16 ROMERO, N., ROVELLA, A., AND VILAMAJO, F.

UNIVERSIDAD CENTRO OCCIDENTAL LISANDRO ALVARADO. DEPARTAMENTO DE MATEMTICA.
DECANATO DE CIENCIAS. APARTADO POSTAL 400. BARQUISIMETO, VENEZUELA.
E-mail address: nromero@delfos.ucla.edu.ve

UNIVERSIDAD DE LA REPUBLICA. FACULTAD DE CIENCIAS. CENTRO DE MATEMTICA. MONTE-
VIDEO, URUGUAY.
E-mail address: 1leva@cmat . edu.uy

UNIVERSIDAD POLITECNICA DE CATALUNA. DEPARTAMENT DE MATEMATICA APLICADA 2. Es-
cora TECNICA SUPERIOR D’ENGINYERS INDUsTRIALS. Corom 11, 08222. TERRASA, BARCELONA,
ESPANA.

E-mail address: vilamajor@ma2.upc.es



INVARIANT MANIFOLDS FOR DELAY ENDOMORPHISMS 15

union of the J;_1(a’) for @’ € da. This shows how to prove the induction. Finally,
once Ji_1(a) was constructed for every a € Ap_1, one defines J = Jg equal to the
union of the j-skeletons of G for 1 < j < k — 1. This is homeomorphic to S¥*~! and
constitutes the boundary of the immediate basin of co.

Given a neighborhood N of the origin, it holds that the superorbit of any point
in J intersects N, and as in the proof of the two dimensional case, it follows now
that J is the boundary of the immediate basin of co.

It remains to prove the last assertion in part c¢) of theorem A. If A > |Aq| for
every other eigenvalue Ay of DG, then there exists a strong unstable manifold
WH4 () associated to A; each one of the separatrices of W** is invariant under G,
but the above construction shows that there are not G-invariant curves in J. This
implies that J is tangent at O to the codimension one submanifold W = 0 and it
follows that it is of class C'!.

The first corollary follows immediately from the proof of the teorem. To prove
the second, let po, be the Feigenbaum parameter for the family 71'511). If p < poo,
then there exists an attracting periodic orbit A, which attracts all but a finite set
of [0,p]. Then A= = A, x --- x A, is an invariant set for W&k_l), and its orbits
are periodic of the same period of A,, and attracting. Moreover all but a finite

set of points of Qﬁ_l is attracted to Aﬁ_l. This implies that ﬂ'&k_l) is structurally
stable. It follows that G* restricted to J’ is conjugated to wftk_l).

If 4 > poo, there exists a neighborhood N of the critical point of 7T£¢1), such that
the following holds: The set of points of [0, 4] which positive orbit does not intersect
N, is a Cantor expanding set, denoted A,. Then Aﬁ_l is a Cantor expanding set

(

uk_l). Such an invariant set is persistent for small C! perturbations, and this
implies the result. a

for
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2. ||DTg(v1, v2)|] < 6 at every point (z1, #2) at a distance greater than p from the
bondary of Q2(x*, *,0). The number p was chosen so that the closed p-neighborhod
of the boundary of Q2(*,*,0) is containd in an open set V; any point in V either
has no preimage or its succesive G preimages converge to A.

If U is a neighborhood of @Q2(*,%,0) and 71 = G~3(y9) N U, then 7 is con-

nected because the intersection of the boundary of of the image of G3 with U
is a two dimensional submanifold close to the corresponding set for F),, namely:
{(z1, 2, z3) : max{zy, z2} = p?/4}. It follows analogously that v is the graph of a
function satisfying 1. and 2. Then we can proceed as before to obtain (as the limit
of graphs) a two dimensional manifold y, which is close to the piece of Q2(x, *,0)
that is p-bounded away from its boundaries. Now denote by Ja(*,*,0) the union
of those components of the succesive G3 preimages of v that are contained in U.
Claim: The boundary of Ja(*,*,0) is A.
Indeed, as v is G3-forward invariant, then each G3-preimage of it is also a two di-
mensional manifold that contains v. Moreover, the points of v which preimage does
not belong to ¥ are contained in the neighborhood V' of the boundary of Q2(x, *, 0),
and thus its succesive G3 preimages converge to A. As A is normally expanding
(outside the p-neighborhood V of O and its preimages), it follows that Ja(*, *,0) is
a two dimensional manifold outside this p-neighborhood. As A is forward invariant,
the claim is proved.

It follows that

J=Jg= (O G—iJZ(*,*,O)) U (O G—i(Jl(*,o,O))) uG3(0),

i=1 i=1

is a two dimensional manifold homeomorphic to S2, because each J» is homeo-
morphic to an open piece of plane with boundary formed up by preimages of the
J1(*,0,0). Tt is also clear that G(J) C J. This proves the theorem in the case
k=3

It remains to treat the general case of dimension £ > 3. It will be done by
induction. The first step consists in the construction of so called 0 faces of G.
These are precisely the preimages of O, assumed as always to be the fixed point in
the boundary of the immediate basin of co. These 0-faces are denoted by Jo(a) for
a & Ao.

