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Abstract: Considering a convex endomorphismF (its n coordinates are convex func-
tions) and the one parameter familyFµ = F − µν, whereν is any vector ofRn, we
find sufficient conditions in order that for large values of the parameter, the dynamical
behavior ofFµ is completely described: either the nonwandering set�(Fµ) is empty or
Fµ restricted to�(Fµ) is an expanding map. These conditions are shown to be generic
in the space of quadratic endomorphisms.

1. Introduction

Convexity seems to be a condition which when imposed on higher dimensional en-
domorphisms permits generalization of some parts of the theory of one dimensional
dynamics. This occurs for delay equations (see [RV]) and in a more general context will
be the subject of this work.

A real functionf defined onRn is C2-convexif it is C2 and there existsα > 0
such thatqx(v) = 〈Hf (x)v, v〉 ≥ α for every unit vectorv ∈ Rn, whereHf (x) denotes
the Hessian matrix off at the pointx and〈·, ·〉 denotes the usual scalar product inRn.
An endomorphism ofRn is calledC2-convex when all its coordinates areC2-convex
functions. The set ofC2-convex functions defined onRn will be denoted byCC2(Rn).

Next define the classH0 of C1 endomorphisms ofRn containing the mapsF which
satisfy the following properties:

1. ∞ is an attractor forF (i.e. there existsR > 0 such that||x|| > R implies that
F k(x) → ∞ whenk → ∞). Denote byB∞ the basin of attraction of∞.

2. The nonwandering set�(F ) is either empty or a Cantor set which coincides with the
complement of the basin of∞, andF restricted to�(F ) is an expanding map.

Endomorphisms inH0 are always Axiom A (see Mãné and Pugh [MP]); by a theorem
of Przytycki (see [P]) adapted to this case of noncompact manifolds, the structural
stability of the endomorphisms inH0 also follows.
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LetF = (f1, · · · , fn) be aC2-convex endomorphism; forν ∈ Rn fixed, consider the
one parameter familyFµ = F − µν. We will find sufficient conditions on the geometry
of intersections of the level sets of the functionsfi such that for large values ofµ, the
mapFµ belongs toH0 (see Proposition 1 in Sect. 3). We defineGν as the set ofC2

endomorphismsF of Rn for which there existsµ0 ∈ R such thatFµ belongs toH0 for
every |µ| > µ0. We will show in Sect. 3 that the intersection ofGν with the space of
C2-convex endomorphisms is open in theC2-strong topology. However, in Example 3
of the last section we will show that there existsF ∈ Gν (F is notC2-convex) which is
not an interior point ofGν in theCr-strong topology for anyr ≥ 2.

Observe that iff : R → R is aC2-convex function thenfµ belongs toH0 for every
µ large. We are trying to understand the situation in higher dimensions. Actually the
same result does not hold in dimensionn ≥ 2; in fact, we will show in Sect. 5 that there
are open sets ofC2-convex endomorphisms for which the families{Fµ : µ > 0} do
not intersectH0. (See Examples 1 and 2 of the last section). However, the situation for
quadratic maps is quite different. Any quadratic endomorphism inRn is determined by
symmetric matricesA1, · · · , An, vectors ofRn v1, · · · , vn, and real numbersa1, · · · , an,
and given by

F (x) = (〈A1x, x〉 + 〈v1, x〉 + a1, · · · , 〈Anx, x〉 + 〈vn, x〉 + an).

Obviously the endomorphismF isC2-convex if and only if each of the matricesAi

is positive. We will show that if at least one of the matricesAi is positive, then∞ is an
attractor forF . There are quadratic endomorphisms for which this does not occur, as
will soon become clear. In the space of quadratic endomorphisms it is more natural to
consider the weak (compact-open) topology since the strong topology becomes discrete
when induced in this space. Moreover, the weak topology coincides with the natural
topology given by the immersion (via coefficients) of the quadratic space in euclidean
space. With this topology, we will prove the following result:

Theorem 1. For everyν ∈ Rn \ {0}, Gν is open and dense in the space of quadratic
endomorphisms ofRn.

These kind of situations are also found in [BSV] and [RV], where delay endomor-
phisms were studied; these endomorphisms, which fail to beC2-convex because they
haven − 1 linear coordinates, “generically” display hyperbolic dynamics (including
that ofH0) when one parameter families are considered. In this sentence, “generically”
has a different meaning, because the delay is required to be maintained. This will be
explained in the first example of the last section.

2. Preliminaries

In this section we will describe some properties of a singleC2-convex functionf :
Rn → R.

For eachi, j = 1, · · · , n we denote the partial derivatives
∂f

∂xi
and

∂2f

∂xi∂xj
by ∂if

and∂ijf respectively, the gradient vector off atx by ∇f (x), and we define the sets

Ci(f ) = {x ∈ Rn : ∂jf (x) = 0 for j 6= i}, i ∈ {1, · · · , n}.
Let α > 0 be such that for everyv, x ∈ Rn:
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qx(v) = 〈Hf (x)v, v〉 ≥ α‖v‖2;

whereHf (x) is the Hessian matrix off atx.
Next we comment on the fundamental properties:

1. There existsR > 0 such thatf (x) ≥ α
3 ||x||2 if ||x|| ≥ R.

Proof: Fix x ∈ Rn with norm 1 and defineϕx(t) = f (tx) for positivet. Then

ϕ′′
x(t) = 〈Hf (tx)x, x〉 ≥ α

for everyt ≥ 0. It follows that

ϕx(t) ≥ α

2
t2 + ϕ′

x(0)t + ϕx(0).

