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Abstract. Define the quadratic family of order two as Fj,(z,y) = (y, —z2 + uz)
where p is a real parameter. The boundary of the basin of attraction of the
fixed point at oo is an invariant curve for u < 4, and is a Cantor set for pu > 4.
Perturbations of Fj, with u # 4 were studied in [4] (also in higher dimension)
where it was proved that these situations persist. Now we study perturbations
of the bifurcation point p = 4, where the explosion of the basin, B, occurs.
We prove that either there exists a connected invariant curve J contained in the
boundary of the basin, or the set of critical points is a subset of Bso and the
boundary has uncountably many components accumulated by the preimages of
the analytic continuation of the fixed point at the origin. The curve J undergoes
a fractalization process until it ceases to exist.
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1. Introduction

To any delay equation of order k > 1

Tptk = f(ll'n,) Tt ,.’En+k_1), n Z 0’

where f : R¥ — R is any function, it is defined a delay endomorphism of R¥ by the
mapping
F(mla"'7mk) = ($25"'7$k7f(mla'"7$k))‘

The quadratic family of order k& > 1 is the family {F},},cr of delay endomorphisms
associated with the equation

2
Tntk = —Z, + UTnh-

Observe that the k-th power of F), is the product of & times the one dimensional
quadratic family. Therefore, a huge number of qualitative dynamical properties
of the one dimensional quadratic family can be extended to FI’f Meanwhile, the
perturbations of the family F,, can exhibit very complicated dynamical behaviour;
the authors do not have references in the literature about this topic. However,
perturbations of the quadratic family of order k take a fundamental role, for example,
in the theory of higher codimension homoclinic bifurcations: by means of a rescaling
argument, those endomorphisms appear as a limit of sequences of first return Poincaré
maps near homoclinic points; see L. Mora [1] for details.

Any smooth and small perturbation of an F), has a fixed point near the origin,
that fixed point will be supposed to be the origin 0. A simple stability argument (see
proposition 1 in section 3) implies that for every small perturbation G of any F),, the
point at infinity is an attractor and the fixed point 0 belongs to the boundary of the
basin of attraction of co. Moreover, there it was proved that when G is close to an F),
with p < 4, there exists an invariant set J, homeomorphic to the (k — 1)-dimensional
sphere S*¥~!  which constitutes the boundary of the immediate basin of co. It is not
difficult to see that F), is hyperbolic for u > 4; the basin of oo is, in this case, dense in
R* and its complementary set is an expanding Cantor set. This is a C? structurally
stable property and hence it extends to perturbations of F},; see R. Maiié and C. Pugh
[2] and F. Przytycki [3].

Our present purpose is to investigate the dynamics of perturbations of Fj in
the plane. We will first show that for every perturbation G of Fj, there exists a
curve Jo(G), homeomorphic to the circle, such that the unbounded component of its
complementary set, is forward invariant and contained in B (G). Using Jo(G) and
its preimages we will reproduce the boundary of By (G).

Denote by A(G) the complementary set of By, (G), and let d be the Hausdorff
metric in the space I of nonempty compact subsets of the plane. Consider the
C? strong topology on the space of endomorphisms of R? and define the operator
G — A(G) from a neighborhood U of Fy to K. It is well known and easy to prove that
this operator is continuous in a residual subset of U (see proposition 2 in section 3).

Theorem A There exists U such that for every G € U, point of continuity of
G — A(G), it holds that
G7"(Jo(G)) = 9B(G)

in the metric space (IC,d).
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In order to describe the dynamics over the boundary of B..(G) for every
perturbation G of Fj, we will give a simple algorithm defining a sequence of curves
Jn, each one contained in G~"(Jp). This sequence of curves provides a criterion to
determine whether the critical points of G are contained in By, (G).

Theorem B Let G inlU. There exists N > 0 such that Jy is contained in the interior
of the image of G if and only if the set of critical point of G is contained in By (G).

Motivated by the results for complex polynomials in the Riemann sphere we
looked for global features that would explain the transit between the situations
described above: the passage from a connected to a totally disconnected boundary.
Either the hypothesis of theorem B is true or every J,, intersects the boundary of the
image of G. It becomes necessary to analyze the sequence J,, in both cases.

Theorem C (a) If every J,, intersects the boundary of the image of G, then the limit
of the sequence {Jpn} exists in KC, and gives an invariant connected set J contained in
0B (G) (the boundary of By (G)) which contains critical points.

(b) If some Jn is contained in the interior of the image of G, the 0B (G) has
uncountably many components and is accumulated by preimages of the fized point
0.

In dimension & > 1, it remains as an open problem to determine if every
perturbation G of Fy for which the critical points are contained in B, (G) is hyperbolic;
for k = 1 we will give a proof of this in the next section.

In the sequel Hy will denote the set of endomorphisms G such that the set of
critical points is contained in Buo(G).

This paper is organized as follows. In section 2 we will construct the curve J
mentioned above; its relationship with the basin of oo will be analyzed in section 3,
arriving to the proofs of the theorems A, B and C at the end of the section. In the
last section we will analyze a particular example and show some remarkable computer
figures.

2. Construction of almost invariant curves

The purpose of this section is to prove, for every strong C? small perturbation G of Fy,
the existence of a curve Jo(G) homeomorphic to the circle, for which the unbounded
component of its complementary set is contained in the basin of co. The study of
the relationship of this curve with the boundary of By (G) will be made in the next
section. The curve Jo(G) will be constructed at the end of this section. The first step
towards the definition of Jy(G) is to show the existence of a curve v connecting the
fixed point 0 with its other preimage. The curve v is either G2 forward invariant or
the set of points in v whose G2-positive orbit is contained in v is a Cantor set Kj.
Moreover, in the latter case, v\ Ky is contained in By It is in this sense that we call
~ an almost invariant curve.

Given € > 0, denote by U, a strong C2-neighborhood of F; such that for some
compact set V containing Q = [0,4]?, for every G € U, and every z € V:

max{||G(z) — Fi(z)||,||DG(z) — DFy(2)||, |D*G(z) — D*Fu(z)|[} < e.
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Recall that a strong (or Whitney) C2-neighborhood of a C? map F : R2 — R? is given
by continuous and positive functions ¢; : R2 — R (i = 0,1,2) and is defined by:
V(F’ 60a61’62) = {g € 02(R27R2) : ||G($) - F(ZE)“ < 60(1")7
[|DG(z) — DF(z)|| < €1(z) and
|ID?*G(z) — D*F(2)|| < e2(x) for every z € R?}.