The induction hypothesis is:

For every 1 < j < i and a € Aj, there exists a j-dimensional manifold J;(a),
forward invariant under G*, and which boundary is formed up by the union of the
Ji—1(a') for a’ € Oa. The union of the J;(a) for a € A; is called the j-skeleton of
G.

The induction is completed fixing first some a € A; for which the last component
of a is the symbol 0 and the others are O or *. Then, as in the previous dicussion,
neighborhoods U of ();(a) and V of the boundary of @Q;(a), and a number p > 0
are fixed, so that:

1. For a point X in V, either X has no G* preimage or its succesive preimages
converge to the union of J;_1(a’) for ¢’ € da.

2. At every point in U at a distance greater than p from the boundary of Q;(a) the
differential of G expands those directions associated with the axis for which a; = *.

Using this, the method developed above for the construction of a G* invariant
manifold of dimension ¢ close to the piece of @;(a) at a distance p from its boundary
also works. Then the union of the G* preimages of this manifold, denoted J;(a) is
shown to be homeomorphic to an open set in R¢ and having boundary equal to the
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Ja. Tt follows that the boundary of Q;(a) is [J{Q;-1(a’) : @’ € Ja}. The set of
J-dimensional faces of the cube is called the j-skeleton of Q.

The submanifold J will be constructed by induction in % steps; in each one
of these steps a set of j-dimensional manifolds is created. These are denoted by
T';(ai,---,ag), for some sequence (ai,---,ar) and a; € {0, p,*}. The manifold
T';(ai,---,ag) is called a j-dimensional face of GG and is close the corresponding
face of the cube Q.

To clarify the proof of this part of the theorem, we will first give the complete
construction for k£ = 3, and then explain why the arguments work in the general
case.

The 0-dimensional faces of (G are simply the preimages G=3((0). For the con-
struction of the 1-dimensional faces, begin taking the sequence a = (x,0,---,0).
Observe that Q1(a) is Fs’—invariant. As shown in proposition 2, there exist neigh-
borhoods U of Q1(a), V of O and Uy of F, such that for every G € U, a), b),
¢) and d) in the proof of proposition 2 hold and also €) if the number p is taken
sufficiently small. Finally, condition f) can be substituted by:

f’) For every (z1,za,23) € U\ G=1(D(0; p)):

10191
|92.92]

10191
|0393]

<7<1 and <7<,
where G3 = (g1, g2, g3). Then, always as in the referred proposition, take a function
Lo : [p,u— p] — R% Tg = (I, T3) satisfying |(T'4)"(t)| < 6 for i = 2, 3.

Define as before 7 as the preimage of the graph of I'g under 3 that is contained
in U. The proofs of the claims suffer small modifications: In claim 2 one has now
to estimate the quotients |v/u| and |w/u| where

(U, v, w) = (DG(xl,xg,xa))_B(L (Fg)/(t)) (Fg)/(t))) and
G3($1) L2, 1‘3) = (tv Fg(t)v Fg(t))

It is easy to see that these quotients can be obtained smaller than é if the per-
turbation is small. Similar corrections can be done in the proof of claim 3. Thus
we have proved that there exists a curve v, GG3-forward invariant and close to the
piece of 1(a) contained in p < < p — p. Now consider the curve J;(*,0,0) =
UN(U,soG=2(7)). This curve is G3-forward invariant and is the component of
its G3—pr?eimage contained in U. Consider the components of the G and G? preim-
ages of Ji(%,0,0) that are close to Q2(*,*,0). The union of these curves with the
preimages of O, give a closed GG3-forward invariant curve, denoted by A. It depends
on the eigenvalues at O if the curves collapse smoothly or not. It is also possible for
J1(*,0,0) to be a spiral around @. By the moment we are only interested on the
fact that A is homeomorphic to the circle; this closed curve will be the boundary
of a two dimensional G forward invariant manifold close to Q2 (*, x,0).

Now we will show how to construct the 2-dimensional faces of (G. Begin with
that associated to Qa(*,*,0). At the points (1, x2,0) the differential of G3 is close
to the matrix:

—2x1+p 0 0
0 —2z94+p 0
0 0 7

Again the same reasoning of proposition 2 can be applied. Begin taking a func-
tion T'y defined in the set of X € (QQ2(*,#,0) at a distance > p from the boundary
of Qa(*,#,0), and values in R satisfying:

1. g, the graph of T, is contained in a neighborhood of Q4 (*, *, 0).
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Thus both curves have to be tangent to the less expanding vector (1, A7). It follows
that this union is of class C''. Then the curves ¥ collapse smoothly at the points
of intersection, and it results that J is of class C.

We will leave without proof the case where At < A~. In this case, the fact that
the positive eigenvalue is the smaller one implies that J has a cusp at O and this
cusp is repeated at the preimages of O. g

6. PRoOOF oF THEOREM A

Proof. Part (a) follows from proposition 1. The fact that there is some eigenvalue
A > 11is a consequence of its proof. As G is close to F,, the characteristic polynomial
of G at O is close to (—1)¥(2* — p); if the perturbation is small, then the other
roots are close to the other k*® roots of u, and cannot be positive.

The proof of part (b) is similar to the proof for rational mappings in the Riemann
sphere. The following lemma is part (b).

