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Resumen

Consider a map ψ0 of class Cr for large r of a manifold of dimension n greater or equal than
2 having a Feigenbaum attractor. We prove that any such ψ0 is a point of a local codimension-
one manifold of Cr transformations also exhibiting Feigenbaum attractors. In particular, the
attractor persists when perturbing one-parameter family transversal to that manifold at ψ0.
We also construct such a transversal family for any given ψ0, and apply this construction to
prove a conjecture by J. Palis stating that a map exhibiting a Feigenbaum attractor can be
perturbed to obtain homoclinic tangencies.

1 Introduction

The existence of a local codimension-one manifold of transformations exhibiting Feigenbaum at-
tractors is well known from the Feigenbaum- Coullet-Tresser theory [CT 1978, Fe 1978, Fe 1979]
(for proofs see [La 1982, Su 1991, Ly 1999]) for unimodal real analytic maps in the interval that
are in a neighborhood of the fixed map of the doubling renormalization. It is a consequence
of the hyperbolicity of this fixed point, as proved by Lanford III [La 1982]. It is also true for
n-dimensional transformations [CEK 1981].

The existence of such a local codimension-one manifold was recently proved to be valid not
only for real analytic transformations but also in the C2+ε topology, as shown in [Da 1996] for
maps in the interval (see also [Su 1991]), and in the Cr topology, for sufficiently large r, for maps
in n ≥ 2 dimensions [CE 1998].

All these results are proved to be true only in a small neighborhood of the fixed map for
n ≥ 2 (for global results in dimension 1, see [Su 1991], [Ly 1999]). As the renormalization is not
invertible neither differentiable, we cannot deduce that there is a global codimension-one manifold,
in the space of n-dimensional transformations with n ≥ 2 containing Feigenbaum attractors.

We address here the question of whether there can exist, far away from the fixed map, a
whole open set of transformations exhibiting Feigenbaum attractors, or if, on the contrary, these
attractors can always be destroyed by arbitrarily small perturbations. In dimension one this is
a difficult question whose solution requires elaborate complex analytic methods (see [Su 1991],
[Ly 1999], [Mc 1994]). But, in dimension two or greater where the problem was open so far,
we will show here, using explicit constructions, that the Feigenbaum attractor is an unstable
phenomenon in the space of Cr maps. We describe its unstability: although unstable in the
space of Cr transformations, the Feigenbaum attractor is persistent in the space of one-parameter
families of such transformations. In other words, it is a codimension-one phenomenon.
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The persistence of the Feigenbaum attractor in one-parameter families, when combined with
some previously known results, has some immediate consequences. For instance, a one parameter
family of n-dimensional transformations, near the quadratic family, will always have a Feigenbaum
attractor. These families appear when unfolding generically a homoclinic tangency [PT 1993]. As
a consequence, a theorem of Colli [Co 1996] can be applied to prove that, near such unfolding,
one can find transformations exhibiting infinitely many coexisting Feigenbaum attractors.

To describe the unstability of the Feigenbaum attractor we construct a one-parameter family
passing through the given map, showing at one side a sequence of period doubling bifurcations,
and at the other side, a sequence of homoclinic bifurcations. The construction of such a family
exploits the existence of a good spatial direction, along which the perturbation can be made. This
direction is not available when working with unimodal maps of the interval, due to the existence
of critical points. That is the reason why the arguments work only in dimension greater than or
equal to 2.

The one-parameter families constructed in this work are of the kind described in [GST 1989]
to provide examples of Feigenbaum attractors for smooth embeddings of the 2-disk. We show that
any Feigenbaum attractor is a point of such a family.

The construction of a good one-parameter family provides a proof of a conjecture of J. Palis:
the map having a Feigenbaum attractor can be perturbed to exhibit a homoclinic tangency. Thus,
this attractor is near the chaotic phenomena that appear when unfolding a homoclinic tangency
(as strange attractors for instance).

We thank Jacob Palis, Welington de Melo, Charles Tresser, Eduardo Colli, Raúl Ures and
Miguel Paternain for their suggestions. We are very thankfull to the referee for his corrections.

Statement of the main theorems and their corollaries.

To state the theorems in the Cr topology, we fix r sufficiently large. (r ≥ 8 is sufficient to
prove the theorems: we do not seek for an optimum value of r). The space of transformations
Cr(D) is the open set of the Banach space of Cr maps from a n-dimensional closed ball D of Rn to
Rn (n ≥ 2), such that the image of D is contained in the interior of D. In section 2 we define the
doubling renormalization R of certain maps in Cr(D). We then define what we call a Feigenbaum
attractor in dimension n ≥ 2. We call it so because of its geometric similarity to the Feigenbaum
attractors of unimodal maps in the interval. But it should be remarked that contributions to
the theory in dimension greater than one, and also in dimension one, is now a day far from the
origin of the name of such attractors. In dimension two or greater most known results are based
on the renormalization theory of unimodal maps of the interval. For details of one-dimensional
renormalization theory see [MS 1993].

Roughly speaking a Feigenbaum attractor is a Cantor set attractor of an infinitely doubling
renormalizable map, whose dynamics microscopically converges, in the Cr topology, to that of the
real analytic map that is a fixed point of the renormalization operator.

In section 3 we define an appropriate topology in the space F of one-parameter families of maps
in Cr(D), and we define the persistence of the Feigenbaum attractor in one-parameter families:
each X in F , near a given family, passes through a map exhibiting such an attractor.

In section 4 we prove the following

Theorem 1 If Ψ = {ψa}a∈I ∈ F is such that ψ0 has a Feigenbaum attractor K and after some
finite number N of doubling renormalizations the family Ψ̃ = {RNψa}a∈(−ε,ε), for some small
ε > 0, intersects transversally the local stable manifold of the fixed map of the renormalization,
then K is persistent in one-parameter families near Ψ and there exists a local codimension-one
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differential manifold M in the space Cr(D), transversally intersecting Ψ at ψ0, formed of maps
exhibiting Feigenbaum attractors.

One may be particularly interested in taking Ψ as a family of Cr diffeomorhisms, but the last
theorem works also for non injective n-dimensional maps.

As shown in [La 1982] the quadratic family, after being renormalized a finite number of times,
intersects transversally the stable manifold of the fixed map of the renormalization. This is true
for unimodal maps in the interval. It can be easily generalized to maps in n dimensions, where
the quadratic family acquires the form:

ψa(x1, x2, . . . , xn−1, xn) = (xn, 0, . . . , 0, 1− ax2
n)

Thus we obtain the following:

Corollary 1 The Feigenbaum attractor exhibited for a = 1.401155 . . . in the quadratic family of
dimension n ≥ 2 is persistent in one-parameter families. Moreover, there exists in the space of Cr

transformations a local codimension-one manifold M, containing ψ1.401155..., of maps exhibiting
Feigenbaum attractors, and M is transversal in Cr(D) to the quadratic family.