Take € > 0 small enough. If G € U, then DG(0) has eigenvalues AT > 0 > A\~
having modulus close to 2. It is clear that AT + A~ = 0 constitutes a codimension one
submanifold which separates U, into two components U/, depending on the sign of
AT+ A", Let vt = (1,t%) be eigenvectors associated with the eigenvalues A\*. Observe
that t*¥ = A\* if G is a delay endomorphism, and then |t* — A\*| is close to 0. Also
let Ao be the eigenvalue of DG(0) with smallest modulus, and (1,%p) an eigenvector
associated.

Lemma 1 Given p sufficiently small there are € > 0 and § > 0 such that, for
any G € UZE, any point (z,y) € B, = {z : ||z|| < p} with z > 0, |y| < = and

every vector w = (w1, ws) satisfying |wa/w1| < & it holds that |

D(G/B,) >"(z,y)(w) = (w{",w”) = w™.

()
Z?’”' < 2[to|, where

Proof: Let g be the inverse of the restriction of G? to a small neighborhood of 0.
Let A be the differential of g at 0. It is well known that g and A are C' conjugated
in a small neighborhood of 0. Moreover, this conjugation is C' close to the identity
map. Let ® be a C' conjugation between g and A defined in B, for p small. Then
Dg™(z,y) = D® 1 A"D®(z,y). For a vector v = (v1,vs), define the slope of v as the
quotient |va/v1|. The hypothesis on (z,y) and w and the fact that @ is close to the
identity map, imply that the vector D®(z,y)(w) has a small slope and that the point
®(z,y) is contained in the sector Z = {(z,y) : t72z < y < tTz}. As Z is invariant
under A", the slope of w(™) converges to |to| for any vector tangent to R? at a point
of Z. |

In other words, the proof says nothing but the fact that the mapping slope(w) —
slope(w™)) is contrancting, having |to| as an attractor. It follows that for every G
there exists a 7 such that for every (z,y) € Z and every vector w with slope less
than 7¢, it holds that the slope of w(!) remains bounded by 7¢.

Next we analyze some simple geometrical features of the mappings G.

Let Q(%,0) = {(z,y) : 0 <z <4,y = 0} and denote by Q(0,*), Q(4, ), and
Q(*,4) the other sides of the square @ = [0,4]%. Let U be a small neighborhood of
Q(x,0) and € > 0 such that for every G € U, the connected component of G~2(U)
containing 0 is contained in U.

Consider the set Agz of points in U which never leave U under iterations of G2.
The following result is the technical part of the proof that this set is contained in the
boundary of the immediate basin of co and is contained in a smooth curve.

Let G2 = (g1, g») such that G belongs to /. Given any p > 0, there exists 7 < 1
such that the set U and € can be made small so that the following holds:
if (z,y) € U with p <z <4 — p, then:

8191 ($, y)
9292(2,y)
Let S be the other preimage of 0 under G.

<7<l (1)




Perturbations of the quadratic family of order two 5

Lemma 2 Given G € UF, let v be a C' curve joining 0 with S and given by
{(t,To(t)) : 0 <t <s}. There exists § > 0 such that if yo satisfies:

(i) o is contained in U,

(i) |To(t)| < 6 for every t € [p,4 — p] and

(i) |Ty(t)| < 7 for every t,

then v1 = (G/U)~2(v0) is the graph of a C' function T’y defined in the horizontal azis
and satisfying (i), (i1) and (ii1).

Note that y; contains 0 and S, but may be not connected. This will be discussed
in detail below.

Proof: Property (i) is obviously true for 7; since U is (G/U) ~2-invariant.
If G%(z1,y1) = (t,To(t)), then the vector (u,v) tangent to v, at the point (z1,%1)
satisfies DG?(z1,y1)(u,v) = (1,T)(t)), and so:
8191.F6 — 6192

‘2‘: 0292 — Drg1.Tg | (2)

U

The derivatives of g;, 1 = 1,2, are calculated at the point (z1,y1) and those of Ty at
the point £. We will estimate the quotient in equation 2 in three different cases.
First case: Suppose that z; and ¢t belong to [p,4 — p].

Then |Ty(¢)| < 6, and hence, using equation 1:

01911
‘E‘<7| 191-To| +e < 70| + e,

ul — 8292 —€d

if 0 is small. Moreover, € can be taken small enough so that this last term is smaller
than 6.

Second case: Suppose that ¢ > 4 — p.

Then |z; —2| < ¢, with ¢ = ¢, — 0 when p and € go to 0. This implies |01 91| < 3c,e-
Using equation 2 and the definition of Iy, it comes that:

‘v‘ 3ctg + €
U

— = <4
= |0292| = leta] T

if ¢ is small with respect to §, which can be done by diminishing e again.

Third case: It remains to consider either z; € (0,p) or z; > 4 — p.

If U and & are small, then we have the hypothesis of lemma 1. The point (z1,y;)
remains in the sector Z, and the application of that lemma implies that v, satisfies
property (iii). As the fixed point 0 is repeling, there are no more cases to consider.
This proves the lemma. O

Observe that for any endomorphism G' C2-close to Fy, the critical points of G
are located in an almost vertical curve (close to z = 2); this set will be denoted by
£1 = ¢1(G). The image P = P(QG) of this curve is close (in compact subsets of the
plane) to the line y = 4 and constitutes the boundary of the image Im(G) of the plane
under the transformation G. P separates the plane into two components, one of them,
located below P, is the set of points having exactly two preimages.

Given a bounded set D denote by ext(D) the unbounded component of the
complementary set of D, and by int(D) the union of the bounded components of
the complement of D. For every set A, cl(A) will denote the closure of A.

Simple considerations as the given above imply the following result; that will be
used mainly in the next section.
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Lemma 3 Let G be a C? small perturbation of some F,, andy a C* curve intersecting
P transversally. Then:

(a) If ¥' is a connected component of v N Im(G) with two points in P, then G~1(v')
is a C* simple closed curve.

(b) Moreover, if v N Im(G) is connected and 7 is homeomorphic to S, then
ext(G~1(7)) = G~ (ext(7)).

(¢) If v is homeomorphic to S* and y1NIm(G) C int(y), then G=1(y1) C int(G~1(y)).

Recall that we are supposing that the perturbation G of Fy has the origin 0 as
fixed point; we have denoted its first preimage as S, which is close to (4,0); denote the
preimages of S by S (close to (4,4)) and S» (close to (0,4)). Observe that if p is small,
G~'(B,) has a component, V,, which does not intersects B,. The preimage of V, has
two connected components, V,} and sz, neighborhoods of S; and S» respectively. If
G is close to Fy, then the set P dissects both Vp1 and Vp2. Denote by P; (resp. Pz)
the intersection of P with V! (resp. V7). Obviously G(P1) and G(P,) intersect V,,
and by the proximity with Fy, they are almost vertical.

