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Abstract: Considering a convex endomorphidim(its n coordinates are convex func-
tions) and the one parameter fami#y, = F' — v, wherev is any vector ofR”, we

find sufficient conditions in order that for large values of the parameter, the dynamical
behavior ofF, is completely described: either the nonwanderingxgt,) is empty or

F, restricted ta2(£),) is an expanding map. These conditions are shown to be generic
in the space of quadratic endomorphisms.

1. Introduction

Convexity seems to be a condition which when imposed on higher dimensional en-
domorphisms permits generalization of some parts of the theory of one dimensional
dynamics. This occurs for delay equations (see [RV]) and in a more general context will
be the subject of this work.

A real function f defined onR™ is C2-convexif it is C? and there exista > 0
such thay,(v) = (H;(z)v,v) > « for every unit vectow € R", whereH ;(z) denotes
the Hessian matrix of at the pointz and(-, -) denotes the usual scalar produciin.
An endomorphism oR" is calledC2-convex when all its coordinates af&-convex
functions. The set of?>-convex functions defined dR” will be denoted byC C?(R™).

Next define the clas, of C* endomorphisms dR™ containing the mapg which
satisfy the following properties:

1. o is an attractor forF” (i.e. there exist®? > 0 such that|z|| > R implies that
F*(x) — oo whenk — 00). Denote byB,, the basin of attraction afo.

2. The nonwandering s€(F") is either empty or a Cantor set which coincides with the
complement of the basin eb, andF’ restricted ta2(F) is an expanding map.

Endomorphisms ift{y are always Axiom A (see M& and Pugh [MP]); by atheorem
of Przytycki (see [P]) adapted to this case of noncompact manifolds, the structural
stability of the endomorphisms iH; also follows.
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LetF = (f1,-- -, f») be aC?-convex endomorphism; for ¢ R™ fixed, consider the
one parameter family,, = F' — pv. We will find sufficient conditions on the geometry
of intersections of the level sets of the functigfisuch that for large values ¢f, the
map F), belongs toH, (see Proposition 1 in Sect. 3). We defigig as the set of>2
endomorphismg” of R™ for which there existgo € R such thatF}, belongs tdH, for
every|u| > po. We will show in Sect. 3 that the intersection @f with the space of
C?-convex endomorphisms is open in thié-strong topology. However, in Example 3
of the last section we will show that there exi$ts= G, (F is notC?-convex) which is
not an interior point ofj, in the C"-strong topology for any > 2.

Observe that iff : R — R is aC?-convex function therf,, belongs taH, for every
1 large. We are trying to understand the situation in higher dimensions. Actually the
same result does not hold in dimensio» 2; in fact, we will show in Sect. 5 that there
are open sets af?-convex endomorphisms for which the familigg,, : n > 0} do
not intersect,. (See Examples 1 and 2 of the last section). However, the situation for
guadratic maps is quite different. Any quadratic endomorphisR'iis determined by
symmetric matricegly, - - -, A, vectors ofR™ vy, - - -, v,,, and real numbers,, - - - , a,,
and given by

F(x) = (<A1(L,$> + <'U1,$> + A, -+, <An(L',.’E> + <’Un,.’E> + an)'

Obviously the endomorphisti is C?-convex if and only if each of the matricel
is positive. We will show that if at least one of the matrickss positive, ther is an
attractor forF'. There are quadratic endomorphisms for which this does not occur, as
will soon become clear. In the space of quadratic endomorphisms it is more natural to
consider the weak (compact-open) topology since the strong topology becomes discrete
when induced in this space. Moreover, the weak topology coincides with the natural
topology given by the immersion (via coefficients) of the quadratic space in euclidean
space. With this topology, we will prove the following result:

Theorem 1. For everyr € R™ \ {0}, G, is open and dense in the space of quadratic
endomorphisms d&”.

These kind of situations are also found in [BSV] and [RV], where delay endomor-
phisms were studied; these endomorphisms, which fail t6‘beonvex because they
haven — 1 linear coordinates, “generically” display hyperbolic dynamics (including
that of Hp) when one parameter families are considered. In this sentence, “generically”
has a different meaning, because the delay is required to be maintained. This will be
explained in the first example of the last section.

2. Preliminaries

In this section we will describe some properties of a singfeconvex functionf :
R"™ — R.