Lemma 2. Let G € U be a delay endomorphism such that the set of critical points
£y of G is contained in By,. Then Boo ts connected and its complementary set A
has uncountably many components.

Proof. As B, contains the curve ¢; of critical points and By, is invariant, then it
also contains the image P of ¢;, which is the boundary of the image of G.

Define Ag = G(A). Ag is contained in the interior of P (the image of ) and is not
connected because the fixed points of G belong to Ap and are contained in different
components of p\ﬁl. It follows that we can choose a compact connected set K such
that Ag C K, K is contained in the interior of P and G~Y(K)N Ay C K. Observe
that the preimage of K has two connected components K; and K3, one located
at each side of £;. It is also clear that G restricted to any K; is a diffeomorphism
onto K. Then the preimage of K; has also two connected components, K11 C K3
and K97 C K5. The same holds for K5 giving preimages K15 C K1 and Kys C K.
These preimages are also compact. Taking succesive preimages and labeling as
above, one has, for any finite sequence ag, ay, - - - , @, of numbers 1 and 2, a compact
connected set K, ... o, satisfying, for every 0 < j < n:

G (Kag, - a,) C Kaj .

n

7a7L

and Kq, ... a, C Kag,. a,_,. Furthermore, for any infinite sequence {ag, a1, ---} of
numbers 1 and 2, the nested sequence of compacts sets associated have a nonempty
intersection which is also compact and connected. It is clear that Ag =),,»o G~ (X).
This implies the lemma. B a

Beginning with the proof of part (c¢) of theorem A, we introduce some more
notation. Label the j-dimensional faces of the k-dimensional cube @, = [0, u]*
with a sequence (a1, - ,ar). Each a; is one of the three symbols 0, 4 and x. When
a; = * this means that the ¢ — th coordinate varies between 0 and y; when a; = 0
(resp. p) this means that the ¢ — th variable is constant equal to 0 (resp. p). If the
face is j- dimensional, then the number of ¢ such that a; = * is equal to j. Any
Jj-dimensional face is denoted by Q;(a1, -, ax).

Denote by A; the set of sequences a such that exactly j of the entries of a is
a *. The boundary of the j-dimensional face ();(a) given by the sequence a =
(a1, -+, ax) is the union of 2j faces of dimension j — 1. Fach one of these faces is
given by the sequence obtained substituting one of the symbols * in (ay, -, ag)
by a 0 or a pu. The set of sequences obtained from a in this manner is denoted by
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unit circle because each of the curves ¥; i1s homeomorphic to an interval and do not

intersect the others, excepting at their extreme points. See figure 2.
i C
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Figure 2

It remains to prove that J is equal to the boundary of the immediate basin of oo,
BY,. Take a small neighborhood N of the origin such that J separates N into two
components, one of which is contained in Be, (this is a consequence of proposition
2). As J is forward invariant, it follows that it does not intersect B, and then
J N N is contained in the boundary of BY . Moreover, the superorbit of any X in
J (that is, the set of points ¥ such that for some positive n and m it holds that
G™"(Y) = G™(X)) intersects N. This clearly implies that the whole J is a subset
of BY,. The other inclusion is obvious since J separates the plane. a

For k = 2, the restrictions of G and (#1 to the curve J are shown in figure 3./
e
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Figure 3

Corollary 4. Let G be as the above proposition, and let AT A~ be the cigenvalues
at the fized point O.
1. If =X~ < Xt then the curve J is of class C?.
2. If =X= > At then the curve J is C? except at O and its preimages, where it
has cusps.

Proof. Suppose first that AT > A~. Then the strong unstable manifold W** of @ is
tangent to the eigenvector (1, A1) associated to AT > 0. It follows that each of the
strong unstable separatrices is forward invariant. Therefore it is not possible that
%o be coincident with a separatrix of W4%. Recall that the union of 95 and 2 is a
curve forward invariant under GG, but the image of one is the other and viceversa.
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By claim 1 and properties (d) and (e), it follows that if v is the graph of a function,
then the domain of this function must contain [p, u — p].

Beginning with the proof of (2), take any ¢ such that G%(z,y) = (¢, To(t)),
(z,y) € U and = € [p, p — p]. Denote the tangent vector to 1 at (z,y) by (u,v). It
follows from equation (11) that

v —01h + 019.T €+ 1019.T|
u 82h—82g.F6 - |82h|—€|F6|
|81g| ' €
< ol 6
S | A L Ry et vy
(12) < Th+e<,

if € 1s small, that is, if the perturbation is chosen small with respect to 7, and hence
to p. This implies (2) and also (1), and proves the claim.

It will be clarifying to see what happens when the point (z, y) does not belongs
tox € [p,pu—p]. If x > p — p, then the G? preimage of (z,y) does not exist in U
(by (d) and (e)). If z < p, then either G=2*(z,y) € V for every n > 0 and then
(c) implies that the sequence converges to O, or there exists a first ng such that
G~270(z,y) belongs to Vy and again has no preimage.

Consider now the space C of curves defined in [p, p — p] satisfying (i) and (ii),
endowed with the C'! topology in [p, u — p]. Define the operator ® carrying I’y to
I'; as above.

Claim 3: ® is a contraction of C.