One can distinguish two possibilities:

(1) S is located at the left of G(Py) (this will be referred as G € G;),
(2) S is located over, or at the right, of G(P2) (denoted G € G,.).

In case (2), the preimage v, = (G/U) 2(y0) of lemma 2 is a curve connecting
0 with S. In case (1), (G/U) %(S) consists of two points, the preimage of 7, has
two components, one of them joining 0 with a preimage of S under G2 and the other
joining S with the other preimage. (Note also that this depends on the position of S
with respect to G(Pz), not being related with its position with respect to G(Py)).

Lemma 4 Given any p > 0 sufficiently small, there are a neighborhood U of Q(x,0)
and € > 0 such that:

(a) for every G € G, NUZF, there exists a curve 7y of class C1, contained in U, joining
0 with S and such that (G/U)~2(y) = v, and

(b) for every G € UX N G, there exists a curve v of class C*, contained in U and
joining 0 with G(Py), such that (G/U)?(y) D v and (G/U)2(y) C 7.

Proof: (a) Take U,e > 0 and p > 0 sufficiently small. Let C(G) be the space of all
C* functions Ty : [0, s] — R (s is the first coordinate of S) satisfying the conditions (i)
to (iii) of the lemma 2. From the same lemma it follows clearly that if ©g(T'g) = 'y is
the function obtained from (G/U)~2(vyo) where 7o = graph(To), then O defines an
operator on C(G). Since G? = (g1, g2), then for every t € [0, s] and any T, To € C(G)
it holds that _ _

To(t) = To(t) = Baga(1,6(1)) (Tu(H) - T1(1))

for some (t) that belongs to the open segment joining I'y(t) and T'y(t). Now, as
G € UF, the above identity implies that ©¢ is a contraction when the C! topology is
considered. So the part (a) of the lemma follows.

(b) In order to obtain that the preimage of 7y is a curve also in case (1), we will add
to o a segment T' connecting S with G(Ps).

Let T be a segment of line joining S with G(P-), tangent at S to the vector
DG(S)~1(1,t0) (see just before lemma 1 for the definition of ¢;). Note that € can be
made smaller so that G~2(T') is almost horizontal (see the estimatives of case 2 in
lemma 2).

Let o be a curve joining 0 with S satisfying (i) to (iii) of lemma 2; add T to 7.
The G? preimage of this union is a curve 7; joining 0 with S and satisfying 1, 2 and 3
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of the referred lemma. So, we have defined an operator ©¢ on C(G) as in the above
lemma. In similar form as in that lemma, the operator O¢ is a contraction. The curve
« will be the graph of the fixed point of this operator. Note also that yUT is C! and
satisfies (G/U)~2(yUT) = 7. This proves part (b) and the lemma. O

Let f, be the one dimensional quadratic family, f,(z) = —z2 + p=.

Corollary 1 Let G € UF with € small enough and let vy be the curve obtained in
lemma 4. If G? = (g1,92), then gs oy converges to fy in the C* topology when G
converges to Fy in the C? topology.

Proof: Given any €y > 0, one can choose p > 0 such that g o 7y is €-C* close to
multiplication by ¢2 in the interval [0, p], and f4 is €o-C' close to multiplication by 4
in the same interval; as |t3| — 4 when € — 0, the assertion follows in this interval,
and also in its preimage, close to S. Note also that the number § of lemma 2 can be
chosen as small as we wish by taking p and € small. Thus v is C! close to Q(*,0) in
[p,4 — p], and then G? restricted to the curve v is C! close to F} restricted to Q(x,0),
which is exactly fs. O

Now we want to establish the relation between this curve vy and the set of points
never leaving a neighborhood U of Q(x,0) under iterations of G2. Clearly this set is
given by Ag2(U) = N,50 G72™(U).

For U, a small neighborhood of Q(*,0), this set can be either a Cantor set
contained in <y or the whole curve. To analyze these possibilities we first need a
result stating that in dimension one any mapping in Ho N, is hyperbolic. We include
a proof of the following result because we have no reference for it, but is surely well
known by one-dimensional dynamicists.

Theorem 1 Let g be a C' perturbation of f4 such that g has only one critical point
¢ which satisfies:

1. ¢ is a quadratic critical point, i.e. g"(c) exists and is not zero, and

2. the image of ¢ does not belong to the interval I which extreme points are 0 and its
pretmage.

Then the set of points never leaving I is hyperbolic.

As an immediate consequence of theorem 1, one has:
If g is a C? perturbation of fi such that the critical point of g has unbounded orbit,
the g is hyperbolic.

Proof: We apply the simple fact that the mapping f4 is C! conjugated to the tent
map via a function ¢ having derivative zero only at the points 0 and 4.

Claim 1: Given 6y > 0 there exist € > 0 and m > 0 such that, if g is C* close to f4
and |¢% (z) — c| > 8o for every 0 < j < m then

I(g™)' ()| > (1.9)™.

Observe that h = ¢~ !gyp is close to the tent map, from which one can conclude that
it has derivative greater than 1.99 outside a neighborhood of the point ¢. Then

[(g™)' (@)] > |¢" (h™ (2))|(1.99)™ (™)' ().

The derivative of ¢! is bounded away from zero. Observe also that if € is small then

g°(z) does not reach a neighborhood of 0 unless the whole orbit is very close to 0.
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Therefore, if this does not happen, then |p'(h™(z))| > d(dg), where d(dg) is a function
of &g that goes to 0 when §g — 0. It follows in this case that if m is large, then

[(g™)(z)] > Kd(d0)(1.99)™ > (1.9)™,

for some positive constant K. It remains to consider the case where the whole piece
of orbit is contained in a neighborhood of 0. At this point, there is no need of passing
to the conjugation; the conclusion is obvious.

Claim 2: Given 69 > 0 there exists € > 0 such that for any g € Ue, a positive integer
n and a point T satisfying |g? (z) —c| > 8o for every 0 < j < n—1 but |g™(x) — | < do,
it follows that |(g™)'(z)| > (1.9)".

The proof of this claim is the same as above until the moment of considering the
derivative of ¢ at the point A"(z). Now we know that this point is far from 0 because
of the hypothesis on g"(z).

Claim 3: There exists 6o > 0 such that for any given x with positive orbit contained
in I and |z — c| < 8o there exists | = l(z) > 1 satisfying |g’ (z) — c| > 8o for every
1<j <l and |(¢) ()| > (L9).

Any point z as above has its second image close to 0. By the hypothesis of the

!
x
theorem, we know that the critical point is quadratic, this implies that M and

|z — ¢l
g(z) — g(c)
(z —¢)?

is close to 0, and that

are uniformily bounded for z in a neighborhood of c. Observe that g2(z)

2
% is bounded. Let I(z) > 2 be the first integer such that
g ~2(g%(x)) > 1. It follows that |(g'~2)'(g2(x))| has the order of (g2(ac))_1. Therefore
|(¢")'(z)| has the order of |z — c|™!, and this implies the claim.