. .0 0?
For eachi,j = 1, --- n we denote the partial derlvatlveasg and /

by 0; f
é)xié)xj
ando;; f respectively, the gradient vector pfatz by V f(x), and we define the sets

Ci(f)={z eR":0;f(z)=0 for j #i}, i e {1,---,n}.

Let o > 0 be such that for every, z € R™:
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¢2(v) = (Hy(2)v,v) = aljv]|*;

whereH ¢(x) is the Hessian matrix of atz.
Next we comment on the fundamental properties:

1. There exist®® > 0 such thatf(z) > %||z|? if ||z|| > R.
Proof: Fix z € R™ with norm 1 and define,(t) = f(tx) for positivet. Then

oo () = (Hy(tz)z,z) > o

for everyt > 0. It follows that
(07
0o (t) > Etz + ¢! (O}t + ©..(0).

As |l (0)] is bounded above independentlyaafthis implies the assertion. It also
follows thatf is a proper function: preimages of bounded sets are bounded.
2. We claim thatf has a unique critical point.

Proof. The firstitem implies thaf has an absolute minimum in the regipr| < R,
that must be a critical point. Laty be a point wher¢g takes its absolute minimum,
fix x with ||z — x¢|| = 1, and defineb,(t) = f(xo + t(x — xo)) for t > 0. Then, as
above ) (t) > « for t > 0, which implies thai),.(t) > %tz + f(xo) fort > 0, and
the claims follows.

3. Fors € R the level setg~1(s) are always compact; furthermore, wher: min f,
f~Y(s) = 0; whens = min f, f~%(s) is the critical point off and if s > min f,
then f~1(s) is a compact set that separal’s into two components, the bounded
one being the strictly convex s¢t € R™ : f(z) < s}, denoted in the sequel by
i(f~*(s)). The unbounded component will be denoted:bf(s)).

Another simple consequence of the convexity is that every nonempty levet ¥e)
with s > min f, has exactly two points of tangency with hyperplamgs constant,
i=1,---,n; these are the points of intersectionfof!(s) andC;(f).

4. The set’;(f) is the graph of a function defined in tt#€ axis, that is, we claim that
there existe:;: R — R"~!such tha®; f(x1, - - -, x,,) = O for everyj # i if and only
if there exists € R satisfyingz; =t and @1, -+, z;_1, Ti+1, - -+ Tpn) = Ti(2).

Proof. Takei = nto simplify the notation, and consider the mafx) = (01f(x), - - -,
On-1f(x)), wherex = (2, z,) € R" andz = (z1, - - -, x,—1). It is easy to verify that
Osgn (%, z,) = Hy(x), with H () the matrix obtained frondl ;(z) if the last row
and column are taken off. Sindé(z) is a positive matrixﬁ'f(x) is nonsingular.
As g,,(z°%) = 0, wherez® = (29, - - -, 29) is the critical point off, then the implicit
function theorem implies that there is a neighborh®ddf z° and a functionr;,
defined onV such that

gn(fén(xn)y xn) =0
for everyzx,, € V. Moreover,

Hp(@n(wn), 20) ¥ (20) = =V f@n(an), ), @)

whereVo, f = (0w f, -, Om-1nf)

As C,,(f) is the set of points where the level setsfadre tangent to the hyperplanes
xn, = const, it follows that the domain af is all R. The set”;(f),i =1,---,n, are
called thecritical lines of f.
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Now we separate in a lemma the main result of this section; it says thatsif
sufficiently large, then for each4 i < n there is a level se§; of f,, = f — pu, tangent
to the hyperplane; = f,.(S;).

Lemma 1. Letf, = f—u, wheref : R® — RisaC?-convex functionand € R. Then
there existguo such that for any = 1,---,n andu > po there are defined functions
s; (1) and 3; (1) with the following properties:

1. f, *(si(1)) is tangent tar; = s;(11) and tox; = 5;().
2. si(p) — +oo, 5;(1) — —oo, # — Oand¥ — 0asy — +oo.

3. f;l(s) C {(xlv e ,l’n) x; < s}ifs > SZ(M)fgl(S)m{(xla e 7xn) x> S} 7®
if s < s;(1) and f, *(s) is not empty.

