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Abstract. We study some diffeomorphisms in the boundary of the set of
Anosov diffeomorphisms mainly from the ergodic viewpoint. We prove that these
diffeomorphisms, obtained by isotopy from an Anosovf : M 7→ M through a
heteroclinic tangency, determine a manifoldM of finite codimension in the set of
Cr diffeomorphisms. We prove that any diffeomorphismF in M is conjugate tof ;
moreover, there exists a unique SRB measure forF , andF is Bernoulli with respect to
this measure. In particular, if the dimension ofM is two, andµ is a volume element,
we prove that the isotopy can be taken such that the measure is preserved.

0. Introduction
0.1. The understanding of the process of loss of hyperbolicity is an old problem.
One way it is lost, starting from an Anosov diffeomorphism, is by creating a map which
is derived from Anosov, where one of the eigenvalues at a fixed point (or two if they are
complex conjugate) is pushed to the boundary of the unit circle. They maintain some of
the topological and ergodic properties (see, among others, [L80], [C93], and [HY95]).
There are other ways to arrive at the boundaryB of the Anosov diffeomorphisms with
local bifurcations; for instance, as a consequence of several general ideas, in [L80] an
example in which the stable and unstable manifolds of a fixed point are modified until
they become tangent at the fixed point is shown. The result is a diffeomorphism conjugate
to an Anosov map; in particular, there appear two invariant foliations conjugate to the
stable and unstable foliations of the Anosov map. In the same article, an example of a
Kupka–Smale map inB conjugate to an Anosov map is shown, which therefore inherits
many interesting properties that can be considered as obtained from an Anosov map
through a global bifurcation. In the same vein, we study here some dynamical properties
of a kind of diffeomorphism inB.
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of which has been presented as a doctoral thesis.
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Let us describe the diffeomorphisms we are interested in (see Figure 1). LetMn be a
C∞ n-dimensional compact connected Riemannian manifold,f : Mn 7→ Mn a transitive
Cr Anosov diffeomorphism withr ≥ 2. LetP , Q be two different fixed points off , and
R an intersection point of the unstable manifold ofP (denotedWu(P, f )) with the stable
manifold of Q (Ws(Q, f )). We modify f by isotopy so as to obtain a cubic tangency
at the continuation ofR between the unstable manifold of the continuation ofP and the
stable manifold of the continuation ofQ. Then, we prove the following theorems.

THEOREM 1.
(a) There exists a manifoldM of codimensionn + 1 in Cr(Mn) included inB such that

for any F ∈ M there exists an isotopyFt , t ∈ [0, 1], with F0 = f , F1 = F , Ft

Anosov fort ∈ [0, 1); RF1 ∈ Wu(PF1, F1) ∩ Ws(QF1, F1) with TRF1
Wu(PF1, F1) and

TRF1
Ws(QF1, F1) intersecting in a one-dimensional fibre, wherePF1, QF1, andRF1

are the continuations ofP , Q andR, respectively.
(b) F1 is conjugate tof (thus expansive and transitive).
(c) The Pesin region forF1 has full probability. There exists a unique SRB measure

for F1 in Mn, and an ergodic attractor whose corresponding measure is the SRB
measure.F1 is Bernoulli with respect to this measure.

THEOREM 2. If f preserves a volume formµ, and we assume that there exist linearizing
C2 coordinates in a neighborhood ofP , and also ofQ, then:
(a) there exists an isotopyft such thatf0 = f , f1 ∈ B, ft preserves the measure

for t ∈ [0, 1], ft is Anosov fort ∈ [0, 1); Rf1 ∈ Wu(Pf1, f1) ∩ Ws(Qf1, f1) with
TRf1

Wu(Pf1, f1) = TRf1
Ws(Qf1, f1);

(b) f1 is conjugate tof (thus expansive and transitive);
(c) the Pesin region forf1 has full probability and, with respect to the given measure,

f1 is ergodic. There exists an ergodic attractor whose corresponding measure isµ,
such that the basin of attraction of the ergodic attractor has measure 1. Moreover,
µ is the only SRB measure forf1 andf1 is Bernoulli with respect to this measure.

The key fact in the theorems is that the invariant stable and unstable foliations persist
in B, determining the topological and ergodic properties.

We remark that the codimension ofM seems rather excessive, the initial conjecture
was that it could be two, because to obtain a cubic tangency as in the figure it is necessary
to impose two conditions. The fact is that, according to our methods, we must ensure that
the tangency of the foliations is obtained at the pointR, to be able to use the properties
of the pointsP andQ, and this implies more restrictions. If the tangency is obtained in
a point nearR, we could lose the hyperbolicity beforet = 1.

Let us define some terms that appeared in our theorems. We denote asCr(Mn) the
set of Cr diffeomorphisms inMn. From now on the manifold will be denoted asM,
omitting the dimension.

Definition 0.1.A homeomorphismF : M 7→ M is expansiveif there exists a constant
α > 0 such that forS, S∗ ∈ M, d(F i(S), F i(S∗)) ≤ α for all i ∈ Z implies S = S∗.

Definition 0.2.A homeomorphismF : M 7→ M is transitive if there exists a pointS ∈ M

with dense orbit.



A heteroclinic bifurcation of Anosov diffeomorphisms 569

Definition 0.3. Given a transformationF : M 7→ M, we say thatA ⊂ M has full
probability if, for every F -invariant probabilityµ, we haveµ(A) = 1.

Definition 0.4.We say that the pointS ∈ M is regular for the diffeomorphismF if there
exist real numbers

χ1(S) > χ2(S) > · · · > χm(S)

(called Lyapounov exponents) and a decomposition

TSM = E1(S) ⊕ E2(S) ⊕ · · · ⊕ Em(S)

such that

χ(S, v, F ) = lim
i→±∞

1

i
log‖DF i(S)v‖

exists and is equal toχj (S) for 0 6= v ∈ Ej(S) and 1≤ j ≤ m. We denote the set of
regular points as̃3.

The theorem of Oseledecasserts that̃3 has full probability.

Definition 0.5.Given a diffeomorphismF , its Pesin region3 is the set of regular points
of M such that all the Lyapounov exponents are non-zero.

Definition 0.6. A SRB probability is an ergodicF -invariant probability which has
absolutely continuous conditional measures on unstable manifolds (for more details, see
§4.2).

Definition 0.7.Following [PS89], we say that anergodic attractorfor F is aF -invariant
set A ⊂ M with a F -invariant Borel probabilityµ on A (i.e. (A, ν) is a probability
space) such that for some setY ⊂ M with positive Lebesgue measure:
(i) lim i→∞ d(F i(S), A) = 0 for S ∈ Y ,
(ii) µ is F -ergodic,
(iii) the Lebesgue a.e. pointS ∈ Y is generic with respect toµ, that is,

limi→∞(1/i)
∑i−1

j=0 δF j (S) = µ with weak topology, whereδT is the Dirac measure
concentrated onT .

Definition 0.8.We say that a mapF : M 7→ M is Bernoulli if it is equivalent to a
Bernoulli shift, where(M,A, µ) is a measure space withF -invariant measure.

Now we sketch the proof of the theorems. We first construct in§1 an isotopyft from
f for t = 0 to a functionf1 ∈ B with f1 satisfying the conditions ofF1 in the statement
of Theorem 1. The condition we impose to definef1 is that the angle nearR between a
local unstable invariant foliation defined nearP (and extended to a neighborhood ofR),
and a local stable invariant foliation defined nearQ (and extended to a neighborhood of
R) must have, to a first approximation, a quadratic variation with the distance toR with
large enough coefficient (see Lemma 1.4). We end the proof of Theorem 2(a) with the
results of§2 which, with an argument of cones, states thatft is Anosov fort ∈ [0, 1);
and with the results of§4.4, which shows that the isotopy can be taken such that the
given measure isft -invariant.

We show that if a diffeomorphismF1 nearf1 verifies a certain inequality (that of
Lemma 1.4 witht = 1), then it is inB (§1.6). That inequality is obtained through
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n + 1 conditions (the tangency one plusn conditions due to the quadratic variation of
the angle described above), determining a local chart of the manifoldM. This, together
with the results of§2 (where we prove that we can arrive atM within the Anosov set),
proves Theorem 1(a). In§3.1 we show the existence of two invariant fibre bundles (a
‘stable’ and an ‘unstable’ fibre bundle), through an appropriate set of cones. We integrate
them (§3.2) to prove the expansivity ofF1 (Proposition 3.13) and the conjugation tof

(Proposition 3.14) for the assertions of Theorems 1(b) and 2(b).
We study the ergodic properties in§4. First, we prove that the Pesin region has full

measure observing that we can restrict ourselves to the points which have infinite forward
and backward iterates through a neighborhood ofR, and it is enough to study Lyapounov
exponents of the return function to that neighborhood. In the case of Theorem 1, we
construct the SRB measure adapting an idea of [PS82]. The other ergodic properties are
proved following arguments of [PS89].

In the case of Theorem 1, we will make some additional hypotheses about the
eigenvalues atP and Q. These hypotheses do not represent a restriction to our
theorem because they can be obtained by isotopy without leaving the set of Anosov
diffeomorphisms. In dimension two, we denote the respective eigenvalues atP andQ

asλP , µP , andλQ, µQ and we will suppose that|µP | > 1 > |λP |; |µQ| > 1 > |λQ| with
|λP µP | > 1 > |λQµQ|. For n > 2, we denote the eigenvalues atP andQ respectively
asλP1, . . . , λPs

, µP1, . . . , µPu
andλQ1, . . . , λQs

, µQ1, . . . , µQu
with u + s = n, such that

|µP1| ≥ · · · ≥ |µPu
| > 1 > |λP1| ≥ · · · ≥ |λPs

|
|µQ1| ≥ · · · ≥ |µQu

| > 1 > |λQ1| ≥ · · · ≥ |λQs
|.

We suppose that

|µPu
| > max{exp{log |λPs

| log |µQu
µ−2

Q1
|/log |µQ1|}, |λP1λ

−2
Ps

|, |λP1µP1|} (1)

|λQ1| < min{exp{log |µQ1| log |λP1λ
−2
Ps

|/log |λPs
|}, |µQu

µ−2
Q1

|, |λQs
µQu

|}. (2)

These conditions are needed in order forFt to be hyperbolic fort < 1. We also suppose
that the non-resonance conditions for the set of eigenvalues with modulus larger than 1
and also for the set of eigenvalues with modulus smaller than 1 for the pointP and also
for Q are verified. Finally, we suppose (see Theorem 2 of [S57]) that

r > max{log |λPs
|/log |λP1|, log |µP1|/log |µPu

|, log |λQs
|/log |λQ1|, log |µQ1|/log |µQu

|}.
We observe that these are open conditions: if they are verified for a diffeomorphismf ,
they are also verified forg in a Cr neighborhood off .

We point out that Theorem 2 is asserted only forn = 2. It can be stated in
higher-dimensional manifolds with additional hypotheses (n even, andu = s). In
the bidimensional case, the conditions|λP µP | = 1 = |λQµQ| are close enough to
the conditions|λP µP | > 1 > |λQµQ| so as to assert that the proof still works.
However, in higher-dimensional manifolds, the conditions

∏s
i=1 |λPi

|∏u
i=1 |µPi

| = 1 =∏s
i=1 |λQi

|∏u
i=1 |µQi

| together with (1) and (2) are contradictory. If we write equality
signs instead the inequality ones in (1) and (2) (as we did forn = 2) we have the
restrictions = u. We do not insist on this.
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There are some questions which remain to be answered. For instance, has the basin
of attraction of the ergodic attractor Lebesgue measure one? What can we say aboutFt

beyond the boundary of the set of Anosov diffeomorphisms?
We remark that some of the topological results of our theorem in dimension two were

obtained simultaneously and in an independent way in [BDV94].

1. Definition of the manifoldM
In this section we construct the isotopy. The idea is to deformf through a map
θt : M 7→ M which is different from the identity outside a neighborhood ofR in
the way shown in Figure 1 (see§1.1). It can be expected that the stable and unstable
foliation will persist, and that outside a disconnected region near the iterates ofR the
foliations will not be very different from the initial ones, that nearR the stable foliation
will not vary too much and, roughly speaking, the unstable foliation will be mapped
as θt . We want that fort = 1, nearR, the angle between these two foliations has a
quadratic variation with the distance toR. In fact, on account ofP andQ, if we reach
the wanted properties for a local unstable invariant foliation forP extended nearR and a
local stable invariant foliation forQ (also extended nearR), the property works for any
local invariant foliation and, indeed, for the global stable and unstable foliations. So,
in §1.2 we define the local foliations with adequate smoothness conditions, which will
be used in connection with two systems of coordinates (one atP , the other atQ). In
this section, we constructθt verifying the mentioned quadratic variation, and show that
to develop this construction we need to imposen + 1 conditions, thus determining the
dimension ofM.

S̃
ρ̃1(S̃)

ỹ

x̃Q

E

S∗

x∗

ρ∗
2 (S∗)

Dθt TS,y∗

x, ζ

y∗

Tθt (S),x̃

R

y, η

θt (S)

P

S

FIGURE 1. The bifurcation.

1.1. We begin by defining an isotopyft = θt ◦ f with t ∈ [0, 1], whereθt is a
Cr diffeomorphism,θt : M 7→ M, θt (R) = R, θ0 = id, θt = id outside of a small
neighborhoodE of the pointR. (Alternatively, we could have defined the isotopy as
ft = f ◦ θ∗

t , whereθ∗
t = f −1 ◦ θt ◦ f .) We consider aCr system of coordinates between
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a neighborhoodU of R and an open setUn of R
n; we have to defineθt for points

in U . We denote by(ξ1, . . . , ξu, η1, . . . , ξs) = (ξ, η) ∈ R
u × R

s the coordinates of a
point, we suppose thatR has coordinates(0, 0) and that the connected component of
Wu(P, f ) ∩ U that containsR has imageη = 0; in the same way, we suppose that the
connected component ofWs(Q, f ) ∩ U that containsR has imageξ = 0.

We have to impose some additional properties for theCr diffeomorphism betweenU
andUn (see Lemma 1.1), so we consider newCr coordinates(x1, . . . , xu, y1, . . . , ys) =
(x, y) ∈ R

u × R
s . We denote byx = 0(ξ, η), y = 1(ξ, η) the equations of the change

of coordinates, and assume the conditions

0(0, η) = 0 (3)

1(ξ, 0) = 0. (4)

Indeed,Dξ0(0, 0) and Dη1(0, 0) are invertible. Our first step is to find a suitable
θt ∈ Cr :

θt (x1, . . . , xu, y1, . . . , ys) =




x1 costγ (ρ) + y1 sintγ (ρ)

x2
...

xu

−x1 sintγ (ρ) + y1 costγ (ρ)

y2
...

ys




wheret ∈ [0, 1], ρ2 = ∑u
i=1 x2

i +∑s
i=1 y2

i andγ : [0, +∞) 7→ R, γ ∈ Cr is such that
γ (0) = π/2; 0 ≤ γ (x) < π/2 for x ∈ (0, ε); γ (x) = 0 for x ∈ [ε, +∞), whereε is a
small enough positive number which we will determine later.

For t = 1, this transformation maps the tangent space toOx1 on O over the tangent
space toOy1 on O. We observe thatρ(S) = ρ(θt (S)) for S ∈ E .

1.2. Before imposing more conditions on the change of coordinates (see§1.3) we
consider two suitable linearizing systems of coordinates (see Figure 1): the first one at
Q (whose image will be denoted̃U ⊂ R

n, and where the coordinates of a generic point
will be denoted as(x̃1, . . . , x̃u, ỹ1, . . . , ỹs) = (x̃, ỹ) ∈ R

u × R
s = R

n), and the other
one atP (with imageU∗ and coordinates denoted(x∗

1, . . . , x∗
u, y∗

1, . . . , y∗
s ) = (x∗, y∗) ∈

R
u × R

s = R
n). In the case of Theorem 2, we take the systems of the hypothesis, in the

case of Theorem 1, we now show how to construct them, adapting some ideas of [PT93].
We work at the pointQ, similar considerations work for the pointP . First we consider
a linearizingC1 system of coordinates forf |Ws(Q,f ) and forf |Wu(Q,f ) (see Theorem 2
of [S57]). Then we construct aC1 invariant foliationFu (by definition, this means that
there existsC1 local charts coveringM such that at each one the foliation is ‘flattened’;
in particular, this implies that the leaves of the foliation areat least C1). We construct
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the lift
L(M)

Df−→ L(M)y y
M

f−→ M

where L(M) = {(S, L) : S ∈ M andL is anu-dimensional linear subspace ofTSM}.
Let F be a foliation ofŨ (a neighborhood ofQ), by u-dimensional manifolds. Then,
WL = {(S, L) : S ∈ Ũ andL is the tangent space of theF-leaf throughS} is a manifold
in L(M) of dimensionn; andF is a f -invariant foliation if and only ifWL is a Df

invariant manifold. IfWL is Cq thenF is Cq , and we have even in this case that the
tangent spacesTSF(S) to the leaves ofF dependCq on S. We have that(Q, IQ) (where
IQ is the unstable linear subspace corresponding tof at Q) is a fixed point ofDf , and
the n + us eigenvalues ofD(Df )(Q,IQ) have absolute value:

|λQi
| for i = 1, . . . , s; |µQj

| for j = 1, . . . , u;
|λQi

|/|µQj
| for i = 1, . . . , s, j = 1, . . . , u

with |λQi
|/|µQj

| ≤ |λQ1|/|µQu
| < |λQs

| ≤ · · · ≤ |λQ1| < 1 < |µQu
| ≤ · · · ≤ |µQ1| for

i = 1, . . . , s, j = 1, . . . , u. Hence, there exists an-dimensional center-unstable locally
invariantC1 manifold WL containing(Q, IQ) such thatT(Q,IQ)WL is the eigenspace of
D(Df )(Q,IQ) corresponding to the eigenvalues

λQs
, . . . , λQ1, µQu

, . . . , µQ1.