Now we will conclude that there exist constants C' > 0 and A > 1 such that
if n > 0, then |(¢™)'(z)| > CA™ for every z whose positive orbit is contained in I.
Indeed, once a function g is fixed, there exists a number 7 > 0 such that |¢'(z)| > T
for every = having its positive orbit contained in I. For the points that never enter the
interval (¢—dg, c+dg), claim 1 gives the result, with C = 1 and A = 1.9. For the other
points we will obviously have, by using claims 2 and 3, that |(¢g")'(z)| > 7(1.9)" 1.
This finishes the proof of the theorem 1. a

Remark 1 The proof also works with minor modification in claim & if the condition
1 on the hypothesis is substituted by:

1°. the critical point of g is non-flat.

One can also ask the critical point of g to be C'1¢, being equivalent to x — z'te.

Corollary 2 IfU is a small neighborhood of Q(x,0), then there exists € > 0 such that
for any G € G NUFE, the set Ag2(U) is a Cantor set.

Proof: Note first that Ag2(U) is contained in . Next, the facts that v is nearly
horizontal and the line of critical points of G, ¢;, nearly vertical, imply that they are
transverse, from which it follows that the critical point c of G? in v is quadratic (and
unique). Finally, observe that for G € G;, G?(c) leaves the interval whose extreme
points are 0 and the first coordinate of S. Thus the sharper version of the theorem
above implies the result. O

In lemma 4 we have constructed a curve 7 joining 0 with its first preimage S. In
both cases the curve vy can be enlarged (if necessary) to a curve reaching G(P;) and
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G(P,), the piece added being a segment of line denoted by 7. Call 4° the C* curve
obtained. Then define:

Jo=G?(°)U (G ()\GTHT))

Observe that the curve Jy is homemorphic to the circle: indeed, G~1(7°) has two
connected components, say 7' and % 3! joins S with P, and 52 connects 0 with
P>. 52 has a connected preimage, it is precisely v° \ 7' = v; the preimage of 3! is
a curve connecting S; to S3. Therefore, taking off G=1(T) from G~1(v°) U G~2(+°)
one obtains a simple closed curve. In these terms, the curve J, is given by Jy =
FUFUGT(F' UF?) \ G~H(T), see Figure 1.

G(P,)

Figure 1. Two examples of the curve Jy

Observe that by construction the curves 4° and G~!(3!) are graphs of functions of
the first coordinate, while ! and 42 are graphs of functions of the second coordinate.

Recall that we have considered only the cases where the eigenvalues at the origin
satisfy AT + A7 # 0. If AT is greater than —\~ (that is, G € U"), then the collapse
of the curves v and ¥? occurring at 0 is smooth, while in the contrary case, when
G € U_, a cusp is created at the origin. The same holds at the other points (S, S1
and S5) of intersection of the curves with its preimages.

Summing up, Jo(G) is of class C! for every G € U and it is C' except at 0 and
its first two preimages, where it has cusps, when G € U_".

3. The Boundary of B

In this section we will analyze the boundary of B., and its relationship with Jy and
its preimages. Beginning with Jy itself, we have the following:

Proposition 1 For any G € UF, the curve Jo = Jo(G) satisfies:
(a) G(ext(Jy)) C ext(Jp).

(b) G=1(Jo) C cl(int(Jo))

(c) ext(Jo) C Bso(G).

Proof: The assertion of part (a) follows easily from the construction of Jy and the
proximity of G with Fy, and (b) is a trivial consequence of (a). For the proof of
(c) observe first that the fact that 0 belongs to the boundary of B (G) is easy to
prove: there exists a neighborhood V of 0 such that G/V (the restriction of G to V)
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has uniquely defined inverse and (G/V) "(z) — 0 whenever z € V and n — +o0.
Moreover, if K C V N By (F4) is a compact set, then K C B, (G) for every G close
to Fy. These facts together imply that 0 belongs to the boundary of By, (G).

We will use a stronger version proved in [4] and which inplies the following
assertion:
Claim: For every G € G, NUZE the segment T employed to construct Jo is contained
in Boo(G).
Recall that v* = (1,t*) denotes eigenvectors associated to the eigenvalues A\* of
DG(0). Following the steps of the proof of proposition 1 in [4], one can verify that
there exists an o > 0 such that the function W (z,y) = y — t—z — ax? satisfies:

W(G(z,y)) — W(z,y) <0 for every (z,y) such that W(z,y) <O0.

The following properties are easy consequences of this fact:

(i) {W < 0} is G-invariant.

(ii) {W < 0} is contained in B% (G) (the immediate basin of c0).

(iii) G ({W = 0}) is homeomorphicto S* and ext(G~1({W = 0})) = G~ ({W < 0})
is contained in BY (G).

(iv) G=Y({W = 0}) contains a curve joining 0 with S. This curve is the graph of a
function of the first coordinate and G is C? close to F} it comes that it has positive
derivative at S.

From these observations one can conclude that T C By (G); indeed, it follows
that 7T is tangent to G~1({W = 0}) at S, but T is a segment, while G ({W = 0})
has positive concavity at S. Then T C ext(G~1({W = 0})) C Boo(G). This proves
the claim.

Let W* be a G-invariant curve tangent to (—1, —¢") at 0 and beginning at 0 (W
is a separatrix of the strong unstable manifold of 0 if AT + X~ > 0, or is a separatrix of
any center stable manifold if At + A~ < 0). Let W be the connected preimage of W4
that contains S, and consider the unbounded set E such that ENint(Jy) = and its
boundary is the union of W¥, W and «. To prove (c) it is necessary to consider the
cases when G € G, and G € G;. Suppose G € G,.. In this case the set E is G2-forward
invariant. Let U be a small neighborhood of Q(*,0) with v C U, by a continuity
argument, if € is small enough, then every point z € E \ U belongs to By (G). Each
point z in U for which the G? positive orbit is contained in U must belong to 7; hence
E C B (G). Therefore it follows by construction of Jy that ext(Jy) C By (G) when
Geg,.

Now suppose that G € G;; in this case E is not G>-forward invariant, in fact
G?(ENnt)NE = (. However, G?(E) = E U E' where E' is the unbounded set which
boundary consists of W*, G2(EN{;) and the segment T used to construct the curve -y
when G € G;. Hence, if E' is contained in B (G) then (c) will be proved also in this
case. But the claim and (ii) implies that E' C By (G). So the proof of the proposition
is complete. a

Now we list some properties relating the invariance of Jy with its location in
respect to P.