As |ϕ′
x(0)| is bounded above independently ofx, this implies the assertion. It also

follows thatf is a proper function: preimages of bounded sets are bounded.
2. We claim thatf has a unique critical point.

Proof. The first item implies thatf has an absolute minimum in the region‖x‖ ≤ R,
that must be a critical point. Letx0 be a point wheref takes its absolute minimum,
fix x with ‖x − x0‖ = 1, and defineψx(t) = f (x0 + t(x − x0)) for t ≥ 0. Then, as
above,ψ′′

x(t) ≥ α for t > 0, which implies thatψx(t) ≥ α
2 t

2 + f (x0) for t > 0, and
the claims follows.

3. Fors ∈ R the level setsf−1(s) are always compact; furthermore, whens < minf ,
f−1(s) = ∅; whens = minf , f−1(s) is the critical point off and if s > minf ,
thenf−1(s) is a compact set that separatesRn into two components, the bounded
one being the strictly convex set{x ∈ Rn : f (x) < s}, denoted in the sequel by
i(f−1(s)). The unbounded component will be denoted bye(f−1(s)).
Another simple consequence of the convexity is that every nonempty level setf−1(s)
with s > minf , has exactly two points of tangency with hyperplanesxi = constant,
i = 1, · · · , n; these are the points of intersection off−1(s) andCi(f ).

4. The setCi(f ) is the graph of a function defined in theith axis, that is, we claim that
there exists ˜xi : R → Rn−1 such that∂jf (x1, · · · , xn) = 0 for everyj 6= i if and only
if there existst ∈ R satisfyingxi = t and (x1, · · · , xi−1, xi+1, · · · , xn) = x̃i(t).

Proof. Takei = n to simplify the notation, and consider the mapgn(x) = (∂1f (x), · · · ,
∂n−1f (x)), wherex = (x̃, xn) ∈ Rn andx̃ = (x1, · · · , xn−1). It is easy to verify that
∂x̃gn(x̃, xn) = Ĥf (x), with Ĥf (x) the matrix obtained fromHf (x) if the last row
and column are taken off. SinceHf (x) is a positive matrix,Ĥf (x) is nonsingular.
As gn(x0) = 0, wherex0 = (x0

1, · · · , x0
n) is the critical point off , then the implicit

function theorem implies that there is a neighborhoodV of x0
n and a function ˜xn

defined onV such that
gn(x̃n(xn), xn) = 0

for everyxn ∈ V . Moreover,

Ĥf (x̃n(xn), xn)x̃′
n(xn) = −∇̂∂nf (x̃n(xn), xn), (1)

where∇̂∂nf = (∂1nf, · · · , ∂(n−1)nf ).
AsCn(f ) is the set of points where the level sets off are tangent to the hyperplanes
xn = const, it follows that the domain of ˜x is all R. The setsCi(f ), i = 1, · · · , n, are
called thecritical lines off .
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Now we separate in a lemma the main result of this section; it says that ifµ is
sufficiently large, then for each 1≤ i ≤ n there is a level setSi of fµ = f − µ, tangent
to the hyperplanexi = fµ(Si).

Lemma 1. Letfµ = f−µ, wheref : Rn → R is aC2-convex function andµ ∈ R. Then
there existsµ0 such that for anyi = 1, · · · , n andµ ≥ µ0 there are defined functions
si(µ) and s̃i(µ) with the following properties:

1. f−1
µ (si(µ)) is tangent toxi = si(µ) and toxi = s̃i(µ).

2. si(µ) → +∞, s̃i(µ) → −∞, si(µ)
µ → 0 and s̃i(µ)

µ → 0 asµ → +∞.

3. f−1
µ (s) ⊂ {(x1, · · · , xn) : xi < s} if s > si(µ).f−1

µ (s)∩{(x1, · · · , xn) : xi > s} 6= ∅
if s < si(µ) andf−1

µ (s) is not empty.

Proof. We assumei = n, the proof fori < n is similar; we denote byx0 = (x0
1, · · · , x0

n)
the point wheref takes its minimuma. Fix µ large enough and defineϕµ(t) =
fµ(x̃n(t), t), where (x̃n(t), t) = (u1(t), · · · , un−1(t), t) is the parametrization ofCn(f )
given above. Observe that

ϕ′
µ(t) = ∂nf (x̃n(t), t),

because for 1≤ j < n, ∂jf = 0 at points inCn(f ). It follows that

ϕ′′
µ(t) =

n−1∑
i=1

∂infµ(x̃n(t), t)u′
i(t) + ∂nnfµ(x̃n(t), t).