Note first that the above claims imply that ® is well defined and carries C into C.
Take curves I'g and o in C and apply G~2. Denote the curves obtained by I'; and
1. Observe that

G*(t,2) = G*(t,y)| = |(g(t, ) — g(t,y), h(t, x) = h(t,y))]
|(929(8)-(2 — y), Gahe(n) (& — y))
Ooh. o — y| = p.le — y|.

X

This implies that |(¢,T'1(2)) — (¢, @1(2))]| < i||F0 — «g||. Moreover,

—01ho + 0190y —01h + O1gag

o 82]10 — 32g0F6 82]7, — anOz6 ’

where the subindices 0 indicate that the derivatives of the first member are evalu-
ated at (¢,T'1(¢)) and those of the second at (¢, 1(?)). As was shown above these
points are at a distance less than ||Tg — ag||/p. One has to prove that the deriva-
tives of the curves I'y and «; are close; a simple calculation similar to that done
in equation (12) gives that the norm of T'y — «; is less than a constant < 1 times
[ITo — eol|- This finishes the proof of the claim.

Thus & has a unique fixed point in C; this is a function T' : [p,u — p] — R,
satisfying |I'(¢)| < 6. Denote by v its graph. It is clear that G(y) C 5 and
G=2(y)NU D 5. Define ¥ = |J,,50 G~ (y) NU.

As v intersects V, then o is a curve joining O to S, is C° close to the segment
joining O to (p, 0), and is homeomorphic to an open interval. Observe that G~=1(%g)
has two connected components, one of them, 75, is a curve joining O to S; and
the other one, 91, is a curve joining S with S;. Note also that G=1(92) = ¥ and
that G=1(%1) is a curve 43 joining Sy with S;. Thus the curve J = Jg = Uzzg’ i
is a closed curve satisfying G(J) C J and G=1(J) D J. J is homeomorphic to the

(13) T} — ai
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(a) The closure of the connected component of G=2(U) containing @ is contained
in U.
(b) The closure of the connected component of G=2(V) containing @ is contained
in V.
(c) G=(X)NV — O for every X € V, when n — +o0.
(d) Note that G=2(V') has connected components V; and V5 containing S; and S»
respectively. Take V small such that V; N Pg = 0 for i = 1,2 (this is possible
because u < 4 and if ¢; is small enough). Remember that Pg is the set of points
having exactly two preimages under . It follows that the component Vj of G=1(V)
containing S, has no preimage under G2.

Take also p > 0 such that:
(e) The disc D(0; p) centered at O and radius p, is contained in V.
(f) There exists 7 such that for every (z,y) € U\ G=1(D(0;p)) it holds that:

|319|
|02h]

<r<l,

Figure 1

Suppose that Ty : [p, u — p] — R is a function satisfying, for some é > 0:

(i) 7o, the graph of T'g, is contained in U.

(i) |TH(t)| < é for every t € [p, p — p].
Define v1 = G=2(y) N U.
Claim 1: v; s connected.
Observe that S does not belong to G?(IR2), see item (d) of the properties of V. Now
Yo is almost horizontal and G2({;) is the boundary of G%(R?) and its intersection
with U is almost vertical . Then these two curves have a unique point of transverse
intersection; clearly this point has first coordinate in [p, u — p], so it can be denoted
by (to, To(to)). Observe that for ¢ > ¢y the point (¢, To(¢)) has no G2-preimage in
U, and for ¢ < to the point (¢,To(¢)) has two G2-preimages in U, one located at
each side of ¢;. This implies that the preimage of vy contains a pair of curves; as
these curves collapse at the unique point preimage of (o, T'o(%0)), we conclude that
71 1s a continuous curve. This proves the claim.
Claim 2: v, contains the graph of a function T'y defined in [p, u— p], and satisfying
the properties (i) and (ii) stated above for Ty.
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Observe that this is a general fact for convex delay endomorphisms: we do not ask
the mapping F' to be a perturbation of F,. However, the above proof also works in
this case: The fact that co 1s an attractor is trivial in the convex case. The presence
of a fixed point of ¢ with derivative greater than or equal to 1 now follows from
the convexity of the function ¢, and the fact that /" has fixed points. Finally, the
Lyapunov function can be defined in this case as W(x) = V(«), (that is, a; = 0)
making easier the proof, because now the function ¢(z) is automatically negative
for every nonzero x. Observe that it is not needed the fact that the derivative of ¢
at the fixed point is greater than one, now it suffices > 1. Note also that the proof
for ¢ positively definite is similar.

5. THE TWO DIMENSIONAL CASE

We now make a disgression to consider in more detail the case £ = 2. If G is
a C? small delay perturbation of Fj,(z,y) = (y, —2? + px), p > 1, and O is fixed
point of G, then the eigenvalues of DGo, At and A~ satisfy: A\t ~ —A~ ~ /.

Since the matrix of GG at this fixed point is ( 2 i ) , then the condition e < 0 is
equivalent to AT < —A~.