Proof. We assume = n, the proof fori < n is similar; we denote by® = (29, -, 22

rn

the point wheref takes its minimuma. Fix ;1 large enough and defing,(t) =
fu@n(t), 1), where (5,(t),t) = (ua(t), - - -, un—1(t), t) is the parametrization of',,(f)
given above. Observe that

@) = 0 f(E@n(t), 1),
because for K j < n, 9;f = 0 at points inC),(f). It follows that

n—1
P =D Din S @ (), YUi(E) + Do fu(En (8), 1).

i=1

Next we prove thaty); is bounded below from 0. Developing the determinant of
Hy(2,(t), t) by adjoints of the last row gives

det(Hp(@(1), 1) = Y (=10 f(En (1), ) Ai D), )

=1

whereA,(t) = det(ﬁf(in(t),t)) andA;(t), fori =1,--- ,n— 1, is the determinant of
the matrix obtained fron#{ ¢(2,,(t), t) taking off thei™ column and:™ row. Equation
(1) says that
Hp(@n(t), F,(t) =~V f(Fn(t), 1),
Consider this a linear system with unknowsjgt) = (uy(t), - - - , u,(t)). By
Cramer's ruley)(t) times the determinant d/f’f (Z.,(t), t) is equal to the determinant

of the matrix obtained substituting t6f& column ofﬁf(in(t), t) by —@(%f(ﬁcn(t), t) =
—(Own f(@n(t), 1), -, On—1n f(@Zn(t),1)). Thislastmatrix is obtained fro ¢ (Z,,(¢), t)
taking off the last row and th&" column and interchanging the last column with ifte
one. It follows that

Ailt) = (~1) " i (0)det(H p(#n(2), ).
In this way, from (2) we have

n—1
det(Hy(Fn(t), 1)) = det(H (@0 (1), 1)) (Z Oin f (@0 (1), )i () + Opn f (@0 (1), t)) ;

=1
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H: (2 . . .
w; itis an exercise of linear algebra to prove that then
det(H ¢ (n (), 1))

thereforep) (1) =
o > a.

On the other hand, it is clear thaf,(29) = 0 andy,,(23) = a — . From this we
conclude that for every large value pfthere existss,, (1) > 0 andsy, (1) < 0 with
zp € (8n(1), 50 (1)) such thatp, (s, (1)) = 5n(1), 9u(Gn(l)) = sn(p), @uls) < s if
28 < s < s,(1) andyp,(s) > sif s > s, (). The lemma follows easily. O

Remark 1.— As an immediate consequence of the above lemma we have the following
fact: if £, : R® — R is any endomorphism such that at least one of its coordinates
(suppose the last one) 5 = f — u, wheref : R® — R is aC2-convex function,
thenoo is an attractor foi, if . is large enough. (This is also a consequence of the
first property ofC2-convex functions stated above.) Moreover, if we define

Cn() ={z € R": fu(@) € [5n(1), sn (]},

5,(u1) ands,, (1) being as in the lemma and i, is the basin of infinity, thel,, =

R™\ ﬂ FJ’“(C,,,(/,L)). Now suppose that each coordingteis C?-convex and let
k>0
5;(1n), s;(11) be as in the previous lemma when tHecoordinate is considered.

If Ci(u) = {z : fi(z) — p € [3:(w), s:(W)]} andC(u) = ﬂCi(u), then B (1) =

=1
R\ () EH(C ).
k>0
— Observe that diminishing we can find a valug Such thats,, (&) = 5, (). If © < i,
then the basin of infinity fofF, is equal toR™. Therefore, if for the one parameter
family of C2-convex endomorphisms,, = (f1, ..., f,) — uv, if any of the entries
of the vectorv is negative, then for every large positiuethe F},-orbit of any point
goes toco.

3. e-Transversality

Now we will find conditions expressed in terms of the intersections of the level curves
of f1,---, f» which will be sufficient to obtain thak}, belongs toH, for large values
of ;. The precise statement is Proposition 1.

First we introduce some notation. B{uf, - - -, v }] we denote the linear subspace
generated by{vs, - --,vx} C R™ and Py (resp.P;-) denote the orthogonal projection
of R™ onto the linear subspadé (resp. onto the orthogonal complementof

Lemma 2. If {v1,---, v} is a linearly independent set of vectorskf and V' =
[{v1,---,vx}], then for every > O there existsy > O such that ifws, - -, wy are
linearly independent vectors R™, W = [{wy, - - -, wi }] and|lw; — v;|| < 6 for every
i=1--- k, then for any unit vector € R™ it holds that

[Py (v) — Pw(v)]| <e

Proof. Let{v1,---,v;} and{wy1, - - -, w}} be orthonormal basis of the linear subspaces
V andW obtained fromwy, - - -, v,, andwy, - - -, w,, by the Gram Schmidt orthogonal-
ization method. So for every vectore R™ we can write