Some properties of the dynamics near homoclinic tangencies are deduced from the last corollary
and from the theorem of Colli [Co 1996]:

Corollary 2 (Colli) Let h0 ∈ Diff ∞(M), where M is a 2-dimensional manifold, be such that
h0 has a homoclinic tangency between the stable and unstable manifolds of a dissipative hyperbolic
saddle. Then there exists an open set V ⊂ Diff ∞(M) such that

• h0 ∈ V

• there exists a dense subset S ⊂ V such that for all h ∈ S, h exhibits infinitely many coexisting
Feigenbaum attractors.

In [YA 1983] it is proved that a one-parameter family of transformations forming a horseshoe
must pass through a sequence of period doubling bifurcations. This implies the appearance of
cascades of period doubling bifurcations when unfolding a generic homoclinic tangency. The map
where these bifurcations accumulate has a Cantor set attractor. This raises two questions:

Is this Cantor set a Feigenbaum attractor? (i.e. microscopically looks like the Cantor set attractor
of the fixed map of the renormalization).

Is the sequence of period doubling bifurcations pure, in the sense that, for all sufficiently large
N , the period 2N orbit that is born at each bifurcation does not suffer other bifurcations
before the next period doubling bifurcation appears?

As shown in [PT 1993] a family generically unfolding a quadratic homoclinic tangency can
be properly renormalized so that it is arbitrarily close to the quadratic family. Therefore, from
Corollary 1 we can deduce the following:

Corollary 3 Let the family {hµ}µ, hµ ∈ Diff ∞(M), where M is a 2-dimensional manifold,
generically unfold a quadratic homoclinic tangency for µ = 0 between the stable and unstable
manifolds of a dissipative hyperbolic saddle.

Then, for µ sufficiently close to 0, this family passes through a pure sequence of period doubling
bifurcations, and the Cantor set attractor, exhibited for the parameter value where this sequence
accumulates, is a Feigenbaum attractor.
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Theorem 1 asserts that the Feigenbaum attractor persists for families near a given family Ψ,
which verifies, after being renormalized, a certain transversality condition. For any transformation
ψ0 having a Feigenbaum attractor, it is natural to raise the general question of whether ψ0 always
belongs a local codimension-one manifold of transformations with Feigenbaum attractors. In order
to apply Theorem 1, one needs to prove the existence of a good family Ψ passing through ψ0.
However, since the renormalization is not surjective, the construction of such a family is not trivial.
This question is treated in section 5, where we prove:

Theorem 2 If ψ0 ∈ Cr(D) has a Feigenbaum attractor, then there exists a one-parameter fa-
mily Ψ ∈ F , passing through ψ0, verifying the hypothesis of Theorem 1, and there exists a local
codimension-one manifold M in the space of Cr maps, passing through ψ0, transversal to the
family Ψ, such that all χ ∈M has a Feigenbaum attractor.

As a consequence of Theorem 2 and of a theorem in [CE 1998] we obtain the following:

Corollary 4 If ψ0 ∈ Cr(D) has a Feigenbaum attractor then there exists a one-parameter family
Ψ = {ψt}t∈(−ε,ε) such that for t < 0 passes through a pure sequence of period doubling bifurcations,
accumulating at ψ0, and for a sequence of positive parameter values tm, converging to 0, ψtm
exhibits a homoclinic tangency.

This last corollary generalizes previous theorems of approximation with homoclinic tangen-
cies of cascades of period doubling bifurcations, [Ca 1996, CE 1998], and is a contribution to a
conjecture of J. Palis according to which global unstable phenomena can be perturbed to obtain
homoclinic bifurcating maps [PT 1993].

2 The Feigenbaum attractor in n dimensions

Let f0 : [−1, 1] 7→ [−1, 1] be the fixed map in the interval, i.e., the unique real analytic unimodal
map in the interval such that f0(0) = 1, f ′′0 (0) < 0 and

f0(1)−1 · f0 ◦ f0(f0(1) · x) = f0(x) ∀x ∈ [−1, 1]

The existence and unicity of f0 was the central conjecture of the Feigenbaum-Coullet-Tresser
theory [CT 1978, Fe 1978, Fe 1979] and was proved in [La 1982, Su 1991]. We denote λ to the
number −f0(1) = 0.3995 . . .. The map f0 has a single fixed point in [−1, 1], which is larger than
λ. The analytic map f0 is symmetric: f0(x) = g0(x2) where g0 is an analytic diffeomorphism from
[0, 1] to [−λ, 1]. It can be uniquely extended to an open interval.

There exists one single periodic orbit of f0 of period 2N for each natural N ≥ 0, and this
orbit is a hyperbolic repellor. The orbit of countably many points eventually fall on one of these
repellors. All the other orbits of f0 are attracted to a Cantor set K in the interval which we call
the (standard) Feigenbaum attractor in the interval.

Definition 2.1 Let the dimension n be a natural number greater or equal than 2. Let

φ0(x1, x2, . . . , xn−1, xn) = (xn, 0, . . . , 0, f0(xn)) = (xn, 0, . . . , 0, g0(x2
n))

defined in a small compact neighborhood D in Rn of [−λ, 1]× {0}n−2 × [−λ, 1] to its interior. It
will be called the fixed map in n dimensions. It inherits the Cantor set attractor of the map f0,
that we call the (standard) Feigenbaum attractor in n dimensions.
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Remark 2.2 Observe that the fixed map in n dimensions has a one dimensional character: it
is an endomorphism of D endowing it to a one-dimensional image, contained in its interior, and
following the graph of f0.

The repellors of f0 are transformed into periodic hyperbolic saddles of φ0 with infinite con-
traction along their stable manifolds. There exist such a periodic orbit with period 2N for each
natural N ≥ 0. The unstable manifolds of the saddles have dimension one and are contained
in φ0(D). The stable manifold of each saddle is the union of their preimages by φ0, formed by
horizontal (n− 1)-dimensional hyperplanes intersected with D.

All the orbits of φ0, except those in the stable manifolds of the saddles, are attracted to the
Feigenbaum attractor.

We note that the fixed point of f0 has no other preimages in the interval [−λ, 1]. As a
consequence, the stable manifold of the fixed point x0 of φ0 is φ−1

0 (x0), which does not intersect
φ0(D) except at x0.

We are interested in studying some Cantor set attractors for other n-dimensional maps, par-
ticularly for diffeomorphisms that might be far away from the fixed map. First, we generalize
the definition of a Feigenbaum attractor: roughly speaking we want to include any Cantor set
attracting all the orbits in a neighborhood except those in the stable manifolds of a countable
set of periodic hyperbolic orbits, and that, up to a bounded deformation that microscopically
approaches the identity, is the standard Feigenbaum attractor. To formalize the idea we need the
following:

Definition 2.3 A n-disk D, (or simply a disk ), is the image by a Cr diffeomorphism of the unit
closed ball of Rn. (n ≥ 2).

In particular, the domain D of φ0 can be chosen to be a n-disk.
To state our theorems we will work with fixed r that is greater or equal to a minimal specific

value needed for each theorem. We did not look for an optimum value of r, but, as will be
explained later r ≥ 8 is good enough for both Theorems 1 and 2.