WL defines af -invariantC1 foliation Fu in a neighborhoodŨ of Q, andFu(Q) ⊂
Wu(Q, f ) becauseFu(Q) is an invariant submanifold tangent toIQ, soFu is an unstable
foliation on a neighborhood ofQ.

In the same way, we define aC1 invariant foliationF s on Ũ , working with the fixed
point (Q, EQ) of Df : J (M) 7→ J (M), whereJ (M) = {(S, J ) : S ∈ M andJ is a
s-dimensional linear subspace ofTSM}. Then + su eigenvalues ofD(Df )(Q,EQ) are, in
absolute value,

|λQi
| for i = 1, . . . , s; |µQj

| for j = 1, . . . , u;
|µQj

|/|λQi
| for i = 1, . . . , s, j = 1, . . . , u

with |λQs
| ≤ · · · ≤ |λQ1| < 1 < |µQu

| ≤ · · · ≤ |µQ1| < |µQu
|/|λQ1| ≤ |µQj

|/|λQi
|

for i = 1, . . . , s, j = 1, . . . , u. Now we consider the theory of normal hyperbolicity
(see [HPS77]). WJ is q-normally hyperbolic for allq such that|µQu

|/(|λQ1||µQ1|q) < 1.
As log|µQu

/λQ1|/ log |µQ1| < 2, then we can takeq = 2, and this implies (see [HPS77,
Theorem 6.1]) thatF s is a C2 foliation.

We can define aC1 system of coordinates with image iñU ⊂ R
n, such that given a

point S ∈ Ũ , we denote(x̃1, . . . , x̃u) the coordinates of the pointF s(S) ∩ Wu
loc(Q, f ) in

the linearizing coordinates just defined, and similarly(ỹ1, . . . , ỹs) are the coordinates of
F s(S) ∩ Ws

loc(Q, f ).
From now on,K stands for a constant number or vector whose value can vary in

the different formulas, but the variation is independent oft or any other variable. For
n ≥ 2 we denote byTS,x̃ the fibre of the tangent bundle of̃x = K ∈ R

u at the
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point S which (asF s is C2) is a C1 function of S, and similarly byTS,ỹ the fibre
of the tangent bundle of̃y = K ∈ R

s at the pointS (we only can assert that it
varies continuously withS). We suppose that the coordinates atQ are extended so
that R ∈ Ũ . Let (0, . . . , 0, r̃1, . . . , r̃s) = (0, r̃) ∈ R

u × R
s = R

n be the coordinates
of R. Let ρ̃2

1(S) = ∑u
i=1 x̃2

i ; ρ̃2(S) = ∑u
i=1 x̃2

i +∑s
j=1(ỹj − r̃j )

2. Let us suppose that
the coordinates are extended so that

Ũ = {S = (0, . . . , 0, ỹ1, . . . , ỹs) : ρ̃(S) ≤ ρ̃(R)} ⊂ Ũ
and we taked̃, ẽ small enough so that

Ũ ⊂ Ũ1 =
{
S = (x̃1, . . . , x̃u, ỹ1, . . . , ỹs) :

u∑
i=1

x̃2
i ≤ d̃;

s∑
j=1

ỹ2
j ≤ ẽ

}
⊂ Ũ .

It is not a restriction to suppose thatd̃ = 1. We will denote byWu
loc(Q, f ) the set{

S = (x̃1, . . . , x̃u, 0, . . . , 0) :
u∑

i=1

x̃2
i ≤ 1

}
.

We suppose thatE is small enough such thatE ⊂ Ũ1.
We work in a similar way aroundP , we denote byTS,x∗ the fibre of the tangent

bundle ofx∗ = K ∈ R
u at the pointS, and byTS,y∗ the fibre of the tangent bundle of

y∗ = K ∈ R
s at the pointS. We suppose thatR = (r∗

1 , . . . , r∗
u, 0, . . . , 0) = (r∗, 0) ∈ U∗,

whereU∗ is the domain of the linearizing coordinates. Letρ∗2
2 (S) = ∑s

j=1 y∗2
j ; ρ∗2(S) =∑s

i=1(x
∗
i − r∗

i )2 +∑s
j=1 y∗2

j . We suppose that the linearizing coordinates are extended
so that

U ∗ = {S = (x∗
1, . . . , x∗

u, 0, . . . , 0) : ρ∗(S) ≤ ρ∗(R)} ⊂ U∗

and we taked∗, e∗ small enough so that

U ∗ ⊂ U∗
1 =

{
S = (x∗

1, . . . , y∗
s ) :

u∑
i=1

x∗2
i ≤ d∗;

s∑
j=1

y∗2
j ≤ e∗

}
⊂ U∗.

We suppose thate∗ = 1, andE ⊂ U∗
1 . Let Ws

loc(P, f ) = {S = (0, . . . , 0, y∗
1, . . . y∗

s ) :∑s
i=1 y∗2

i ≤ 1}.
If we assumen > 2, let ζPu

, νP0, νPs
, ζQ0, ζQu

, νQ0 be such that

|µPu
| > ζPu

> 1 > νP0 > |λP1| ≥ |λPs
| > νPs

> 0 (5)

ζQ0 > |µQ1| ≥ |µQu
| > ζQu

> 1 > νQ0 > |λQ1| (6)

ζPu
> max{exp{logνPs

log(ζQu
ζ−2
Q0

)/logζQ0}, νP0ν
−2
Ps

}
νQ0 < min{exp{logζQ0log(νP0ν

−2
Ps

)/logνPs
}, ζQu

ζ−2
Q0

}
(we recall our hypotheses). Ifn = 2, the reasoning that follows is valid just taking

νP0 = νPs = |λP |; ζPu
= |µP |; νQ0 = |λQ|; ζQ0 = ζQu

= |µQ|.
Therefore, ifE is small enough, we can iterate any pointS ∈ E at leastm1 = m1(S)

times byf without leavingŨ1, wherem1 is larger than

m(S) =
{

E(−log ρ̃1(S)/logζQ0) if ρ̃1(S) 6= 0
∞ if ρ̃1(S) = 0,
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and whereE(x) is the largest natural number smaller or equal tox. Similarly, we can
iterate any pointS ∈ E at leastp1 = p1(S) times byf −1 without leavingU∗

1 , wherep1

is larger than

p(S) =
{

E(logρ∗
2(S)/logνPs

) if ρ∗
2(S) 6= 0

∞ if ρ∗
2(S) = 0.

1.3.

LEMMA 1.1. There exists aC∞ local chart (x, y) at R, and positive constantsk and
K, such that ifv(S) = (v1(S), . . . , vn(S)) ∈ TS,x̃ satisfies

∑n
i=1 v2

i (S) = 1, then
|v1(S)| ≤ Kρ2(S), |vi(S)| ≤ Kρ(S) for i = 2, . . . , u, and k <

∑n
i=u+1 |vi(S)|.

Also, if w(S) = (w1(S), . . . , wn(S)) ∈ TS,y∗ is a unit vector, thenk <
∑u

i=1 |wi(S)|,
|vu+1(S)| ≤ Kρ2(S) and |vu+i (S)| ≤ Kρ(S) for i = 2, . . . , s.

Proof. Let ξ = α̃(x̃, ỹ) andη = β̃(x̃, ỹ) be the equations of the change of coordinates
between the(x̃, ỹ) and (ξ, η) systems of coordinates; we know thatα̃(0, ỹ) = 0,
β̃(0, r̃) = 0 and thatDx̃α̃(0, r̃) and Dỹβ̃(0, r̃) are invertible. The unit vector (with
the usual inner product in(x̃, ỹ)) of TS,x̃ with components(0, δ̃b(S)) in the(x̃, ỹ) system
has coordinates, in the(x, y) system,

v(S) =




v1(S)
...

vn(S)


 =


 (Dξ0Dỹα̃ + Dη0Dỹβ̃)δ̃b(S)

(Dξ1Dỹα̃ + Dη1Dỹβ̃)δ̃b(S)


 .

At S = R we obtain the vector(0, Dη1(0, 0)Dỹβ̃(0, r̃)δ̃b(R)) where Dη1(0, 0)Dỹ

β̃(0, r̃)δ̃b(R) has a norm inRs bounded away from zero when the vector(0, δ̃b(R)) ∈ TR,x̃

varies, because the matricesDη1(0, 0) and Dỹβ̃(0, r̃) are invertible. Therefore, the
vector formed by the lasts components ofv(S) when we take(0, δ̃b(S)) ∈ TS,x̃ , with S

in a neighborhood ofR, has the same property.
A generic term of the first row of(Dξ0Dỹα̃ + Dη0Dỹβ̃)δ̃b(S) is

a1,j (x̃, ỹ) =
u∑

τ=1

Dξτ
01(α̃(x̃, ỹ), β̃(x̃, ỹ))Dỹj

α̃τ (x̃, ỹ)

+
s∑

l=1

Dηl
01(α̃(x̃, ỹ), β̃(x̃, ỹ))Dỹj

β̃l(x̃, ỹ),

j = 1, . . . , s, where0i stands for thei-component of0(ξ, η), and a similar notation
is used for the other functions. If we differentiate and evaluate in(x̃, ỹ) = (0, r̃), we
deduce thatDyi

a1,j (0, r̃) = 0 for i = 1, . . . , s, j = 1, . . . , s, and also that if we impose
derivative zero with respect toxi , the function0(ξ, η) has to satisfy, fori = 1, . . . , u,
j = 1, . . . , s:

u∑
τ=1

[
Dξτ

01(0, 0)D2
x̃i ,ỹj

α̃τ (0, r̃) + Dx̃i
α̃τ (0, r̃)

s∑
l=1

D2
ξτ ,ηl

01(0, 0)Dỹj
β̃l(0, r̃)

]
= 0. (7)

We will see later that the above equations always have solutions. So we can write
|a1,j (S)| ≤ Kρ2(S) for j = 1, . . . , s, andS nearR.
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As the terms(i, j), i = 2, . . . , u, j = 1, . . . , s, of (Dξ0Dỹα + Dη0Dỹβ̃)(R) are
zero, we have|ai,j (S)| ≤ Kρ(S) for i = 2, . . . , u, j = 1, . . . , s.

These arguments prove the lemma if we take unitary vectors with the usual inner
product in (x̃, ỹ), and therefore with the usual inner product in(x, y). The same
arguments prove the lemma forTS,y∗ , if we impose the conditions

s∑
k=1

[
Dηk

11(0, 0)D2
x∗

i ,y∗
j
β∗

k (r∗, 0) + Dy∗
j
β∗

k (r∗, 0)

u∑
l=1

D2
ξl ,ηk

11(0, 0)Dx∗
i
α∗

l (r
∗, 0)

]
= 0

(8)
i = 1, . . . , u, j = 1, . . . , s, whereξ = α∗(x∗, y∗), η = β∗(x∗, y∗) are the equations of
the change of coordinates.

If we take

01(ξ, η) = ξ1 +
u∑

i=1

s∑
j=1

si,j ξiηj

0i(ξ, η) = ξi for i = 1, . . . , u

11(ξ, η) = η1 +
u∑

i=1

s∑
j=1

ti,j ξiηj

1j (ξ, η) = ηj for j = 1, . . . , s

it is easy to see that conditions (3) and (4) are verified, and thatsi,j and ti,j can be
taken so that (7) and (8) are verified. The transformationx = 0(ξ, η), y = 1(ξ, η) is
invertible in a neighborhood of(0, 0). Then, it is enough to takeE sufficiently small
such that it falls in the region where the transformation is invertible. �
Remark 1.2.The admissible(x, y) local charts of Lemma 1.1 are independent of the
(x̃, ỹ) and(x∗, y∗) local charts.

Proof of the remark.Let us suppose that we start with a linearizing system of
coordinates atQ denoted (x̂, ŷ) which is different from the(x̃, ỹ) system. Let
v̂(S) = (δ̂1(S), . . . , δ̂n(S)) = (δ̂a(S), δ̂b(S)) ∈ R

u × R
s be the components of a vector of

TS,x̂ in the (x̃, ỹ) system of coordinates with
∑n

i=1 δ̂2
i (S) = 1.

We first claim that|δ̂i (S)| ≤ Kρ̃2(S) for i = 1, . . . , u. If ρ̃1(S) is small enough, after
m iterates (see§1.2) the tangent of the angle (in the usual metric of the(x̃, ỹ) system)
betweenv̂(S) andTS,x̃ is bounded by a constantK2 < ∞. So, we can write

ζ 2m
Qu

u∑
i=1

δ̂2
i (S)

/(
ν2m

Q0

s∑
i=1

δ̂2
i+u(S)

)
< K2.

As
∑s

i=1 δ̂2
i+u(S) ≤ 1, then fori = 1, . . . , u, ζm

Qu
|δ̂i (S)|/νm

Q0
< K, that is,

|δ̂i (S)| < K(νQ0/ζQu
)m ≤ K(νQ0/ζQu

)−log ρ̃1(S)/logζQ0 ≤ Kρ̃2
1(S).

As ρ̃2
1(S) = ∑u

i=1 x̃2
i ≤ ∑u

i=1 x̃2
i +∑s

j=1 ỹ2
j ≤ Kρ2(S) the claim is proved.

Now, the vectorv̂(S) has components(
(Dξ0Dx̃α̃ + Dη0Dx̃β̃)δ̂a(S)

(Dξ1Dx̃α̃ + Dη1Dx̃β̃)δ̂a(S)

)
+
(

(Dξ0Dỹα̃ + Dη0Dỹβ̃)δ̂b(S)

(Dξ1Dỹα̃ + Dη1Dỹβ̃)δ̂b(S)

)
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in the (x, y) system of coordinates. We observe that the difference with the vectorv(S)

obtained in Lemma 1.1 is only in the first of the two terms. The claim shows that
‖δ̂a(S)‖ ≤ Kρ2(S), and then it can be neglected in terms of our hypothesis. �

1.4. We will show that the angle betweenDθtTS,y∗ and Tθt (S),x̃ has a quadratic
variation with the distance toR (see Lemma 1.4). Here we study two terms of the
first component ofDθtTS,y∗ .

We work in the(x, y) system of coordinates. We start with the point

S = (X1, . . . , Xu, Y1, . . . , Ys) = (X, Y ).

Let us take a unit vector (with the metric of(x, y)) w(S) = (w1(S), . . . , wn(S)) ∈ TS,y∗ .
According to the definition ofθt ,

θt (S) = (X1 costγ (ρ) + Y1 sintγ (ρ), X2, . . . , Xn, −X1 sintγ (ρ)

+Y1 costγ (ρ), Y2, . . . , Ys)

and so

Dθtw(S)

=
([

costγ (ρ) + X1(Y1 costγ (ρ) − X1 sintγ (ρ))
tDργ (ρ)

ρ

]
w1

+
[

sintγ (ρ) + Y1(Y1 costγ (ρ) − X1 sintγ (ρ))
tDργ (ρ)

ρ

]
wu+1

+(−X1 sintγ (ρ) + Y1 costγ (ρ))

( u∑
i=2

Xiwi +
s∑

j=2

Yjwu+j

)
tDργ (ρ)

ρ
, w2, . . . , wu,

[
− sintγ (ρ) − X1(X1 costγ (ρ) + Y1 sintγ (ρ))

tDργ (ρ)

ρ

]
w1

+
[

costγ (ρ) − Y1(X1 costγ (ρ) + Y1 sintγ (ρ))
tDργ (ρ)

ρ

]
wu+1

+(−X1 costγ (ρ) − Y1 sintγ (ρ))

( u∑
i=2

Xiwi +
s∑

j=2

Yjwu+j

)
tDργ (ρ)

ρ
, wu+2, . . . , wn

)

where everything is evaluated atS.
The strategy is to take the following term of the first component ofDθtw(S) to be

large:

costγ (ρ) + X1(Y1 costγ (ρ) − X1 sintγ (ρ))
tDργ (ρ)

ρ
.

This expression should be larger thanm̂(1− t + taρ2), with m̂ a constant, anda as large
as required. Indeed, this cannot be true forγ (ρ) fixed, so we considerγ depending also
on a. We use the same letterγ to denote the new function depending not only onρ, but
also ona.

LEMMA 1.3. For all a there existγ : [0, ∞) 7→ R, γ ∈ Cr ; m̂ > 0, m̂′ > 0 and
ε = ε(a) such thatγ (0) = π/2; 0 ≤ γ (aρ2) < π/2 for 0 < ρ < ε(a); γ (aρ2) = 0 for
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ρ ∈ [ε(a), ∞); ε(a) goes to zero whena goes to infinity, and

costγ (aρ2) + X1(Y1 costγ (aρ2) − X1 sintγ (aρ2))
tDργ (aρ2)

ρ
≥ m̂(1 − t + taρ2)

sintγ (aρ2) + Y1(Y1 costγ (aρ2) − X1 sintγ (aρ2))
tDργ (aρ2)

ρ
≤ m̂′

for t ∈ [0, 1], ρ ∈ [0, ε(a)].

Proof. We take aC∞ function b : R 7→ R such thatb(x) = 0 for x ≤ 0, b(x) = 1 for
x ≥ 1, 0≤ Db(x) ≤ 4/3. Next, we define

γ (x) =



[1 − b((2x − 1)/(π8 − 1))]
×[(π/2) − x + b(2x)(x − 2−7/8x1/8)] for x ∈ [0, π8/2]

0 for x ∈ (π8/2, +∞).

We observe that this impliesε(a) = π4/
√

2a (this shows thata is related to the size
of E). After some computations, it is not difficult to verify thatγ (x) so defined is
suitable. �

1.5. Hered denotes the distance in the manifold andA(G1, G2) the angle between
the fibre bundlesG1, G2 ∈ Tθt (S)M. The parameterτ , defined in the next lemma, is
essential in our reasoning.