300 N. Romero, A. Rovella, F. Vilama,j

k

k
Py(v) =Y (v, vj)v; and Py (v) =Y (v, wi)uw}.
i=1

=1

By continuity of scalar producﬂ,w; — v; || is small if||w; — v;]| is small for everyi < j;
so the lemma follows. [

Definition 1. Givene > 0 we say thafvy, - --,v,} C R™\ {0} is e-transverseif for
eachV; = [{v1, -, v} \ {v;}] withi =1,--- n, it holds that

1Py vill = ellve]l

Definition 2. For anye > 0 we say that a set of smooth hypersurfaces, - - -, .5, in
R™ is transverseif at each point of intersection € -, S; the set ofs normal vectors
to the tangent spaces of the hypersurfaces is linearly independent.

The set{Sy,---, S, } is e-transverseif at each pointz € (-, S;, the set of: normal
vectors atr to the respective tangent spaces-isansverse.

The following is an immediate corollary of Lemma 2.

Corollary 1. If {vy,---,v,} is a set of unit vectors dR™ which is note-transverse,
then there exist§ > 0 such that ifws, - - - , w,, are unit vectors satisfyinfjw; — v;|| < §
foreveryi =1, .-, n, then{ws,---,w,} is note-transverse.

The following lemma is the basic tool to obtain expansivity.

Lemma 3 (e-transversality. Givene > 0 there exists:(e) > 0 such that if the set of
unit vectors{vy, - - -, v, } C R™ is e-transverse, then the x n matrix A whose rows
are the vectors, - - -, v,, satisfies:

[Av]| = e(e)]v],
for everyv € R™.

Proof. Suppose by contradiction that there exists 0 such that for every positive inte-
gerkandalli = 1, - -, nthere exist unit vectors} andv* such thatthe sy, - - -, v

is e-transverse and ifl;;, is the matrix whose rows are the vecto)fs- -+ vk then:

1
Akt < 2. ®)

We can assume without loss of generality that the sequedes k& > 1} with i =
1,---,nand{v; : k& > 1} converge to the unit vectors, - - -, v, andv. From the
corollary above it follows thafvy, - - - , v, } IS e-transverse, hence linearly independent,
but, on the other hand, il is the matrix whose rows are the vectess- - -, v, then
pasing to the limit in Eq. (3) we havdv = 0. This contradiction proves the lemma.
O

Remark 2.1t can be proved that the numb&E) in the preceding lemma can be chosen
as a constant depending only on the dimensiaimes ™1, We will not need this
stronger version.
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Proposition 1. Let F,, = (f1 — pv1,- -+, fn — pvn) (€achy; > 0) be aC?-convex
endomorphism dR” satisfying the following: Given > 0 there existg:o such that, if

> po then

{fitwi+s;) - i=1--,n}
is e-transverse whenevey € [5;(uv;), s;(uv;)] foreachi = 1,-- - n. ThenF), belongs
to H, for everyu sufficiently large.

Proof. Suppose first that; = 1 for eachi = 1, - -, n. Since each component 6], is a
C?-convex function, Remark 1 implies that

R™\ By = () F, M(C(w))-

k>0

Take anyr € R"\ By,.Foreach = 1, .-, nthere exisk; € [5;(u), s;(1)] such that
x € ﬂ £ X(s; + p). The normal vector tgf; (s, + 1) atx is V f;(x), so the hypothesis

=1
implies that the sefV fi(x), - - -, V fn(x)} is e-transverse. On the other hand, it is clear
that

H(DFM)T(U)HZ = <Vf1(1:),11>2 e <Vf7,(x) >2

> min IIsz(I)“ Z |§f{§x;n A

The suminthe last member is equal to the square ofthe noAudb, whereA(z) is the
matrix which rows are the vectof ; g; 1 These are-transverse, so thetransversality
lemma implies that

[(DE): @) = (e min ||V fiw)|lo]*

Therefore, if we prove that for evegylargec(e) mini<;<,, ||V fi(x)|| > 1 for every
x € C(u), then the result follows.