Next we prove thatϕ′′
µ is bounded below from 0. Developing the determinant of

Hf (x̃n(t), t) by adjoints of the last row gives

det(Hf (x̃n(t), t)) =
n∑

i=1

(−1)n−i∂inf (x̃n(t), t)Ai(t), (2)

whereAn(t) = det(Ĥf (x̃n(t), t)) andAi(t), for i = 1, · · · , n − 1, is the determinant of
the matrix obtained fromHf (x̃n(t), t) taking off theith column andnth row. Equation
(1) says that

Ĥf (x̃n(t), t)x̃′
n(t) = −∇̂∂nf (x̃n(t), t).

Consider this a linear system with unknowns ˜x′
n(t) = (u′

1(t), · · · , u′
n(t)). By

Cramer’s rule,u′
i(t) times the determinant of̂Hf (x̃n(t), t) is equal to the determinant

of the matrix obtained substituting theith column ofĤf (x̃n(t), t) by−∇̂∂nf (x̃n(t), t) =
−(∂1nf (x̃n(t), t), · · · , ∂(n−1)nf (x̃n(t), t)).This last matrix is obtained fromHf (x̃n(t), t)
taking off the last row and theith column and interchanging the last column with theith

one. It follows that

Ai(t) = (−1)i−1u′
i(t)det(Ĥf (x̃n(t), t)).

In this way, from (2) we have

det(Hf (x̃n(t), t)) = det(Ĥf (x̃n(t), t))

(
n−1∑
i=1

∂inf (x̃n(t), t)u′
i(t) + ∂nnf (x̃n(t), t)

)
;
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thereforeϕ′′
µ(t) =

det(Hf (x̃n(t), t))

det(Ĥf (x̃n(t), t))
; it is an exercise of linear algebra to prove that then

ϕ′′
µ ≥ α.

On the other hand, it is clear thatϕ′
µ(x0

n) = 0 andϕµ(x0
n) = a − µ. From this we

conclude that for every large value ofµ there existssn(µ) > 0 ands̃n(µ) < 0 with
x0

n ∈ (s̃n(µ), sn(µ)) such thatϕµ(sn(µ)) = sn(µ), ϕµ(s̃n(µ)) = sn(µ), ϕµ(s) < s if
x0

n < s < sn(µ) andϕµ(s) > s if s > sn(µ). The lemma follows easily. �

Remark 1.– As an immediate consequence of the above lemma we have the following
fact: if Fµ : Rn → Rn is any endomorphism such that at least one of its coordinates
(suppose the last one) isfµ = f − µ, wheref : Rn → R is aC2-convex function,
then∞ is an attractor forFµ if µ is large enough. (This is also a consequence of the
first property ofC2-convex functions stated above.) Moreover, if we define

Cn(µ) = {x ∈ Rn : fµ(x) ∈ [s̃n(µ), sn(µ)]},
s̃n(µ) andsn(µ) being as in the lemma and ifB∞ is the basin of infinity, thenB∞ =
Rn \

⋂
k≥0

F−k
µ (Cn(µ)). Now suppose that each coordinatefi is C2-convex and let

s̃i(µ), si(µ) be as in the previous lemma when theith coordinate is considered.

If Ci(µ) = {x : fi(x) − µ ∈ [s̃i(µ), si(µ)]} andC(µ) =
n⋂

i=1

Ci(µ), thenB∞(µ) =

Rn \
⋂
k≥0

F−k
µ (C(µ)).

– Observe that diminishingµ we can find a value ˜µ such thatsn(µ̃) = s̃n(µ̃). If µ < µ̃,
then the basin of infinity forFµ is equal toRn. Therefore, if for the one parameter
family of C2-convex endomorphismsFµ = (f1, . . . , fn) − µν, if any of the entries
of the vectorν is negative, then for every large positiveµ, theFµ-orbit of any point
goes to∞.

3. ε-Transversality

Now we will find conditions expressed in terms of the intersections of the level curves
of f1, · · · , fn which will be sufficient to obtain thatFµ belongs toH0 for large values
of µ. The precise statement is Proposition 1.

First we introduce some notation. By [{v1, · · · , vk}] we denote the linear subspace
generated by{v1, · · · , vk} ⊂ Rn andPV (resp.P⊥

V ) denote the orthogonal projection
of Rn onto the linear subspaceV (resp. onto the orthogonal complement ofV ).

Lemma 2. If {v1, · · · , vk} is a linearly independent set of vectors inRn and V =
[{v1, · · · , vk}], then for everyε > 0 there existsδ > 0 such that ifw1, · · · , wk are
linearly independent vectors inRn,W = [{w1, · · · , wk}] and‖wi − vi‖ < δ for every
i = 1, · · · , k, then for any unit vectorv ∈ Rn it holds that

‖PV (v) − PW (v)‖ < ε.

Proof. Let{v′
1, · · · , v′

k} and{w′
1, · · · , w′

k} be orthonormal basis of the linear subspaces
V andW obtained fromv1, · · · , vn andw1, · · · , wn by the Gram Schmidt orthogonal-
ization method. So for every vectorv ∈ Rn we can write
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PV (v) =
k∑

i=1

〈v, v′
i〉v′

i and PW (v) =
k∑

i=1

〈v, w′
i〉w′

i.