Definition 2.4 Given a n-disk D, the space Cr(D) is the open set of all the maps of Cr class
from D to its interior, with the topology given by the Cr norm ‖ · ‖r.

In some parts of this paper we will need to work with the whole Banach space of Cr maps
from D to Rn although their images are not contained in the interior of D. We will still denote it
as Cr(D), if there were no risk of confusion.

Definition 2.5 A map ψ ∈ Cr(D) is doubling renormalizable if there exists a disk D1 ⊂ intD
such that:

ψ(D1) ∩ D1 = ∅

ψ2(D1) ⊂ int(D1)

If ψ is doubling renormalizable and ξ : D 7→ D1 is a Cr diffeomorphism (called change of
variables), the map Rψ defined as Rψ = ξ−1 ◦ ψ ◦ ψ ◦ ξ is a renormalized map of ψ.

Note that doubling renormalizability is an open condition in Cr(D). Also note that Rψ is not
uniquely defined: small perturbations of the change of variables ξ give other renormalized map
of ψ. When referring to the properties of Rψ we understand that there exists some renormalized
map of ψ having these properties.
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By induction is defined:

Definition 2.6 A map ψ ∈ Cr(D) is m-times (doubling) renormalizable if it is m − 1-times
(doubling) renormalizable and its m − 1-renormalized Rm−1ψ is doubling renormalizable. It is
defined a m-renormalized map of ψ as Rmψ = RRm−1ψ

Definition 2.7 A map ψ ∈ Cr(D) is infinitely (doubling) renormalizable if it is m-times (dou-
bling) renormalizable for all natural m.

Remark 2.8 The main example of infinite doubling renormalizable map is the fixed map φ0,
defined in 2.1. In fact, φ0 is fixed by the renormalization Rφ0 = Λ−1 ◦ φ0 ◦ φ0 ◦ Λ = φ0 where

Λ(x1, x2, . . . , xn) = (−λx1, λx2, . . . λxn−1, g0(λ2g−1
0 (xn)))

being λ = 0.3995 . . . To verify the identity Rφ0 = φ0 we used that −λf0(x) = f0 ◦ f0(λx), which
implies −λg0(u) = g0([g0(λ2u)]2) and so

φ0 ◦ Λ(x1, x2, . . . .xn) = (g0(λ2g−1
0 (xn)), 0, . . . , 0,−λxn)

Proposition 2.9 The change of variables Λ and φ0 ◦ Λ are contractions.

Proof: We must show that the derivatives DΛ(x) and D(φ0 ◦ Λ)(x) have norm smaller than
1 for all x ∈ D.

Looking at the expressions of Λ and φ0 ◦Λ, made explicit in the remark 2.8, and as 0 < λ < 1,
it is enough to show that ∣∣∣∣λ2g′0(λ2g−1

0 (x))
g′0(g−1

0 (x))

∣∣∣∣ < 1

for all x ∈ [−λ, 1]. The above inequality is trivial if g−1
0 (x) = 0. Now, if g−1

0 (x) = u2 6= 0, using
that 2ug′0(u2) = f ′0(u), we obtain∣∣∣∣λ2g′0(λ2g−1

0 (x))
g′0(g−1

0 (x))

∣∣∣∣ =
∣∣∣∣λf ′0(λu)
f ′0(u)

∣∣∣∣ < λ < 1

because f ′′0 < 0 and 0 < λu < u.

Observe that we have indeed proved that ‖DΛ(x)‖ = ‖D(φ0 ◦ Λ)(x)‖ = λ = 0.3995 . . . < 1.
Being φ0 fixed by the renormalization, any map χ in a neighborhood U of φ0 in Cr(D) is

doubling renormalizable.
From the Feigenbaum-Coullet-Tresser theory we have the hyperbolicity of φ0. In [CE 1998] it is

shown that the change of variables ξ(χ) can be chosen depending continuously on χ ∈ U , such that
ξ(φ0) = Λ and such that the renormalization R, now uniquely defined as Rχ = ξ(χ)−1◦χ◦χ◦ξ(χ),
has a hyperbolic behavior in U . The renormalization R is not Fréchet differentiable in Cr(D), so
we can not expect φ0 to be a hyperbolic fixed point in the differentiable sense. But we can define
the local stable set of φ0 as

W s(φ0) = {χ ∈ Cr(D) : χ is infinitely doubling renormalizable and Rmχ ∈ U for all m ≥ 0} ,

and the local unstable set of φ0 as

W u(φ0) = {χ ∈ Cr(D) : for all m ≥ 0 there exists χm ∈ U such that Rmχm = χ}

Eventually reducing the neighborhood U of φ0 in Cr(D), we have the following result:
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Theorem 2.10 Let r ≥ 6. In the functional space Cr(D) of Cr maps of the n-dimensional disk
D, let φ0 be the fixed map of the renormalization. Then W s(φ0) is a local codimension-one C1

manifold, W u(φ0) is a one-parameter differentiable family {φt}t, and both intersect transversally
at φ0. Moreover, the renormalized maps of any map in W s(φ0) converge to φ0.

Note on the proof: The last theorem is proved in [CE 1998](Theorem 3.6) for r large enough.
It can be shown that r ≥ 6 is sufficient, using some adjustments to the numerical computation of
the derivatives of the fixed map f0 in the interval: in the lemma 2.4 of [CE 1998] one can found
an inequality to fix an integer number h

λh(ahλ−2 + b) < 1

where λ = 0.3995 . . ., b = 1/λ2 and a = |f ′0(λ)|. To prove the theorem 3.6 of [CE 1998] one uses
r ≥ h+ 2.

Replacing the constant a by 1.19236, which is an upper estimation of its value, one obtains
h ≥ 4 and thus r ≥ 6.

The estimation of a was computed using the first ten coefficients of f0(x) as a series of powers
of x2. These coefficients are explicitly determined in [La 1982].

Remark 2.11 As the last theorem is local in a neighborhood of the Feigenbaum map φ0 in
n dimensions, it is true also for any other n-dimensional map φ0, conjugated to φ0 by a Cr+1

conjugation ξ between n-disks: in fact, the conjugation ξ defines a bijection of conjugated maps,
that is a diffeomorphism from a neighborhood of φ0 in Cr(D) to a neighborhood of φ0 in Cr(ξ(D)),
preserving the doubling renormalization.

To prove Theorem 2.10, ([CE 1998] Theorem 3.6) we used a fixed map ϕ0 in n dimensions
that does not coincide with the fixed map φ0 defined in this work, but both are equivalent up to
a conjugation. In fact: in [CE 1998], as in the paper of Collet, Eckmann and Koch [CEK 1981],
the unimodal symmetric map of the interval x 7→ f0(x) = g0(x2), with g0 a real analytic diffeo-
morphism, gives place to the n-dimensional map ϕ0 in a n-disk defined as

ϕ0(x1, x2, . . . , xn) = (g0(x2
1 − αxn), 0, . . . , 0)

where α 6= 0 is constant.
In this work we are associating to the map f0 in the interval, the n-dimensional map φ0 in a

disk defined as
φ0(x1, x2, . . . , xn) = (xn, 0, . . . , 0, f0(xn)).