Letz € C;(u), thenfi(x) — p > §;(1) and Lemma 1 implies that whan — oo,
p + 5i() — oco. Then it follows that||z| — oo and asf; is a C2-convex function,
||Vfl(x)|| — oo aspu — oo. This proves the proposition in case = 1 for each
1=1,---,n. For the general case, define, instead'¢f) the set

Co(u) = ﬂ{x D file) = i € [5i(uvs), si(ua)l},
i=1

and then proceed as above. [J

Remark 3.— Observe that if any; < 0 then for every large the nonwandering set of
F,, is empty. This is a consequence of Lemma 1.

— To give a simple example in which the conditions of the above proposition hold, take
any C2-convex endomorphism& = (f1, f,) of R?, such that, for any € {1,2} and

z € R?,

0ii fi(x) > 05 fi(x)
for everyj #i.
Then the level curves gf; are more vertical than horizontal, and thosgoére more
horizontal than vertical. This gives an idea why the level curves have to be transverse.
The proof is similar to the one we give in the next section.
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Now we make a digression to discuss some topologies in the spacéadnvex
functions of R”. The C?-weak topology given by uniform convergence on compact
subsets seems to be not useful becauseGygonvex function has arbitrary small
perturbations which are not even convex functions. This represents a difficulty since we
are dealing with the behaviour at infinity. @2-Whitney or strong neighborhood of a
function f is given by continuous functiors(z) > 0,7 = 0,1, 2 and is defined by:

V(f; o, €1, €2) = {g € CA(R™) : ||Hy(x) — Hy(z)|| < ea(a);
|V f(z) = Vg(z)|| < e(z) and
|f(z) — g(x)| < eo(x) for everyx}.

Itis clear thatC C?(R™) is open inC?(R™) when the strong topology is considered.
This makes this topology more interestingi®?(R™). Moreover, ag'?(R™) is a Baire
space (see [H]), it follows that alSGC?(R™) is a Baire space. However, induced in
the set of quadratic convex functions the Whitney topology is discrete, while the weak
topology induces the natural topology of the norm which we will use in the next section.
In the space of*?-convex endomorphisms &" we will use product topologies. This
means that a strong small perturbation of an endomorphisifiR” is an endomorphism
G such that each coordinate is close to the corresponding coordinate of

Remark 4.G, is open under strong topology in the spac€éfconvex endomorphisms
of R™.

Proof. Let F' be aC2-convex endomorphism ig,,. ThenF, = F' — pv belongs tdH,

for every|u| > uo. By Remark 1, there is a continuous and increasing funct{ph
such thab() — +oo asp — +oo and the nonwandering set 6j, is contained in the
complementary set of the ball centered at 0 and with rallius As Ho is open, each
F,, has a neighborhood contained7fy. The family {F,, : p > o} is not compact,
but the nonwandering set &i, is determined by the restriction #f to a set of the form
{z : bu) < ||z|| < const.\/u}, and there the values of @-strong perturbation
G can be chosen close 6. Then the nonwandering set 6f, must be conjugated to
that of F,. It is important to note that th€2-convexity is crucial, because it makes the
nonwandering set to go t&, whenF andG are arbitrarily close. Compare this with
the situation in Example 3 of the last section, where the distance from the nonwandering
set of F}, to O tends to 0 whep — +o0. O

In the following sections we will need to describe some perturbatiod& afonvex
endomorphisms and the effect of these perturbations on the level sets of the functions.
Recall that ifL is the level set of &2-convex function, ther(L) denotes the convex
bounded region of the complementary setoff « is any point ini(L) andS™ ! denotes
the unit sphere oR™, then there exists a functias, : S"~! — R* such that

{a+e(0)0 : S} =L

To prove the above, observe that each ray starting at (L) must intersectl
becausd. is compact. This intersection must be unique becalsgs strictly convex.
We will call this functiony;, the parametrization of. In this way it is clear that for
eachg € CC?([R™), to > ming anda € (g~ (o)) there exists a function

09 1 81 (to, 0) — R*
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such that for each > to, the functiony? : S"~1 — R* given by?(0) = ©9(0, 1)
defines the parametrization @f(t).

In other words? is the unique function satisfying(a + ©9(0, t)0) = t for every
6 € S"~!andt > to. (Here we used polar coordinates in the domaip.pf

Suppose thay is as above and take a stron-neighborhoodV of g such that
everyh € V is C?-convex and satisfies € i(h~(to)). Then, for everyt > to, we
can define the parametrizatigsf of h=(¢). This defines an operatgr from V into
C?(S™1 x (tg, +00)); i.e. p(h) = ©". Considering the>?-strong topology also in this
space of functions we have:

Lemma 4. The operatorp : V — C?(S"~1 x (to, +o0)) is continuous.
Proof. Letd be the distance from to h~1(¢y) and define
@y, 1 S" L x (d, +00) X (tg, +o0) — R

by
®,(0,s,t) = h(a +s6) —t.