By continuity of scalar product,‖w′
j −v′

j‖ is small if‖wi −vi‖ is small for everyi ≤ j;
so the lemma follows. �

Definition 1. Givenε > 0 we say that{v1, · · · , vn} ⊂ Rn \ {0} is ε-transverseif for
eachVi = [{v1, · · · , vn} \ {vi}] with i = 1, · · · , n, it holds that

‖P⊥
Vi
vi‖ ≥ ε‖vi‖.

Definition 2. For anyε > 0 we say that a set ofn smooth hypersurfacesS1, · · · , Sn in
Rn is transverseif at each point of intersectionx ∈ ⋂n

i=1Si the set ofn normal vectors
to the tangent spaces of the hypersurfaces is linearly independent.
The set{S1, · · · , Sn} is ε-transverseif at each pointx ∈ ⋂n

i=1Si, the set ofn normal
vectors atx to the respective tangent spaces isε-transverse.

The following is an immediate corollary of Lemma 2.

Corollary 1. If {v1, · · · , vn} is a set of unit vectors ofRn which is notε-transverse,
then there existsδ > 0 such that ifw1, · · · , wn are unit vectors satisfying‖wi − vi‖ < δ
for everyi = 1, · · · , n, then{w1, · · · , wn} is notε-transverse.

The following lemma is the basic tool to obtain expansivity.

Lemma 3 (ε-transversality). Givenε > 0 there existsc(ε) > 0 such that if the set of
unit vectors{v1, · · · , vn} ⊂ Rn is ε-transverse, then then × n matrixA whose rows
are the vectorsv1, · · · , vn satisfies:

‖Av‖ ≥ c(ε)‖v‖,

for everyv ∈ Rn.

Proof. Suppose by contradiction that there existsε > 0 such that for every positive inte-
gerk and alli = 1, · · · , n there exist unit vectorsvk

i andvk such that the set{vk
1 , · · · , vk

n}
is ε-transverse and ifAk is the matrix whose rows are the vectorsvk

1 , · · · , vk
n, then:

‖Akv
k‖ ≤ 1

k
. (3)

We can assume without loss of generality that the sequences{vk
i : k ≥ 1} with i =

1, · · · , n and{vk : k ≥ 1} converge to the unit vectorsv1, · · · , vn andv. From the
corollary above it follows that{v1, · · · , vn} is ε-transverse, hence linearly independent,
but, on the other hand, ifA is the matrix whose rows are the vectorsv1, · · · , vn, then
pasing to the limit in Eq. (3) we haveAv = 0. This contradiction proves the lemma.
�

Remark 2.It can be proved that the numberc(ε) in the preceding lemma can be chosen
as a constant depending only on the dimensionn times εn−1. We will not need this
stronger version.
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Proposition 1. Let Fµ = (f1 − µν1, · · · , fn − µνn) (eachνi > 0) be aC2-convex
endomorphism ofRn satisfying the following: Givenε > 0 there existsµ0 such that, if
µ > µ0 then

{f−1
i (µνi + si) : i = 1, · · · , n}

is ε-transverse wheneversi ∈ [s̃i(µνi), si(µνi)] for eachi = 1, · · · , n. ThenFµ belongs
to H0 for everyµ sufficiently large.

Proof. Suppose first thatνi = 1 for eachi = 1, · · · , n. Since each component ofFµ is a
C2-convex function, Remark 1 implies that

Rn \B∞ =
⋂
k≥0

F−k
µ (C(µ)).

Take anyx ∈ Rn\B∞. For eachi = 1, · · · , n there existsi ∈ [s̃i(µ), si(µ)] such that

x ∈
n⋂

i=1

f−1
i (si + µ). The normal vector tof−1

i (si + µ) atx is ∇fi(x), so the hypothesis

implies that the set{∇f1(x), · · · ,∇fn(x)} is ε-transverse. On the other hand, it is clear
that

‖(DFµ)x(v)‖2 = 〈∇f1(x), v〉2 + · · · + 〈∇fn(x), v〉2

≥ min
1≤i≤n

‖∇fi(x)‖2
n∑

i=1

〈 ∇fi(x)
‖∇fi(x)‖ , v〉

2.

The sum in the last member is equal to the square of the norm ofA(x)v, whereA(x) is the
matrix which rows are the vectors∇fi(x)

‖∇fi(x)‖ . These areε-transverse, so theε-transversality
lemma implies that

‖(DFµ)x(v)‖2 ≥ c(ε)2 min
1≤i≤n

‖∇fi(x)‖2‖v‖2.

Therefore, if we prove that for everyµ largec(ε) min1≤i≤n ‖∇fi(x)‖ > 1 for every
x ∈ C(µ), then the result follows.

