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† Instituto de Matemática, Universidade Federal do Rio de Janeiro, CP 68.530, CEP 21.945-970
Rio de Janeiro, RJ, Brazil
‡ IMERL-Fac de Ingenieria, Universidad de la República, CC 30, Montevideo, Uruguay

E-mail: enrique@impa.br and samba@fing.edu.uy

Received 1 February 2000
Recommended by M Viana

Abstract. We show that an assertion made in Gambaudo et al (1999 Nonlinearity 12 443) is not
correct and, as a consequence, we confirm and even generalize previous results by those authors
(Gambaudo and Rocha 1994 Nonlinearity 7 1251–9). Another main result states that variation
of the topological entropy of surface diffeomorphisms is always associated with the unfolding of
homoclinic tangencies.
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1. Introduction

In [GR1], Gambaudo and Rocha gave sufficient conditions for a diffeomorphism on the 2-
sphere to be C1 approximated by another exhibiting a homoclinic point, using a theorem of
Araújo and Mañé. The proof of this theorem was never published, and Gambaudo and Rocha
have recently published an erratum [GR2] pointing out this fact. There, they also assert that
our own results in [PS] are weaker than those claimed by Araújo and Mañé, and not sufficient
to establish the claims in [GR1].

Our first goal here is to show that the methods in [PS] do immediately yield a strong
version of the claim of Araújo and Mañé as required for [GR1]. In fact, we can prove that
the conclusions of Gambaudo and Rocha hold not only in the 2-sphere but, indeed, in any
two-dimensional smooth compact manifold (see the corollary below).

Before we state our first main theorem, let us recall that the stable and unstable sets

Ws(p, f ) = {y ∈ M : dist(f n(y), f n(p)) → 0 as n → ∞}

Wu(p, f ) = {y ∈ M : dist(f n(y), f n(p)) → 0 as n → −∞}

of a hyperbolic periodic point p of Cr diffeomorphisms f : M → M are Cr -injectively
immersed submanifolds of M . A point of intersection of these submanifolds is called a
homoclinic point. We say that a diffeomorphism exhibits a homoclinic tangency if the stable
and unstable manifolds of some hyperbolic point have some non-transverse intersection.
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Recall also that a set� is called hyperbolic for f if it is compact and f -invariant, and there
exists a decomposition T�M = Es ⊕ Eu of the tangent bundle T�M into two Df -invariant
sub-bundles Eu and Es , and there exist constants C > 0 and 0 < λ < 1 such that

‖Df n|Es(x)‖ � Cλn and ‖Df −n|Eu(x)‖ � Cλn

for all x ∈ � and for every positive integer n.

Theorem A. Let f : M → M be aC2 diffeomorphism of a compact surfaceM whose periodic
points are all hyperbolic and which is not C1 approximated by a diffeomorphism exhibiting a
homoclinic tangency.

Then, the non-wandering set �(f ) can be decomposed into two compact invariant sets,
�(f ) = �1 ∪ �2, such that �1 is hyperbolic and �2 consists of a finite union of periodic
simple closed curves C1, . . . , Cn, normally hyperbolic and such that each f mi : Ci → Ci is
conjugate to an irrational rotation (mi denotes the period of Ci).

In particular, almost every point in M (with respect to the Lebesgue measure) is in the
basin of attraction of some hyperbolic attractor or some normally attracting periodic simple
closed curve.

As an immediate consequence, we obtain the following result that generalizes [GR1].

Corollary B. Let f : M → M be a C2 diffeomorphism of a compact surface having infinitely
many periodic points, all of them hyperbolic. Then f is C1 approximated by a diffeomorphism
exhibiting a homoclinic point.

Indeed, suppose otherwise. Then, in particular, f cannot be approximated by a
diffeomorphism exhibiting a homoclinic tangency. It follows that f satisfies the hypotheses
of theorem A, and so its non-wandering set can be written as a union of hyperbolic sets and
closed curves supporting irrational rotations. Since f is assumed to have infinitely many
periodic points, there must exist some non-trivial hyperbolic set in �(f ). Thus, f itself has a
homoclinic orbit, which is a contradiction.

Next, we state another consequence of the methods we developed in [PS]: surface
diffeomorphisms such that the topological entropy is not constant in a C∞ neighbourhood
can be C1 approximated by others exhibiting homoclinic tangencies. Let us first recall the
definition of the topological entropy.

Given a metric space X and a transformation T : X → X, we say that a subset S ⊂ X is
an (n, ε)-generator if for every x ∈ X there is y ∈ S such that d(T j (x), T j (y)) � ε for all
0 � j � n. Let

r(n, ε) = min{card(S) : S is an(n, ε)-generator}.
The topological entropy htop(T ) is defined as

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log r(n, ε).

It is well known that this limit exists if T is continuous, see, e.g., [M]. We say that
f ∈ Diff∞(M) is a point of entropy variation if for any neighbourhood U ⊂ Diff∞(M2)

there is g ∈ U such that htop(f ) = htop(g).