Lemma 5 For G € UF with € sufficiently small, and Jo = Jo(G) it holds that:

(a) Jo is forward invariant if and only if S1 and Sa do not belong to the image of G,
Im(G). In this case, Jo = 0B, (G).

(b) Jo is backward invariant if and only if it is forward invariant and G~ (¥1)NP = (.
In this case Boo(QG) is connected, its boundary is Jo and its complementary set has
nonempty interior.
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Figure 2. The curve G~} ({W = 0}) and the sectors E and E'

Proof: Beginning with the proof of (a), suppose that S; and S» do not belong to
Im(G), this implies that both connected preimages of v intersect P, here is no need
of considering the segment 7. This implies that Jy is forward invariant. Conversely,
if any of the points S; or S2 is not in the image of G, then it was necessary to add
the segment T to -y in order to obtain that both connected preimages of v reach P.
Then, as Jy contains preimages of 7' but does not contain 7', it follows that it is not
forward invariant.

If Jy is forward invariant, then it has no intersection with B, (G). This, together
with the previous proposition, implies the last assertion of part (a).
To prove (b), recall that 5! is the preimage of y that joins S with S;. If S; and S»
do not belong to Im(G) and G~1(3!) does not intersect P, then it does not intersect
Im(G). This implies that it has no preimage and it follows that J; is also backward
invariant. Conversely, if G~ 1(3!) intersects P, then it has another preimage which
cannot belong to Jy and hence it is not backward invariant.

If Jy is backward invariant, then the immediate basin of B, (G) has no preimage
and then B, (G) is connected. O

The approach we have chosen to study the basin of co is the creation (sometimes
artificially) of a curve Jy whose ext(Jy) is contained in By, (G). Sometimes this curve
Jo is not the whole boundary of By (G), so we will now consider its preimages.

Proposition 2 Let G € UF with € sufficiently small. Then:

(a) Upso G (e2t(Jo)) = Boo(G)-

(b) 0B (G) C liminf G~ (Jp).

(c) If 0B (@) is backward invariant, then limsup G~ (Jy) C 0B (QG).

(d) If Go is a continuity point of the mapping G — A(G), then 0B (Go) is backward
invariant.

The concept of convergence in statements (b) and (c) is related to the Hausdorff
metric of nonempty compact subsets of the plane. Observe that a sequence K,
converge to K if and only if the following conditions hold:

(i) For every neighborhood U of K there exists ng such that K,, C U for every n > ny.
(ii) For every open set U such that U N K # (), there exists ng such that K, N U #
for every n > ny.
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Associated with each of the conditions (i) and (ii) one can define liminf and
lim sup of a sequence K,, of compact sets as follows: liminf K,, is the set of limits of
sequences {z,} where each z, belongs to K,, and limsup K,, is the set of limits
of subsequences of sequences as above. Observe that liminf K,, and limsup K,
always exist and are unique. Moreover, if liminf K,, = K then (ii) holds, and if
limsup K,, = K then (i) holds. Obviously, liminf K,, = lim sup K, implies that K,
converges to K in K.

Proof: (a) Is obvious since ext(Jy) C Boo(G).

(b) Suppose that € 0B (G). Take a positive integer p. Let V), the open ball with
center at x and radius . If G™(V,) C int(Jo) for every n > 0, then V, C A(G)
and so ¢ ¢ 0B (G). If there exists n > 0 such that G"(V,) C ezt(Jy), then
Vp C Bx(G) and so z ¢ 0B (G). In conclusion, there exists some n, > 1 such
that G™(V,) N Jo # 0 for all n > n,. This defines a sequence {n,},>1. Take, for
every j with n, < j < np41, a point z; € V, such that G7(z;) € Jo. Then the
sequence {z;};>1 satisfies z; € G~9(Jy) and z; — 2 when j — +oo. This implies
that z € liminf G—"(Jy).

(c) Let z ¢ O0Boo(G). If 2 € Bso(G) then there exists a neighborhood U of z contained
in B (G) and hence there exists ng such that G™(U) is contained in ezt(Jy) for every
n > ng. As Jy C cl(Bxo(G)) and 0B (G) is backward invariant, it follows that
G™"(Jo) C c(Bowo(@)) for every n > 0. Therefore no point interior to A(G) can be
accumulated by preimages of Jy. This proves part (c).

(d) Suppose that 0By (Go) is not backward invariant. Then there exists z €
0B (Gy)) and a point y ¢ 0B (Go)) such that Go(y) = 2. Since y ¢ 0B (Go)),
there exists V5 neighborhood of y such that Vs N By, (Go)) = 0. We will prove that for
every € > 0 there exists G e-close to G such that y € 9By (G)). This contradicts the
continuity of G — A(G) at Gy, and proves the assertion. So, given € > 0 a point z in
B (Go)) as close to z as we wish can be chosen in such a way that if one perturbs
Gy only in a small neighborhood V' of y, then the perturbation G satisfies G(y) = 2.
The neighborhood V' can be taken contained in Vj, therefore the Go-positive orbit of
z does not intersect V'. It follows that G§(z) = G™(z) for every n > 0 and then z,
and therefore y, belong to B (G). O

Remark 2 (i) Observe that the proof of this proposition is purely topological. Neither
the proximity of G to Fy nor the fact that the dimension is two are relevant; indeed
nothing changes in the proof if one begins with a C° endomorphism G and a set Jy
satisfying properties (a) and (c) of proposition 1.

(i) The operator G — A(G) is lower semicontinuous: if K is a compact set
contained in By, (Gy), then K C B (G) for every C° perturbation G of Go. Therefore,
it follows that the operator is continuous in a residual set. For that reason, proposition
2 implies that:

For generic G € UZF it holds that nlgr_loo G " (Jo) = 0B (G).

The preceding proposition gives a description of 9 B, (G); the problem is that the
boundary of B, (G) has a lot of components and it is not clear where the interesting
dynamics is. We will now construct a subset J of the boundary that is forward
invariant.

Definition 1 The definition is by recurrence. Jo = Jo(G) was defined above. Suppose
defined curves J; = Ji(G) for every 0 < i < n — 1. Let J)_; be the closure of
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the connected component of the intersection of J,_1 with the topological interior of
the image of G that contains 0. Then define J,,(G) as the connected component of
G 1(JY_,(G)) that contains 0.

Also define jg_l(G) as the closure of int(J2_;) U P.

Observe that the boundary of .7271 is the union of J? ; and a connected subset of
P. Tt is not true that ext(J,) is a subset of By, (G), there can be components of A(G)
contained in ext(J,); however, these are “small” components and the determining
dynamics occur within int(J,,). We will show later (proposition 5) that if some J,, is
contained in the interior of I'm(G), then ¢; is contained in By (G), and if this is not
true, then the limit of the J,, exists and is a connected set J.