Let x ∈ Ci(µ), thenfi(x) − µ ≥ s̃i(µ) and Lemma 1 implies that whenµ → ∞,
µ + s̃i(µ) → ∞. Then it follows that‖x‖ → ∞ and asfi is aC2-convex function,
‖∇fi(x)‖ → ∞ asµ → ∞. This proves the proposition in caseνi = 1 for each
i = 1, · · · , n. For the general case, define, instead ofC(µ) the set

Cν(µ) =
n⋂

i=1

{x : fi(x) − µνi ∈ [s̃i(µνi), si(µνi)]},

and then proceed as above. �
Remark 3.– Observe that if anyνi ≤ 0 then for everyµ large the nonwandering set of
Fµ is empty. This is a consequence of Lemma 1.

– To give a simple example in which the conditions of the above proposition hold, take
anyC2-convex endomorphismsF = (f1, f2) of R2, such that, for anyi ∈ {1, 2} and
x ∈ R2,

∂iifi(x) > ∂jjfi(x)

for everyj 6= i.
Then the level curves off1 are more vertical than horizontal, and those off2 are more
horizontal than vertical. This gives an idea why the level curves have to be transverse.
The proof is similar to the one we give in the next section.
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Now we make a digression to discuss some topologies in the space ofC2-convex
functions ofRn. TheC2-weak topology given by uniform convergence on compact
subsets seems to be not useful because anyC2-convex function has arbitrary small
perturbations which are not even convex functions. This represents a difficulty since we
are dealing with the behaviour at infinity. AC2-Whitney or strong neighborhood of a
functionf is given by continuous functionsεi(x) > 0, i = 0, 1, 2 and is defined by:

V(f ; ε0, ε1, ε2) = {g ∈ C2(Rn) : ‖Hf (x) −Hg(x)‖ ≤ ε2(x);

‖∇f (x) − ∇g(x)‖ ≤ ε1(x) and

|f (x) − g(x)| < ε0(x) for everyx}.

It is clear thatCC2(Rn) is open inC2(Rn) when the strong topology is considered.
This makes this topology more interesting inCC2(Rn). Moreover, asC2(Rn) is a Baire
space (see [H]), it follows that alsoCC2(Rn) is a Baire space. However, induced in
the set of quadratic convex functions the Whitney topology is discrete, while the weak
topology induces the natural topology of the norm which we will use in the next section.
In the space ofC2-convex endomorphisms ofRn we will use product topologies. This
means that a strong small perturbation of an endomorphismF of Rn is an endomorphism
G such that each coordinate is close to the corresponding coordinate ofF .

Remark 4.Gν is open under strong topology in the space ofC2-convex endomorphisms
of Rn.

Proof. Let F be aC2-convex endomorphism inGν . ThenFµ = F − µν belongs toH0
for every |µ| > µ0. By Remark 1, there is a continuous and increasing functionb(µ)
such thatb(µ) → +∞ asµ → +∞ and the nonwandering set ofFµ is contained in the
complementary set of the ball centered at 0 and with radiusb(µ). As H0 is open, each
Fµ has a neighborhood contained inH0. The family{Fµ : µ ≥ µ0} is not compact,
but the nonwandering set ofFµ is determined by the restriction ofF to a set of the form
{x : b(µ) ≤ ‖x‖ ≤ const.

√
µ}, and there the values of aC2-strong perturbation

G can be chosen close toF . Then the nonwandering set ofGµ must be conjugated to
that ofFµ. It is important to note that theC2-convexity is crucial, because it makes the
nonwandering set to go to∞, whenF andG are arbitrarily close. Compare this with
the situation in Example 3 of the last section, where the distance from the nonwandering
set ofFµ to 0 tends to 0 whenµ → +∞. �

In the following sections we will need to describe some perturbations ofC2-convex
endomorphisms and the effect of these perturbations on the level sets of the functions.
Recall that ifL is the level set of aC2-convex function, theni(L) denotes the convex
bounded region of the complementary set ofL. If a is any point ini(L) andSn−1 denotes
the unit sphere ofRn, then there exists a functionϕL : Sn−1 → R+ such that

{a + ϕL(θ)θ : θ ∈ Sn−1} = L.

To prove the above, observe that each ray starting ata ∈ i(L) must intersectL
becauseL is compact. This intersection must be unique becausei(L) is strictly convex.
We will call this functionϕL the parametrization ofL. In this way it is clear that for
eachg ∈ CC2(Rn), t0 > ming anda ∈ i(g−1(t0)) there exists a function

ϕg : Sn−1 × (t0,∞) → R+
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such that for eacht > t0, the functionϕg
t : Sn−1 → R+ given byϕg

t (θ) = ϕg(θ, t)
defines the parametrization ofg−1(t).

In other words,ϕg is the unique function satisfyingg(a + ϕg(θ, t)θ) = t for every
θ ∈ Sn−1 andt > t0. (Here we used polar coordinates in the domain ofg.)

Suppose thatg is as above and take a strongC2-neighborhoodV of g such that
everyh ∈ V is C2-convex and satisfiesa ∈ i(h−1(t0)). Then, for everyt > t0, we
can define the parametrizationϕh

t of h−1(t). This defines an operatorϕ from V into
C2(Sn−1 × (t0,+∞)); i.e.ϕ(h) = ϕh. Considering theC2-strong topology also in this
space of functions we have:

Lemma 4. The operatorϕ : V → C2(Sn−1 × (t0,+∞)) is continuous.