LEMMA 1.4. We fix t0. Then, we can findh > 0 so that, givenτ > 0, there exists
a0 = a0(τ ) such that for anya > a0, S ∈ E , and t ∈ [t0, 1],

tanA(DθtTS,y∗ , Tθt (S),x̃ ) ≥ h(1 − t) + τd2(S, R).

Proof. We prove the lemma working in the(x, y) system of coordinates, and taking the
usual inner product inRn; the equivalence between the metrics produces the lemma. For
simplicity, we denote with the same letterA the angle between vectors with this metric,
and use the same lettersh andτ .

We first observe that forS ∈ E , H(S) = ‖Dθtw(S)‖ is bounded and bounded away
from zero asS, a, t and w(S) the unit vector inTS,y∗ vary, and this follows because
‖Dθt‖ and‖Dθ−1

t ‖ are bounded. So, we can findb, B such that 0< b ≤ H(S) ≤ B.
By contradiction, suppose that givenh = min{1/(2Bn), m̂/(2B)} there existsτ =

τ(h) > 0 such that for anya0 we can finda > a0, Sa ∈ E, ta ∈ [t0, 1] and

v(θta (Sa)) = (v1(θta (Sa)), . . . , vn(θta (Sa))) ∈ Tθta (Sa),x̃;
n∑

i=1

v2
i (θta (Sa)) = 1

w(Sa) = (w1(Sa), . . . , wn(Sa)) ∈ TSa,y∗ ;
n∑

i=1

w2
i (Sa) = 1

with
tanA(Dθtaw(Sa), v(θta (Sa))) < h(1 − ta) + τ(h)ρ2(Sa).

Now,

tanA(Dθtaw(Sa), v(θta (Sa))) ≥
∥∥∥∥ 1

H(Sa)
Dθtaw(Sa) − v(θta (Sa))

∥∥∥∥
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and this last term is larger or equal to the absolute value of any component of

1

H(Sa)
Dθtaw(Sa) − v(θta (Sa)).

Taking into account the contradiction hypothesis, there exists a sequence{al}l∈Z+ going
to infinity such that∣∣∣∣ 1

H(Sal
)
wi(Sal

) − vi(θtal
(Sal

))

∣∣∣∣ < h(1 − tal
) + τρ2(Sal

), i = 2, . . . , u

and then (we recall Lemma 1.1)

|wi(Sal
)| < B[Kρ(Sal

) + h(1 − tal
) + τρ2(Sal

)], i = 2, . . . , u.

As B2h2(1 − tal
)2(u − 1) < 1/4, then

w2
1(Sal

) > 1 − (u − 1)B2[Kρ(Sal
) + h(1 − tal

) + τρ2(Sal
)]2 − sKρ2(Sal

)

> (3/4) − Kρ(Sal
) > 1/4.

These inequalities are valid takingal large enough becauseρ ≤
√

π8/(2a). Then,
|w1(Sal

)| > 1/2. The absolute value of the first component of(Dθtal
w(Sal

)/H(Sal
)) −

v(θtal
(Sal

)) is therefore larger than̂m(1− tal
)/(2B)+(mtal

al/(2B)−K̃)ρ2(Sal
), whereK̃

is a constant. Now we fixal > 2(τ + K̃)B/(m̂t0). We deduce that the absolute value of
the first component of(Dθtal

w(Sal
)/H(Sal

)−v(θtal
(Sal

)) is larger thanh(1−tal
)+τρ2(Sal

)

and this is a contradiction. �

We remark that if we increaseτ , a0 also increases, and thereforeE decreases.

1.6. In this subsection we construct the manifoldM. We are interested in finding
the conditions that we have to impose in order that we can write (forF such that
TRF

Ws(QF , F ) andTRF
Wu(PF , F ) intersect in a one-dimensional vector space)

tanA(TS,y∗
F
, TS,x̃F

) ≥ τd2(S, RF ) (9)

for S nearRF and forτ (which will be fixed later) large enough (see Lemma 1.4). Let
us suppose that inequality (9) is verified, then we can define an isotopyFt , t ∈ [0, 1]
with F0 = f, F1 = F , and such that fort < 1, S near RF , tanA(TS,y∗

Ft
, TS,x̃Ft

) ≥
hFt

+ τd2(S, RF ). If F is near enough tof1, then it will be seen that this condition is
enough to prove thatFt is Anosov for t < 1 (see§2). Condition (9) will allow us to
prove points (b) and (c) of our theorems, which will be done in§§2–4.

Now, we examine condition (9). First, let us takeRF as an intersection point
of Wu(PF , F ) and Ws(QF , F ) near to R, with RF → R when F → f1, and
let us impose that the intersection ofWu(PF , F ) and Ws(QF , F ) is not transversal
(in the differentiable sense). Therefore, we need to impose one condition, namely,
that the volume of the parallelepiped spanned by a basis ofTRF

Wu(PF , F ) and a
basis ofTRF

Ws(QF , F ) is equal to zero. This implies that there exists a unit vector
eRF ,u+1 ∈ TRF

Wu(PF , F ) ∩ TRF
Ws(QF , F ). Therefore, there exists a unit vectoreRF ,1

which is not inTRF
Wu(PF , F ) ⊕ TRF

Ws(QF , F ). We takeeRF ,1 such that it converges
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to the unit vector inTRM that defines the direction ofOx1 at R when F goes tof1.
Let us take a local chart atRF , (xF,1, . . . , xF,u, yF,1, . . . , yF,s) = (xF , yF ) ∈ R

u × R
s ,

with the coordinates ofRF equal to(0, 0), with eRF ,1 in the direction corresponding
to OxF,1 at O and eRF ,u+1 in the direction corresponding toOyF,1 at O. Let us
denote bywF (S) = (wF,1(S), . . . , wF,n(S)) the components in the(xF , yF ) system
of coordinates of a generic unit vector (with the usual metric inR

n) of TS,y∗
F
, and by

vF (S) = (vF,1(S), . . . , vF,n(S)) a generic unit vector ofTS,x̃F
. Let us denote byp1(S)

the projection on the axisOxF,1 of the vectorwF (S) − vF (S) with minimum norm. We
havep1(RF ) = 0. Taking into account the fact thatTS,y∗

F
and TS,x̃F

vary in a C1 way
with S, we can suppose thatp1(S) is C1 for S nearRF . We demand that

∂p1(S)

∂xF,i

∣∣∣∣
S=RF

= 0 for i = 1, . . . , u,
∂p1(S)

∂yF,j

∣∣∣∣
S=RF

= 0 for j = 1, . . . , s.

These aren more conditions, which we will see do not depend on the choice of the
local charts (so, we haven + 1 conditions if we take into account the tangency one). In
particular, they imply that the intersection betweenWu(PF , F ) andWs(QF , F ) has to be
at least cubic (i.e. there existsv 6= 0 such thatRn = v⊕TRF

Wu(PF , F )⊕TRF
Ws(QF , F )

and the plane determined byRF , v and TRF
Wu(PF , F ) ∩ TRF

Ws(QF , F ) intersects
Wu(PF , F ) andWs(QF , F ) in two curves with cubic intersection). It is cubic because
the second-order terms are not zero forf , and because we can take the local charts
varying Cr continuously atf1. Therefore, there exists only one point of intersection
of Wu(PF , F ) and Wu(QF , F ), RF , nearR. For the diffeomorphisms verifying the
n conditions the vectoreRF ,u+1 can be chosen such that it converges to the direction
of Oy1 at R when F goes tof1, and so we can take the local chart atRF varying
continuously atF = f1. In fact, we can take the local chart such that the manifold
given by the equationsyF = 0, xF,1 = 0 is in Wu(PF , F ). Reasoning as in Remark 1.2
shows that these conditions do not depend on the(x̃F , ỹF ) and (x∗

F , y∗
F ) system of

coordinates; a modification on these systems represents a variation of second order in
the components ofwF (S) andvF (S). They also do not depend on the(xF , yF ) system of
coordinates; we are demanding thatp1(S) (equal to 0 forS = RF ) has an extreme near
RF . Taking into account the fact that the derivatives of first order are zero, we deduce
that tanA(TS,y∗

F
, TS,x̃F

) varies, to a first approximation, in a quadratic way withS. As
for F = f1, this quadratic form is larger thanτd2(S, R), and by the continuous variation
of tanA(TS,y∗

F
, TS,x̃F

) with F at f1 we deduce inequality (9). �

2. Ft is Anosov fort ∈ [0, 1)

Now we begin to prove that the ideas developed at the beginning of§1 actually work.
In this section we prove that, forθt as constructed in§1 and t < 1, Ft is Anosov by
defining a suitable system of cones. In fact, we will prove in§3 that these cones persist
for t = 1, so we are interested in the caset = 1 for some of the results of this section.

2.1. We takeFt nearft such that in the same setE defined forf1 condition (9) is
verified (we will impose more conditions on the size ofE). We also suppose that the
valuesζPu

, νP0, νPs
, ζQ0, ζQu

, νQ0 verify conditions (5) and (6) for the eigenvalues of
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PF andQF . Later we will impose more conditions onFt . Here we find the stable and
unstable vector bundle inE through two families of cones aroundTS,y∗ and TS,x̃ (see
Definition 2.1). In fact, ift ∈ [0, t0) for somet0 > 0, there is nothing to prove because
the set of Anosov diffeomorphims is open in theCr topology. Then, we taket ∈ [t0, 1].
We begin with some definitions.

Definition 2.1.GivenS ∈ M and a direct sum decompositionTSM = E1 ⊕E2, we define
the ε-cone aboutE1 by E2 to beC(S, ε, E1) = {(v1, v2) ∈ E1 ⊕ E2 : ‖v2‖ ≤ ε‖v1‖}.
Definition 2.2.An almost hyperbolic splitting forg : M 7→ M on M is a (not necessarily
continuous) splittingTSM = E1,S ⊕ E2,S for S ∈ M such that dimE1,S and dimE2,S are
constant and there exist bounded positive nowhere zero functionsε1, ε2 on M, a constant
σ > 1 andq ∈ Z

+ such that
(i)

Dgq(C(S, ε2(S), E2,S)) ⊂ C(gq(S), ε2(g
q(S)), E2,gq (S))

Dg−q(C(S, ε1(S), E1,S)) ⊂ C(g−q(S), ε1(g
−q(S)), E1,g−q (S))

(ii)

‖Dgq(v)‖ ≥ σ‖v‖ for S ∈ M, v ∈ C(S, ε2(S), E2,S)

‖Dg−q(v)‖ ≥ σ‖v‖ for S ∈ M, v ∈ C(S, ε1(S), E1,S).

Then, the following theorem follows.

THEOREM 2.3. ([NP73, Theorem 3.1])g has an almost hyperbolic splitting if and only if
g is Anosov.

In fact, the theorem proved in [NP73] is stronger (it applies to prove hyperbolicity),
but we reformulate it in the way we need here. (For the proof, see [NP73], also 15.1
of [R89], and Lemmas 3.1 and 4.3). Moreover, we can assert that there exists a suitable
metric such that we can takeq = 1. We suppose that we work with such a metric for the
diffeomorphismf , andε1(S) = ε2(S) = 1/4. We consider two continuous families of
conesC(S, ε1(S), (E1,S)) andC(S, ε2(S), (E2,S)) for f about the stable by the unstable
vector bundle and about the unstable by the stable vector bundle, respectively. We denote
these families byC1,S and C2,S , respectively, given by understanding the splitting and
the functionsεi(S). We prove the following.

PROPOSITION2.4. Ft has an almost hyperbolic splitting fort ∈ [0, 1).

We develop the proof in the remainder of the section. We only construct
C(S, ε2(S), E2,S) (depending also ont) for Ft , and prove the properties of
Definition 2.2(i) and (ii) observing thatq can be taken as large andσ as near to 1
as we want. The construction ofC(S, ε1(S), E1,S) and the proof of properties (i) and
(ii) is similar.
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2.2.

LEMMA 2.5. There exist two families of cones (depending ont) which verify condition (i)
of Definition 2.2 forFt , t ∈ [0, 1) and S ∈ M; similarly for F1 and S ∈ M \ {F i

1(R) :
i ∈ Z}.
Proof. We denote the systems of cones that we are going to construct asC ′

1,S andC ′
2,S .

First, we defineC ′
2,S for points of E . In the (x, y) system of coordinates, we take

E1,S = TS,x̃Ft
, E2,S = TS,y∗

Ft
, ε1(S) = ε2(S) = 1/4. This construction does not work for

S = RF1 andt = 1 becauseE1,RF1
andE2,RF1

have a one-dimensional space in common.
Next we work in the(x̃, ỹ) system of coordinates (we recall the notation of§1.2). By
the definition ofC ′

2,S for S ∈ E , the tangent of the angles between the vectors ofC ′
2,S

and the vectors ofTS,x̃Ft
are larger thañh + τ̃ ρ̃2(S), whereh̃ depends onhFt

and on the
change of coordinates, andτ̃ , which depends onτ and on the change of coordinates, can
be taken as large as wanted. We can takem0 large enough depending on the Jordan form
of DFt(Q) and onζQu

, νQ0 such that the angle of the vectors ofDFm
t (C ′

2,S) (S ∈ E)

with TFm
t (S),x̃Ft

, for m > m0, has tangent larger than

(ζQu
/νQ0)

m(h̃ + τ̃ ρ̃2(S))

(while Fm
t (S) ∈ Ũ1). Then, we increaseτ so that for everyS ∈ E , we havem(S) > m0

(we recall that ifτ increases, then the diameter ofE decreases). First, we suppose
ρ̃1(S) 6= 0 (i.e. S 6∈ Ws(Q, Ft )). Then,

(ζQu
/νQ0)

m(h̃ + τ̃ ρ̃2(S)) ≥ (ρ̃1(S))(logνQ0−logζQu )/ logζQ0 (h̃ + τ̃ ρ̃2(S))τ̃ .

By the continuity of the familyC2,S , the fact thatTS,ỹFt
varies continuously withS, and

becauseTS,ỹFt
is equal to the unstable fibre ifS belongs toỹ = 0, we deduce thatTS,ỹ is

in the interior ofC2,S if S is near toỹ = 0. We takeE small enough (independent ofFt )
such that the iterate that is leavingŨ1 of any point ofE fulfills the former property. Then,
we takeτ̃ large enough such that, denoting byi the iterate just leaving̃U1, DF i

t (C
′
2,S)

is into C2,F i
t (S). This is done independently ofF1 ∈ M if M is sufficiently small

because the values ofτ̃ and the eigenvalues atP and Q vary continuously. Now, we
define the new family of cones in the positive iterates of points ofE in Ũ1 such that
C ′

2,F
j
t (S)

= DF
j
t (C ′

2,S) for S ∈ E , if DF
j
t (C ′

2,S) 6⊂ C2,F
j
t (S)

. If DF
j
t (C ′

2,S) ⊂ C2,F
j
t (S)

,

then we defineC ′
2,F

j
t (S)

= C2,F
j
t (S)

until j = i.

Analogously, we suppose now thatρ̃1(S) = 0 (that is,S ∈ Ws(Q, Ft )). In such a
case, the iterates byFt of S also approach̃y = 0 (in fact, toQ), and, if eithert 6= 1 or
ρ̃2(S) 6= 0 (or both), then

(ζQu
/νQ0)

i(h̃ + τ̃ ρ̃2(S))

grows without bound asi grows. The conclusion is that, except fort = 1 and
ρ̃(S) = 0 (that is, S = R), there existsj0 < ∞ such thatDF

j0
t (C ′

2,S) ⊂ C2,F
j0
t (S)

andF
j0
t (S) ∈ Ũ1. We defineC ′

2,F
j
t (S)

= DF
j
t (C ′

2,S) for S ∈ E , if DF
j
t (C ′

2,S) 6⊂ C2,F
j
t (S)

;

if DF
j
t (C ′

2,S) ⊂ C2,F
j
t (S)

, then we defineC ′
2,F

j
t (S)

= C2,F
j
t (S)

.

A similar reasoning for the negative iterates ofE in U∗
1 allows us to constructC ′

2,S

for those iterates. To end the construction ofC ′
2,S , we takeC ′

2,S = C2,S for the points in
which we have not yet definedC ′

2,S . �
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2.3. Now we begin the proof of condition (ii) of Definition 2.2. This proof ends
in §2.4. In this subsection we continue consideringt fixed in [t0, 1]. Let us take the
set of pointsS ∈ M such thatS 6∈ U∗

1 ; Ft(S) ∈ U∗
1 ; there existsj = j (S) such that

F
j
t (S) ∈ E , and there existsk+ = k+(S) such thatFk+

t (S) ∈ Ũ1; Fk++1
t (S) 6∈ Ũ1, with

F i
t (S) ∈ U∗

∞ for i = 1, . . . , j ; F i
t (S) ∈ Ũ∞ for i = j, . . . , k+. For S as before, we

denote byD the set of points{F i
t (S) : i = 1, . . . , k+(S)}, andH = M \ D.

LEMMA 2.6. Let T ∈ H, Ft (T ) ∈ D, v ∈ C ′
2,T . Then,‖DF

k+(T )
t (T )v‖ ≥ 2‖v‖.

Proof. First we work in the(x̃, ỹ) system of coordinates, witht ∈ [t0, 1]. Let us take a
vectorv ∈ C ′

2,S, S ∈ E . We want to bound from below the expansion of this vector at

leavingŨ1, we study this expansion with the usual inner product in(x, y). The norm of
the component ofv in the directionTS,x̃Ft

is larger than

‖v‖ sin{arctan[̃h + τ̃ ρ̃2(S)]} ≥ ‖v‖ τ̃ ρ̃2(S)√
1 + [τ̃ ρ̃2(S)]2

.

We suppose that̃ρ1(S) 6= 0. The number of iterates needed to leaveŨ1 is larger thanm,
and in each iterate the former component ofv increases with a larger thanζQu

rate if m

is large. Then, the expansion of any vector ofC ′
2,S on leavingŨ1 is larger than

ζm
Qu

τ̃ ρ̃2(S)√
1 + [τ̃ ρ̃2(S)]2

≥ (ρ̃1(S))−logζQu /logζQ0
τ̃ ρ̃2(S)√

1 + [τ̃ ρ̃2(S)]2
.