Both transformations ϕ0 and φ0, defined in appropriate disks of Rn are equivalent up to a
smooth conjugation. In fact, it can be verified that ξ ◦ ϕ0 ◦ ξ−1 = φ0, where

ξ(x1, x2, . . . , xn−1, xn) = (x1, x2, . . . , xn−1, g0(x2
1 − αxn))

Here we have preferred the transformation φ0 instead of ϕ0 because the corollaries of the
theorems become immediate.

The following theorem allows us to define the Feigenbaum attractors for maps in Cr(D) far
away from the fixed map:
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Theorem 2.12 Let r ≥ 1. If ψ ∈ Cr(D) is infinitely doubling renormalizable and, for some
m ≥ 0, Rmψ ∈ W s(φ0), then there exist a minimal Cantor set K such that ψ(K) = K, a
neighborhood U of K and, for each sufficiently large N , a single periodic orbit of period 2N in U ,
which is hyperbolic of saddle type. Moreover, K attracts all the orbits in U except those in the
stable manifolds of these periodic orbits and there are no other periodic orbits in U . All the orbits
of K are quasi-periodic.

Proof:
φ0 is infinitely renormalizable and Rφ0 = φ0 = Λ−1 ◦φ0 ◦φ0 ◦Λ, where the change of variables

Λ is defined in the remark 2.8. By the proposition 2.9, Λ and φ0 ◦ Λ are contractions.
Any map χ in a neighborhood U of φ0 is doubling renormalizable and Rχ = ξ−1 ◦ χ ◦ χ ◦ ξ,

where ξ = ξ(χ), depending continuously on χ, is near Λ and χ ◦ ξ is near φ0 ◦ Λ. Therefore both
ξ and χ ◦ ξ are contractions with contraction rate bounded above by a constant β < 1, which is
uniform for all χ ∈ U .

If besides χ belongs to W s(φ0), then it is infinitely renormalizable in U , and its renormalized
map Rmχ is ξ−1

m ◦ χ2m ◦ ξm, where ξm = ξ(χ) ◦ ξ(Rχ) ◦ . . . ◦ ξ(Rm−1χ).
As χj ◦ ξm, for j = 0, 1, . . . 2m − 1, can be written as the composition of m maps, each being

either ξ(Riχ) or Riχ◦ξ(Riχ) for i = 0, 1, . . . ,m−1, then χj ◦ξm is a contraction with contraction
rate bounded above by βm.

Let us define
Aj,m = χj ◦ ξm(D)

for m ≥ 1 and 0 ≤ j ≤ 2m − 1. It is a compact set with diameter smaller than βmdiamD.
We assert that, for fixed m, the 2m sets Aj,m are pair wise disjoint in j, in spite of χ be not

necessarily injective. In fact A0,1 and A1,1 are disjoint because χ is doubling renormalizable. For
the same reason, but using Rχ instead of χ, the sets A0,2 and A2,2 are disjoint contained in A0,1.
On the other hand A1,2 and A3,2 are both contained in A1,1 and are transformed by χ in disjoint
sets, so are disjoint. By induction the assertion is proved.

Let
K = ∩∞m=1 ∪2m−1

j=0 Aj,m

The diameter of the disjoint compact sets Aj,m for j = 0, 1, . . ., converge to 0 as m→∞, and so
K is a Cantor set.

It is easy to show that χ(K) ⊂ K. In fact, χ(Aj,m) = Aj+1,m for 0 ≤ j ≤ 2m − 2 and
χ(A2m−1,m) ⊂ A0,m.

As the diameter of Aj,m converges to 0 with m, each point of K is quasi-periodic, but never
periodic. So K is minimal and χ(K) = K.

Now let us prove that K is an attractor for χ. To do this we will use the properties of the
fixed map φ0 remarked in 2.2: φ0 has a single fixed point x0 that is hyperbolic of saddle type. Its
stable manifold W s(x0) is the compact set φ−1

0 (x0). All the forward orbits of φ0, except those in
W s(x0), eventually enter the disk Λ(D).

As Λ−1 ◦ φ0 ◦ φ0 ◦ Λ = φ0 and φ0(D) ⊂ int (D), we can choose an open set W such that

φ2
0 ◦ Λ(D) ⊂W ⊂W ⊂ int Λ(D)

So, once a orbit enters Λ(D), its following iterates never escape the open set φ−1
0 (W ) ∪W .

Let us choose a small neighborhood H of x0, disjoint with φ−1
0 (W )∪W , such that for φ0, and

also for all maps χ near φ0 in Cr(D), a forward orbit is in the stable manifold of the fixed point
if it is totally contained in H.
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As φ−1
0 (x0) = W s(x0) we have that φ−1

0 (H) ⊃W s(x0). Let us choose a open set V such that

φ−1
0 (H) ⊃ V ⊃ V ⊃W s(x0)

As D−V is compact there exists a natural number N such that, for all y ∈ D−V , either φN0 (y) or
φN+1

0 (y) belongs to W . In fact, all the forward orbits, except those in W s(φ0), eventually remain
in W ∪ φ−1

0 (W ).
Now let us perturb φ0 taking a map χ ∈ Cr(D) sufficiently near φ0 so that:

• χ has a fixed hyperbolic saddle point x0 ∈ H.

• χj(y) ∈ H for all j ≥ 0 implies y ∈W s(x0).

• χ(V ) ⊂ H

• χ2 ◦ ξ(χ)(D) ⊂W ⊂W ⊂ ξ(χ)(D).

• If y ∈ D − V , then either χN (y) or χN+1(y) belongs to W .

We assert that all the forward orbits by χ, except those in W s(x0), eventually enter W , and so,
into the disk ξ(χ)(D). In fact, if y ∈ D − V either χN (y) or χN+1(y) belongs to W . If χj(y) ∈ V
for all j ≥ 0, then χj+1(y) ∈ H for all j ≥ 0 and so y ∈W s(x0), proving our assertion.

Now we are ready to prove the proposition: if Rmψ → φ0, the m-renormalized of ψ, for
m ≥ M , are all in U and sufficiently near φ0 to verify the conditions described above. Thus for
χ = RM (ψ) the invariant Cantor set K attracts all the orbits except those in the stable manifolds
of the hyperbolic saddles of period 2N of χ, for N ≥ 0, that is of period 2N+M of ψ.

As RM (ψ) = ξ−1
M ◦ ψ2M ◦ ξM , where ξM is a diffeomorphism between D and a sub-disk DM ,

we obtain the thesis taking U = ∪2M−1
j=0 ψ−j int(DM ).

Note: From the proof of the theorem 2.12 observe that the Cantor set attractorK has bounded
geometry in the sense that the diameter of the atoms Aj,m decrease with a rate bounded below 1.
Even more, when looking microscopically the decreasing rate tends to the number λ = 0.3995 . . .,
that is a spatial universal constant defined for the fixed map φ0. In fact, λ is the contraction rate
of the change of variables in the proof of the proposition 2.9.