Calatla
RN

Figure 3. The curves Jo, J§, J1,J?, J2,J9,G~1(J2) and J3

\\\\P

J

We will first show that {ext(J,)} is an increasing sequence.

Proposition 3 Let G € UF with € small enough, then for every n > 1 it holds that:
(Ep) : ext(Jn_1(Q)) C ext(Jn(Q)).
(EQ) : ext(JS ;) C ext(J9).

Proof: Proposition 1 implies (El) and (EY).

Suppose that (E,—;) and (E2_,) hold. Lemma 3 implies that G(ezt(J,— 1)) C
ext(J°_,). If £ € J, then G(z) € J°_,, and then it does not belong to ext(J°_;),
which, by (E2_,) and the above, implies that = ¢ ext(J,—1). Thus J,, C cl(int(J,—1))
which is equivalent to (Ey,).

Now let ¢ € ext(J°_,). If ¢ € ext(J, 1), then (E,) implies that z € ext(J,) and
so ¢ € ext(J9). If z does not belong to ext(J,_1), then z belongs to a component
of cl(int(J,—1)) N Im(G) that does not contain 0. But by (E,), J, is contained in
cl(int(J,_1)), so the above implies that the component of J,, N Im(G) that contains
z, does not contain 0. That is, z € ext(J?). This proves (E?) and completes the
induction. d

Proposition 4 Suppose that G € UF with € sufficiently small, and that for every
n > 0 the curve J, = J,(G) is not contained in Im(G). Then:
(a) For every n > 0, J,, is homeomorphic to S*.
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(b) For every n > 0, J,, C cl(Bux(G)).

(c) J =lim J,, exists in the Hausdorff topology.

(d) J is forward invariant and contained in the boundary of By (G).

(e) J is connected and int(J) is simply connected.

(f) Let A = Ao Uint(Ao), where Ag is the connected component of A(G) that contains
0. Then A D (), ¢ cl(int(Jn))-

(9) J C dAg and then Ay connects 0 with P = P(QG).

Proof: (a) For n = 0, (a) holds by construction of Jy. Assume by induction that J,_1
is homeomorphic to S*. Then lemma 3 implies that J,, = G~!(J2_,) is homeomorphic
to S because by hypothesis JO_; intersects P.

(b) Again by induction. For n = 0, the result follows from proposition 1, part (c).
The hypothesis of the proposition and part (a) imply that J9_; intersects P in two
points. Now induction hypothesis implies that JO_; C cl(Bwx(G)), and it becomes
clear that J, is contained in cl(Bx(G)). Observe that cl(Buwo(G)) is not backward
invariant, as we saw in proposition 2, but for every point z in c/(By(G)) and interior
to the image of G, it holds that G=!(z) C cl(Bw(G)); in J,_1 there are exactly two
points not belonging to the interior of the image of GG, but they are accumulated by
other points in the interior of Im(G).

It remains to prove that actually, J, is contained in the closure of B (G):
this follows from the above together with the facts that JO_; C cl(B%(G)), J, is
homeomorphic to S* and J, N J,_1 # 0.

(c) Claim: Let {H;} be an increasing sequence of open sets; denote the boundary
of H; by hj, each h; homeomorphic to S*. Then limh; ezists and is equal to
h=0(Uy0 ;)

The proof of the claim is easy and we leave it. Then part (c) follows taking
HJ' = mt(JJ)

(d) If z € J, then there exists a sequence {z,}, each z,, € J,, such that 2z, — z.
As G(z,) € J2_; C J,_ 1, it follows that G(z) € J. J C cl(Bx(G)) because
Jn C c(Bx(G)). As J is bounded and forward invariant, it follows that actually,
J C 0B (@).

(e) As J is the boundary of an increasing sequence of simply connected sets, it follows
that int(J) is simply connected and hence J is connected.

(f) A is the minimal simply connected set containing Ao. As J contains 0, is contained
in 0B (G) C A(G), and is connected, it follows that A contains cl(int(J)).

(g) By part (d), J is contained in 0B (G) which is a subset of A(G); furthermore,
J is connected and contains 0. It follows that J C Ag, in fact, as J C 0B (G), we
conclude that J C dAy.

As each J,, intersects P, one can take a sequence {z,}, each z, € J, N P, and then
any convergent subsequence has its limit in J N P. |

Lemma 6 Let G € UF with € small enough. Then:
(a) ext(J,) NG~ (Jn 1) = 0 for every n < N implies that ext(Jn) C Boo(G).
(b) ext(Jn) \ U;V:_Ol G P(ext(In—p) N G7L(cl(int(IN_p-1))) C Buao(G).

Proof: (a) Observe that ezt(J,) N G7!(J,—1) = 0 if and only if G=!(Jp—1) C
cl(int(J,)). By lemma 3 part (b), this is equivalent to J, ; N Im(G) C JO_,.
But G~1(J2_,) = cl(int(J,)), hence the property above implies that G(ext(J,)) C
ext(J,_1). We can then conclude from the hypothesis of part (a) that GV (ext(Jn)) C
ext(Jo) C B (G).
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(b) Let z € ext(Jn) \ U;,V;ol G P(ext(In—p) N G~ (cl(int(JN—p-1))). For p = 0
this implies that G(z) ¢ cl(int(Jn—1)), thus G(z) € ext(Jn_1); then for p = 1 the
above expression implies that G(z) ¢ G '(cl(int(Jn—2))), or, which is the same,
G?(z) € ext(Jy_2). This shows how a simple induction argument implies that
G (z) € ext(Jy), completing the proof. a

Proposition 5 Let G € UF with € sufficiently small. If there exists N such that
IJN NP =10, then ext(Jn) C Boo(G).-

Proof: The proof will be made in several steps. Suppose that N be the minimal
natural number such that J,N P = (. If for some value of n < N, J,, contains 0, S, S;
and S2, then define 42, y1,~2 and 43 as the connected component of J,,\{0, S, S1, S2}
that join 0 with S, S with Sy, 0 with Sz and S; with S5 respectively.

Step 1: For every n < N the curve J, contains 0,S5,S51 and Ss.

The proof is by induction on n < N. For n = 0 it is clear by definition. Suppose
it is true for all 0 < j < n < N; it is enough to prove that S € JO, because this
implies S1, S92 € Jn41. In fact, it is enough to prove that 70 N P = (. Denote by
72 the connected component of v N Im(G) that contains Ss; if S» does not belong
to Im(G), take 72 = 0. Clearly, 72 = G~*(72_; U~2_;). Let (2p_1,wn_1) be the
point of intersection of ﬁfb_l with P. Suppose that |2,_1 —s1| > 1 where s; is the first
coordinate of S;. Then, as G is close to a delay endomorphism, G~!(33_,) cannot have
points with second coordinate greater than s; — 1, and then cannot intersect P, which
is close to {(z,y) : y = s1} in compact sets. On the other hand, if |z,—1 — s1| < 1,
then the same conclusion follows from the fact that G~1(32_;) cannot intersect 73_;.
The proof that G=!(y2_;) cannot intersect P is similar. This proves the claim.