Observe that
2

0
@h(a +50) = (Hp(a +$0)0,0) > «,
whereH}, (a + s) is the Hessian matrix df at the pointa + s6. It follows that

0%y,

oh
95 ,s,t) = g(a+50) >0

for everys > d. (Geometrically,%(a + s6) is positive because for > d and any
6 the linea + s is transverse to the level sets bf and whens increasesg + s6
cuts higher level sets df.) Thus the implicit function theorem provide<’#¥ function
@, S"L x (to, +00) — R* such that

@;,/(67 @h(ea t)? t) =0

and the dependence o¢f, on i is continuous becausé; depends continuously on

h, by the parametrized implicit function theorem. (This follows from the parametrized
version of the Inverse Mapping Theorehet X be a topological spacel/ a manifold
andvy : X x M — M such that for eaclx € X, v, is C" and the mapr — v, is
continuous. Fixe € X, p € M and suppose that the differentiél,, is invertible.
Then there is a neighborhoad of = in X, such that for every € N, v, is locally
C"-invertible and the inverses depend continuously yithis proves the lemma. O

The advantage in consideringf instead ofg is that the high level sets aof are
images of the compact sét'—* undery?, simplifying the work with level curves.

Corollary 2. Letgs,---, g, be C?-convex functions such that the :{@fl(u) Di=
1,---,n}is e(u)-transverse for every > puo, wheree(y) is a continuous function of
1 with range contained in an open intervalbounded away from 0. Then there exists
a small neighborhood ofg1, - - -, g,) in the C2-strong topology, such that for every
(ha,- -+, hy,) in that neighborhood, the s¢h; *(1) : 1 < < n} is € (u)-transverse
for everyu, wheree’' (1) belongs tal for everyp.
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Proof. Leth = (hy, - - -, h,,) be a smalC?-strong perturbation of = (g1, - - - , g.); €ach
level curveg;l(u) of g; is the image undepy, of Sm—1, By continuity ofy, the functions

h; can be chosen so that: (S™~1 x {u}) andp9 (S"~1 x {}) are located at a distance
that converges to 0 arbitrarily fast when— oo. Therefore, as-transversality foe € T
is open, the result follows. O

4. Proof of Theorem 1

ConsiderF’ = (f1, - - -, f») where each component is given by
fi(x) = (Aiz, x) + Li(z) + a4,

with A; a symmetric matrix[; a linear function and, € R. We are not supposing that
the matrices4; are positive, s@’ is not convex necessarily.
Assume first that

1 {{(Aw,2)=0 :i=1---,n}NS* 1=,
2. {{Ajz,x) =t} = 1 -+, n is transverse for all possible choices of + and
3. A;is invert|ble i=1---,n.

Under these conditions (that will be shown to be open and dense), we will show that:
(a) o is an attractor foi".

(b) F,, = F — pv belongs toH, for every large value off|.
Proof of (a).Condition 1 and continuity imply that there exists- 0 such that

ﬂ{x (Ajz,x)| < 6} N S™1=9.

Using Condition 1 we see that for everye R™ there exists some indéxsuch that
(A, o] = 0, then we will have:

IF@)I* = ((Ajz,z) + Bj(2))* > ()% — | Bi(x)))*.

J=1

As eachB; = L(z)+a; is a polynomial of degre€ 1, it follows that there exist constants
b1, by such that] B;(x)| < by||x|| + b2, for everyz. Then there exist§, > 0 such that:

[F()]| > dol||? (4)
for every||z|| large; this implies (a).
Proof of (b).Observe first that in the proof of (a) we use only Condition 1 and not the

others, sao is an attractor for every,.
Let D(r) be the open ball ifR™ of radiusr and centered at the origin.

Claim. There exist numbe® < r; < r, such that

R™ \ Boo(1r) € D(r2/|1) \ D(r1v/ 1]

for every|u| large.