In [GT 1992] an example is given of a n dimensional infinitely renormalizable map whose
renormalized maps do not converge to the fixed map φ0. In spite of that, this example has a
Cantor set attractor that verifies the thesis of the theorem 2.12. Its geometry is also bounded,
but the bounds are different from λ.

Based in the theorem 2.12, and with the aim to extend the Feigenbaum-Coullet-Tresser theory
far away from the fixed map, we define:

Definition 2.13 If the map ψ ∈ Cr(D) is infinitely doubling renormalizable and some of its
renormalized maps belongs to the local stable manifold W s(φ0) of the fixed map φ0, then its
invariant Cantor set K, described in the theorem 2.12, is called a Feigenbaum attractor.
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3 Persistence in one-parameter families

In this section we define a topology in the space of differentiable one-parameter families of maps in
Cr(D) and define persistence of the Feigenbaum attractor in one-parameter families near a given
family.

Let r ≥ 1. Let I be a closed interval such that 0 ∈ intI.

Definition 3.1 FI is the set of all one-parameter families Ψ = {ψt}t∈I such that

• for each fixed t ∈ I the map ψt belongs to the space Cr(D),

• the transformation that associates to each t ∈ I the map ψt ∈ Cr(D) is of class C1.

The derivative in Cr(D) respect to the parameter t is a vector in the Banach space of Cr maps
from D to Rn. It is denoted as ∂

∂tψt.
The topology in FI is given by the norm

‖Ψ‖1,r = maxt∈I

{
‖ψt‖r,

∥∥∥∥ ∂∂tψt
∥∥∥∥
r

}
Given ε > 0, we say that the family X ∈ FI is ε-close to Ψ, if ‖X −Ψ‖1,r < ε, and we denote

it as X ∈ Bε(Ψ).

Let us fix a family Ψ ∈ FI such that ψ0 has a Feigenbaum attractor K and ∂
∂tψt

∣∣
t=0
6= 0

We have the following classical theorem that uses the inverse function theorem in Banach
spaces [La 1972].

Theorem 3.2 (Local immersion form) If ∂
∂tψt|t=0 6= 0 there exist a real number δ > 0, a

neighborhood U of ψ0 in Cr(D), a codimension one subspace S of the Banach space of Cr maps
from D to Rn, and a C1 diffeomorphism ∧ : U 7→ Û ⊂ R× S such that ψ̂t = (t, 0) ∀t ∈ (−δ, δ).

Remark 3.3 (Notation) Let us take a closed interval J contained in (−δ, δ), with δ as in the
theorem above, and such that 0 ∈ int J . Note that if |t0| is small enough then ψ̂t+t0 = ψ̂t + ψ̂t0
for all t ∈ J .

Through this section the Banach space FJ will be denoted simply as F and the restricted
family {ψt}t∈J will be denoted as Ψ. To avoid confusion we will not use in this section the whole
given family {ψt}t∈I .

It is easy to verify that given ε > 0, there exists ρ(ε) > 0 such that, if |t0| < ρ(ε), then the
reparametrized family

(+t0)∗Ψ = {ψt+t0}t∈J

is ε- close to Ψ in F .

Definition 3.4 The Feigenbaum attractor is persistent in one-parameter families near Ψ if there
exist ε > 0 and a C1 real function a : Bε(Ψ) 7→ J , such that, if X = {χt}t∈J ∈ Bε(Ψ) ⊂ F , then
χa(X) exhibits a Feigenbaum attractor, a(Ψ) = 0 and a((+t0)∗Ψ) = −t0.

Theorem 3.5 The Feigenbaum attractor is persistent in one parameter families near Ψ if and
only if there exists in Cr(D) a C1 codimension-one local manifold M intersecting transversally
the family Ψ at the map ψ0 and such that any map χ in M has a Feigenbaum attractor.
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Proof:
It is easy to prove that the existence of M is sufficient for the persistence of the Feigenbaum

attractor. In fact, the transversal intersection of Ψ and M at ψ0 in the space Cr(D), persists for
any other family X sufficiently near Ψ in the space F .

Let us prove the converse:
Let ε be the positive real number existing by the definition 3.4 of persistence. Let 0 < ρ < ρ(ε)

as in the remark 3.3.
Let ∧ : U 7→ Û be the C1 diffeomorphism of the local immersion form in theorem 3.2. As {ψ̂t :

t ∈ J} is a compact segment in Û , there exists γ such that ‖χ0−ψ0‖r < γ implies χ̂0− ψ̂0 + ψ̂t ∈ Û
for all t ∈ J . Let us denote Bγ(ψ0) = {χ0 ∈ Cr(D) : ‖χ0 − ψ0‖r < γ}.

Given χ0 ∈ Bγ(ψ0), define the family X = {χt}t∈J ∈ F translating ψ̂t by the vector χ̂0 in Û .
Precisely, χt ∈ U is the preimage by the diffeomorphism ∧ : U 7→ Û of χ̂t defined as

χ̂t = ψ̂t + χ̂0

for all t ∈ J .
As it is a translation up to the C1 diffeomorphism ∧, the application A transforming χ0 ∈

Bγ(ψ0) ⊂ U ⊂ Cr(D) into the family X = {χt}t∈J ∈ F is of C1 class.
Besides A(ψ0) = Ψ and A(ψt0) = (+t0)∗Ψ, if |t0| < ρ(ε).
Thus, for small γ, the family X is ε-near Ψ. Using the definition 3.4 take the real function a

and construct the C1 real function b : Bγ(χ0) 7→ R defined as

b(χ0) = a(A(χ0))

By the definition 3.4 χb(χ0) has a Feigenbaum attractor. Besides b(ψ0) = a(Ψ) = 0 and

b(ψt0) = a((+t0)∗Ψ) = −t0

if t0 < ρ(ε).
Differentiating the last identity respect to t0 at t0 = 0 we obtain

Db|ψ0 ·
∂ψt
∂t

∣∣∣∣
t=0

= −1

Thus Db|ψ0 6= 0 and, for small γ, the equality

M = {χ0 ∈ Bγ(ψ0) : b(χ0) = 0}

defines a local immersed submanifold in Cr(D) passing through ψ0, and transversal to Ψ.
As b(χ0) = 0 implies χb(χ0) = χ0, and χb(χ0) has a Feigenbaum attractor, all χ0 in M have

such attractors.

The theorem 3.5 allows us to say that the existence of a Feigenbaum attractor is locally a
codimension-one phenomenon in the space of Cr maps near ψ0 when it is persistent in one-
parameter families near Ψ.

Observe that Theorem 3.5 does not assert that all the maps near ψ0 that exhibit a Feigenbaum
attractor form a codimension one local manifold. We just constructed a local manifold M whose
points are some of the maps having such attractors.
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4 Proof of Theorem 1

To prove Theorem 1 we are fixing r ≥ 8. Let F = FI be the Banach space of one-parameter
families defined in 3.1.