Proof. Let d be the distance froma to h−1(t0) and define

8h : Sn−1 × (d,+∞) × (t0,+∞) → R

by
8h(θ, s, t) = h(a + sθ) − t.

Observe that
∂2

∂s2
h(a + sθ) = 〈Hh(a + sθ)θ, θ〉 ≥ α,

whereHh(a + sθ) is the Hessian matrix ofh at the pointa + sθ. It follows that

∂8h

∂s
(θ, s, t) =

∂h

∂s
(a + sθ) > 0

for everys > d. (Geometrically,∂h
∂s (a + sθ) is positive because fors > d and any

θ the line a + sθ is transverse to the level sets ofh, and whens increases,a + sθ
cuts higher level sets ofh.) Thus the implicit function theorem provides aC2 function
ϕh : Sn−1 × (t0,+∞) → R+ such that

8h(θ, ϕh(θ, t), t) = 0

and the dependence ofϕh on h is continuous because8h depends continuously on
h, by the parametrized implicit function theorem. (This follows from the parametrized
version of the Inverse Mapping Theorem:LetX be a topological space,M a manifold
andψ : X × M → M such that for eachx ∈ X, ψx is Cr and the mapx → ψx is
continuous. Fixx ∈ X, p ∈ M and suppose that the differentialDpψx is invertible.
Then there is a neighborhoodN of x in X, such that for everyy ∈ N , ψy is locally
Cr-invertible and the inverses depend continuously ony.) This proves the lemma. �

The advantage in consideringϕg instead ofg is that the high level sets ofg are
images of the compact setSn−1 underϕg

t , simplifying the work with level curves.

Corollary 2. Let g1, · · · , gn beC2-convex functions such that the set{g−1
i (µ) : i =

1, · · · , n} is ε(µ)-transverse for everyµ > µ0, whereε(µ) is a continuous function of
µ with range contained in an open intervalI bounded away from 0. Then there exists
a small neighborhood of(g1, · · · , gn) in theC2-strong topology, such that for every
(h1, · · · , hn) in that neighborhood, the set{h−1

i (µ) : 1 ≤ i ≤ n} is ε′(µ)-transverse
for everyµ, whereε′(µ) belongs toI for everyµ.
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Proof. Leth = (h1, · · · , hn) be a smallC2-strong perturbation ofg = (g1, · · · , gn); each
level curveg−1

i (µ) of gi is the image underϕg
µ ofSn−1. By continuity ofϕ, the functions

hi can be chosen so thatϕhi (Sn−1×{µ}) andϕgi (Sn−1×{µ}) are located at a distance
that converges to 0 arbitrarily fast whenµ → ∞. Therefore, asε-transversality forε ∈ I
is open, the result follows. �

4. Proof of Theorem 1

ConsiderF = (f1, · · · , fn) where each component is given by

fi(x) = 〈Aix, x〉 +Li(x) + ai,

withAi a symmetric matrix,Li a linear function andai ∈ R. We are not supposing that
the matricesAi are positive, soF is not convex necessarily.

Assume first that

1. {〈Aix, x〉 = 0 : i = 1, · · · , n} ∩ Sn−1 = ∅,
2. {〈Aix, x〉 = ±νi}, i = 1, · · · , n is transverse for all possible choices of + and−,
3. Ai is invertible,i = 1, · · · , n.

Under these conditions (that will be shown to be open and dense), we will show that:

(a) ∞ is an attractor forF .

(b) Fµ = F − µν belongs toH0 for every large value of|µ|.
Proof of (a).Condition 1 and continuity imply that there existsδ > 0 such that

n⋂
i=1

{x : |〈Aix, x〉| < δ} ∩ Sn−1 = ∅.

Using Condition 1 we see that for everyx ∈ Rn there exists some indexi such that
|〈Ai

x
||x|| ,

x
||x|| 〉| ≥ δ, then we will have:

‖F (x)‖2 =
n∑

j=1

(〈Ajx, x〉 +Bj(x))2 ≥ (‖x‖2δ − |Bi(x)|)2.

As eachBi = L(x)+ai is a polynomial of degree≤ 1, it follows that there exist constants
b1, b2 such that:|Bi(x)| ≤ b1‖x‖ + b2, for everyx. Then there existsδ0 > 0 such that:

‖F (x)‖ ≥ δ0‖x‖2 (4)

for every‖x‖ large; this implies (a).

Proof of (b).Observe first that in the proof of (a) we use only Condition 1 and not the
others, so∞ is an attractor for everyFµ.

LetD(r) be the open ball inRn of radiusr and centered at the origin.