Let G? = (g,h), (z,y) € U such that G*(z,y) = (z1,y1) and let (u,v) be a

vector in R%@'Lyl). Then, denoting by (u1,v1) the vector DG(_thyl)(u’ v), (DG(_l?l,yl)

considered as the inverse of DG%x y)), one has:

1 1
(11) up = g(th.u — 02g.v), v1 = g(—alh.u + d19.v),

where d is the Jacobian of G? at (z,y) and the derivatives are calculated at the
point (z, y).

Let S be the another preimage of the fixed point O of GG and S7, Ss the preimages
of S under GG. S has preimages because G is close to F,. Let Sy (resp. Si) be the
preimage of S which falls near to (0, u) (resp. (¢, u)).

We now present the two dimensional version of the proof of existence of invariant
manifolds in the boundary of the basin of co. The proof we give now will be the
first induction step for the higher dimensional case.

Proposition 2. Let G be a C? small delay perturbation of F, with 1 < p < 4.
Then there exists a curve J = Jg satisfying:

1. G"Y(J)D>J

2. GUJ)cJ

3. J is homeomorphic to S*.

4. J 1s the boundary of the immediate basin of co.

Proof. The proof cannot apply directly the usual method of graph transforms (see
for example [HPS]) because (@ is not normally expanding for F),. Recall that the line
{(,0):0< 2 < u}is Fi—invariant and that the vertical vector is more expanded
by DF than the horizontal one, excepting at the points O and its preimage (see
item 5 in section 2). However, a slight modification of this method together with
the previous proposition give a proof.

Begin taking connected neighborhoods U of the line joining O to (0, x), V of O
and U of F), such that for every G' € U;:
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k-1
W(F() - W) < q(@)+> (A= Dage] — sy + aix)
i=1
k-1
(10) = q(x)—i—)\ozlx%—l—Z()\ai — i 1)zl — ap_173
=2

Note that depending only on the eigenvalue A (greater and far from 1 for any
perturbation) it is possible to choose an ¢ > 0 small and values «; such that:

A1 <2—¢€, Aoy —aj_1 < —¢, for 2<i<k—1 and ap_1 > e.
Fix some choice of the values «; satisfying the above properties and consider
B1=Aay, B = Aoy — a1 for 2<i<k—1 and By = ag_1.

Next define a function 7" by the last member of equation (10). We have just proved
that W(F(z)) — W(z) < T(x), whenever W(z) < 0.

Observe that T' clearly satisfies: T(O) = 0, DTp = 0; moreover, by the choice
of the numbers a; and equation (8) it holds that 7"(x) < 0 for every z € R*.
Obviously these conditions imply T'(z) < 0 for every » € R* \ {@}, consequently
W(F(»))—W(z) <0if W(z) <0.

It follows that the set {W < 0} is F-invariant and that F™(z) — oo when
n — 00, that is, {W < 0} C Bw . Finally, the fact that O belongs to the boundary
of {W < 0} implies that this fixed point belongs to the boundary of Bs. It
remains to prove that oo is an attractor. This have not been proved until now
because {W < 0} does not contain a neighborhood of co. We will be done after
proving the following:

Claim: The preimage of {W = 0} is a compact subset of R*.

We will prove that {WW = 0} separates P, which implies the claim, by the remark at
the end of section 2. Recall from lemma 1 that P is the image of the set of critical
points ¢; and that the latter is the graph of a function #; : R*~1 — R. It follows
that P is the graph of the function p : R*~! — R given by

p(xla o )xk—l) = f(£1($1) o :xk—l))xh' o )xk—1)~

Observe that p(0) = f(z1(0),0) =~ f(p/2,0) ~ p?/4, and that p”(0) can be taken
uniformily small if F' is close to F),. On the other hand, note that {W = 0} is also
the graph of a function defined in {#; = 0}, because V(e;) = 1. Denote by & this
function. Clearly &(0) = 0. In addition, when F' — F),, the matrix associated to the
second derivative of f approachs that of f, (see equation (8)); then the possibility
of choices of the sequence of numbers «; includes a; > é > 0 for every ¢ and some
6 > 0. Finally, observe that the second derivative of & is associated to the diagonal
matrix with entries 2c;. Therefore, if the perturbation /' is sufficiently small, then
the function @ — p is negative at 0 and has positive definite second derivative. This
implies that {W = 0} separates P, and proves the claim and the theorem. a

The following corollary will not be used in the remaining of the paper, but it
seems interesting.

Corollary 3. Let f be C?-convex function, and F' the delay endomorphism asso-
ciated. If F' has fized points, then there erists a fived point in the boundary of the
immediate basin of 0o. And, as was mentioned above, if I’ has no fized points, then
Beo = RE,
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and Zle a; > 1, because ¢'(0) > 1. Moreover, the Hessian matrix H, associated
to the second derivative of ¢ at any point 2 € R* satisfies:

20 --- 0
00 --- 0
Hy =~ S .
00 --- 0

The following remark is crucial:
Given € > 0, the perturbation G of F' can be taken sufficiently small in such a way
that for every diagonal matrix  with entries (31, - - -, O ) satisfying 31 < 2—¢ and
B; < —¢ for every i > 1 it holds that

(8) H+ H,

is negatively definite for every .
Consider the linear transformation

A(l‘1,~~~ Jxk) = (xQ)"' )l‘]mL(l‘)), r= (l‘1,~~~ ,l‘k).