Always with t ∈ [t0, 1], we study the situation with the negative iterates of points of
E . Then, we work in the(x∗, y∗) system of coordinates. Let us take a pointS ∈ E , and
let us consider the largesti > 0 such thatF−j

t (S) ∈ U∗
1 for j = 1, . . . , i (we suppose

that ρ∗
2(S) 6= 0). We have

i ≥ p = E(logρ∗
2(S)/logνPs

).

Let us consider the coneC ′
2,F−i

t (S)
= C2,F−i

t (S). The vectors in this cone determine an
angle withTF−i

t (S),y∗
Ft

smaller than a numberγ independent of the point. Then, a vector

v ∈ C ′
2,F−i

t (S)
will expand until arriving atS with a factor larger than

ζ
p

Pu
cosγ ≥ K(ρ∗

2(S))logζPu /logνPs

where in a similar way as before we have considered only the component inTF−i
t (S),y∗

Ft

.
We are ready to study the situation in which we iterate byFt , t ∈ [t0, 1], a pointT ∈ H

that entersD. We take a vector inC ′
2,T . The norm of this vector (in the Riemannian

metric in the manifold) will be increased, after leavingD, by a factor larger than

K(ρ∗
2(S))logζPu /logνPs (ρ̃1(S))−logζQu /logζQ0

τ̃ ρ̃2(S)√
1 + [τ̃ ρ̃2(S)]2

(10)

whereS is the iterate ofT that belongs toE , and K takes into account the different
changes of coordinates. We can write that

(ρ∗
2(S))logζPu /logνPs (ρ̃1(S))−logζQu /logζQ0 ≥K(ρ̃(S))(logζPu /logνPs )−(logζQu /logζQ0) ≥Kρ̃−2(S).
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Thus, the norm of any vector inC ′
2,T is increased with a factore(T ) larger than

Kτ̃/
√

1 + [τ̃ ρ̃2(S)]2.

As ρ̃(S) goes to zero wheñτ goes to infinity, increasing̃τ if necessary, we can write
that the last term of (10) is larger than 2. Then, after going throughD, the vectors of
C ′

2,T expand by a factor of at least 2. Analogously, we find that the vectors ofC ′
1,S

expand by a factor of at least two in each passage throughD by F−1
t . �

2.4.

LEMMA 2.7. For eachFt , t ∈ [t0, 1), there existq0 = q0(Ft ) ∈ N and σ0 = σ0(Ft ) > 1
such that‖DF

q
t v‖ ≥ σ‖v‖ for v ∈ C ′

2,S, S ∈ M, q ≥ q0, σ0 ≥ σ > 1.

Proof. We know that there existsσ1 > 1 such that for anyS ∈ M and v ∈ C2,S ,
‖Df v‖ ≥ σ1‖v‖ (we suppose that we are working with an adapted metric forf ).
First, we prove that givenFt , t ∈ [t0, 1) and S ∈ E , there existN1 and N2, with
N1 = N1(Ft , S) ≤ N2 = N2(Ft ) such that the vectors of the coneC ′

2,S contract by a
factor larger thanc = c(Ft ) < 1 in each iterate, during at mostN1 iterates, and then,
until leaving Ũ , the vectors of the cone grow by a rate of at leastσ1 in each iterate.
We observe that we have contraction only after passing throughE ; in other cases the
expansion has a factor of at leastσ1 in each iterate. We work in the(x̃, ỹ) system of
coordinates. For any system of conesCS , we write

P(CS) = inf
06=v∈CS

√√√√ u∑
i=1

v2
i

/ s∑
j=1

v2
u+j ,

where(v1, . . . , vu+s) are the components ofv in the (x̃, ỹ) system of coordinates. After
N iterates,N large enough (depending on the Jordan form ofDF1(Q) and onζQu

, νQ0),
if S ∈ E we have

P(DFN
t (C ′

2,S)) ≥ (ζQu
/νQ0)

N [h̃ + τ̃ ρ̃(S)] ≥ (ζQu
/νQ0)

N h̃.

Then, ast < 1, we need a finite numberN1 = N1(Ft , S) of iterates forC ′
2,S to be in the

system of conesC2,S : we can suppose that̃U1 is such that if a vector inTSM ∈ Ũ1 has
a tangent of the angle withTS,x̃ larger than a numberP0 < ∞ then it belongs toC2,S .
Therefore,

N2(Ft ) = max{E(log(P0/h̃)/log(ζQu
/νQ0)) + 1, N0}

N1(Ft , S) = min{N2(Ft ), m(S)}
where we suppose that the number of iterates for any point ofE leaving Ũ1 is larger
thanN0. This is possible takingE small enough. The existence ofc(Ft ) is then clear.

Now, given a pointT as in§2.1, let us defineσ2(T ), the average expansion in each
iterate by the passage throughD, as the 1/k+(T ) power ofe(T ). We are interested in

σ̃ = inf
T

{σ2(T ), σ1}.
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Let us prove that̃σ > 1. We know thatσ1 > 1, and thatσ2(T ) ≥ 1 becausee(T ) > 2.
By contradiction, let us suppose that there is a sequence of pointsTi such thatσ2(Ti)

goes to 1 wheni goes to infinity. Ase(Ti) > 2, it is necessary thatk+(Ti) goes to
infinity when i goes to infinity. If j = j (Ti) is such thatFj

t (Ti) ∈ E , we denote
N3(Ti) = N1(Ft , F

j
t (Ti)), and then

σ2(Ti) = e(Ti)
1/k+(Ti ) ≥ [cN3(Ti )σ

k+(Ti )−N3(Ti )

1 ]1/k+(Ti ) = σ1(c/σ1)
N3(Ti )/k+(Ti ) −→

i→∞
σ1

becauseN3(Ti) is bounded forFt fixed. Butσ1 > 1, and this is a contradiction.
For fixedFt , let us fix

q0 > 2(log(σ̃ /c)/log σ̃ )N2(Ft )

and
σ0 = σ̃ q0(c/σ̃ )2N2(Ft ) > σ̃ q0(c/σ̃ )q0 log σ̃ /log(σ̃ /c) = 1.

We must check thatσ0 and q0 verify the lemma. Let us takev ∈ C ′
2,S, S ∈ M, q ≥

q0, σ0 ≥ σ > 1, and let us estimate‖DF
q
t (v)‖. In the most unfavourable case, we have

an initial and a final contraction by the passage throughE . If we have more passages
throughE , first we have passages nearP and later nearQ, and therefore, the average
expansion in each iterate is not smaller thanσ̃ . For the iterates neither corresponding to
the initial and final contractions, nor passages throughD, the expansion in each iterate
is not smaller thañσ . Then

‖DF
q
t v‖ ≥ c2N2(Ft )σ̃ q−2N2(Ft )‖v‖ ≥ (c/σ̃ )2N2(Ft )σ̃ q0‖v‖ = σ0‖v‖,

proving the lemma. �

3. Topological properties ofF1

In this section, we show that the two systems of cones defined in§2 persist fort = 1,
defining two F1-invariant fibre bundlesES and IS (see Lemma 3.3), which will we
integrate to obtain two continuous foliationsWs and Wu whose leaves areC1 (see
Lemma 3.12). We denoteWs the leaf of the foliation throughS with Ws(S) (and we
distinguish it from the stable manifold throughS denotedWs(S, F1) in the case that it
exists, in fact they coincide). Then, we prove thatF1 is expansive (see Proposition 3.13)
and conjugate tof (Proposition 3.14). We remark that the twoF1-invariant fibre bundles
are not continuous:IS is not continuous atQF1, and in the case of the hypothesis of our
Theorem 2, the continuity ofIS is asserted only atM \ Wu(QF1, F1).

3.1. We begin by stating a lemma which will be used to construct the invariant fibre
bundles.

LEMMA 3.1. Let S ∈ M such that there existν > 1, N1(F
i
1(S)) > 0 andN2(F

i
1(S)) > 0

for i ∈ Z with

‖DF
−N1(F

i
1(S))

1 v‖ ≥ ν‖v‖ for v ∈ C ′
1,F

i+N1(F i
1(S))

1 (S)
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‖DF
N1(F

i
1(S))

1 v‖ ≥ ν‖v‖ for v ∈ C ′
2,F i

1(S)

‖DF
−N2(F

i
1(S))

1 v‖ ≥ ν‖v‖ for v ∈ C ′
1,F i

1(S)

‖DF
N2(F

i
1(S))

1 v‖ ≥ ν‖v‖ for v ∈ C ′
2,F

i−N2(F i
1(S))

1 (S)

.

Then, for eachj ∈ Z, there exist inT
F

j

1 (S)
M two linear spaces given by

E
F

j

1 (S)
= ∩∞

i=1DF−i
1 (C ′

1,F
j+i

1 (S)
) and I

F
j

1 (S)
= ∩∞

i=1DF i
1(C

′
2,F

j−i

1 (S)
).

The dimension of the spaces are the same as those of the stable and unstable vector
bundles corresponding tof , respectively.

The proof can be easily obtained, i.e. following the arguments in 15.1 of [R89]. See
also Lemma 4.3.

LEMMA 3.2. For S 6∈ {F i
1(R) : i ∈ Z}, ∩∞

i=1DF−i
1 (C ′

1,F i
1(S)

) and ∩∞
i=1DF−i

1 (C ′
2,F−i

1 (S)
)

define two invariant linear spaces ofTSM, of dimensions andu, respectively, which we
denoteES and IS , respectively.

Proof. We only have to verify that we are in the hypothesis of the former lemma. We
take asν any number larger than 1. After the results of§2 we conclude that, although
we can have an initial contraction, the vectors ofC ′

2,S for S 6∈ {F i
1(R) : i ∈ Z} expand

after a number of iterates byDF1 as much as we want, and the same thing happens with
the vectors ofC ′

1,S , iterating byDF−1
1 . It is not difficult after this observation, to find

suitable values ofN1 andN2. �

LEMMA 3.3. IS can be extended to the whole manifoldM such that ifSi converges toS
with S ∈ M \ Wu(QF1, F1), thenISi

converges toIS . Similarly, ES can be defined in
M with a similar property. Moreover, in the non-conservative case,IS is continuous for
S 6= QF1 andES is continuous forS 6= PF1.

Proof. We only develop the proof forIS . First, in (a), we work with

S ∈ L = M \ {F i
1(RF1) : i ∈ Z} ∪ {Wu(Q, F1)}

where the bar indicates closure. Then, in (b), we defineIS in {F i
1(RF1) : i ∈ Z} in a

continuous way, and show the continuity atP . Finally, in (c), we prove the last assertion
of the lemma.

(a) The system of cones that definesIS can be taken continuous inL: near the
boundary ofE we modify the cones in order that they vary continuously. We also take
care of the positive iterates ofE in the points in which we leave the definition ofC ′

2,F i
1(S)

asDF i
1(C

′
2,S) to takeC2,F i

1(S). We cannot assure the continuity ofC ′
2,S on the set of points

with coordinates(0, y∗) with ρ∗2
2 (0, y∗) ≤ e∗ = 1 (see§2.2); onWu(QF1, F1), and on

{F i
1(RF1) : i ∈ Z} (in this last setC ′

2,S is not defined). It is not a restriction to suppose that
S does not belong to the set of points with coordinates(0, y∗) with ρ∗2

2 (0, y∗) ≤ e∗ = 1;
in other cases we iterate backwards taking into account the fact thatIS is invariant. Let us
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suppose that we haveSi ∈ M converging toS such thatISi
converges toI0 6= IS . Then,

for k large enough,I0 does not belong to∩k
j=1DF

j

1 (C ′
2,F

−j

1 (S)
), and by the continuity of

the system of cones,ISi
does not belong to∩k

j=1DF
j

1 (C ′
2,F

−j

1 (Si )
) for i large enough: a

contradiction.
(b) Now we defineIS in {F i

1(RF1) : i ∈ Z}. Actually, we only defineIRF1
; if we

iterate, we obtain the result for{F i
1(RF1) : i ∈ Z}. Let us work in the(x∗, y∗) system of

coordinates, we takeS = (x∗, y∗) near toRF1, and definep0 = p0(S) = max{i ∈ Z
+ :

F−i
1 (S) ∈ U∗

1 for i = 1, . . . , p0} (possiblyp0(S) = ∞). If ρ∗2
2 (S) 6= 0, we know that

p0 ≥ E(logρ∗
2(S)/logνPs

).

The vectors of the coneC ′
2,F

−p0
1 (S)

= C2,F
−p0
1 (S)

determine an angle withy∗ = K with

tangent smaller than a constantk0. Therefore, the tangent of the angle of the vectors of
the cone∩p0

i=1DF i
1(C

′
2,F−i

1 (S)
) with y∗ = K is bounded from above by

(νP0/ζPu
)p0k0 ≤ (ρ∗

2(S))log(νP0/ζPu )/logνPs k0 ≤ (ρ∗
2(S))2k0

which converges to zero whenρ∗
2(S) converges to zero.

A similar argument works forρ∗
2(S) = 0: let us takeS = (x∗, 0), S 6= RF1. After

a finite numberi of negative iterates,DF−i
1 (C ′

2,S) ⊂ C2,F−i
1 (S), and then the slope is

bounded. Reasoning as before, the vectors of the cones∩k
i=1DF i

1(C
′
2,F−i

1 (S)
) have slope

smaller than(νp0/ζPu
)k tending to zero whenk tends to infinity. Thus, the right way

to define IRF1
to obtain continuity isIF−i

1 (RF1) = TF−i
1 (RF1)W

u(PF1, F1), i ∈ Z
+, and

similarly IF i
1(RF1) = TF i

1(RF1)W
u(PF1, F1), for i ∈ Z

+. A similar argument works to verify
the continuity atPF1 of IPF1

= TPF1
(PF1, F1).

(c) Now we prove the last assertion of the lemma. We work in the(x̃, ỹ) system of
coordinates, and we prove the assertion for the points(x̃, 0) with x̃ 6= 0, ρ̃(x̃, 0) ≤ 1.
Let us denote byα(S) the angle betweenC ′

2,S and TS,x̃ . We study the worst situation,
S ∈ E . In such a case,

tanα(S̃) ≥ tanτ̃ ρ̃2(S̃) ≥ τ̃ ρ̃2(S̃) ≥ τ̃ ρ̃2
1(S̃).

Iterating, for large enoughi,

tanα(F i
1(S̃)) ≥ τ̃ ρ̃2

1(S̃)|µQu
/λQ1|i ≥ τ̃ ρ̃2

1(F
i
1(S̃))|µQu

/λQ1|i/|µQ1|2i .

Let us consider a sequenceSj → S = (x̃, 0), x̃ 6= 0. If the sequenceSj consist only of
iterates of points̃Sj ∈ E (obtained without leaving̃U1), then

tanα(Sj ) = tanα(F
ij
1 (S̃j )) ≥ τ̃ ρ̃2

1(Sj )|µQu
/µ2

Q1
λQ1|ij −→

j→∞
∞

becauseij →j→∞ ∞. If in the sequenceSj there are points which are not iterates of
points ofE , the reasoning is easier. �

From the previous arguments we have the following.

COROLLARY 3.4. (Of the proof of Lemma 3.3.)For S ∈ Wu(PF1, F1), we can writeIS =
TSW

u(PF1, F1); if S ∈ Wu(QF1, F1), then IS = TSW
u(QF1, F1); if S ∈ Ws(PF1, F1),

thenES = TSW
s(PF1, F1); and if S ∈ Ws(QF1, F1), thenES = TSW

s(QF1, F1).
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Proof. The first equality was obtained when we proved thatIF i
1(RF1) =

TF i
1(RF1)W

u(PF1, F1). The other ones are proved in a similar way. �

3.2. For S1, S2 in any manifoldN immersed inM we denote bydN (S1, S2) the
Riemannian distance betweenS1 and S2 measured onN . For S ∈ N we denote by
BN (S, t) the closed ball with centre atS and radiust on N .

Definition 3.5. An u-dimensional manifoldMu is an integral manifold of IS if the
following conditions are verified: (i)TSM

u = IS for S ∈ Mu, (ii) Mu is complete.
We adopt a similar definition with respect toES .

PROPOSITION3.6. There exists a continuous invariant foliationWu of M such that each
leaf of this foliation is an integral manifold ofIS , and therefore isC1. Wu(QF1, F1) and
Wu(PF1, F1) are leaves of this foliation. Moreover, ifWu(S) is the leaf ofWu through
any pointS, and if S ′ belongs toWu(S), then

lim sup
i→∞

dWu(F i
1(S))(F

−i
1 (S), F−i

1 (S ′)) is bounded

lim inf
i→∞

d(F−i
1 (S), F−i

1 (S ′)) = 0

lim
i→∞

dWu(F i
1(S))(F

i
1(S), F i

1(S
′)) = ∞.

A similar assertion stands for the integral manifolds ofES .

Proof. We divide the proof into several lemmas. We remark that the foliation is notC1:
at QF1 the fibre bundleIS is not continuous. The following two lemmas are introductory
to our proof of the proposition.

LEMMA 3.7. Let Mu be anyu-dimensional manifold immersed inM such thatTSM
u ⊂

C ′
2,S for every S ∈ Mu. Given τ0, there existr(τ0) > 0 and s0(x) ≥ 0 defined

in [0, r], s0(x) = 0 only if x = 0, such that ifτ > τ0 and dMu(S1, S2) = x then
d(S1, S2) ≥ s0(x).