Claim. There exist numbers0< r1 < r2 such that

Rn \B∞(µ) ⊂ D(r2

√
|µ|) \D(r1

√
|µ|)

for every|µ| large.
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Proof of the Claim.Takex /∈ D(r2

√|µ|), r2 to be fixed. Then using Condition 1 as in
the proof of (a) we find that for some 1≤ i ≤ n:

‖Fµ(x)‖ ≥ δ0‖x‖2 − |µνi| ≥ δ0‖x‖2 − |µ| max|νi|

≥ δ0‖x‖2 − max|νi| ‖x‖
2

r2
2

≥ δ1‖x‖2

for someδ1 > 0 and everyx large, if r2
2 is taken≥ max|νi|/δ0. (We used (4), where

‖x‖ was required to be large; so begin taking|µ| large to assure this condition.) This
implies that‖Fµ(x)‖ ≥ 2‖x‖ if x /∈ D(r2

√|µ|) andµ is large. Now suppose that
x ∈ D(r1

√|µ|), r1 to be fixed. It is clear that|fi(x)| ≤ K1‖x‖2 +K2 for some positive
constantsK1,K2, every 1≤ i ≤ n andx ∈ Rn. Then

||Fµ(x)||2 =
n∑

i=1

(fi(x) − µνi)
2 ≥ (fi(x) − µνi)

2

for each 1≤ i ≤ n, in particular,

||Fµ(x)|| ≥ max|νi||µ| −K1r
2
1|µ| −K2 ≥ r2

√
|µ|,

if r1 is small and|µ| large.
Then, by the the first part of the proof of the claim, it follows thatFµ(x) ∈ B∞(µ)

and sox ∈ B∞(µ). The claim is proved.
Consequently, ifC(µ) = D(r2

√|µ|) \D(r1

√|µ|), then:

Rn \B∞(µ) =
∞⋂
k=1

F−k
µ (C(µ)).

As eachAi is invertible by Condition 3, there exists a constantd > 0 such that
‖Aix‖ ≥ d‖x‖ for every 1≤ i ≤ n andx ∈ Rn. Now fix x0 /∈ B∞(µ) and let’s prove
that (DFµ)x0 expands every nonzero vectorv uniformly in x0. For every 1≤ i ≤ n the
levelsi defined bysi := fi(x0)−µνi belongs to (−r2

√|µ|, r2

√|µ|) because the contrary
assumption implies‖Fµ(x0)‖ ≥ r2

√|µ| and thenx0 ∈ B∞(µ). By Condition 2 plus
continuity, it follows that there existsε > 0 such that{x : 〈Aix, x〉 = νi} for 1 ≤ i ≤ n
is anε-transverse set. Also, the intersection of these sets is compact, by Condition 1 and
the proof of (a). This gives the ingredients necessary to apply the transversality lemma,
as we did in Proposition 1. First observe that the level sets

{x : fi(x) = µνi + si} for 1 ≤ i ≤ n

form anε/2-transverse set ifµ is large, and

{x : fi(x) − µνi = si} = {x : fi(x) − si = µνi} = {x :
fi(x) − si

µ
= νi}

= {x : sgn(µ)

( 〈Aix, x〉
|µ| +

Li(x)
|µ| +

ai − si

|µ|
)

= νi}

=
√

|µ|{x : 〈Aix, x〉 +
Li(x)√|µ| +

ai − si

|µ| = sgn(µ)νi},
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wheresgn(µ) is the sign ofµ. As the functionsx → 1√|µ|Li(x) +
ai − si

|µ| are very

small inC2-topology in compact sets when|µ| is large (recall that
s̃i(µ)
µ

and
si(µ)
µ

go

to 0 asµ goes to +∞), and the level sets{〈Aix, x〉 = νi} are regular andε-transverse,
then the family of level sets{fi(x) = µνi + si} is ε/2-transverse for everyµ large, as
was claimed.

Finally, forx /∈ B∞(µ) and 1≤ i ≤ n, ||Ai(x)|| ≥ dr1

√|µ|; then, as a consequence
of theε-transversality lemma,Fµ is expanding outsideB∞(µ). This proves (b). �

It remains to prove that Conditions 1, 2 and 3 are open and dense in the topology of
the norm of the matrices (which corresponds with the weak topology). The first and third
condition come from the fact that eigenvalues and eigenvectors depend continuously on
the matrix, and for the second, take first generically a matrixA2 such that the level sets
corresponding toA1 andA2 are transverse (thus the intersection will be a manifold of
dimensionn− 2 or else the empty set). Then proceed by induction.

5. Examples

Example 1 (Delay endomorphisms).An endomorphism ofR2 of the formF (x, y) =
(y, f (x, y)), is called a delay endomorphism. Suppose thatf (x, y) = ax2 + by2, with
a, b > 0, and letν = (0, 1). The functionf is C2-convex, so∞ is an attractor for
everyFµ = F − µ(0, 1). If b >> a, it follows from [RV] that for every largeµ > 0,
Fµ has 2 saddle type fixed points. The stable manifolds of these fixed points play an
important r̂ole in the understanding of the dynamics ofFµ. (For a recent work on invariant
manifolds of endomorphisms see [S].) Moreover the complemen ofB∞ is the closure
of the stable manifold of these fixed points, which turns out to be homeomorphic to the
product of a Cantor set and a circle. These endomorphisms are hyperbolic, and satisfy
the conditions of Przytycki [P], so are also structurally stable. It follows that for every
strong perturbationG of F , the familyGµ has the same dynamical behavior asFµ.
This shows thatGν is not dense in the strong topology. In addition, if only the second
coordinate ofF is perturbed within the quadratic functions, then the same results of [RV]
can be applied, and the family perturbed is again not inH0. In sight of theorem 1 we
conclude that both coordinates should be perturbed to obtain an endomorphism inGν .
Moreover, Theorem 1 gives also sufficient conditions (1 to 3) at the beginning of Sect. 4
that are easy to check in general. For example,G(x, y) = (y + ε1x2 + ε2y2, ax2 + by2)

belongs toGν whenever
ε1
ε2

6= a

b
.

