gi and u

point 21 in J; such that ||dgi(z;)]| 2 1
Proof 3.3:

Ve know that
g (Dilgn) € Dilgn),
where
Dilgr) = &o - &1(D?),
and that gf**?" possesses in Dy(gi) a periodic orbit with period po

It follows that there exists a point y; in Di(g) such that

g

N>

Consequently, in one of the py ... pi = 1 first images of Di(gr), that is to say, in an atom J;,

of the I'" generation of g; there is a point z;, image of yi by some iterate of f, such that

[legi )] 2

(q.e.d.)
Let us now assume that the map f contracts uniformly the area, i.e. there exists b such

that |det(df(z))f

<1 for all « in D* Then we have the following result

Lemma 3.4: Any aceumulation point g of the scquence (R™(f))ns
ie. detldgo(w)) = 0 for all 2 € D?
Proof: We have

is a singular map.

R = R 007 (f) o fU0 oLl o o ERYTH).
Since [or any linear map A in finite dimension, we have |detA| < [|A]|%, it follows that

[detdR" (f)(z)] < K} prete
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[image: image10.jpg]and this quantity goes 10 O when n goes to o Thus, by continuity, any accumulation

)

point of the sequence

1 15 a singular map.
(q.e.d.)

Consider now the sequence (g;.7;) defined in Lemmas 3.1 and 3.2. We can extract from
it, a subsequence (gaqy, 2o) which converges to some (g,7) where g is a map in U(k ;)
which is an accumulation point of the sequence (R™(f))z0, and 7 is an accumulation of
the sequence (#;)izo. By continuity, we get |[dg(z)|| > L. It follows thal there exist a
connected neighbourhood ¥ of z and an integer ly such that, for all y € V, and for all
(210

() lidgsen ()]l 2 1/2,
and

(i) V contains Jg (the atom of the 6(1)". peneration of gy containing yap))

Thanks to Lemma 3.4, we know that the maps g and g are singular

det{dgi{y)) = det(dg(y)) = 0,¥y € D*

Therefore, for all [

I, and for all y € V, the dimension of the kernel of gy is 1.
Thus, ker Dgs(y defines a Lipschitz field of directions on ¥, and consequently a Lipschitz
foliation. The image of cach leaf is a point because the derivative of gey along the leaves is
zero. Consider now a trivialisation of his foliation in V. That is to say a map 71V — R?
which is a Lipschitz homeomorphism onto its image and that maps cach leaf of the foliation
in V into a horizontal line. Recall now that gesy maps its atom of the #(1)" generation,

Jgqay, into itself after gggyy = pr. .. pagy) iterations:

gt o) € Jon,

and that yj[,"" possesses in Jgqy, and thus in ¥, a periodic orbit with period po.

Using the conjugacy by the Lrivialisation 7, the map foy = 7o g::;)” orl:r(V) = R?
reads:

Jan(an,z2) = (e (@), fapn(2)s

where (21,22) are the canonical coordinates in R? and fy and f, are two continuous maps

from some interval to the reals.




[image: image11.jpg]Since the map gif;!" has « periodic orbit with period g in Vs we get that the map [ 45yi2))

possesses alsn a periodic onbit with period py
We are now in & good position t prove our theorem. Assume Uit we started with @
(@, )uza-infinitely renormalizable map f of the 2-disk with a bounded geometry. Assume

also that f contracts uniformly the area. If the sequence (a,)uzo is not eventually a
sequence of powers of 2, it has an accumulation point po which is not a power of 2. The
construction we made above yields an interval map fy g which has a periodic orbil whose
period py s not a power of 2, and thus has positive topological entropy. This means [Mi]
that there exist an interval I where fy gy is defined, two disjoint subintervals fo C 7 and

I, € I, and an integer n such that:

o (T 9 T
and 5

- Bath) 21
Lt follows that the map ff, maps the two horizontal strips Do = (R x o) (1 7{V) and
Dy = (Rox )N r(V) on two lines whose projections on the vertical axis (parallely Lo the
horizontal one) cover the interval 1.
Consider now a continuous map g : (V) — 7(V). If g is C° close enough to the map foqyy,
it will map the two strips Dy and Dy on two strips whose projections on the vertical axis

rallely to the horizontal one) cover the interval I and such that ¢"(R x 8lg) N r{V) and

§M(Rx 91) N 7(V) do not intersect R % 7, where @1 stands for the boundary of /

It follows that ¢" has an invariant st in r(V) such that g", restricted to this invariant
sel, is semi-conjugate to the shift on two symbols. Thus g", and consequently g, have
positive topological entropy. Since the map o) is an accumulation point of the sequence
(R™(f))nz0, We get that some iterates of maps in this sequence accumulate (in the ¢''-

topology) on the map gf*{!". Thus, their images by the conjugacy by 7 accumulate, in the
2 P gar) g gacy

“-topology, on fgyy. Consequently the renormalized maps (R™(f))nzo and then f have
positive topological entropy. This achieves the proof of our theorem.
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