Proof. The more critical situation is that ofRF1 or its positive iterates, and for this
reason we begin by regarding this case. We consider the(x̃, ỹ) system of coordinates.
If S 6= F i

1(RF1), i ≥ 0, then we have for any manifoldMu verifying the assumptions of
the lemma thatTSM

u ⊕ TS,x̃ = TSM. We recall thatα(S) denotes the angle between
C ′

2,S and TS,x̃ . For S near RF1, and taking into account condition (9), we can write
tanα(S) ≥ Kτ̃ ρ̃2

1(S). Iterating,

tanα(F i
1(S)) ≥ Kτ̃ ρ̃2

1(S)(ζQu
/νQ0)

i ≥ Kτ̃ ρ̃2
1(F

i
1(S))(ζQu

/νQ0)
i/ζ 2i

Q0
≥ Kτ̃ ρ̃2

1(F
i
1(S))

becauseζQu
≥ νQ0ζ

2
Q0

. This shows that near to each pointF i
1(RF1), i ≥ 0, and forτ

larger than a certainτ0, the angle betweenTSM
u andTS,x̃ grows faster than the square

of the distance fromS to ỹ = 0 and with a coefficient independent ofi; that is, it is the
same one near to any of the pointsF i

1(RF1), i ∈ Z
+. Now, let us take a finite number of

connectedC1 charts,(x ′, y ′), with domain in totally normal neighborhoods coveringM

such that the coordinate lines coincide with those of(x̃, ỹ) in D. We also ask that for
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S ∈ M, TS,x ′ (the fibre atS of the tangent vector bundle ofx ′ = K) is into C ′
1,S , and

similarly TS,y ′ ⊂ C ′
2,S . Let r be smaller than the Lebesgue number of the covering, we

take 0< x < r. We consider in any chart the set of points(S1, S2) such thatS1, S2 belong
to au-dimensional immersed manifold withTSM

u ⊂ C ′
2,S for S ∈ Mu, dMu(S1, S2) = x.

A transversality argument (the transversality is at least topological) shows that the points
S1 = (x ′

S1
, y ′

S1
), S2 = (x ′

S2
, y ′

S2
) must have different values ofx ′

S1
and x ′

S2
. The set of

numbersd({x ′ = x ′
S1

}, {x ′ = x ′
S2

}) has a positive minimum that increases withτ . Then,
taking the minimum of those values between the charts withτ = τ0, we obtain a positive
lower bound ford(S1, S2) which we calls0(x). �

LEMMA 3.8. Let Ms be an s-dimensional manifold such thatTSM
s ⊂ C ′

1,S for every
S ∈ Ms . Then, givenS1 ∈ Ms , ε > 0 with expS1

well defined forv ∈ TSM
u, ‖v‖ < ε and

ρ > 0, there existsi0 = i0(S1, ε, ρ) (not depending onMs) such thatexpF−i (S) is well
defined forv ∈ TSM

u, ‖v‖ < ε, for i ≥ i0.

Proof. We have two cases to consider. IfS1 6∈ Wu(PF1, F1) the result follows because
F−1

1 actually expands. IfS1 ∈ Wu(PF1, F1), the lemma is a consequence of the
topological transversality ofMs to Wu(P, F1). �

LEMMA 3.9. Wu(PF1, F1) andWu(QF1, F1) are two integral manifolds ofIS . In the same
way,Ws(PF1, F1) andWs(QF1, F1) are two integral manifolds ofES .

Proof. It is a consequence of Corollary 3.4 and the results of§2.3. �

LEMMA 3.10. Let Mu be an integral manifold ofIS . Then, it is the only integral manifold
through any of its points. Similarly ifMs is an integral manifold ofES , then it is the only
integral manifold through any of its points.

Proof. We only prove the first assertion. We divide the proof into three steps: first we
prove that the lemma is valid forWu(PF1, F1), then forWu(QF1, F1), and finally for any
integral manifold.

(i) Let S ∈ Wu(PF1, F1). Iterating backwards if necessary, we can suppose that
S ∈ U∗

1 with coordinates(x∗, 0). Let k(x∗, y∗) be the tangent of the largest angle of a
vector of IS∗ with y∗ = K, whereS = (x∗, y∗). Taking into account the hypothesis of
our Theorems 1 and 2, it is easy to prove that 0≤ k(S∗) ≤ Kρ∗

2(S∗). The same reasoning
of unicity of solutions of differential equations shows thaty∗ = 0 is the unique integral
manifold through the points ofWu

loc(PF1, F1).
(ii) We prove now thatWu(QF1, F1) is the only integral manifold ofIS through any of

its points. Suppose that for some pointS ∈ Wu(QF1, F1) we have in any neighborhood of
S another integral manifoldMu besidesWu(QF1, F1). Iterating backwards if necessary,
we can suppose that̃S ∈ Ũ1. We have two cases to consider. In the first one, we can
get b ∈ R and a neighborhoodA of RF1 such that ifS1 ∈ BMu(S, b), for everyj ∈ Z

+

such thatF−i
1 (S1) ∈ Ũ1, 0 ≤ i ≤ j , thenF

−j

1 (S1) 6∈ A. In this case, we can apply the
same reasoning as in (i) to get a contradiction. In the second case, we have a sequence
of points {Si}i∈Z+ , and {li}i∈Z+ , li ∈ Z

+, li tending to infinity, such thatF−j

1 (Si) ∈ Ũ1

for 0 ≤ j ≤ li , andF
−li
1 (Si) converges toRF1 when i tends to infinity. We work in the
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(x∗, y∗) system of coordinates. Taking into account the fact thatF
−li
1 (Mu) is an integral

manifold of IS and the fact that forS ∈ F
−li
1 (Mu), TSF

−li
1 (Mu) ⊂ C ′

2,S , we deduce that

we can write the equation ofF−li
1 (Mu) in a neighborhood ofF−li

1 (Si) asy∗ = φ∗
i (x

∗),
with (x∗, 0) in a neighborhood ofRF1. Let F

−li
1 (Si) = (x∗

i , y∗
i ). We recall that in (i) we

obtained thatk(S) ≤ Kρ∗
2(S), therefore we can write forx∗ near ofx∗

i that

ρ∗
2((1 − v)x∗

i + vx∗, φ∗
i ((1 − v)x∗

i + vx∗))

≤ ρ∗
2(x∗

i , y∗
i ) + K

∫ v

0
ρ∗

2((1 − t)x∗
i + tx∗, φ∗

i ((1 − t)x∗
i + tx∗)) dt.

By the Gronwall inequality,

ρ∗
2((1 − v)x∗

i + vx∗, φ∗
i ((1 − v)x∗

i + vx∗)) ≤ ρ∗
2(x∗

i , y∗
i )eKv

which shows that, nearRF1, F
−li
1 (Mu) converges uniformly on compact neighborhoods

nearRF1 to Wu(PF1, F1). But this is a contradiction, because on compact neighborhoods
nearRF1 locally F

−li
1 (Mu) must converge uniformly toWs(QF1, F1).

(iii) We take S0 ∈ M \ {Wu(PF1, F1) ∪ Wu(QF1, F1)}; we can suppose thatS0 ∈ H.
Suppose by contradiction that there exist two integral manifoldsMu

a , Mu
b , of IS throughS0

which ramify atS0. We take aC1 manifoldMs with TSM
s ∈ C ′

1,S for S ∈ Ms such that
Ms∩Mu

a is a pointA andMs∩Mu
b is a pointB. We consider the iteratesF−i

1 (S0) ∈ H for
i > 0. Wheni goes to infinity,d(F−i

1 (A), F−i
1 (S0)) andd(F−i

1 (B), F−i
1 (S0)) converge

to zero with F−i
1 (S0) ∈ H while dF−i

1 (Ms)(F
−i
1 (A), F−i

1 (B)) can be made as large as

required for large enoughi. Taking into account the fact thatTSF
−i
1 (Ms) ⊂ C ′

1,S for
S ∈ F−i

1 (Ms), we arrive at a contradiction. �

LEMMA 3.11. If F1 is takenC0 near off , thenWu(PF1, F1), Ws(PF1, F1), Wu(QF1, F1)

andWs(QF1, F1) are dense inM.

Proof. As f is Anosov, then it is topologically stable (see [W70] and [L80]), that is,
there existsδ0 > 0 such that for every 0< δ∗ < δ0 there existsδ̄ with the property
that for everyg ∈ Diff (M) with ρC0(f, g) < δ̄ there exists a uniqueϕ : M 7→ M

continuous and onto withϕ ◦ g = f ◦ ϕ, andρC0(ϕ, id) < δ∗. We takeεP > 0 such that
{S ∈ M : d(P, S) ≤ εP } ⊂ U∗

1 and εQ > 0 such that{S ∈ M : d(Q, S) ≤ εQ} ⊂ Ũ1

(here Ũ1 and U∗
1 are the regions corresponding to the diffeomorphismf ). Let us fix

0 < δ∗ < 1
2 min{εP , εQ} and obtainδ̄. We also takeF1 such thatρC0(f, F1) < δ̄,

and then there existsϕ : M 7→ M, ϕ continuous and onto,ρC0(ϕ, id) < δ∗ such that
ϕ ◦ F1 = f ◦ ϕ. As d(ϕ(PF1), P ) < δ∗ < εP , we deduce thatϕ(PF1) ⊂ U∗

1 . As P is the
only fixed point off in B(P, εP ), we conclude thatϕ(PF1) = P .

We claim thatϕ(Ws(PF1, F1)) = Ws(P, f ) (similar assertions are valid for the other
stable and unstable manifolds ofPF1, QF1). We first prove thatϕ(Ws(PF1, F1)) ⊂
Ws(P, f ). We takeS ∈ Ws(PF1, F1). As F i

1(S) →i→∞ PF1, and recalling the continuity
of ϕ, we deduce thatf i ◦ϕ(S) = ϕ◦F i

1(S) →i→∞ P , that is,ϕ(S) ∈ Ws(P, f ). Now we
prove thatWs(P, f ) ⊂ ϕ(Ws(PF1, F1)). Let us takeS ∈ Ws(P, f ). As ϕ is onto, there
existsS1 such thatϕ(S1) = S. By contradiction, let us suppose thatS1 6∈ Ws(PF1, F1).
Then, there existsi such thatF i

1(S1) ∈ M \ U∗
1 while d(f i(S), P ) < δ∗. Therefore,
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d(f i(ϕ(S1)), F
i
1(S1)) = d(ϕ(F i

1(S1)), F
i
1(S1)) < δ∗, but

d(f i(ϕ(S1)), F
i
1(S1)) ≥ d(F i

1(S1), P ) − d(P, f i(S)) > εP − δ∗ > δ∗,

a contradiction.
We have proved thatWs(PF1, F1) and Wu(PF1, F1) are δ∗ dense, this follows from

the claim and the fact thatWs(P, f ) and Wu(P, f ) are dense. We take an open set
A. We have to prove thatWs(PF1, F1) intersectsA. Let Mu be anu-dimensional
manifold, Mu ⊂ A, TSM

u ⊂ C ′
2,S for S ∈ Mu. Iterating forward if necessary, we can

get a pointS0 ∈ H such thatBMu(S0, r1) ⊂ Mu for r1 so large that for a transversality
argumentWs(PF1, F1) must intersectMu (and thenA). We reason in a similar way for
Wu(PF1, F1). �

LEMMA 3.12. There exists aC0 invariant foliation Wu such that each leaf ofWu is at
leastC1; TSW

u(S) = IS . Moreover, ifS ′ belongs toWu(S), then

lim sup
i→∞

dWu(F i
1(S))(F

−i
1 (S), F−i

1 (S ′)) is bounded

lim inf
i→∞

d(F−i
1 (S), F−i

1 (S ′)) = 0

lim
i→∞

dWu(F i
1(S))(F

i
1(S), F i

1(S
′)) = ∞.

Similar assertions are valid with respect to a foliationWs tangent toES .

Proof. Let us take a pointS0 6∈ Wu(QF1, F1), we construct the leaf of the foliation
through S (for S0 ∈ Wu(QF1, F1), such a leaf isWu(QF1, F1)). We work with the
coordinate charts of Lemma 3.7. We take a coordinate chart withS0 in its domain,
letting {(xi, yi)}i∈Z+ be a sequence with(xi, yi) the coordinates of a pointSi in
Wu(PF1, F1), such thatSi →i→∞ S0. A connected component of the intersection of
Wu(PF1, F1) with the domain of the coordinate chart will be the graphic of a function
y = g(x). Let y = gi(x) be the equation of the connected component ofWu(PF1, F1)

such thatyi = g(xi). Taking into account the Ascoli theorem, and the fact that
in M \ Wu(QF1, F1), IS is continuous, we can suppose that{gi(x)}i∈Z+ is uniformly
convergent on a compact set, defining in this way a localC0 manifold W with S0 ∈ W .
To prove thatW is a local C1 integral manifold of IS , we consider the local vector
fields χj , j = 1, . . . , u, such that at the pointS, χj belong toIS , and have components
(0, . . . , 0, 1, 0, . . . , 0, au+1, . . . , an), with 1 in the j -term. DenotingS̃ a point with
coordinates(x1, . . . , xj , . . . , xu, g(x1, . . . , xu)), the curve with parametert ∈ R, t small
enough, given byφj

t (S̃) = (x1, . . . , xj +t, . . . , xu, g(x1, . . . , xj +t, . . . , xu)) is an integral
curve ofχj on Wu(PF1, F1). The sequence{φj

t (Si)}i∈Z+ converges to a curve which we
denote byφj

t (S0). By the bounded convergence theorem of Lebesgue and Lemma 3.3,
φ

j
t (S0) is an integral curve ofχj in W . Similarly, φi

s(φ
j
t (S0)) for t fixed is an integral

curve of χi . It follows immediately thatφj
t (φi

s(S̃0)) = φi
s(φ

j
t (S̃0)) for s, t ∈ R small

enough. This proves thatW is described by a function9 : Bu 7→ M, whereBu is a ball
in R

u with centre zero such that if{ei}i=1,...,u is the canonical basis ofRu, then

9

( u∑
i=1

tiei

)
= φ1

t1
. . . φu

tu
(S0).
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As {χj (S)}j=1,...,u is independent and generatesTSM, we deduce thatW is a local integral
manifold. Taking a finite number of subsequences of the prolongation of the connected
components ofWu(S0, F1) which defineW , we deduce that any ball with centre inS0

belongs to an extension ofW unless we arrive atWu(QF1, F1). But reasoning as in
Lemma 3.10(ii) we conclude that this is not possible, proving that the extension ofW is
complete. Therefore, we obtain for each point ofM an unique integral manifold.

To end the proof of the proposition, the assertion about the boundness of

lim sup
i→∞

dWu(F i
1(S))(F

−i
1 (S), F−i

1 (S ′))

is immediate after the results of Lemma 2.6 (in fact, it will be seen in Lemma 4.18 that the
limit is zero). We know that forS ′ in Wu(S), if ij is such thatF−ij (S) ∈ H, ij →j→∞ ∞

lim
j→∞

d(F
−ij
1 (S), F

−ij
1 (S ′)) = 0

and then follows the second assertion about the limit. The last limit of the lemma is
clear since, no matter what the initial contraction is, any subsequent contractions (inD)
are compensated with expansions inD. The distance grows without bound because of
the expansions inH. �

3.3.

PROPOSITION3.13. F1 is expansive with a constant independent ofτ .

Proof. For small enoughε > 0 there existsδ1(ε) > 0 (independent ofτ ) such that for
S1, S2 with d(S1, S2) < δ1(ε), thenBWu(S1)(S1, ε) ∩ BWs (S2, ε) is a single point, which
we denote [S1, S2]. Also, there existsδ2 > 0 andδ3 > 0 such that

F1([BWs(S)(S, δ2), BWu(S)(S, δ2)]) ⊂ [BWs(F1(S))(S, δ1(ε)/2), BWu(F1(S))(S, δ1(ε)/2)]

and such that for anyS ∈ M andS ′ 6∈ [BWs(S)(S, δ2), BWu(S)(S, δ2)] we haved(S, S ′) >

δ3. We take α < min{δ1(δ2), δ3}, and let us assume thatd(F1(S1), F2(S2)) ≤ α

for i ∈ Z, S1 6= S2. If S1 6= [S1, S2], after Lemma 3.12, there existsi such that
dWu(F i

1(S1))
(F i

1(S1), F
i
1[S1, S2]) > δ2, and therefore there exists, forj > 0, the first iterate

such thatF j

1 (S1) 6∈ [BWs(S)(S, δ2), BWu(S)(S, δ2)]. Therefore,d(F
j

1 (S1), F
j

1 (S2)) > δ3, a
contradiction. IfS1 = [S1, S2], the reasoning is similar, but withF−1

1 . �

3.4.

PROPOSITION3.14. F1 is conjugate tof .

Proof. Let us observe that the value ofδ1 is independent of the results obtained after
Lemma 3.11. If in Lemma 3.11 we takeδ∗ < α/2, ϕ is one to one, and after the theorem
of invariance of the domain, a homeomorphism. �
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4. Ergodic properties ofF1

We will show first that the Pesin region has full measure, by means of the family of
cones. Then, we recall some ideas, mainly from [P73] and [LY85] which will be used
to construct an SRB measure. The idea is to take a small open set on a leaf of the
unstable foliation, to iterate it, and define in a suitable way a sequence of measures in
the manifold, simply by assigning to any Borelian set the measure of the intersection
of this Borelian set with the iterates of the open set onWu. We can expect that an
accumulation point of the sequence of measures will be an SRB measure. Other ergodic
results are exposed in§4.3, from [PS82]. The conservative case is considered in§4.4.

4.1. We denote the Pesin region as3. In this subsection we will prove the following.

PROPOSITION4.1. 3 has full probability.

We only have to study the points which have iterates inE . Let us takeµ aF1-invariant
probability, we supposeµ(E) > 0. Let us define first

E∗ = {S ∈ E : Fn
1 (S) ∈ E for infinite values ofn ∈ Z

+

and also infinite values ofn ∈ Z
−}.