We need to establish some new notation and to prove a lemma:

Remark 4.1 (and Notation) Let Ψ = {ψa}a∈I be a family in F such that ψ0 is N times
renormalizable. Thus RNψ0 = ξ−1

N ◦ ψ2N
0 ◦ ξN for some Cr diffeomorphism ξN .

As the assumption of being N times renormalizable is an open condition in the space Cr(D),
there exist ε > 0 and a neighborhood V of Ψ in F , such that for all X = {χa}a∈I ∈ V, χa is N
times renormalizable if a ∈ [−ε, ε], and RNχa = ξ−1

N ◦ χ2N
a ◦ ξN with ξN fixed.

Denote
X̃ = {RNχa}−ε≤a≤ε

It is a one-parameter family of maps in Cr(D), but it is not necessarily a C1 curve of maps,
because the renormalization is not differentiable in Cr(D).

This pathology of the renormalization comes from the fact that the composition transforming
χ ∈ Cr(D) into χ ◦ χ ∈ Cr(D), is continuous but not differentiable. In fact, the linear part of the
increment (χ+ h) ◦ (χ+ h)− χ ◦ χ can be shown to be h ◦ χ+ (Dχ ◦ χ) · h, working in Cj(D) for
j ≤ r − 1. This says that the composition is differentiable from Cr(D) to Cj(D) if j ≤ r − 1, but
not in Cr(D), because the difference h ◦ (χ+ h)− h ◦ χ does not decrease in Cr(D) faster than h
does.

Besides we would like more than RN being differentiable in the space of maps. We would need
that the application from a family X in F to the renormalized family X̃ be differentiable.

To obtain these good properties of the renormalization we shall work with the Cr−2 topology
in the set of the renormalized families.

Definition 4.2 The space F̃ε is the set of one-parameter families X̃ = {χ̃a}−ε≤a≤ε such that

• for each a ∈ [−ε, ε] the map χ̃a is in Cr−2(D).

• the transformation associating to each a the map χ̃a ∈ Cr−2(D) is of class C1.

In F̃ε consider the topology given by the norm

‖X̃‖1,r−2 = max
−ε≤a≤ε

{
‖χ̃a‖r−2,

∥∥∥∥ ∂∂aχ̃a
∥∥∥∥
r−2

}
The following lemma gives the reason to work with r − 2 (instead of r) after renormalizing.

And it is why we work with r ≥ 8 instead of r ≥ 6, increasing the differentiability by two orders
from the value obtained in the theorem 2.10.

Lemma 4.3 Let Ψ,V, ε,X and X̃ as in the Remark 4.1. Let T be defined as T (X) = X̃ for
X ∈ V. Then T : V ⊂ F 7→ F̃ε is of C1 class.

Proof:
X̃ = {RNχa}−ε≤a≤ε is a one-parameter family of maps in Cr(D) ⊂ Cr−2(D) and

∂

∂a
RNχa =

∂

∂a
ξ−1
N ◦ χ

2N

a ◦ ξN = Dξ−1
N ·

∂

∂a
χ2N

a ◦ ξN =
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= Dξ−1
N ·

2N−1∑
j=0

Dχja ·
(
∂χa
∂a
◦ χ2N−j−1

a ◦ ξN
) ∈ Cr−1(D) ⊂ Cr−2(D)

In the equality above Dχ0
a and χ0

a are the identity.
Thus T (X) is a family in F̃ε.
To see that T is of C1 class let us compute the increment T (X+U)−T (X) where U = {ua}a∈I

is near 0 in F so that X + U ∈ V.

T (X + U)− T (X) = {ξ−1
N ◦ (χa + ua)

2N ◦ ξN − ξ−1
N ◦ χ

2N

a ◦ ξN}−ε≤a≤ε

For each fixed a, the map

ξ−1
N ◦ (χa + ua)

2N ◦ ξN − ξ−1
N ◦ χ

2N

a ◦ ξN

can be written as

2N−1∑
j=0

Dξ−1
N (χ2N

a ◦ ξN ) ·Dχja(χ2N−j
a ◦ ξN ) · ua(χ2N−j−1

a ◦ ξN ) + θa

where θa is the appropriate difference, between the increment and a linear part. This linear
part is the candidate to be the differential of T . It depends continuously on the given family
X ∈ F , because composition and multiplication are continuous in the space of families of finite
differentiable maps.

Observe that θa ∈ Cr−1(D) ⊂ Cr−2(D).
To prove that T is of C1 class it is enough to prove that the family Θ = {θa}−ε≤a≤ε is in F̃ε

and that
‖Θ‖1,r−2

‖U‖1,r
→ 0 when ‖U‖1,r → 0

We have that θa =
∑2N−1

j=0 (Aj − Lj), where

Aj = ξ−1
N ◦ χ

j
a ◦ (χa + ua)2N−j ◦ ξN − ξ−1

N ◦ χ
j+1
a ◦ (χa + ua)2N−j−1 ◦ ξN

Lj = Mj · ua(χ2N−j−1
a ◦ ξN )

Mj = Dξ−1
N (χ2N

a ◦ ξN ) ·Dχja(χ2N−j
a ◦ ξN )

Denoting
Fj(t) = ξ−1

N ◦ χ
j
a ◦ (χa + tua) ◦ (χa + ua)2N−j−1 ◦ ξN

for t ∈ [0, 1], we can write

Aj = Fj(1)− Fj(0) =
∫ 1

0

∂

∂t
Fj(t) dt (1)

The function inside the integral is continuous from [0, 1] to Cr−1(D). In fact, the derivative respect
to t in Cr−1(D), with fixed a, is:

∂

∂t
Fj(t) = Dξ−1

N (χja ◦ (χa + tua) ◦ (χa + ua)2N−j−1 ◦ ξN ) · vj

where
vj = Dχja((χa + tua) ◦ (χa + ua)2N−j−1 ◦ ξN ) · ua((χa + ua)2N−j−1 ◦ ξN )
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The equality (1) is also valid in Cr−2(D). Therefore

‖Aj − Lj‖r−2 ≤
∫ 1

0

∥∥∥∥ ∂∂tFj(t)− Lj
∥∥∥∥
r−2

dt

Comparing ∂
∂tFj(t) with Lj we can decompose its difference in three terms, as follows:

∂

∂t
Fj(t)− Lj =

= ∆(Dξ−1
N )vj +Dξ−1

N (χ2N
a ◦ ξN ) ·∆(Dχja) · ua((χa + ua)2N−j−1 ◦ ξN ) +Mj∆ua (2)

where

∆(Dξ−1
N ) = Dξ−1

N (χja ◦ (χa + tua) ◦ (χa + ua)2N−j−1 ◦ ξN )−Dξ−1
N (χ2N

a ◦ ξN )

∆(Dχja) = Dχja((χa + tua) ◦ (χa + ua)2N−j−1 ◦ ξN )−Dχja(χ2N−j
a ◦ ξN )

∆ua = ua((χa + ua)2N−j−1 ◦ ξN )− ua(χ2N−j−1
a ◦ ξN )

As the composition is continuous in Cr−2(D), given δ > 0 we obtain

‖∆(Dξ−1
N )‖r−2 ≤ δ

‖∆(Dχja)‖r−2 ≤ δ

if ‖ua‖r−2 is small enough.
Now, to obtain

‖∆ua‖r−2 ≤ δ‖ua‖r−2

it is sufficient that ‖ua‖r−1 be small enough, because the r− 2 first derivatives of ua are Lipschitz
with constant ‖ua‖r−1.