Obviously F'(z) = A(x) + q(x)er, where e, is the last vector of the cannonical basis
of R*¥ and « = (21, -+, x1). The characteristic polynomial of 4 is
Pa(y) = DMl — (@' + -+ azy + ar)].
As Zle a; > 1, it follows that A has an eigenvalue A > 1. Then the adjoint A*
acting in the dual space of R* has X as an eigenvalue. Let V be an eigenvector of
A* associated to the eigenvalue A. Then the kernel of the functional V' is invariant
under A. As the vector ¢} of the cannonical basis of B* is cyclic for A4, this means
that {A/(ex) ; 0 < j < k— 1} is a basis of R* and V cannot be zero, it follows
that V(ez) # 0. Take for example V(er) = 1.
Define the following Lyapunov function:

W(x)=W(zy, -, 25) = V(z) — a12] — - — ap_175_1,

the numbers a;, 1 < i <k — 1 to be determined.
Observe that:

W(F(z))—W(z) = V(A(z)+q(z)er) — a123 — - — ap_123 —
(9) — V(@) +az?+ a1z
Now take any = (21, -, zx) such that W(z) < 0; using the linearity of V and

the fact that it is an eigenvector of A* with eigenvalue A > 1, then:

V(A(2) + q()ex) — V(z) A"V () + q(x)V(ex) = V(2)
(A = DV(2) + q(=)

k-1

(A= DWW (@) +q(x) + (A= 1) Y ayaf

i=1

k-1
< q&)+(A=1) Z a;r?
i=1

Therefore, following with equation (9), it comes that:
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y=(y1, - ,yr) € R there exists a unique xj such that (4) holds. So ¢ is bijective,
with inverse

¢_1(y1) o )yk) = (yl; oy Yk-1, 7'(3/1, o 1yk)))
where 7 is determined by

(5) yr = hi(yr, - ye-1,7(y)).

The smoothness of the inverse of ¢ follows immediately as the differential of ¢ is
never singular. It is clear also that ¢ is C” close to the identity map of RF.

Now compute ¢ H¢~! and use equation (5) to conclude that it is a delay endo-
morphism, obviously C" close to F'.

Denote by H; any mapping of the form:

Hj(xl) T )$k) = ($2: T )$j)h1($)) T )hk—j+1(x))) r= (xl) T :xk)'

The same reasoning as above shows that if an f;_; is C” close to an H;, then

¢j(@r, k) = (x1, -, -1, ha(®), 21, -, o)
conjugates H;_, with a mapping of the form f;, that is close to the initial one. In
this way the proof of the theorem can be done by induction. a

4. THE BOUNDARY OF B

The point at oo is clearly an attracting fixed point for any delay endomorphism
F for which the associated function f is C%-convex (a function f is C%-convex if
it is C?, and the quadratic form associated to its second derivative is uniformily
strictly definite), see [RRV]. It is also known that if ' has no fixed points, then
Beo = RF see [RV]. We begin with an extension of this result, proving that for
the (not necessarily convex) perturbations of the family F),, the point at oo is an
attractor, and a fixed point point belongs to the boundary of its basin. As above,
the strong topology is considered.

Proposition 1. Let F' be a small C? perturbation of
Fﬂ(xla"' ,l‘k) = (l‘2,~~~ ,l‘k,—l‘% —|—/Ll‘1)
Then oo 1s an attractor for F' and the analytic continuation of the fized point O

belongs to the boundary of the basin of co.

Proof. Tt suffices to consider delay endomorphisms. Let
(6) F(l‘l,"',l‘k):(l‘z,"',l‘k,f(l‘l,"',l‘k)),

where f is a C? perturbation of f, with f,(z1, -, 25) = —2? + px1, p > 1. We
will construct a Lyapunov function W : R¥ — R such that every point in the set
{W < 0} has its positive orbit divergent to co.

The function ¢ : R — R defined by (t) = f(t,- - ,t)is C? close to t — —t2+ put,
so that ¢ has two fixed points. Without loss of generality, assume that 0 is the
smallest one and observe that then ¢(0) is close to u, greater than 1.

The function f can be expressed as:

f(xl’...’xk):q(xl’...,xk)_i_L(xl’...,xk)

where L : R* — R is the (gradient) differential of f at @ = (0,---,0), and ¢
satisfies ¢(0) = 0, Dgo = 0 and ¢"(z) = f"(x) for every x. It is clear that there
exist ay, - - -, a such that

(7) L(xl)...’xk):alxl_i_..._i_akxk
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Lemma 1. Let G be any delay small C? perturbation of an F,. Then the set {1 of
critical points of G is the graph of a function defined in the hyperplane {z; = 0}.
This graph 1s Ct close to {x1 = p/2}.

Proof. Let d = 01g be the determinant of DG. It is clear that d1d = 011¢ and this
function is uniformily close to —2, because g¢ is a perturbation of f,(z1, -+, %) =
—x? + pxy. This implies that the equation d = 0 defines implicitly a function z; of
the variables xs, - -, x;. Moreover, this function satisfies
o 0159
8] r] = Tlg)
which uniformily converges to zero as GG converges to F),. a

Notation: Let P be the image of ¢; under G. Then P is the set of points which
have exactly one preimage under G. P separates R* into two components. One
of them, which closure will be called P, is the set of points having exactly two
preimages. In the other component no point has preimage. Lemma 1 implies that
the intersection of P with a compact set is almost horizontal, if the perturbation is
taken sufficiently small.