We know thatµ(E∗) = µ(E). Let kE∗ : E∗ 7→ N be defined askE∗(S) = min{i ∈
Z

+ : F i
1(S) ∈ E}. It is known thatkE∗ ∈ L1(E∗, µ). Next, we defineF̂ : E∗ 7→ E∗ as

F̂ (S) = F
kE∗ (S)

1 (S).
Let us define

k̃E∗ = lim
m→∞

1

m

m−1∑
i=0

kE∗ ◦ F̂ i .

After the ergodic theorem of Birkhoff, it is defined and finite a.e. It is clear that it is
positive.

LEMMA 4.2. Let E∗ ⊂ M, µ(E∗) > 0. Then, for a.e. pointS ∈ E∗, S a regular point for
F1, and for everyv ∈ TSM, v 6= 0, the following equality follows:

χ(S, v, F̂ ) = k̃E∗(S)χ(S, v, F1).

Proof. Let us definek̃m = ∑m−1
i=0 kE∗ ◦ F̂ i . We have

χ(S, v, F̂ ) = lim
m→∞

(
1

m

)
log‖DF̂m(S)v‖ = lim

m→∞

(
1

m

)
log‖DF

k̃m(S)(S)

1 v‖

= χ(S, v, F1) lim
m→∞ k̃m(S)/m. �

Therefore, in order to prove that almost every point ofE∗ is in the Pesin region for
F1, it is enough to prove that almost every point ofE∗ is in the Pesin region for̂F . To
do that, we use the following lemma.
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LEMMA 4.3. Let C ′
1,S and C ′

2,S for S ∈ E∗ be as in§2.2, and suppose that there exist
N1(S) > 0, N2(S) > 0 defined inE∗ a.e. andν > 1 such that for a.e.S ∈ E∗

‖DF̂−N1(S)v‖ ≥ νN1(S)‖v‖ for v ∈ C ′
1,F̂ N1(S)(S)

‖DF̂N1(S)v‖ ≥ νN1(S)‖v‖ for v ∈ C ′
2,S

‖DF̂−N2(S)v‖ ≥ νN2(S)‖v‖ for v ∈ C ′
1,S

‖DF̂N2(S)v‖ ≥ νN2(S)‖v‖ for v ∈ C ′
2,F̂−N2(S)(S)

.

Then, a.e. the point ofE∗ is in the Pesin region for̂F .

Proof. It is similar to that of Lemma 3.1. We observe that we are using the same
notation for the linear spaces as in Lemma 3.1: they are the same except for the domain
of definition. The two first inequalities do not guarantee the last two: it is possible
that the Lebesgue measure of the set of pointsF̂ N1(S)(S) be smaller than the Lebesgue
measure ofE∗. Let E∗

1 ⊂ E∗ be the set of points where the hypothesis is verified,
µ(E∗

1 ) = µ(E∗). We defineE∗
2 = ∩j∈ZF̂ j (E∗

1 ), µ(E∗
2 ) = µ(E∗

1 ). We know by§2.2 that
DF̂N2(S)(C ′

2,S) ⊂ C ′
2,F̂ N2(S)(S)

and DF̂−N2(S)(C ′
1,F̂ N2(S)(S)

) ⊂ C ′
1,S for every S ∈ E∗

2 . We

fix S ∈ E∗
2 and denote by inductionn1 = −N2(S), nk = nk−1 − N2(F̂

nk−1(S)). Let
vi ∈ C ′

2,F̂ nk (S)
; wi = DF̂−nk (vi) ∈ C ′

2,S, i = 1, 2; w2 − w1 ∈ TS,x̃ ∈ C ′
1,S . If we write

mk = 2nk − N2(F̂
nk (S)) + N2(S), we have

‖w2 − w1‖ ≤ νnk‖v2 − v1‖ ≤ νnk (‖v2 − v1‖)
≤ νmk (‖w2‖ + ‖w1‖) ≤ νmk (2‖w2‖ + ‖w2 − w1‖)

so that
‖w2 − w1‖ ≤ 2νmk‖w2‖/(1 − νmk ) −→

k→∞
0.

This shows thatDF̂−nk (C ′
2,F̂ nk (S)

), a decreasing sequence of cones, converges to a linear

spaceIS ⊂ TSM with DF̂N2(S)(IS) = IF̂N2(S)(S). To find such space, we consider

limk→∞ DF̂−nk (TF̂ nk (S),y∗). For anyk, DF̂−nkTF̂ nk (S),y∗ is the graph of a continuous linear
mapAk : TS,y∗ 7→ TS,x̃ , whose graphic converges toIS . This impliesIS ⊕ TS,x̃ = TSM.
In the same way, we definen′

1 = N1(S), n′
k = n′

k−1 + N1(F̂
n′

k−1(S)), and show

that DF̂−n′
kC ′

1,F̂
n′
k (S)

converges to a linear spaceES , the limit of DF̂−n′
k T

F̂
n′
k (S)x̃

. As

I
F̂

n′
k (S)

⊕ T
F̂

n′
k (S)x̃

= T
F̂

n′
k (S)

M, we haveIS ⊕ ES = TSM. It is clear that‖DF̂N1(S)v‖ ≥
νN1(S)‖v‖ if v ∈ IS and ‖DF̂−N2(S)v‖ ≤ ν−N2(S)‖v‖ if v ∈ ES . Let S ∈ E∗

2 be
a regular point. Then, limi→∞ log‖DF̂ iv‖/i ≥ logν > 0 if v ∈ TSM \ ES and
limi→∞ log‖DF̂ iv‖/i ≤ − logν < 0 if v ∈ ES , and, therefore,S belongs to the Pesin
region. �

Next, we prove that the assumptions of Lemma 4.3 are verified. We take the systems
of conesC ′

1,S andC ′
2,S restricted toE∗. After the results of§2.2 and§2.3, forS ∈ E , the

norm of any vectorv ∈ C ′
2,S (with the Riemannian metric) expands, afterkE∗(S) iterates,

with a factor larger than

G(S) = Kτ̃ρ2(S)(ρ̃1(S))−logζQu /logζQ0 (ρ∗
2(F̂ (S)))logζPu /logνPs

≥ K1τ̃ (ρ(S)/ρ(F̂ (S)))−logζPu /logνPs .
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Let us take
τ̃ > 21−(logζPu / logνPs )/K1.

In such a case, if 2ρ(S) ≥ ρ(F̂ (S)), then any vectorv in C ′
2,S will expand, after one

iterate byF̂ , with a factor larger than two. With a similar argument with large enough
τ , if ρ(S) ≤ 2ρ(F̂ (S)), then any vectorv ∈ C ′

1,F̂ (S)
will expand (with respectF̂−1)

with a factor larger than two. Then, ifρ(F̂ (S)) ∈ [ρ(S)/2, 2ρ(S)], we takeν = 2 and
N1(S) = 1. Let us suppose thatρ(F̂ (S)) 6∈ [ρ(S)/2, 2ρ(S)]. After two iterates byF̂
the norm ofv ∈ C ′

2,S will be multiplied by a factor larger than

K2
1 τ̃ 2(ρ(S)/ρ(F̂ 2(S)))−logζPu /logνPs .

Therefore, if 22ρ(S) ≥ ρ(F̂ 2(S)), any vector inC ′
2,S will expand with a factor of

at least four. In a similar way, ifρ(S) ≥ 22ρ(F̂ 2(S)), any vector ofC ′
1,F̂ 2(S)

will

expand byF̂−2 with a factor larger than four. Then, ifρ(F̂ (S)) 6∈ [ρ(S)/2, 2ρ(S)],
but ρ(F̂ 2(S)) ∈ [ρ(S)/4, 4ρ(S)], we take N1(S) = 2 and ν = 2. If ρ(F̂ (S)) 6∈
[ρ(S)/2, 2ρ(S)], ρ(F̂ 2(S)) 6∈ [ρ(S)/4, 4ρ(S)], but ρ(F̂ 3(S)) ∈ [ρ(S)/8, 8ρ(S)], we
takeN1(S) = 3, and so on.

Given a > 1 andt > 0 small, we define the set

0a,t = E∗ ∩ (B(RF1, at) \ B(RF1, t/a)).

It is clear that limi→∞ µ(0(4/3)i ,t ∩ E∗) = µ(E∗), and also that0(4/3)i ,t ⊂
[ρ(S)/2i , 2iρ(S)] for i ∈ Z

+, S ∈ 04/3,t . Then, the set of points of04/3,t such that
ρ(F̂ i(S)) 6∈ 0(4/3)i ,t for every i ∈ Z

+ has measure 0. As we can divideE∗ into a
countable set of sets04/3,t , it follows that for a.e. point inE∗ we can defineN1(S) with
ν = 2. A similar construction allows us to defineN2(S) for a.e.S ∈ E∗. Therefore, the
hypotheses of Lemma 4.3 are verified, and the proposition is proved. �

4.2. In this subsection we work under the hypothesis of Theorem 1, and we aim to
prove thatF1 has an SRB measure (Proposition 4.12). For simplicity, the reasonings
will be developed only in dimension two. We begin by giving some definitions
(see§1.3 of [P73]). Let f : M 7→ M be a diffeomorphism, we denote by3l+

q,t with
l, q, t ∈ Z, q > t ≥ 1, the set of pointsS ∈ M such that fori ∈ Z

+, j ∈ Z, and
εq = (1/100) log(1 + 2/q):

(i) there exist subspacesEl+
1,S,q,t andEl+

2,S,q,t (possibly one of them equal to 0S), for

which TSM = El+
1,S,q,t ⊕ El+

2,S,q,t .
(ii)

‖Df i
f j (S)

v‖ ≤ l(q/(t + 2))i exp{εqi + 4εq |j |}‖v‖ and

‖Df −i
f j (S)

v‖ ≥ l−1(q/(t + 2))−i exp{−εqi − 4εq |j |}‖v‖ for v ∈ Df jEl+
1,S,q,t ;

‖Df i
f j (S)

v‖ ≥ l−1(q/t)i exp{−εqi − 4εq |j |}‖v‖ and

‖Df −i
f j (S)

v‖ ≤ l(q/t)−i exp{εqi + 4εq |j |}‖v‖ for v ∈ Df jEl+
2,S,q,t .

(iii) Let γ l+
q,t (f

j (S)) be the angle betweenDf j(El+
1,S,q,t ) and Df j(El+

2,S,q,t ). Then,

γ l+
q,t (f

j (S)) ≥ l−1 exp{−εq |j |}.
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Let us denote3+ = ∪q>t≥1;l≥13
l+
q,t . The theorem of Oseledec implies that3+ has

full probability. For S ∈ 3+, let us takeq and t such that the dimension ofEl+
2,S,q,t is

maximum, and denoteE+
2,S = El+

2,S,q,t .
It is clear that forS a regular point,E+

2,S is equal to the direct sum of the spaces
corresponding to positive Lyapounov exponent. We denote by3l+

u,q,t the set of points

S ∈ 3l+
q,t with dimE+

2,S = u.

Definition 4.4.For S ∈ 3+, the set

Wu(S, f ) =
{
S∗ ∈ M : lim sup

i→∞
logd(f −i (S), f −i (S∗))/i < 0

}

is calledthe unstable manifold off at S.

Wu(S, f ) is an immersed submanifold ofM of classCr−1 tangent atS to E+
2,S . If

S̃ ∈ Wu(S, f ), then S̃ ∈ 3+ (see [FHY83]).

Definition 4.5.The set{Wu(S, f )}S∈3+ is called theunstable foliation off and is denoted
Wu(f ).

It is an invariant foliation. The following assertion follows from Theorems 2.2.1 and
2.3.1 of [P73] and of [FHY83].

THEOREM 4.6. There exist̃δl+
q,t > 0, 0 < χ+

q,t < 1, L+ > 0 such that forS ∈ 3l+
u,q,t with

E+
2,S = El+

2,S,q,t , there exists a local unstable manifoldV +(S) 3 S such that:
(i) TSV

+(S) = E+
2,S ;

(ii) V +(S) = BV +(S)(S, δ̃l+
q,t ) (we recall the notation of§3.2);

(iii) for S̃ ∈ V +(S) andn ∈ Z
+ we haved(f −n(S), f −n(S̃)) ≤ L(χ+

q,t )
nd(S, S̃);

(iv) Wu(S, f ) = ∪n≥0f
n(V +(f −n(S))).

We denote by3l−
q,t , q > t ≥ 1, the set of pointsS ∈ M such that fori ∈ Z

+, j ∈ Z,
andεq = (1/100) log(1 + 2/q):

(i) there exist subspacesEl−
1,S,q,t andEl−

2,S,q,t for which TSM = El−
1,S,q,t ⊕ El−

2,S,q,t .
(ii)

‖Df i
f j (S)

v‖ ≤ l(t/q)i exp{εqi + 4εq |j |}‖v‖ and

‖Df −i
f j (S)

v‖ ≥ l−1(t/q)−i exp{−εqi − 4εq |j |}‖v‖ for v ∈ Df jEl−
1,S,q,t ;

‖Df i
f j (S)

v‖ ≥ l−1((t + 2)/q)i exp{−εqi − 4εq |j |}‖v‖ and

‖Df −i
f j (S)

v‖ ≤ l((t + 2)/q)−i exp{εqi + 4εq |j |}‖v‖ for v ∈ Df jEl−
2,S,q,t .

(iii) Let γ l−
q,t (f

j (S)) be the angle betweenDf j(El−
1,S,q,t ) and Df j(El−

2,S,q,t ). Then

γ l−
q,t (f

j (S)) ≥ exp{εq |j |}/l.

As before,3− = ∪q>t≥1;l≥13
l−
q,t has full probability. ForS ∈ 3−, let us takel, q,

and t such that the dimension ofEl−
1,S,q,t is maximum, and denoteE−

1,S = El−
1,S,q,t . It is

well defined, and forS a regular point,E−
1,S is equal to the direct sum of the subspaces

corresponding to the negative Lyapounov exponents.
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Thestable manifold atS, denotedWs(S, f ), and thestable foliationWs(f ) are defined
as the unstable manifold by writing3− andf −1 instead of3+ andf . We denote the
local stable manifold atS asV −(S).

If W is an immersedC1 manifold of M, then it inherits a Riemannian structure from
M, and we can define a corresponding Lebesgue measure. In particular, we are interested
in the case in whichW is an unstable manifold; the corresponding Lebesgue measure
will be denoted byνu, given by the understood manifold. The Lebesgue measure onM

will be denoted byν.
Let B be the Borelσ -algebra onM completed with respect to somef -invariant Borel

probability µ.

Definition 4.7.A measurable partitionξ of M is a partition ofM such that, up to a set of
measure zero, the quotient spaceM/ξ is separated by a countable number of measurable
sets (see [R62]).

Associated with each measurable partition there is acanonical system of conditional
measures,that is, for everyS in a set ofµ-invariant measure one, there is a probability
measureµ

ξ

S defined onξ(S), the element ofξ containing S. These measures are
characterized (up to sets ofµ-measure zero) by the following properties: ifBξ is the
sub-σ -algebra ofB whose elements are unions of elements ofξ , and A ⊂ M is a
B-measurable set, thenS 7→ µ

ξ

S(A) is B-measurable, andµ(A) = ∫
M

µ
ξ

S(A) dµ(S)

(see [LY85]).

Definition 4.8.Let ξ be a measurable partition ofM. We say thatξ is subordinate to the
Wu(f )-foliation if for µ a.e.S, we haveξ(S) ⊂ Wu(S, f ) and ξ(S) contains an open
neighborhood ofS in the submanifold topology ofWu(S, f ).

Definition 4.9.We say thatµ hasabsolutely continuous conditional measures on unstable
manifolds if for every measurable partitionξ subordinate toWu(f ), µ

ξ

S is absolutely
continuous with respect toνu for µ a.e.S.

THEOREM 4.10. ([LY85]) µ has absolutely continuous conditional measures on unstable
manifolds if and only if

hµ(f ) =
∫

M

∑
i:χi(S)>0

χi(S) dimEi(S) dµ(S)

wherehµ(f ) is the metric entropy off .

For the proof, see [LY85]. In fact, it is shown there thatµξ

S is equivalent toνu for µ

a.e.S if the formula of the theorem is verified.

Definition 4.11.We say thatµ is an SRB probability forf if it is ergodic and has
absolutely continuous conditional measures on unstable manifolds.

PROPOSITION4.12. In the hypothesis of Theorems 1(a) or 2, there exists a unique SRB
probability for F1. This measure has an associated ergodic attractor.

Proof. We adapt a construction exposed in [PS82] (see also [C93]). The proof will be
developed in this and in the following subsection. We begin with some preliminary
results which we use later.
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LEMMA 4.13. For a.e. S0 ∈ 3, and S1 ∈ Wu(S0, F1), we haveTS1W
u(S0, F1) = IS1.

Analogously, forS2 ∈ Ws(S0, F1), TS2W
s(S0, F1) = ES2.

Proof. We only prove the first of these two assertions. We know that the lemma is
valid for S1 ∈ Wu(PF1, F1) and that dimWu(S0, F1) = u for a.e. S0. We consider
S0 6∈ Wu(PF1, F1) (and thereforeS1 is not an iterate ofRF1). Then, there exists a
sequence{li}i∈Z+ , li = li(S0) ∈ Z

+, li going to infinity wheni goes to infinity, such
that F

li
1 (S0) has a neighborhoodK(S0, li) ⊂ Wu(F1

li (S0), F1) of uniform size such
that if a point S̃ belongs to that neighborhood, thenC ′

1,S̃
= C1,S̃ ; C ′

2,S̃
= C2,S̃ . Let

us suppose, by contradiction, that for someS1 ∈ Wu(S0, F1), TS1W
u(S0, F1) 6= IS1.

Iterating backwards if necessary, we findli such thatF−li
1 (S1) ∈ K(S0, li), with

T
F

li
1
Wu(F

−li
1 (S0), F1) 6= I

F
−li
1 (S0)

. For simplicity, let us suppose thatS1 ∈ K(S0, li).