Dynamics ofn-Dimensional Quadratic Endomorphisms 305

Proof of the ClaimTakex ¢ D(r»+/|u|), 2 to be fixed. Then using Condition 1 as in
the proof of (a) we find that for some<d i < n:

1Fu @) = ol — [ = Sollz | — | max|vs|

2 ||xH2 2
= dofjI” — max|ui| =5- > dul«|
2

for somed; > 0 and everyr large, ifr3 is taken> max|v;|/do. (We used (4), where
lz|| was required to be large; so begin taking large to assure this condition.) This
implies that|| F,(z)|| > 2||z|| if = ¢ D(r2y/|u]) and u is large. Now suppose that
x € D(r1+/|p]), r1 to be fixed. Itis clear thatf;(z)| < Ki||z||? + K, for some positive
constantd<;, K>, every 1< i < n andx € R™. Then

1Fu@)|P = (filw) — i) > (filw) — pu)?

i=1

for each 1< ¢ < n, in particular,

|1 Eu(@)]| > max|vi]|p| — Kirflul — K2 > r2\/|ul,

if 1 is small andy| large.
Then, by the the first part of the proof of the claim, it follows ta(z) € Boo (1)
and sar € B..(1). The claim is proved.

Consequently, it(u) = D(r2+/]ul) \ D(r1+/]u]), then:

R™\ Buo(p) = [ E *(C ().
k=1

As eachA; is invertible by Condition 3, there exists a constdnt- 0 such that
[|A;z|| > d|jz| for every 1< i < n andz € R™. Now fix zo ¢ Boo(1) and let’s prove
that (DF},)., expands every nonzero vectouniformly in zo. For every 1< i < n the
levels, defined bys; := f;(z0)—pv; belongsto £r2+/|ul, r2+/|12]) because the contrary
assumption implie§ F,(zo)|| > rz\/m and thenry € By (). By Condition 2 plus
continuity, it follows that there exists> O suchthaf{x : (A;z,z) =v;}forl<i<n
is ane-transverse set. Also, the intersection of these sets is compact, by Condition 1 and
the proof of (a). This gives the ingredients necessary to apply the transversality lemma,
as we did in Proposition 1. First observe that the level sets

{z @ filx)=py;+s;} for 1<i<n

form ane/2-transverse set ji is large, and

{z  filx) —pv;=s;} ={z 1 fi(x) —s;=pv;} ={z : fL(JJL—SL =

(Ajz, ) + Li(z) L= Sz) .
] | |l

L,(x) + a; — S;

\/m |/14‘ = Sgn(:u)yi}a

={z : Sgn(u)<
=V (A, ) +
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a; — S;

1
Vul |l

small inC?-topology in compact sets whén| is large (recall that—si(u) and

wheresgn(u) is the sign ofu. As the functionst —

Li(z) +

are very

si()

go

% I
to 0 asu goes to +o), and the level set§(A;x, x) = v;} are regular and-transverse,
then the family of level set§f;(x) = uv; + s;} is €/2-transverse for every large, as
was claimed.

Finally, forz ¢ B (1) and 1< ¢ < n, ||A;(x)|| > dr1y/|u|; then, as aconsequence
of thee-transversality lemmak’, is expanding outsid&.. (). This proves (b). O

It remains to prove that Conditions 1, 2 and 3 are open and dense in the topology of
the norm of the matrices (which corresponds with the weak topology). The first and third
condition come from the fact that eigenvalues and eigenvectors depend continuously on
the matrix, and for the second, take first generically a matgisuch that the level sets
corresponding tod; and A, are transverse (thus the intersection will be a manifold of
dimensionn — 2 or else the empty set). Then proceed by induction.

5. Examples

Example 1 (Delay endomorphism#n endomorphism oRR? of the form F(x,y) =

(y, f(x,v)), is called a delay endomorphism. Suppose if(at y) = az? + by?, with

a,b > 0, and letv = (0,1). The functionf is C?-convex, socc is an attractor for
everyF, = F' — u(0,1). If b >> g, it follows from [RV] that for every largg. > O,

F,, has 2 saddle type fixed points. The stable manifolds of these fixed points play an
important ble in the understanding of the dynamicggf (For arecentwork oninvariant
manifolds of endomorphisms see [S].) Moreover the complemdp,ofs the closure

of the stable manifold of these fixed points, which turns out to be homeomorphic to the
product of a Cantor set and a circle. These endomorphisms are hyperbolic, and satisfy
the conditions of Przytycki [P], so are also structurally stable. It follows that for every
strong perturbatiorz of F, the family G, has the same dynamical behavior s

This shows thag, is not dense in the strong topology. In addition, if only the second
coordinate of" is perturbed within the quadratic functions, then the same results of [RV]
can be applied, and the family perturbed is again ndt(gn In sight of theorem 1 we
conclude that both coordinates should be perturbed to obtain an endomorplgism in
Moreover, Theorem 1 gives also sufficient conditions (1 to 3) at the beginning of Sect. 4
that are easy to check in general. For exam@ig;, i) = (y + e12? + 252, ax? + by?)

belongs tag, whenevert 7 a.