Therefore, given δ > 0

‖Aj − Lj‖r−2 ≤ δ‖ua‖r−2, if ‖ua‖r−1 is small enough.

and so, given δ > 0

‖θa‖r−2 ≤ δ‖ua‖r−2, if ‖ua‖r−1 is small enough. (3)

Up to the moment we have proved that the renormalization RN is differentiable from Cr−1(D)
to Cr−2(D). We could have done the same from Cr(D) to Cr−1(D). We have loosen only one
order in the differentiability of the maps. But we are going to loose another order when moving
the parameter a of the family of Cr maps, and computing how the derivative respect to a behaves
when renormalizing the family.

Let us compute the derivatives respect to a:

∂θa
∂a

=
2N−1∑
j=0

∂

∂a
(Aj − Lj)

We can decompose
∂Lj
∂a

= Bj + Cj + Ej
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where

Bj = D2ξ−1
N (χ2N

a ◦ ξN ) ·
(
Dχja(χ

2N−j
a ◦ ξN ) · ua(χ2N−j−1

a ◦ ξN ),
∂

∂a
χ2N

a ◦ ξN
)

Cj = Dξ−1
N (χ2N

a ◦ ξN ) · ∂
∂a

(
Dχja(χ

2N−j
a ◦ ξN )

)
· ua(χ2N−j−1

a ◦ ξN )

Ej = Dξ−1
N (χ2N

a ◦ ξN ) ·Dχja(χ2N−j
a ◦ ξN ) · ∂

∂a

(
ua(χ2N−j−1

a ◦ ξN )
)

Observe that the maps above belong to Cr−2(D).
Now let us compute the derivative of Aj :

∂Aj
∂a

=
∂

∂a
(ξ−1
N ◦ χ

j
a ◦ (χa + ua)2N−j ◦ ξN − ξ−1

N ◦ χ
j+1
a ◦ (χa + ua)2N−j−1 ◦ ξN )

Calling

Gj(t) = Dξ−1
N (χja ◦ (χa + tua) ◦ (χa + ua)2N−j−1 ◦ ξN ) · ∂

∂a
(χja ◦ (χa + tua) ◦ (χa + ua)2N−j−1 ◦ ξN )

we can write
∂Aj
∂a

= Gj(1)−Gj(0) =
∫ 1

0

∂Gj(t)
∂t

dt

where the integral is computed in the Banach space Cr−2(D), for each fixed a.
We can decompose ∂

∂tGj(t) in three terms to be compared with Bj , Cj and Ej . In fact, denoting

ra = (χa + ua)2N−j−1 ◦ ξN

we obtain
∂Gj(t)
∂t

= B̂j + Ĉj + Êj

where

B̂j = D2ξ−1
N (ξN ◦ Fj(t)) ·

(
Dχja((χa + tua) ◦ ra) · ua(ra),

∂

∂a
(χja ◦ (χa + tua) ◦ ra)

)
Ĉj = Dξ−1

N (ξN ◦ Fj(t)) ·
∂

∂a

(
Dχja((χa + tua) ◦ ra)

)
· ua(ra)

Êj = Dξ−1
N (ξN ◦ Fj(t)) ·Dχja((χa + tua) ◦ ra) ·

∂

∂a
(ua(ra))

To compute Ĉj and Êj we have differentiated first respect to t and then respect to a.
Joining all together we have that

∂

∂a
(Aj − Lj) =

∫ 1

0
(B̂j −Bj + Ĉj − Cj + Êj − Ej) dt

Comparing B̂j with Bj , both have ua as a factor, evaluated at different points. With the same
arguments used to analyze the equality (2), we conclude that, given δ > 0

‖B̂j −Bj‖r−2 ≤ δ‖ua‖r−2, if ‖ua‖r−1 is small enough.

Analogously
‖Ĉj − Cj‖r−2 ≤ δ‖ua‖r−2, if ‖ua‖r−1 is small enough.
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Comparing Êj with Ej , both have ∂ua
∂a as a factor, also evaluated at different points. Therefore

‖Êj − Ej‖r−2 ≤ δ max
{
‖ua‖r−2,

∥∥∥∥ ∂∂aua
∥∥∥∥
r−2

}
,

if ‖ua‖r−1 and
∥∥ ∂
∂aua

∥∥
r−1

are small enough.
We conclude that, given δ > 0∥∥∥∥∂θa∂a

∥∥∥∥
r−2

≤ δ max
{
‖ua‖r−2,

∥∥∥∥ ∂∂aua
∥∥∥∥
r−2

}
, (4)

if ‖ua‖r−1 and
∥∥ ∂
∂aua

∥∥
r−1

are small enough.
To end the proof, from the inequalities (3) and (4), we conclude that given δ > 0,

‖Θ‖1,r−2 ≤ δ‖U‖1,r−1 ≤ δ‖U‖1,r
if ‖U‖1,r−1 ≤ ‖U‖1,r are small enough, as wanted.

Proof of Theorem 1:
Let r ≥ 8. Thus r − 2 ≥ 6 and the theorem 2.10 is valid in Cr−2.
If ψ0 has a Feigenbaum attractor K, it is infinitely renormalizable and there exists a natural

N such that RNψ0 belongs to the local stable manifold W s(φ0), of the fixed point φ0.
As in the Remark 4.1, consider V and ε > 0, and denote Ψ̃ to T (Ψ) ∈ F̃ε where T is the

transformation of the Lemma 4.3. By hypothesis Ψ̃ intersects transversally W s(φ0) at RNψ0.
Therefore, by Theorem 3.5, the Feigenbaum attractor is persistent in one-parameter families of
F̃ε near Ψ̃. There exists a neighborhood Ũ of Ψ̃ in F̃ε such that any family X̃ in Ũ intersects
W s(φ0). Let b(X̃) be the parameter value in the family X̃ where this intersection occurs. The
real function b is of C1 class, defined in Ũ .

Denote U =
{
X ∈ V such that T (X) ∈ Ũ

}
. Define a : U 7→ I by a(X) = b(T (X)) for all

X ∈ U . The real function a is of C1 class, because b and T so are.
For all X = {χt}t∈I in the neighborhood U of Ψ there exists a(X) such that RNχa(X) ∈

W s(φ0). Thus χa(X) has a Feigenbaum attractor.
Therefore, by Definition 3.4, the Feigenbaum attractor K is persistent in one-parameter fa-

milies near Ψ. The Proposition 3.5 implies the existence of the C1 codimension-one manifold in
Cr(D) passing through ψ0.

5 Construction of a transversal family

We proved in Theorem 1 the existence of a local codimension one manifold of transformations
having Feigenbaum attractors. To do so we used a given one-parameter family Ψ verifying, by
hypothesis, a transversal condition after renormalized. In order to prove Theorem 2 it is enough
to construct a good family Ψ, passing through the given transformation ψ0.