Also iterating backwards if necessary, we can suppose thatTS1W
u(S0, F1) ∈ C ′

1,S , and
then by continuity,TSW

u(S0, F1) ∈ C ′
1,S for S in a neighborhood ofS1 on Wu(S0, F1).

Lemmas 3.7 and 3.8 assert thatd(F−i
1 (S1), F

−i
1 (S0)) cannot converge to zero wheni

goes to infinity, a contradiction. �

LEMMA 4.14. For S0 ∈ 3, thenWu(S0, F1) ⊂ Wu(S0) andWs(S0, F1) ⊂ Ws(S0).

Proof. The contradiction hypothesis asserts that there are ramification points as like those
in Part (iii) of the proof of Lemma 3.10. �

LEMMA 4.15. There exists a set of full probability3′ ⊂ 3 such that forS0 ∈ 3′,
Ws(S0) ⊂ Ws(S0, F1).

Proof. (See Theorem 4.4 of [P77].) Let us take an invariant probability,̄µ, and l, q, t

such that3l−
s,q,t has positive measure. We consider the corresponding diameter of the

stable manifolds (see Theorem 4.6), which we denote byδ̃l−
q,t . Let S be a density point

of 3l−
s,q,t . It is not a restriction to considerS in H, at most we have to change the value

of l. Let us takeA ⊂ 3l−
s,q,t ∩ B(S, m), m smaller or equal to the value ofr defined

in Lemma 3.7 (we have fixedτ0). For S̃ ∈ A we denote byni(S̃), i = 1, 2, . . . , the

successive numbers for whichFni(S̃)

1 (S̃) ∈ A.
We claim that forµ̄ a.e.S̃ ∈ A,

Ws(S̃, F1) = ∪∞
i=1F

−ni (S̃)

1 (V −(F
ni(S̃)

1 (S̃))).

To prove the claim, let us observe that ifÃ is the set of pointsS̃ ∈ A such that the
sequence{ni(S̃)}i∈Z+ is infinite, µ̄(Ã) = µ̄(A). It is also clear that

Ws(S̃, F1) ⊃ ∪∞
i=1F

−ni (S̃)

1 (V −(F
ni(S̃)

1 (S̃))).

Let S̃ ∈ Ã, S∗ ∈ Ws(S̃, F1). As limj→∞ d(F
j

1 (S∗), F j

1 (S̃)) = 0, then for large enoughi,

d
Ws(F

ni (S̃))

1 (S̃)
(F

ni(S̃)

1 (S̃), F
ni(S̃)

1 (S∗)) < δ̃−l
q,r/2

and soF
ni(S̃)

1 (S∗) ∈ V −(F
ni(S̃)

1 (S̃)), proving the claim.
After the results of Lemma 3.12, we know that lim infj→∞ diamF

j

1 (BWs(S̃)(S̃, m)) = 0
(the limit is obtained by taking iterates inH). So, there exists large enoughi such that

F
ni(S̃)

1 (BWs(S̃)(S̃, m)) ⊂ V −(F
ni(S̃)

1 (S̃)). �
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LEMMA 4.16. ϕ(Ws(S1)) = Ws(ϕ(S1), f ). Analogously,ϕ(Wu(S1)) = Wu(ϕ(S1), f ).

Proof. The assertion is true forS1 = PF1, and then, by density, reasoning as in
Lemma 3.12, we conclude this lemma. �

We continue with the proof of Proposition 4.12. We supposeS ∈ Wu(S∗, F1) for
someS∗ ∈ 3, let

JF1(S) = | JacDF1|TSWu(S∗,F1)|
with respect to the Riemannian volumeνu on Wu(S∗). Let us fix S∗ ∈ 3′. For
simplicity, we takeS∗ 6∈ Wu(QF1, F1); S∗ 6∈ Wu(PF1, F1). For m ∈ Z

+, k ∈ Z,
S ′, S̃ ∈ Wu(F k

1 (S∗), F1), we denote

Rm(S̃, S ′) =
m−1∏
l=0

JF1(F
−l
1 (S̃))/JF1(F

−l
1 (S ′)).

LEMMA 4.17. For S ′, S̃ as before, there existsR(S̃, S ′) = limm→∞ Rm(S̃, S ′).

Proof. We have to prove that the series of general terms

|(JF1(F
−l
1 (S̃))/JF1(F

−l
1 (S ′))) − 1|

is convergent. Let us observe that in the compact product space whose points are(S, V u),
with S ∈ M, V u ∈ GS(u, TSM) (the Grassmanian of the subspaces of dimensionu in
TSM), the function | detDF1|V u(S)| is Cr−1 and bounded from below by a positive
numberK̃. Therefore,JF1(F

−m
1 (S ′)) ≥ K̃ > 0. We know thatF−j

1 (S ′), F−j

1 (S̃) ∈
V (F

k−j

1 (S∗)) for somej , and then, as onV (F
k−j

1 (S∗)),JF1 is Cr−1, so we conclude
that for l ≥ j

|JF1(F
−l
1 (S̃)) − JF1(F

−l
1 (S ′))| ≤ KdWu(S̃)(F

−l
1 (S̃), F−l

1 (S ′))

≤ Kd(F−l
1 (S̃), F−l

1 (S ′))

≤ K(χ
F

k−j

1 (S∗))
l−j (2δ

F
k−j

1 (S∗))

with 0 < χ
F

k−j

1 (S∗) < 1 (using Theorem 4.6). �

LEMMA 4.18. There existε̃ > 0, L > 0 such that ifSa, Sb ∈ Wu(S) for Wu(S) 6=
Wu(PF1, F1), Wu(S) 6= Wu(QF1, F1) with dWu(F k

1 (S),F1)
(Sa, Sb) < ε̃, and such that the

arc Sa, Sb on Wu(S) is in H, thenR(Sa, Sb) < L.

Proof. Let us consider first the case in which one of the points, saySa, does not belong
to Ũ1, while F−1

1 (Sa) ∈ Ũ1. We can suppose that the curveC with extreme pointsSa, Sb

on Wu(S) is in Ũ (the domain of the linearizing coordinates) just takingε̃ small. Let us
suppose thatS1,a = F

−m1
1 (Sa) ∈ E , and let(x̃1,a, ỹ1,a) be the coordinates ofS1,a. It is not

a restriction to suppose thatε̃ is small enough such thatS1,b = F
−m1
1 (Sb) is in Ũ1, with

coordinates(x̃1,b, ỹ1,b). Let us fix 0< ε < ε̃, and takeC with diameterε. We project
C over the axisOx̃ following the linesx̃ = K; such a projection will have a smaller
size thanKε with K a constant. We know thatm1 = E(− log |x̃1,a|/ log |µQ|); afterm1

iterates byF−1
1 that projection will have size bounded byKεµ

−m1
Q , whereµ

−m1
Q is of
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the order of|x̃1,a|. As the angle determined bỹx = K and IS ′′ with S ′′ ∈ E varies as
k̃(ρ̃2(S ′′)+higher-order terms), we deduce that the difference|ỹ1,a − ỹ1,b| is bounded by
Kε1/3µ

−m1/3
Q whereK is a constant. Let us consider a vector inIS ′′ , it has the direction

of

v(S ′′) = (sink̃(ρ̃2(S ′′) + higher-order terms), cosk̃(ρ̃2(S ′′) + higher-order terms)).

For S ′′ near toS1,a, m1 iterates,v(S ′′) will take the components

(µ
m1
Q sink̃(ρ̃2(S ′′) + higher-order terms), λm1

Q cosk̃(ρ̃2(S ′′) + higher-order terms)).

For E small, in any case the first component predominates, and therefore the rate of
the moduli of the vectors corresponding toSa, Sb will be given, in the(x̃, ỹ) system of
coordinates, by

sink̃(ρ̃2(Sa) + higher-order terms)/sink̃(ρ̃2(Sb) + higher-order terms).

As the difference between the abscissasx̃1,a and x̃1,b is bounded byKε|x̃1,a|, the
difference between the ordinates is bounded byK(ε|x̃1,a|)1/3; taking into account the
fact that the arc of the unstable leaf betweenS1,a and S1,b has its curvature bounded,
and that it is aCr arc, we deduce that the rate will be smaller than 1+ K(ε|x̃1,a|)1/3.
Now, asE is bounded, and therefore so is|x̃1,a|, we can bound that rate (now taking the
Riemannian metric on the manifold) by 1+ Kε1/3.

Now we continue the reasoning inU∗
1 . We start with an interval in the unstable

foliation of size bounded byKε1/3µ
−m1/3
Q < K1ε

1/3|y∗
1,a| where S1,a = (x∗

1,a, y
∗
1,a),

S1,b = (x∗
1,b, y

∗
1,b), andK1 is a constant. We needp1 = E(log |y∗

1,a|/ log |λP |) iterates

by F−1
1 to leaveU∗

1 . Let S2,a = F
−p1
1 (S1,a), S2,b = F

−p1
1 (S1,b). As before, taking unit

vectors belonging toIS ′′ in theU∗
1 system atS2,a, S2,b, after applyingFp1

1 , we obtain that
the rate is again bounded by 1+ Kε1/3.

We recall also (see Lemma 2.6) that the length ofF
−m1−p1
1 (C) is smaller thatε/2.

Then, if we continue iterating byF−1
1 , until enteringD again, we must changeε by a

number smaller thanε/2, and the rates iñU1 andU∗
1 will be bounded by 1+Kε1/3/21/3,

and so on.
If we consider the iterates inH, the size ofF−j

1 (C) decreases in each iterate with a
factor at mostχ < 1 and, reasoning as in Lemma 4.17, the rate in each iterate is bounded
by 1+ Kχjε (we consider only the iterates in whichF−j

1 (C) ∈ H).
TakingSa, Sb as in the conditions of the hypothesis, we consider the series of general

term
|(JF1(F

−l
1 (Sa))/JF1(F

−l
1 (Sb))) − 1|.

Reordering it according to the position of the points (inH, in D ∩ Ũ1 or in D ∩ U∗
1 ), we

conclude that the series is uniformly convergent, and therefore, uniformly bounded.�

Remark 4.19.The lemma also follows if the pointsSa, Sb are in a neighborhood of
Ws

loc(PF1, F1) (the set of points with coordinates(0, t), 0 ≤ |t | ≤ 1, in the (x∗, y∗)
system of coordinates). This is so because in a neighborhood ofWs

loc(PF1, F1), IS is in
C2,S , and therefore the bound 1+ Kχjε is valid. After a finite number of iterates by
F−1

1 they enterH, and the proof ends as before.



A heteroclinic bifurcation of Anosov diffeomorphisms 601

Now we construct a measure, a component of which will be the SRB measure of our
theorem. We begin with a construction of [PS82].

Let us fix S∗ ∈ 3 (the construction does not depend onS∗). We choose a small
open neighborhoodU0 of S∗ on Wu(S∗) such that

∫
U0

R(S∗, S) dνu(S) = 1. Let us

defineUk = Fk
1 (U0), c0 = 1, ck = [

∏k−1
l=0 JF1(F

l
1(S

∗))]−1, k ≥ 1, and a measurẽνk on
Uk: dν̃k(S) = ckR(F k

1 (S∗), S) dνu(S). The measures̃νk are probabilities onUk. We
define Borel measuresνk on M so that for any Borel setA ⊂ M , νk(A) = ν̃k(A ∩ Uk).
Next, we defineµi = (1/i)

∑i−1
k=0 νk. Any accumulation pointµ′ of the set{µi} is an

F1-invariant probability. LetW be a small manifold, which we take transversal to the
foliation Wu (then, dimW = s). We fix t ≤ s(r) (recall Lemma 3.7) and define the
closed setN = {S ′ ∈ M : ∃S̃ ∈ W, S ′ ∈ BWu(S̃)(S̃, t)}. We remark that we could taket

depending oñS. The definition ofN allows us to define a function,π : N 7→ W , with
π(S ′) = S̃. The setsBWu(S̃)(S̃, t) determine a measurable partition ofN and then the
conditional measures on the elements of the partition are well defined.

We define

A(k) = {S̃ ∈ W : Uk ∩ BWu(S̃)(S̃, t) 6= ∅}; B(k) = {S̃ ∈ W : ∂Uk ∩ BWu(S̃)(S̃, t) 6= ∅};
C(k) = A(k) \ B(k); D(k) = {S ∈ Wu(F k

1 (S∗)) : dWu(F k
1 (S∗))(S, ∂Uk) ≤ 2t}.

Let h : M 7→ R
+ be a continuous function with support inN , we consider

g : W ∩ ∪k∈ZWu(f k(S∗), F1) 7→ R

g(S̃) =
∫

BWu(S̃)(S̃,t)

h(S ′)R(S̃, S ′)

Nt (S̃)
dνu(S ′) whereNt(S̃) =

∫
BWu(S̃)(S̃,t)

R(S̃, S ′) dνu(S ′).

We can write∫
N

h(S ′) dνk(S
′) =

∑
S̃∈A(k)

∫
BWu(S̃)(S̃,t)∩Uk

h(S ′) dν̃k(S
′)

=
∑

S̃∈C(k)

∫
BWu(S̃)(S̃,t)∩Uk

h(S ′) dν̃k(S
′)

+
∑

S̃∈B(k)

∫
BWu(S̃)(S̃,t)∩Uk

h(S ′) dν̃k(S
′) = I

(k)

1 + I
(k)

2 .

The key fact is thatI (k)

2 goes to zero withk:

|I (k)

2 | ≤ max
N

{h}ν̃k(D
(k)) = Kck

∫
D(k)

R(F k
1 (S∗), S̃) dν(S̃) ≤ Kνu(F−k

1 (D(k))).

Now, F−k
1 (D(k)) is contained in an annulus based in the boundary ofU0 of measure

going to 0 whenk goes to infinity because the vectors onT Wu expand if they are
iterated enough (except for one direction with base point on the iterates ofR).

Let us consider

I
(k)

1 =
∑

S̃∈C(k)

∫
BWu(S̃)(S̃,t)∩Uk

h(S ′) dν̃k(S
′) =

∫
W

ckNt(S̃)R(F k
1 (S∗), S̃)g(S̃) dδ(k)(S̃).
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Here,δ(k) is the measure inW , concentrated inC(k) such that forJ ⊂ C(k), δ(k) = #J .
Let ij →j→∞ ∞ be such that limj→∞(1/ij )

∑ij −1
k=0 νk = µ′ in the weak topology. Then

∫
N

h(S ′) dµ′ = lim
j→∞

1

ij

ij −1∑
k=0

(I
(k)

1 + I
(k)

2 ) = lim
j→∞

1

ij

ij −1∑
k=0

I
(k)

1

= lim
j→∞

∫
W

1

ij

ij −1∑
k=0

ckNt(S̃)R(F k
1 (S∗), S̃)g(S̃) dδ(k)(S̃).

The sequence of measures{σij }j∈Z+ with

dσij = 1

ij

ij −1∑
k=0

ckNt(S̃)R(F k
1 (S∗), S̃) dδ(k)(S̃)

verifiesσij (W) ≤ 1 for j ∈ Z
+. We can write∫

N
h(S ′) dµ′(S ′) = lim

j→∞

∫
W

dσij (S̃)

∫
BWu(S̃)(S̃,t)

R(S̃, S ′)h(S ′)

Nt (S̃)
dνu(S ′).

In the hypothesis of [PS82],∫
BWu(S̃)(S̃,t)

R(S̃, S ′)h(S ′)

Nt (S̃)
dνu(S ′)

is continuous as a function ofS, and therefore the limit can be introduced under the
integral sign, ending the construction, but this is not our case, and so we must modify
this argument.

Definition 4.20.We define thedynamical ball ofp iterates and radiusε centered atS as

Bs
p(S, ε) = {S̃ ∈ M : d(F i

1(S̃), F i
1(S)) ≤ ε, 0 ≤ i ≤ p}.

LEMMA 4.21. There exists a probabilityµ (a component ofµ′) such that for a.e.µ point
S in M, and 0 < A < 1, there exist a constantC = C(S), ε0 = ε0(S) > 0, and an
increasing sequence{pi}i∈Z+ , pi = pi(S, A), such that for0 < ε < ε0

µ(Bs
pi

(S, ε)) ≤ C

[
Api

pi−1∏
l=0

JF1(F
l
1(S))

]−1

.

Proof. First, we will prove that the assertion of the lemma is valid for the measureµ′ and
S ∈ 3, S 6= QF1. Later, we will prove thatµ′(QF1) 6= 1. Then, the lemma follows taking
µ such thatµ(·) = µ′(·)/µ′(M \ QF1). For simplicity, we will assume that the metric
we are working with is adapted to the cones inH, that is, in Definition 2.2 we suppose
q = 1. We denote the interior ofB as intB. Givenε′ > 0, and forS ∈ H∪Ws

loc(PF1, F1),
we defineN (S) = int{[S̃, S ′] : S̃ ∈ BWu(S, ε′), S ′ ∈ BWs (S, ε′)}. We take 0< ε′ < ε̃

(ε̃ defined by Lemma 4.18),ε′ independent ofS such that forS ∈ Ws
loc(PF1, F1), N (S)

be in the neighborhood of Remark 4.19. Finally, letH = {S ∈ H : N (S) ∈ H}.
(a) For S ∈ {H \ Ws(QF1, F1)} ∪ Ws

loc(PF1, F1) we take ε̃0 independent ofS such
that for all S as before,B(S, ε̃0) ⊂ N (S). We defineε0(S) = ε0 < ε̃0 for all S. For
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points in H , we take a sequence{p′
i}i∈Z+ , p′

i depending onS such thatp′
1 = 0, and

p′
i+1 verifies p′

i+1 > p′
i ; F

j

1 (S) 6∈ H for j = p′
i + 1, . . . , p′

i+1 − 1; F
p′

i+1

1 (S) ∈ H, or,

if F
p′

i

1 (S) ∈ Ws
loc(PF1, F1), we definep′

i+k = p′
i + k for k ≥ 0. We defineW(S) as the

connected component ofWs(S, F1) ∩ N (S) that containsS, andXS(S̃) for S̃ ∈ W(S)

the connected component ofWu(S, F1) ∩ N (S) that containsS̃.
(b) If S ∈ M \ {H ∪ Ws

loc(PF1, F1) ∪ Ws(QF1, F1)}, let p′
1 = p′

1(S) > 0 be such that

F
p′

1
1 (S) is the first iterate inH . We defineN (S) asF

−p′
1

1 (N (F
p′

1
1 (S))). We observe that if

S1, S2 belong to a connected component ofF i(N (S))∩Wu, thenJF1(S1)/JF1(S2) > J (S)

for someJ (S) and for i = 0, . . . , p′
1 − 1 becauseJF1 is bounded and bounded away

from zero.
Then, we defineε0(S) smaller than the valueε0 obtained in (a), such that

B(S, ε0(S)) ⊂ N (S) andF
p′

1
1 (B(S, ε0(S))) ⊂ B(F

p′
1

1 (S), ε̃0). We definep′
i+1 depending

on S so thatp′
i+1 > p′

i ; F
j

1 (S) 6∈ H for j = p′
i + 1, . . . , p′

i+1 − 1; F
p′

i+1

1 (S) ∈ H , or, if

F
p′

i

1 (S) ∈ Ws
loc(PF1, F1), we definep′

i+k = p′
i + k for k ≥ 0.