€2 b
Example 2.Next we will construct an example of @*-convex endomorphism such
that the level curves have not transversality enough to obtain expansivity. Furthermore,
every(C2-strong perturbation of this transformation gives rise to a one parameter family
which is also nonexpanding for all parametgrkarge. This should be compared with
the situation in quadratic endomorphisms where the genericity holds but when other
topology is considered.

There exists &2-convex endomorphisiin R? such that for every smafl-strong
perturbationG of F, the family{G,, ; © > po} does not intersecki.

In fact, leth : R — R be anyC? function satisfying:
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1. b(0) =¥'(0) =0,
2. b'(z) > 1foreveryx € R, and
3. 1/2 < 2z — V/(x) < 3/4 for everyx > 1.
First we show some functiohsatisfying the conditions above. Taksuch that(0) =
b'(0) = 0,0"(x) = 3/2 for |z| < 1,b"(x) = 2 for |z| > 3/2 andb”(z) € (1/2,3/4) for
|| € (1,3/2).
Then N
2z —b'(z) = / 2-0b"(t)dt € (1/2,3/4)
0

for everyz > 1.

Definef,(z,y) = 2% +b(y) — pandg,(z,y) = f.(y, z). It follows that each element
of the family F,, = (f,., g,.) is aC?-convex endomorphism G#2.

The functionse — ¢, (z) = 22 + b(z) — p verify ¢,(0) = —p, #,(0) = 0 and
¢,,(0) > 3 for everyz. It follows that¢,, has a fixed point,, > 0 such thatr,, — +oo
wheny — +oo. Itis clear that the poinP, = (z,, z,) is fixed for F,.

Observe tha{V f(P,), Vg(P,)} is e-transverse if and only if

436;% —b'?(z,,)
A2 +b2(x,,)

Using the third condition of the definition 6t comes that 42 —b/%(z,,) < 4z, —1.
Thus it follows that the sefV f(P,), Vg(P,)} is not M-transversePH is a

4z2 +b'2(x )
saddle type fixed point, with one eigenvalue inxp
Now consider the>?-convex functions given by

fz,y) = f(z,y) — = and §lz,y) = g(z,y) — y.

Observe thaf ~Y(1) N §~(u) is the set of fixed points of),. In addition, if ' = (. 3),
thenDFp, = DFp, —Idhasan eigenvalue in{, 0); so it follows that the transversality
of {f 71 (w). 57 (w)} is i

| detDFpu
VAVl )

This, by Corollary 2 is preserved by small perturbations, and it follows that the family
perturbatingF,, must have a saddle type fixed poifti(.:) for everyy. This enables the
new family to belong td.

e(u) € (0,

Example 3.G, is not open inC" (R, R) with the strongC"-topology.

Let f be an even function having derivatiy&(xz) > 2 for everyz > 1, having a
unique critical point at: = 0, f(0) = 0 and negative Schwarzian derivative. Suppose
also that for the familyf,, = f — p, the following conditions hold:

(i) z, > 1is afixed point off,,
(i) f2(0) > x, andf2(0) — z,, — 0 asy — oo.

Then, ag has negative Schwarzian derivative and the critical orbitintersegts-¢o) C

B, itfollows thatf € G;. Now, if g is a small perturbation of such thatf = g outside
|x| <1, ¢ has it unique critical point at 0 ang0) = f(0) +e, thengi(O) <z, for every
p > 0 large. This implies that the whole intervatf,,, z,.] is invariant andy ¢ G,. To
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constructf, begin with f(x) = 222 in [—1, 1] and choosg’ decreasing to 2 at infinity.

It is easy to see that can be takei’> with negative Schwarziary(” < 0 forz > 0).

The items are satisfied if a careful choice of the first derivativg &f made outside
[—1,1]. Observe that iff’ were constant equal to 2 the first item does not hold, and if

. . 1
f'is constant> 2 then the second one is not true. Take for exanffilg = 2z + - for
x> p[>1
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