In particular, it follows that Si1,S2 € Im(G) because the contrary assumption

implies J, N P # 0 for every n. Moreover, if z € J,, N for all n < N, then z € JO.
Step 2: Suppose that for some p < N it holds that © € Jg and © € J, for every
p<n<N. Thenz € J? for everyp<n < N.
If the assertion in step 2 is false, there exists some minimal natural number m such that
z ¢ J% and p<m < N. Then z ¢ J, and this implies that = ¢ J% by proposition 3.
As z € Jn, the preceding argument also implies that z ¢ J? for k > m. In particular,
z ¢ JY, but Jy is connected and contains the points 0 and z, so Jy N P # (), which
is a contradiction. This proves step 2.

Note that Ss € Im(G) was obtained as a consequence of step 1. This implies
G € G.

Recall from corollary 2 that if U is a small neighborhood of Q(x, 0), then Ag=2(U)
is a Cantor set contained in 9. Denote by K, this Cantor set. Moreover, x € Ky
implies z € J) for every n < N, and vo \ Ko C U,,»; G~2"(T'), where T is the segment
employed to construct the curve 7, see lemma 4. Define K = G~(K,) U G2(Ky);
then Ko C K C Jp and K = {z € Jo : G"(2) € Jy ¥Yn > 0}.

Step 3: Ifz € J,,, for somem < N and G™(z) € K, then z € Jn.

Note first that by definition of J,,,, G(z) € JJ,_; and then G’(z) € Jp, ; for every
1 < j < m. The fact that G™(z) € K implies that G™(z) € J? for every n < N.
It follows that G™ 1(z) € J,y1 for every n < N — 1 and as G™ " 1(z) € J?, then
the assertion in step 2 implies that G™~1(z) € JO for every 1 < n < N. Now we
will show that G™~2(z) € J? for every 2 < n < N: indeed, as G™ 1(z) € J? for
every 1 < n < N then G™%(z) € J,4; for every 1 < n < N. This together with
G™2(z) € J? imply, again by step 2, that G™~2(z) € J? for every 2 < n < N. So
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we can proceed by induction to obtain z € J? for every m < n < N, in particular,
z € Jn.

Now we analyze the components of Ji \ Ji_1 for £ < N. The next assertion is
trivial.
Step 4: If B is a connected component of Jy, \ Jy—1, then G¥(B) =53 and there is a
component o of Jy—1 \ Ji such that a U B is connected and G*(a) is a component of
T' = GY(T). We call B the substitution of o in Ji_1. The extreme points, p; and
p2, of the substitution B8 (B is an open interval) belong both to Jy—1 and Jy; moreover,
as these points are preimage of S1 or Sz, it follows that they are preimage of K. By
step 3 this implies that py and p2 belong to Jn, and hence belong to Im(G).

Let 3 be a substitution of some o C Ji_1.
Step 5: If BNP # 0, thenaNP # 0 and B cannot intersect an unbounded component
of P\ a.
Obviously the second assertion of step 5 implies the first one. Suppose that the second
assertion is not true. Then at least one of the extreme points p; of 3 is not contained
in JP. This implies that p; is not contained in J%,. However, it is known that p; € Jy
and this is a contradiction because Jy N P = (.
Step 6: G~1(73) is the union of the graphs of two functions ¢ and i defined in
an interval dy C £;.
As 33 and P are graphs of functions defined in the first coordinate axis, the vertical
line through any point of P intersects 73 in at most one point. The preimage of a
vertical segment joining a point of P with a point of 53 is an almost horizontal curve
joining two points of G~ (73), one located at each side of ¢;. Each of these curves
intersects £, thus defining an interval d; C ¢;. Then the function ¢ (resp. ;)
assign, to a point z € d; the corresponding point of G~1(53) located at the right
(resp. left) of 4;.
Step 7: [ is the union of the graphs of two functions go;: and ¢, defined in an interval
dy € G==1(4;). Moreover, pf(z) — z is almost horizontal for every = € dj, (see
figure 4(a)).
Observe that ¢ (z) — z is almost horizontal. If U is a small neighborhood of the
boundary of the square @, then there exists a neighborhood U of Fy such that DG~ 2(z)
mantains the horizontal directions whenever z and G~ 2(z) belong to U. Perhaps
there is a finite number m of iterates needed to have G~™(53) contained in U, but
certainly this m is uniformily bounded for G € Y. This permits to establish the fact
that DG~™(pi (z) — z) (the derivatives calculated at points close to () is almost
horizontal. The assertion of the step follows easily.

Now we study the intersection of P and ; as P is almost horizontal one can give
a P-order in the set P N (: we say z < y in P N g if the first coordinate of z is less
than that of y. Using ‘Pk+ and the fact that dj, is an interval, one can naturally assign
a ¢} -order in PN graph(y}). It is clear now that the identity map of PN graph(p})
is order preserving (or order reversing, dependingon the choise of the first point of
dr). The same can be done with P N graph(yp, ). We have almost obtained:
Step 8: No component of 3N P is contained in an unbounded component of P\ 7.
As we saw in step 5, S cannot intersect P in an unbounded component of P \ a. So
the assertion in step 8 can only be false if there exists an intersection point of P and
[ with first coordinate less than z;. This would contradict the fact that the orders
determined by § and by P on PN j are coincident. See figure 4(b).
Step 9: Every component of Jp N Im(G) is contained in f,?.
We have proved in the preceding step that no component of J; has points in P with
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Figure 4. The curve 8 and the graph of ¢,

first coordinate less than z;. Analougous to the definition of z; one can define, for each
J the other point of JP N P (that is, the extreme point of JP closest to S;); denote
it by (zk,yr)- The same proof we did above implies that no point of a substitution
B of Ji, can have intersection with a point with first coordinate greater than z;. The
assertion in step 9 follows.

Now the lemma 6 implies the result. O

Proposition 6 Suppose that for some n, J, N P = (. Then G~™(J,) has 2™
connected components, and ext(G~™(Jy)) is contained in Bu(G), so Buo(G) is
connected. Moreover, A(G) has uncountably many components.