Theorem C. Let f ∈ Diff∞(M2) be a point of entropy variation. Then, f isC1 approximated
by a diffeomorphism exhibiting a homoclinic tangency.

We first proved this theorem as a corollary of some general results describing the dynamics
of systems with a dominated splitting that we obtained in [PS2]. Then, after a lecture given
by the first author at IMPA, Moreira and Ávila observed that theorem C can also be deduced
directly from theorem A and [S], as described in the last section of this paper.
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2. Proof of theorem A

We make extensive use of results and arguments from [PS].
For f ∈ Diff1(M), denote by Perh(f ) the set of hyperbolic periodic points of saddle type

of f , by P0(f ) the set of sinks (periodic attractors), and by F0(f ) the set of sources (periodic
repellers). Let �(f ) be the non-wandering set of f , and define

�0(f ) = �(f ) − (
P0(f ) ∪ F0(f )

)
.

Clearly, �0(f ) is a compact invariant set. Let U be the set of diffeomorphisms that are not
approximated by others exhibiting a homoclinic tangency, i.e.

U = Diff1(M) − {f ∈ Diff1(M) : f exhibits a homoclinic tangency}.
An f -invariant set � is said to have a dominated splitting if it is possible to decompose

its tangent bundle into two invariant sub-bundles T�M = E ⊕ F , and there exist constants
C > 0 and 0 < λ < 1 such that

‖Df n
/E(x)‖‖Df −n|F(f n(x))‖ � Cλn for all x ∈ � n � 0. (1)

Lemma 2.1. Let f ∈ U with all its periodic points hyperbolic. Then, there exists U0(f ) such
that for any g ∈ U0(f ), the set Perh(g) has a dominated splitting. Moreover, constants C and
λ as in definition (1) may be chosen to be independent of g ∈ U0(f ).

Proof. This is a direct consequence of lemmas 2.2.2 and 2.0.1 of [PS]. Indeed, due to the
hyperbolicity of the periodic points of f and the fact that f cannot be C1 approximated by a
diffeomorphism exhibiting a homoclinic tangency, the angle between the stable and unstable
subspaces of the hyperbolic periodic points of saddle type of any diffeomorphism in a suitable
neighbourhood of f is uniformly bounded away from zero (see lemma 2.2.2 of [PS]). This
implies, as in lemma 2.0.1 of the same paper, the conclusion of our lemma. �

Corollary 2.1. Let f ∈ U with all its periodic points hyperbolic. Then�0(f ) has a dominated
splitting.

Proof. As we argue in [PS], for any x ∈ �0(f ) there exists gn ∈ U0(f ) converging to
f and pn ∈ Perh(gn) converging to x. Take a set K ⊂ �0(f ) such that any orbit in
�0(f ) has only one point in K . Now, for x ∈ K take gn ∈ U0(f ) converging to f and
pn ∈ Perh(gn) converging to x. Taking subsequences if necessary, we may suppose that the
stable (respectively, unstable) subspace Es

pn
(respectively, Eu

pn
) converges to a subspace E(x)

(respectively, F(x)) of TxM . Note that, since the angle between Es
pn

and Eu
pn

is uniformly
bounded away from zero, TxM = E(x)⊕F(x) holds. Extend this decomposition to the whole
orbit of x by iteration under Df n. It follows, by the uniformity of the constants C and λ, that
T�0(f ) = E ⊕F is a dominated splitting. Indeed, let y ∈ �0 and let x ∈ K and p be such that
f p(x) = y. Then

E(y) = Df pE(x) = lim
n→∞DgpnE

s
pn

= lim
n→∞Es

g
p
n (pn)

and

F(y) = Df pF(x) = lim
n→∞DgpnE

u
pn

= lim
n→∞Eu

g
p
n (pn)

.

Therefore, for any m � 0,

‖Dfm
/E(y)‖‖Df −m|F(f m(y))‖ = lim

n→∞ ‖Dgn
m
/Es

g
p
n (pn)

‖‖Dgn
−m
/Eu

gmn (g
p
n (pn))

‖ � Cλm
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holds. In particular, if x ∈ K is periodic, then E(x) (respectively, F(x)) must coincide with
the stable (respectively, unstable) subspace of the periodic point. Otherwise, under iteration
they would converge exponentially fast to the unstable subspace (or to the stable subspace in
the past) and this would contradict the last inequality above for sufficiently large p and m. So
the extension by iteration is indeed well defined. �

Proof of theorem A. Let f be as in the hypothesis of the theorem. Then, by the previous
corollary, �0(f ) has a dominated splitting. Applying theorem B of [PS], we conclude that
�0(f ) can be decomposed into the union of two disjoint compact invariant sets, one hyperbolic
(say�1) and the other (�2) a finite union of normally hyperbolic periodic simple closed curves
supporting irrational rotations. In particular, this implies that there are finitely many sinks and
sources: otherwise, their accumulation points would be in �0(f ), and hence in �1 (there are
no periodic points in a neighbourhood of �2). Since �1 is hyperbolic, the maximal invariant
set in an admissible neighbourhood of �1 is also hyperbolic, but it would contain infinitely
many sinks or sources, which is a contradiction.