Example 2.Next we will construct an example of aC2-convex endomorphism such
that the level curves have not transversality enough to obtain expansivity. Furthermore,
everyC2-strong perturbation of this transformation gives rise to a one parameter family
which is also nonexpanding for all parametersµ large. This should be compared with
the situation in quadratic endomorphisms where the genericity holds but when other
topology is considered.

There exists aC2-convex endomorphismF in R2 such that for every smallC2-strong
perturbationG of F , the family{Gµ ; µ > µ0} does not intersectH0.

In fact, letb : R → R be anyC2 function satisfying:
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1. b(0) = b′(0) = 0,
2. b′′(x) > 1 for everyx ∈ R, and
3. 1/2< 2x− b′(x) < 3/4 for everyx ≥ 1.

First we show some functionb satisfying the conditions above. Takeb such thatb(0) =
b′(0) = 0,b′′(x) = 3/2 for |x| ≤ 1, b′′(x) = 2 for |x| ≥ 3/2 andb′′(x) ∈ (1/2, 3/4) for
|x| ∈ (1, 3/2).

Then

2x− b′(x) =
∫ x

0
2 − b′′(t)dt ∈ (1/2, 3/4)

for everyx > 1.
Definefµ(x, y) = x2 +b(y)−µ andgµ(x, y) = fµ(y, x). It follows that each element

of the familyFµ = (fµ, gµ) is aC2-convex endomorphism ofR2.
The functionsx → φµ(x) = x2 + b(x) − µ verify φµ(0) = −µ, φ′

µ(0) = 0 and
φ′′

µ(0) ≥ 3 for everyx. It follows thatφµ has a fixed pointxµ > 0 such thatxµ → +∞
whenµ → +∞. It is clear that the pointPµ = (xµ, xµ) is fixed forFµ.

Observe that{∇f (Pµ),∇g(Pµ)} is ε-transverse if and only if

ε <
4x2

µ − b′2(xµ)

4x2
µ + b′2(xµ)

.

Using the third condition of the definition ofb it comes that 4x2
µ−b′2(xµ) < 4xµ−1.

Thus it follows that the set{∇f (Pµ),∇g(Pµ)} is not 4xµ−1
4x2

µ+b′2(xµ) -transverse.Pµ is a

saddle type fixed point, with one eigenvalue in (0, 1).
Now consider theC2-convex functions given by

f̃ (x, y) = f (x, y) − x and g̃(x, y) = g(x, y) − y.

Observe that̃f−1(µ) ∩ g̃−1(µ) is the set of fixed points ofFµ. In addition, ifF̃ = (f̃ , g̃),
thenDF̃Pµ = DFPµ −Idhas an eigenvalue in (−1, 0); so it follows that the transversality
of {f̃−1(µ), g̃−1(µ)} is

ε(µ) ∈
(

0,
| detDF̃Pµ

|
‖∇f̃‖‖∇g̃‖

)
.

This, by Corollary 2 is preserved by small perturbations, and it follows that the family
perturbatingFµ must have a saddle type fixed pointP ′(µ) for everyµ. This enables the
new family to belong toH0.

Example 3.Gν is not open inCr(R,R) with the strongCr-topology.
Let f be an even function having derivativef ′(x) > 2 for everyx > 1, having a

unique critical point atx = 0, f (0) = 0 and negative Schwarzian derivative. Suppose
also that for the familyfµ = f − µ, the following conditions hold:

(i) xµ > 1 is a fixed point offµ,
(ii) f2

µ(0)> xµ andf2
µ(0) − xµ → 0 asµ → ∞.

Then, asf has negative Schwarzian derivative and the critical orbit intersects (xµ,+∞) ⊂
B∞, it follows thatf ∈ G1. Now, if g is a small perturbation off such thatf = g outside
|x| ≤ 1,g has it unique critical point at 0 andg(0) = f (0) +ε, theng2

µ(0)< xµ for every
µ > 0 large. This implies that the whole interval [−xµ, xµ] is invariant andg /∈ G1. To
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constructf , begin withf (x) = 2x2 in [−1, 1] and choosef ′ decreasing to 2 at infinity.
It is easy to see thatf can be takenC∞ with negative Schwarzian (f ′′′ ≤ 0 for x > 0).
The items are satisfied if a careful choice of the first derivative off is made outside
[−1, 1]. Observe that iff ′ were constant equal to 2 the first item does not hold, and if

f ′ is constant> 2 then the second one is not true. Take for examplef (x) = 2x +
1
x

for

x > β > 1.
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