Proof: The only fact that deserves attention is that as a consequence of step 3 of the
last proposition, no component of A(G) is contained in cl(ext(J,)). The rest of the
proof is very simple. a

Proof of the theorems A, B and C.
Theorem A was proved in proposition 2. For the proofs of theorems B and C suppose
first that every J,, intersects the boundary P of Im(G). Then the proposition 4 implies
that the limit of the sequence J,, exists and is a forward invariant curve J intersecting
P; it follows that J contains critical points. This proves one of the directions in
theorem B and part (a) of theorem C. To prove the other direction of theorem B,
assume now that there exists some N such that Jy NP = (). The proposition 5 implies
that ext(J,) C B (G), and it follows that P, and consequently 7, is contained in
B (Q).

To prove the first assertion in (b) of theorem C we use proposition 6. It remains
to show that in this case, every point in @B, (G) is accumulated by preimages of 0
and this is consequence of the facts that for every k, Ji N Im(G) is contained in f,‘c)
(step 9 of proposition 5) and that the Hausdorff limit of J, is {0}. a

4. The symmetric family

In this section we will consider an example of application of the preceding
constructions.  Let g,;(z,y) = —z® — by? + pz + buy and define G, as
the delay endomorphism associated to the delay equation of order two z,42 =
gu,b($n7$n+1)’ n 2 0.

Observe that G, is the quadratic family of order two. The advantage in
considering this particular family is the symmetry it shows; this permits to avoid
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a large number of (possible) complicated cases and permits to illustrate better the
results of the last sections.

Taking p near 4 and b near 0, and calculating the eigenvalues of DG, ;(0) it
follows that G, € Ut if and only b > 0 and G, € U if and only if b < 0, for some
e. Clearly every curve J,, is C* when b > 0 and every J,, has cusps at the preimages of
0 it contains when b < 0. On the other hand, the line ¢; () of critical points of G, 5 is
z = p/2 and the boundary, P(u), of the image of G, 5 is the parabola with equation
y = —bx? + buz + p?/4. Observe that P(u) is symmetric with respect to £1(u).

The another preimage of the origin is S = (u,0), which has preimages S1 = (i, u)
and Sz = (0, u). It becomes clear that G, 5 € G, if and only if i < 4. By the symmetry
it follows that the distance from S; and S2 to P(u) is the same. Therefore lemma 5
implies that Jy is forward invariant if and only if pu < 4.

We will consider only the case b < 0, leaving the case of b > 0, for which the
properties are quite similar. Next we state some properties for this family.

1.- There exists some pg € (0,4) such that Jy is backward invariant only for p € (0, po).
Moreover pg is the first point of discontinuity of the mapping p — A(G,); for every
p € (0, o), Boo(Gpuyp) is connected and A(G ) is the closure of int(Jy).

Observe that by theorem 5 we have only to prove that v3 intersects P(u) also
for some p < 4. Indeed, consider the less expanding vector (1, A\T) at the origin. Its
second preimage is a vector tangent to v3 at Sa; this vector is of the form (u,v) with
u > 0 and v < 0 and trivially transverse to the parabola P(u). So there must exist
some intersection beetwen P and 3 before u = 4. This proves the first assertion. Now
define pg as the least value of u for which v and P(u) have nonempty intersection.
This intersection must be a tangency because ¥3 is of class C'. By the claim of
proposition 2 it follows that po is a discontinuity point of x4 — A(G,p). The last
asssertion follows trivially from lemma 5.

2.- Let uy = 4(1 —b). Then p1 is the greater value of the parameter for which P(u)
intersects Jo. Consequently, G, € Ho if and only if p > p.

It is not difficult to prove that the set ext(Q,), (where @, is the square of
vertices 0, S,51,52) is forward invariant. This implies that Jy is contained in the
closure of int(Q,). Moreover the preimages of S; have second coordinate equal to g,
and belong to v3. It follows that the last parameter y for which P(u) and 4 have
nonempty intersection is that for which P(u) contains the preimages of S; and this
easy calculation gives the value of y;.

3.- Boo(Gp,p) is connected iff v does not belong to the interval (uo, p1). For p in this
interval Boo(Gpp) has infinitely many components.

The first assertion is a trivial consequence of the two properties above. It
remains to prove the second one. Observe that for u € (uo,u1), there is at least a
nontangencial intersection beetwen P(u) and 3. Tt follows that there is a component
J¢ of Jo N Im(G) contained in v*. Then int(G~1(J3)) is contained in B (G, ) and
also in int(Jy). Therefore By (G, ) is not connected for these parameters. Moreover
this new component of By (G ) has infinitely many disjoint preimages.

Now we show some figures illustrating the different situations described above for
the symetric family with b < 0.

The figures 5 and 6 were constructed taking the preimages of 0. In the figure 5,
up(z,y) = —22+0.3y*> +4.12 — 1.23y, so p > 4 and J has this fractal aspect (observe
that for u < 4 J = Jy, hence it is C' except at the points 0,5, 5; and S»). One can
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also infer, from the figure, that u < uo because B, (G ) is connected (if this were
not the case, then there would be preimages of the origin in int(J)). It follows that
J = 0B (G ). In the figure 6, g, 5(z,y) = —2® + 0.3y? + 4.8z — 1.44y. It is clear
that Boo(Gpp) is not connected; the white components of int(J) are all contained
in Boo(Gpp) and its boundaries are preimages of J. As J still exists (and contains
critical points) the parameter u necessary lies between pg and p;.

7

L

Figure 5.

Figure 6.

The figures 7 and 8 were also obtained from the plotting of the preimages of the
fixed point at the origin. In the first case, figure 7, u = 4.4 and b = —0.1. Observe
that the parameter y satisfies the equation yu = 4(1 —b), that is, 4 = u;. So this is the
last point of existence of the curve J. Again, the white components are contained in
Boo(Guyp)- It follows that there exists only two point of /; that are not contained in
Bwo(Gpp)- In the figure 8 we have considered g, »(z,y) = —z2+0.1y>+4.472—0.447y,
s0 > p1, 1 C Boo(Gpp), J has disappeared and it seems that the complementary
set of Boo(G,p) is a Cantor set. Now B (G ) is a connected set.

In all the figures 5 to 8 the preimages of the fixed point 0 seem to be dense
in the curve J. In the figures 9 and 10 we leave the symmetric family to obtain a
clear example where J is not accumulated by the preimages of 0. In this last figures

9up(z,y) = —z% + 0.35y + 5z — 1.966y. In this case the curve J still exists and it is
connected.
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Figure 7. Figure 8.

In figure 9 we have plotted the preimages of the fixed point 0; in figure 10 we
took some point in iné(J) and plotted its preimages. Now it is possible to observe all
the curve J and its preimages. The fact that unables the preimages of the origin to be
dense in J is that a periodic point of saddle type belongs to J. So G, 5 restricted to J
has an attracting periodic orbit that cannot contain preimages of the origin. It follows
also that the immediate stable manifold of the saddle is contained in J, therefore J
contains smooth curves and is fractal elsewhere.
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