Thus, �(f ) can be decomposed as in the conclusion of the theorem. Moreover, the
Lebesgue measure of the normally repelling simple closed curves is zero and, since f is C2,
the stable manifolds of the hyperbolic pieces of �(f ) that are not attractors are also zero [B].
This concludes the proof of theorem A. �

3. Proof of theorem C

First, we need the following.

Lemma 3.1. Let f be as in theorem A and let �(f ) = �1(f ) ∪ �2(f ) be the stated
decomposition. Assume that f is a Kupka–Smale diffeomorphism. Then, there exists a C1-
neighbourhood U(f ) such that for any g ∈ U(f ) we have that �(g) ⊆ �1(g) ∪ �2(g) where
�1(g) is hyperbolic and �2(g) is finite union of normally hyperbolic simple periodic curves.
Furthermore, f/�1(f ) and g/�1(g) are conjugate.

Proof. Let L(f ) be the limit set of f . Since L(f ) ⊂ �(f ) and �2(f ) ⊂ L(f ) we have that
L(f ) = L1(f ) ∪ �2(f ) and L1(f ) is a hyperbolic set. Hence Per(f ) = L1(f ) (see [Sh]).
Therefore, we have a spectral decomposition forL1(f ) = L1

1∪. . .∪Lr
1 whereLj

1, j = 1, . . . , r
are locally maximal invariant transitive (and hyperbolic) sets. On the other hand, �2(f ) is a
finite union of normally hyperbolic simple closed curves C1 ∪ . . . ∪ Cp supporting irrational
rotations. Thus L(f ) = L1

1 ∪ . . .∪Lr
1 ∪ C1 ∪ . . .∪ Cp. Since f is Kupka–Smale, the no-cycle

condition holds (since in dimension two, cycles can occur only among pieces of saddle type).
This yields a filtration on M adapted to f (see [Sh]). Therefore, �(f ) = L(f ). Moreover, by
the local stability of the locally maximal transitive hyperbolic sets and the persistence of the
normally hyperbolic periodic simple closed curves, we conclude the proof of the lemma. �

Recall that, by the variational principle (see [M]), htop(f ) = htop(f/�(f )) holds for any
diffeomorphism f . Moreover, if �(f ) ⊆ �1 ∪�2 where �1 and �2 are two compact disjoint
invariant sets, then

htop(f/�(f )) = max{htop(f/�1), htop(f/�2)}.
Thus, we obtain the the following.
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Corollary 3.1. Let f be a C2 Kupka–Smale diffeomorphism of a compact surface which
is not C1 approximated by one exhibiting a homoclinic tangency. Then, there exists a C1

neighbourhood U(f ) such that for any g ∈ U(f ), htop(g) = htop(f ) holds.

Proof. Take U(f ) from the previous lemma. Since the entropy on an invariant closed curve is
always zero, we obtain

htop(g) = htop(g/�(g)) = max{htop(g/�1(g)), htop(g/�2(g))}
= htop(g/�1(g)) = htop(f/�1(f ))

= max{htop(f/�1(f )), htop(f/�2(f ))} = htop(f/�(f ))

= htop(f ). �

Proof of theorem C. Arguing by contradiction, assume that f cannot be C1 approximated by
a diffeomorphism exhibiting a homoclinic tangency. Take a small neighbourhood in the C∞

topology U(f ) such that no diffeomorphism in this neighbourhood is C1 approximated by a
diffeomorphism exhibiting a homoclinic tangency. Since f is a point of entropy variation,
and the entropy function on compact surfaces is continuous in the C∞ topology, by results of
Newhouse [Ne], Yomdin [Y] and Katok [K], there exist two diffeomorphisms g1, g2 ∈ U(f )
such that htop(g1) < htop(g2). We may assume, again by the continuity of the entropy function,
that g1 and g2 are Kupka–Smale diffeomorphisms. Note that, by the corollary above, the
entropy is constant in a neighbourhood U1 (respectively, U2) of g1 (respectively, g2.) By
a result of Sotomayor [S], we can take a continuous path G : [1, 2] → Diff∞(M) such
that:

• G(1) ∈ U1,
• G(2) ∈ U2,
• G(t) ∈ U(f ) for any t ∈ [1, 2],
• {t ∈ [1, 2] : G(t) is not Kupka–Smale} is at most countable.

From the previous corollary and the fact that the set of values of t such that G(t) is not Kupka–
Smale is at most countable, we conclude that there exists an open subset U ∈ [1, 2] such
that

• htop(G(t)) is constant in each connected component of U
• the complement of U is at most enumerable.

Since the function htop(G(t)) is continuous, we conclude that it must be constant on the whole
of [1, 2], which contradicts the assumption that htop(g1) = htop(g2). �
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