(c) For S ∈ Ws(QF1, F1) \ {QF1} ∪ {Fj

1 (R)}j∈Z, we takej ≥ 0 such thatFj

1 (S)

is the first positive iterate inWs
loc(QF1, F1). For k ≥ j , we defineNS(F

k
1 (S)) =

int{[S̃, S ′] : S̃ ∈ F
k−j

1 (BWs (F
j

1 (S), ε′′), S ′ ∈ BWu(F k
1 (S), ε′′)} taking ε′′ = ε′′(S) such

that NS(F
k
1 (S)) ⊂ Ũ1, and such that, fork = j , NS(F

k
1 (S)) does not contain any

iterate of R. We note the subindexS in the last definition: we can take that set
independent ofS, but we allow the dependence onS to simplify the arguments. It
can be seen that, althoughNS(F

j

1 (S)) can intersectD, after at most a finite number
of iterates, NS(F

k
1 (S)) enters a zone whereC ′

2,S ⊂ C2,S , obtaining the condition

JF1(F
j

1 (S1))/JF1(F
j

1 (S2)) > 1+KχjdWu(S1, S2) for S1, S2 in a connected component of
Wu ∩N (F k(S)). The reasoning follows as in (b): we defineN (S) = F−k

1 (NS(F
k
1 (S))),

and defineε0(S, A) such thatB(S, ε0(S, A)) ⊂ N (S); p′
1 is equal to the formerk, and

p′
i+1 = p′

i + 1.
Now we define the sequencepi . We observe that after a perturbation theorem (see

Theorem 4.1 in [R79]†), for anym ≥ m0 = m0(S, A), m0 independent of̃S in W(S),

m−1∏
l=p′

1

JF1(F
l
1(S̃))

/m−1∏
l=p′

1

JF1(F
l
1(S)) ≥ Am.

We take the sequence{pi}i∈Z+ , pi = pi(S, A) as a subsequence of{p′
i}i∈Z+ with

p1 ≥ m0. We take p0 = 0. Therefore, we can write fori ∈ Z
+ and S ′ ∈

Bs
pi

(S, ε0(S, A)) ∩ ∪k∈Z+Wu(F k
1 (S∗)), so that

pi−1∏
l=p′

1

JF1(F
l
1(S

′)) =
∏pi−1

l=p′
1
JF1(F

l
1(S

′))∏pi−1
l=p′

1
JF1(F

l
1(S̃))

pi−1∏
l=p′

1

JF1(F
l
1(S̃)) ≥ Api

L

pi−1∏
l=p′

1

JF1(F
l
1(S)).

Now, definingNS(F
k
1 (S)) = N (F k

1 (S)) for k ≥ 1, Fk
1 (S) ∈ H , NS(S) = N (S) and

C(S, pi) the connected component ofNS(S) ∩ F
−pi

1 (NS(F
pi

1 (S))) that containsS, we

† The assertion follows from that theorem and former considerations about the associated filtrations in [R79]
for the caseu = 1. For u > 1, we apply the same theorem withT ∧u instead ofT (notation of [R79]). See
also Theorem 7.2 of [KS86], although there the hypotheses are somewhat stronger.
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see that forε < ε0

µ′(Bpi
(S, ε)) ≤ lim inf

j→∞
µ̃j (∩i

l=0F
−pl

1 (NS(F
pl

1 (S)))) = lim inf
j→∞

µ̃j (C(S, pi))

where µ̃j is a measure inN (S) such that forg(S) continuous supported inN (S) we
have ∫

N (S)

g(S ′) dµ̃j (S
′) =

∫
W(S)

dσij (S̃)

∫
X(S̃)

R(S̃, S ′)g(S ′)

Nt (S̃)
dνu(S ′).

So

µ̃j (N (S)) =
∫

W(S)

dσij (S̃)

∫
X(S̃)

R(S̃, S ′)

Nt (S̃)
dνu(S ′).

R(S̃, S ′) is bounded and bounded away from zero onN (S) × N (S) with a bound
depending onS because of Lemma 4.18, Remark 4.19 and the former conditions in (a),
(b) or (c) (at worst we have to take a finite number of forward or backward iterates to get
out of D, and then apply the lemma or the former conditions). Therefore, there exists
q = q(S) such thatq−1 < R(S̃, S ′) < q and so we can write, examining the situation
on eachX(S̃), that

µ̃j (C(S, pi)) ≤
∫

W(S)

dσij (S̃)

∫
X(F

pi
1 S̃)

q2

J (S)p
′
1ε′′(S)Api

∏pi−1
l=p′

1
JF1(F

l
1(S))

dνu(S ′)

whereε′′ is a lower bound of the lengths ofX(S̃) for S̃ ∈ W(S). Observing thatσij

is a bounded measure we deduce the lemma (the difference with the lower limit of the
productory is compensated withC).

As
∑

j∈Z
µ′(F j

1 (R)) = 0, we are left to prove thatµ′(QF1) 6= 1. This is true because
the effects of the isotopy become more and more unimportant as we iterate the points
in D: let us assume thatµ′(QF1) = 1. Let N (S) = int{[S̃, S ′] : S̃ ∈ BWs (QF1, ε

′), S ′ ∈
BWu(QF1, ε

′)}. In order thatµ′(QF1) = 1, the only possibility is thatσij (the measure
on BWs (QF1, ε

′)) is more and more concentrated withj nearQF1, and with the measure
µ̃u

j on X(S̃) given by

dµ̃u
j (S ′) = (R(S̃, S ′)/Nt(S̃)) dνu(S ′)

also more and more concentratedS ′ near toQF1 for S̃ more and more near toQF1. This
last condition is not possible for points̃S ∈ H, so we are left to study the case in which
σij is more and more concentrated onD near toQF1. However, after the results of§3
we observe that if̃S in BWs (QF1, ε

′) is in D, after a finite number of iterates it behaves
as a point inH: eventuallyIS enters the cones corresponding tof , and after a finite
number of iterates it behaves as a point leavingD and enteringH. So, we must have
a sequence of points̃Si in BWs (QF1, ε) which approaches more and more toR. In this
case, let us observe that, on account of the construction of the measureν̃k in Uk, the
measure of sets around̃Si is the same as the measure of the iterateF−k

1 in U0 for ν̃0.
Therefore, after the expansion, the measureν̃k aroundS̃i can be written asK(k, S)νu(S)

with K(k, S ′)/K(k, S ′′) going to 1 withk going to infinity, for S ′, S ′′ near S̃i . Let us
assume the worst situation; let us suppose thatS̃i coincides withR. In such a case, if
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we consider the points inWu(R, F1) very near toR with abscissas (in the(x̃, ỹ) system)
in [a/µ

j+1
Q1

, a/µ
j

Q1
], for j large anda in [1, µQ1], the arc determined has measureν̃k

of the orderKµ
−j/3
Q1

, with K a constant. That is, from the measure viewpoint, for high

iterates ofR, everything works as if the expanding eigenvalue wereµ
1/3
Q1

insteadµQ1,
andWu(R, F1) were transversal. Therefore, we can see that the rate of the measure of
the points near the iterates ofR whose tangent space does not behave as if it were inH
with respect the measure of the points inŨ1 in the same local unstable manifold remains
bounded with bound smaller than 1. So, the measure of the set of points whose measure
could accumulate inQF1 is smaller than 1, and therefore,µ(QF1) 6= 1. �

To end with the proof of the proposition, we adapt the proof of Proposition 5.1
in [K88]. Recalling the Brin–Katok definition of the entropy (see [BK84]) we have

hµ(F1) =
∫

M

lim
ε→0

(
lim sup
p→∞

1

p
log[µ(Bs

p(S, ε))]−1

)
dµ(S)

≥
∫

M

lim
ε→0

(
logA + lim sup

i→∞

1

pi(S, A)
log

pi(S,A)−1∏
l=0

JF1(F
l
1(S))

)
dµ(S).

As A can be taken arbitrarily near to 1, and as from the theorem of Oseledec it follows
that for S in a set of full probability

lim
p→∞

1

p
log

p−1∏
l=0

JF1(F
l
1(S)) =

∑
i:χi(S)>0

χi(S) dimEi(S),

then

hµ(F1) ≥
∫

M

∑
i:χi(S)>0

χi(S) dimEi(S) dµ(S).

The inequality of Ruelle (see [R78]) asserts that

hµ(F1) ≤
∫

M

∑
i:χi(S)>0

χi(S) dimEi(S) dµ(S).

We conclude that

hµ(F1) =
∫

M

∑
i:χi(S)>0

χi(S) dimEi(S) dµ(S).

and this, after Theorem 4.10, implies thatµ has absolutely continuous conditional
measures on unstable manifolds. �

4.3. We now end the proof of Theorem 1(c), with some ideas from Theorem 3
in [PS89]. We know that3 has measure one (§4.1), and thatµ has absolutely continuous
conditional measures on unstable manifolds.

Given a continuous functiong : M 7→ R, let G+ andG− be the sets of pointsS ∈ M

such that respectively the Birkhoff averages

B+(g, S) = lim
i→+∞

1

i

i−1∑
j=0

g(F
j

1 (S)); B−(g, S) = lim
i→+∞

1

i

i−1∑
j=0

g(F
−j

1 (S))
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exist. From the ergodic theorem of Birkhoff it follows thatG+ ∩G− is of full probability,
and that the subset of points̄G on which the two averages are equal is also of full
probability andF1-invariant.

We fix any density pointS0 of the measure,Wu
ε (S0) and Ws

ε (S0) with ε small such
that the setUS0 = {[S1, S2] : S1 ∈ Wu

ε (S0), S2 ∈ Ws
ε (S0)} is well defined. We have that

µ(US0) > 0. We considerU1 = US0 ∩ Ḡ ∩ 3; we know thatµ(US0) = µ(U1). As US0

is a measurable partition ofUS0 (see Definition 4.7 and subsequent comments), we can
write for U2 ⊂ U1 that

µ(U2) =
∫

Ws
loc(S0)

µu

S̃
(U2 ∩ Wu

loc(S̃)) dσ (S̃)

whereµu

S̃
∼= νu

S̃
, with νu

S̃
the Riemannian measure onWu(S̃). We consider the set of

points S̃ ∈ Ws
ε (S0) with µu

S̃
(Wu

loc(S̃, F1)) > 0. As µ(U1) = µ(US0) > 0, we know that

for σ -almost every point̃S0 in Ws(S0), µu

S̃
(Wu

loc(S̃0, F1) ∩ U1) = µu

S̃
(Wu

loc(S̃0, F1)) > 0,

we fix S̃0 with this property. We denoteB = Wu
loc(S̃0, F1) ∩ U1; we have that

µu

S̃0
(Wu

loc(S̃0, F1) \ B) = 0. Let us considerWs
loc(B, F1). As νu

S̃0
(B) > 0, and taking into

account the absolute continuity ofWs(B, F1), we deduce thatWs
loc(B, F1) has positive

Lebesgue measure. The absolute continuity works when we have manifolds transverse
to the stable foliation. In our case we have the transversality except at the iterates of the
point R, where the transversality is only topological. So, the only manifold with which
we may have some problem isWs(Q, F1), but this manifold has a countable number
of intersection points with any unstable manifold, and so this set has Lebesgue measure
zero. Now, we saturateB: we consider the setC = ∪i∈ZF i

1(B), and letYg = Ws(C, F1).

LEMMA 4.22. Let {gi}i∈Z+ , gi : M 7→ R be a dense sequence in the unit ball of continuous
functions{f ∈ C0(M) : ‖f ‖ ≤ 1}. LetY = ∩i∈Z+Ygi

. ThenA = Y ∩3 with the measure
µ defined in§4.2 is an ergodic attractor.

Proof. We first claim thatµ(Yg) = 1. By contradiction, supposeµ(Yg) < 1; we consider
a density pointS1 of the Borel probability defined by

µ1(D) = µ((M \ Yg) ∩ D)/µ(M \ Yg).

There exists a sequence of sets{Di}i∈Z+ , Di ⊂ 3 ∩ (M \ Yg), µ1(Di) > 0 with
Di ∈ B(S1, 1/i). We considerWs

t (S1), so it follows from Lemma 4.16 that for large
enought it must intersect the interior ofU , and so, taking account of Lemma 4.15, for
large enoughi and for almost everyS ∈ Di , Ws

t (S, f1) ∩ U 6= ∅. We observe that
Ws

t (Di, f1) ⊂ M \ Yg. As before, we construct a neighborhoodUS1 ∈ B(S1, 1/i) where
we find a pointS̃1 with νu

S̃1
(Wu

ε1
(S̃1)∩Di) > 0. Using the absolute continuity of the stable

foliation, we conclude that there exists a set of positive Lebesgue measure inWu
loc(S̃0)

which is not inB. This contradicts the fact thatµu

S̃0
(Wu

loc(S̃0, f1) \ B) = 0 proving the
claim. We have proved then thatµ(A) = µ(Y ∩ 3) = 1.

Now consideringU1 ∩ Y , we know thatµ(U1 ∩ Y ) = µ(US0). Reasoning as before,
but with U1 ∩ Y insteadU1, we obtain a setWs

loc(B, F1) ⊂ Y with ν(Ws
loc(B, F1)) > 0.

Therefore,ν(Y ) > 0.



A heteroclinic bifurcation of Anosov diffeomorphisms 607

For S ∈ U1 we know that the two Birkhoff averagesB+(g, S) andB−(g, S) exist and
are equal. By continuity,G+ consists of whole stable sets, andG− consists of whole
unstable sets. It follows thatB+(g, S) is a constant function onY and therefore, for
everycontinuous functiong : M 7→ R, B+(g, S) is a.e. constant. This constant must be∫

g dµ. Recalling Proposition 2.2 of [M83], we conclude thatµ is ergodic. Moreover,
we have proved that every pointS ∈ Y is generic with respect toµ. �

Now, we prove the unicity. Let us suppose there is another probability measureµ1

absolutely continuous with respect to the unstable foliation; we take a density point of
µ1 and we reason with this point as we did with the pointS1. For fixedg : M 7→ R,
we get a setY1,g of positive Lebesgue measure which must intersectYg. Therefore, we
can take a pointS such that

∫
g dµ = B+(g, S) = ∫

g dµ1 and, as this can be made for
every continuous function, this impliesµ = µ1.

We are left to prove thatF1 is Bernoulli with respect toµ. In order to do this, we
recall Theorem 5.10 of [L83], which asserts that if3 hasµ measure one, and if the
system(M, F

j

1 , µ) is ergodic forj > 0, thenF1 is Bernoulli with respect toµ. The
same reasoning as before works to prove this last assertion, and this ends the proof of
the Theorem 1.

4.4. Here we study the conservative case. First, we show that we can arrive atf1

maintaining the given measure, and then we verify the ergodic properties. As we have
stated before, we work withn = 2. We consider the(ξ, η) system of coordinates; by
hypothesis there exists an element of volume given byω(ξ, η) dξ ∧ dη with ω ∈ Cr .
The equationsx = 0(ξ, η), y = 1(ξ, η) represent a change of coordinates. We want to
impose that in the new system of coordinates the element of volume is given bydx∧ dy,
so we must impose the condition

Dξ0(ξ, η)Dη1(ξ, η) − Dη0(ξ, η)Dξ1(ξ, η) = ω(ξ, η). (11)

In §§1.1 and 1.3 we demanded conditions (3), (4), (7), and (8). Let us define

b = Dξω(0, 0)

2ω(0, 0)
+ Dx∗,y∗β∗(r∗, 0)

2Dx∗α∗(r∗, 0)Dy∗β∗(r∗, 0)
and c = − Dx̃,ỹ α̃(0, r̃)

Dx̃α̃(0, r̃)Dỹβ̃(0, r̃)
.

Clearly, z = ξ exp{bξ} is an invertible function in a neighborhood ofξ = 0. We denote
the inverse function withξ = ν(z) (it also depends onb). Then,

0(ξ, η) = ξ exp{bξ + cη}
and

1(ξ, η) =
∫ η

0

ω(ν(ξ exp{bξ + c(η − t)}), t) exp{−bν(ξ exp{bξ + c(η − t)}) − ct}
1 + bν(ξ exp{bξ + c(η − t)}) dt

verify conditions (3), (4), (7), (8), and (11). We only have to observe thatdx ∧ dy is
θt invariant (detDθt = 1), and this proves thatft preserves the original measure for
t ∈ [0, 1].

We have to prove Theorem 2(c). We know that3 has measure one (§4.1), and thatµ
is an SRB measure by a result of Pesin (see Proposition 3.3.1 of [P73]). The reasoning
of §4.3 is applicable, and this ends our theorem.
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