An important fact about delay endomorphisms is the following;:
Remark. Let G be a delay endomorphism in dimension k and let y be a C?, (k—1)-
dimensional submanifold intersecting transversally and separating P. Then G~1(v)
is a compact submanifold of R* without boundary, of class C?, and codimension
one.

For example, this fact makes it possible for a stable manifold to be homeomorphic
to a sphere.

3. OPENNESS OF CONJUGACY CLASSES OF DELAY ENDOMORPHISMS

Consider the space of C” endomorphism of R* (r > 1), endowed with the strong
C" topology. Consider the quotient space of equivalence classes under conjugation.
The next result says that the projection of the set of C” delay endomorphisms is
open in the quotient space.

Theorem 1. If F is a C" delay endomorphism then every small C™ perturbation
of F' is conjugated to a delay endomorphism C” close to F'.

Proof. Take any delay endomorphism F : R¥ — RF:

F(l‘l,"',$k)2($2,"',$k,f($)), $:(x1)"')xk)~

Let H(x) = (xa, - ,&k—1, h1(x), ha(x)) be C" close to F'. We will show how to
conjugate H with a delay endomorphism also C” close to F'.
Consider the following change of coordinates:

(3) (Y1, yyk) = o(zr, - 2p) = (21, 21, ha(z)).
We claim that the transformation ¢ is a diffeomorphism C” close to the identity
map of R¥. Clearly y; = x; for every 1 < i < k — 1. What remains to prove is that

for any y = (y1,- -, yr) € R¥, there exists a unique solution zj, of:
(4) Ye = ha(yn, - Ye-1, k).
Fix y1, -, yr—1 and consider h; as a function of one real variable (the last one).

By the strong proximity of H and F', it follows that the derivative of h; with
respect to the last variable is close to one. For that h; is bijective when considered
as a function of the last variable and the first k& — 1 are fixed. Therefore, for any
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Corollary 2. Let poo be the Feigenbaum parameter for the one dimensional qua-
dratic famaly. If p < poo, and G is a perturbation of F, satisfying the hypothesis
of Theorem A, part c, then the restriction of G* to J' is conjugated to W,(lk_l). On
the other hand, if G is a perturbation of some F, with p € (foo,4), then G* | J'

has infinitely many recurrences.

There exist two fundamental ideas in the proof of Theorem A: a global one,
the fact that oo is an attractor and that there is a fixed point in the boundary of
its basin, and a local one, which states the persistence of invariant manifolds (not
always smooth nor normally expanding). The combination of these features gives
the starting point to the study of the dynamics of the transit through the two stable
and different settings explained above.

With the same techniques of these proofs, it can be stated analougous results
for perturbations of other one parameter families of delay endomorphisms, which
for some value of the parameter preserve a measure equivalent to Lebesgue in a
compact set. For example

(z,y) — (v, 22+ 4 e — Ay)

preserves a measure equivalent to Lebesgue in a bounded set for A = 2. It is possible
to extend to its perturbations all the results in this work.

2. STARTING POINT EXAMPLE
For p > 1, consider the family:
Fu(xl)"' ,l‘k): (xQ;"' ;fk;_l°%+/il‘1)¢ H > 1.

The following facts are easily verified:

1. For every 1 < p < 4, the cube
Q=0Qk=10,u"

is completely invariant, that is, Fu_l(Q) =Q.

2. For every pu < 4, the basin of oo is the complementary set of ).

3. For every p > 4 the basin of oo is dense and its complement is an invariant
expanding Cantor set.

4. For every p < 4, the boundary J of ) is completely invariant but F'(J) is a
proper subset of J.

5. The fixed point O = (0,---,0) belongs to J and the differential of F), at
O has characteristic polynomial p(z) = (—1)*(«¥ — u) (thus, J cannot be
normally expanding, it is not even smooth). However, J is in certain sense
normally expanding under Flf: for every point in the F*-invariant face J' =
{(z1, - ,25-1,0) : 0 < z; < p} C J, the vertical vector e = (0,---,0,1) is
more expanded by DF* than any vector tangent to J'.

Now we will consider perturbations of F, and describe some simple geometric
features. All perturbations in this paper are considered in the Whitney (or strong)
topology. For example, a C2-Whitney (or strong) neighborhood of a function g is
determined by continuous functions ¢;(z) > 0, ¢ = 0,1,2 and given by the set of
functions A such that

||DZg — D2h|| < e2(), ||Deg — Doh|| < e1(z) and |g(z) — h(zx)| < eo(z) for every .

For a delay endomorphism of R* with associated function ¢ : R* — R, the set of
critical points is clearly {x € R* : 9,g(x) = 0}.
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This work is a first step to explain the dynamics around the bifurcation which
makes:

e the open region A collapse, giving rise to an expanding Cantor set,
o the basin of co become dense in R*, and
e the boundary of the basin of co become a fractal set.