As the renormalization is not surjective, the existence of Ψ is not obvious. It will be constructed
using the following
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Lemma 5.1 Let φ0 be the fixed map defined in 2.1, for n ≥ 2.
There exists a real analytic map w : D 7→ Rn such that u : D 7→ Rn, defined as u(x) =

Dφ0(x) · w(x) for all x ∈ D, is transversal to W s(φ0) in φ0.

Proof: Let f0 be the unimodal real analytic map in the interval [−1, 1], fixed by the doubling
renormalization. It is symmetric, and can be written as f0(x) = g0(x2) for g0 a real analytic
diffeomorphism from [0, 1] to [−λ, 1].

The Feigenbaum-Coullet-Tresser theory in the interval states that f0 is a hyperbolic fixed
point of the doubling renormalization, when working in the space of real analytic maps. Its local
unstable manifold is a differentiable curve {ft}t of symmetric real analytic unimodal maps of the
interval [−1, 1]:

ft(x) = gt(x2)

for {gt}t a differentiable family of real analytic diffeomorphisms from [0, 1] to its image [EW 1987].
In [CEK 1981] the Feigenbaum-Coullet-Tresser theory is extended to n dimensions in the

analytic topology. In that work, the fixed map by the doubling renormalization is

ϕ0(x1, x2, . . . , xn) = (g0(x2
1 − αxn), 0, . . . , 0)

for some fixed number α 6= 0, as observed in Remark 2.11. The local unstable manifold is formed
by the maps ϕt:

ϕt(x1, x2, . . . , xn) = (gt(x2
1 − αxn), 0, . . . , 0)

We showed in [CE 1998] (with the same conventions as in the article [CEK 1981]) that the
unstable manifold in the space of real analytic maps is still valid in the space Cr(D), for r large
enough.

Now, according to the definition 2.1, we call fixed map in n dimensions to:

φ0(x1, x2, . . . , xn) = (xn, 0, . . . , 0, g0(x2
n))

Obviously the n-dimensional disks where φ0 and ϕ0 are defined, are different, but according to
Remark 2.11, there exists a diffeomorphism ξ between them, conjugating φ0 and ϕ0. In fact
φ0 = ξ ◦ ϕ0 ◦ ξ−1 where

ξ(x1, x2, . . . , xn) = (x1, . . . , xn−1, g0(x2
1 − αxn))

So, in our context, the local unstable manifold W u(φ0) of φ0 by the doubling renormalization
R in Cr(D), is the differentiable family {φt}t where φt = ξ ◦ ϕt ◦ ξ−1.

Computing explicitly:

φt(x1, x2, . . . , xn) =
(
gt(g−1

0 (xn)), 0, . . . , 0, g0([gt(g−1
0 (xn))]2)

)
Call u = ∂φt

∂t

∣∣∣
t=0

. It is transversal to W s(φ0), because it is the tangent vector to W u(φ0) at
φ0.

Let us compute explicitly u:

u(x1, x2, . . . , xn) =
(
∂gt
∂t

∣∣∣∣
t=0

(g−1
0 (xn)), 0, . . . , 0, g′0(x2

n) · 2xn ·
∂gt
∂t

∣∣∣∣
t=0

(g−1
0 (xn))

)
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Now let us compute Dφ0:

Dφ0(x1, . . . , xn) =



0 . . . 0 1
0 . . . 0 0
. . . . . .
. . . . . .
. . . . . .
0 . . . 0 0
0 . . . 0 2xng′0(x2

n)


Taking

w(x1, . . . , xn) =
(

0, 0, . . . ,
∂gt
∂t

∣∣∣∣
t=0

(g−1
0 (xn))

)
it is obtained u = Dφ0 · w as wanted.

Remark 5.2 The proof of former lemma does not work in dimension one. In fact, observe that
the matrix Dφ0 is never null. For maps in the interval, it should be substituted by the derivative
of the fixed map 2xg′0(x2) that vanishes for x = 0. In dimension two or larger, the derivative of
the fixed map gives a spatial direction along which good perturbations can be constructed. In
dimension one this spatial direction does not exist.

Now let us show how the former lemma allows us to construct a good family Ψ of Cr maps
passing through the given map ψ0:

Lemma 5.3 If ψ0 ∈ Cr(D) has a Feigenbaum attractor, then there exists a one-parameter family
Ψ = {ψt}t∈I ∈ F such that the renormalized family Ψ̃, defined as {RNψt}−ε≤t≤ε, for some ε small
enough and some N large enough, intersects transversally W s(φ0) at RNψ0 in the space Cr−2(D).

Proof:
As ψ0 has a Feigenbaum attractor RNψ0 = ξ−1

N ◦ψ2N
0 ◦ξN is as near as wanted to φ0 in Cr(D),

for all N large enough.
Let w : D 7→ Rn of class Cr be as in the lemma 5.1. IfN is large enough, the vector u : D 7→ Rn,

defined as u(x) = D(RNψ0)(x) · w(x) is transversal to W s(φ0) in RNψ0 in the space Cr−2(D).
By the chain rule:

D(RNψ0)(x) · w(x) = Dξ−1
N (ψ2N

0 ◦ ξN (x)) ·Dψ2N−1
0 (ψ0 ◦ ξN (x)) ·Dψ0(ξN (x)) ·DξN (x) · w(x)

Using the density of Cr maps in Cr−2(D), let us choose v : D 7→ Rn of class Cr such that, in the
Cr−2 topology is sufficiently near (Dψ0 ◦ ξN ) ·DξN · w, so that

Dξ−1
N (ψ2N

0 ◦ ξN ) ·Dψ2N−1
0 (ψ0 ◦ ξN ) · v

is still a transversal vector to W s(φ0) in RNψ0 in the space Cr−2(D).
Construct a Cr map v0 from D to Rn such that:

• v0(x) = v(ξ−1
N (x)) if x ∈ ξN (D) and

• v0(x) = 0 if x belongs to some small neighborhood U of ∪2N−1
j=1 ψj0 ◦ ξN (D).
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and take ψt = ψ0 + tv0 for −ε ≤ t ≤ ε for ε > 0 small enough so ψt is N times renormalizable.
Let us differentiate RNψt = ξ−1

N ◦ ψ2N
t ◦ ξN respect to t at t = 0. Observe that, if x ∈ U then

ψt(x) = ψ0(x). So we have:

∂

∂t
RNψt

∣∣∣∣
t=0

= Dξ−1
N (ψ2N

0 ◦ ξN (x)) ·Dψ2N−1
0 (ψ0 ◦ ξN (x)) · v0(ξN (x))

Being v0(ξN (x)) = v(x) for all x ∈ D, we obtain that ∂
∂tR

Nψt
∣∣
t=0

is transversal, by construction,
to W s(φ0) at RNψ0, proving the lemma.

Proof of Theorem 2:
It is a straightforward conclusion of Lemma 5.3 and Theorem 1.
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