Theorem A. There exists a C? neighborhood U of the family {F, : p > 1} in the
space of C? endomorphisms of R* satisfying the following properties:
(a) For every G € U the point at infinity is attracting and there is a fized point
(in the sequel denoted O) in the boundary of its basin Boo. The differential
of G at O has a unique positive ergenvalue A > 1.
(b) If the set of critical points of G € U is contained in the basin of co, then By
1s connected and its complementary set A has uncountably many components.
(c) If u <4 and G is a perturbation of F,, then the boundary of the immediate
basin of 0o is a codimension one submanifold Jg. Moreover, if X > |Ao| for
any other eigenvalue Ao of the differential of G at O, then Jg is normally
expanding, and hence of class C'.

We will show in section 3 that any perturbation of a delay endomorphism is

conjugated to a delay endomorphism: then it suffices to consider delay perturbations
of F,.

For endomorphisms in ¢/ the set £; of critical points is a codimension one sub-
manifold of R* of class C''. Denote by Hj the set of endomorphisms for which B,
is dense and its complementary set A is an expanding Cantor set. As was said
above, perturbations of F, with u > 4 belong to Hy.

It is natural to ask whether G € U and By, D ¢; imply that G € Hg. This
is certainly true (not immediate) for £ = 1. Theorem A (part b), gives a partial
affirmative answer to the higher dimensional case. In a forthcoming paper, we will
show that the condition ¢; C B, determines an open set of endomorphisms which
boundary constitutes a codimension one C° submanifold of ¥/.

If the conditions of part ¢ of Theorem A are satisfied, then there exists a C!
codimension one submanifold Jg equal to the boundary of the immediate basin of
0o, BY. We want to say something about the restriction of G to Jg.

Corollary 1. For any G satisfying the hypothesis of part ¢ of Theorem A, there
exists an open subset J' of J containing the fized point O in its boundary, such that
the following properties are satisfied:

1. G¥(J") C J', and if J' denotes the closure of J', then Uf:o G=i(J) D J.

2. The intersection of GI(J') with J' is empty, for every 1 < j < k—1.

3. J" is homeomorphic and close to a (k — 1)-dimensional open cube Qp_1 and

G* restricted to any compact subset of J' is C close to the mapping Tgk_l)

n Qr-1.

This means that the dynamical properties of the mapping G restricted to J, are
determined by its behaviour on J/. More precisely, as the first k¥ — 1 images of
J' are disjoint and G*(J’) C J’, then the mapping carrying all the information is
G* restricted to the closure of J’. The third part of the corollary says that this
mapping is a perturbation of a (k — 1)-dimensional product of quadratic maps of
the interval. Even in dimension one, the C'! proximity with a product of quadratic
maps of the interval does not imply the conjugacy with any map of the family.

However, as an immediate corollary of Theorem A , we have:
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SRC. Let Fyu(w1, -+ o) = (w2, , %k, —@3 + p@1). For any G in a C?
neighborhood U of the family F),, the point at co is an attractor (with basin
denoted by B ), and there exists a repelling fixed point in the boundary of
Boo. This gives the initial step to the study of the whole boundary of Bo, and
the changes it suffers: for perturbations of 7}, with ; small, the boundary of
By is an invariant codimension one manifold, while for large values of u the
basin By is dense and its complementary set an expanding Cantor set. The
techniques developed will be applied to delay endomrphisms.

1. INTRODUCTION

Let f : R* — R be any continuous function. The delay endomorphism associated
to f is the mapping:

(1) F(l’l,"',l‘k):(l‘Q,"',l‘k,f(l‘l,"',l‘k))

In this paper we will study perturbations of the one parameter family of delay
endomorphisms F), associated to the function

(2) fu(l‘la"':l‘k):—l‘%+/il’1

Let 71'21)(9:) = —22 + ux be the quadratic family in R. By W&k) we will denote

the mapping of R* given as the product of k times 7TE¢1). The delay endomorphism

associated to a function as in equation (2), is a k'* root of the mapping W&k). In this
sense, this work generalizes some of the dynamical properties of the perturbations
of the quadratic family to higher dimensions.

It is well known the importance of the one dimensional quadratic family in the
study of homoclinic bifurcations for two dimensional diffeomorphisms, see for exam-
ple [N] and [PT]. On the other hand, there exists a result of Mora, see [Mo], which
states that the transformations 71'5]“) appear as limit of renormalizations associated
to critical homoclinic orbits of a repelling fixed point.

We will show that any perturbation G of an F), can be extended with continuity
to the compactification R¥ U {oo} of R* and that the point co is an attracting
fixed point of G. The basin of co will always be denoted by Be, = Boo(G), and the
complementary set of Bo, by A = A(G).

It is clear (see section 2) that for small values of p (precisely u < 4), A(Fy)
contains an open region, and that for any p large (4 > 4), Boo(F}) is dense and
the restriction of F, to A(F}) is an expanding map. These conditions hold for any
small perturbation of the family. Note that if g > 4, then well known results about
the dynamics of endomorphisms imply that F}, is C? structurally stable and then
any perturbation has the same structure. As a reference for these statements see
for example the works of Przytycki [P] and of Mané and Pugh [MP].
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