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Abstract. Let M be a smooth compact Riemannian manifold
without boundary, and φ : M × IR → M a transitive Anosov flow.

In 1975, Palis and Pugh wondered whether the time one map of
a transitive Anosov flow could be approximated by hyperbolic or
Axiom A diffeomorphisms.

It is a well known fact that in the case when the flow arises from
the suspension of an Anosov diffeomorphism g : N → N such an
approximation can be carried out with Axiom A diffeomorphisms.

In the case of dim(M) = 3 or 4, we prove that if the time one
map of a transitive Anosov flow is C1-approximated by Axiom A
diffeomorphisms, then it is flow equivalent to a suspension of an
Anosov diffeomorphism.

Introduction

Throughout this paper M denotes a smooth compact Riemannian
manifold without boundary, and φ : M × IR → M a Cr flow, with
r ≥ 1.

Let us consider that φ is an Anosov flow (see Definition 1.1) and
let fτ (x) = φ(x, τ), ∀x ∈ M be the flow φ at time τ . Although fτ
is not an Anosov diffeomorphism (see Definition 1.2), there exists a
Dfτ -invariant splitting of TM

TM = Es ⊕ Ec ⊕ Eu,

such that Dfτ |E
s is uniformly contracting, Dfτ |E

u is uniformly ex-
panding, and Ec is a nonhyperbolic central direction, i.e. fτ is a par-
tially hyperbolic diffeomorphism.

The object of our study are transitive Anosov flows ( i.e. the case
when the non-wandering set is the whole manifold).

An interesting question is what kind of dynamical system can appear
under perturbations of a time one map of a transitive Anosov flow.

Palis and Pugh (see [8]) wondered whether the time one map of a
transitive Anosov flow could be approximated by hyperbolic or Axiom
A diffeomorphisms.
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We shall give a precise answer to this problem in case dim(M) = 3
or 4.

It is a well known fact that in the case when the flow arises from
the suspension of an Anosov diffeomorphism g : N → N such an
approximation can be carried out with Axiom A diffeomorphisms. Let
us explain it:

The suspension manifold Ng is obtained from the direct product
N×[0, 1] by identifying pairs of points of the form (x, 0) and (g(x), 1) for
x ∈ N . The suspension flow ϕ(x, t) is determined by the vector field ∂

∂t
.

We have that the suspension of an Anosov diffeomorphism is an Anosov
flow in the corresponding manifold. Besides, if the diffeomorphism is
transitive; so is its suspension.

The manifold Ng is fibered over S1 and the projection of the time one
map onto S1 is the identity map. Let f be a diffeomorphism preserving
fibers, C1- close to ϕ(x, 1) such that the projection of f over S1 is a
Morse-Smale map. We have that f is an Axiom A diffeomorphism.

On the other hand, Bonatti and Dı́az ( see [1]) proved that if τ is a
period of a periodic orbit of a transitive Anosov flow, then there exist
an open set U of nonhyperbolic and transitive diffeomorphisms, and a
sequence (gn)n∈IN , gn ∈ U such that gn → fτ .

Recall that two flows ρ and ψ are conjugated if there exists a home-
omorphism H such that H maps orbits of the flow ρ onto orbits of
the flow ψ preserving the orientation given by the positive time di-
rection. Both flows are flow equivalent if H preserves the time, i.e.
ρt(x) = H−1 ◦ ψt ◦H(x) ∀x, ∀t ∈ IR.

Our main result is:

Theorem 1. Let M be a smooth compact riemannian manifold with-
out boundary, dim(M) = 3 or 4. If the time one map of a transitive
Anosov flow is C1-approximated by Axiom A diffeomorphisms, then it
is flow equivalent to a suspension of an Anosov diffeomorphism .

A codimension one Anosov flow defined on an n-manifold M is an
Anosov flow such that for all x ∈M , dimEs(x) = 1 or dimEu(x) = 1.
It is worthwhile to note that Verjovsky ( see [10]) proved that if n > 3
any codimension one Anosov flow is transitive ( see [3] for a counterex-
ample in dimension 3 ). Then we have the following

Corollary 0.1. Let dim(M) = 4. The time one map of an Anosov
flow φ can be approximated by Axiom A diffeomorphisms if and only if
φ is flow equivalent to a suspension of an Anosov diffeomorphism.

In a previous work we have proved that if the time one map of a
transitive codimension one Anosov flow is C1-approximated by Axiom
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A diffeomorphisms verifying a technical property related to periodic
points, then the flow is conjugated to a suspension of an Anosov dif-
feomorphism ( see [4] ).

Now we can remove this technical property asked for the Axiom A
diffeomorphism before.

Besides, we prove flow equivalence now, instead of conjugacy showed
earlier.

Let us give a rough outline of the proof of our theorem. The ba-
sic idea is that if the time one map of the flow can be approximated
by Axiom A diffeomorphisms, then we can find a (topological) global
section. This is done through the following steps:

We study attractors of Axiom A diffeomorphism close to the time
one map of a transitive Anosov flow (see Section 1).

We examine the projection along the central foliation to conclude
the following fact:
Let A be an attractor set of f and let W s(A) be its stable set, then
there exists a residual set Q of W s(A) such that ∀x ∈ Q, ∀y ∈ W s(x)
there exists yx in the connected component of the central leaf of y inter-
section W s(A) verifying that yx ∈ A, i.e. ∀y ∈ W s(x), the connected
component of ( W c(x) ∩W s(A)) ∩ A 6= ∅ ( see Section 2).

We use this fact to construct, in Section 3, a connected and closed

set, E, included in the universal covering of M , M̃ , satisfying that

A ⊂ Π(E), where Π : M̃ → M is the canonical projection. We prove
that E is Γ-invariant or Γ(E) ∩ E = ∅, for every covering transforma-
tion Γ and Π(E) is a compact set in M .

In Section 4, we define an equivalence relation in M̃ , ∼, and we de-
duce that E/ ∼ is a closed hypersurface and Π(E/ ∼) is a compact
hypersurface in M .

Let M̂ = M̃/ ∼

Besides there exists F̂ : M̂ → M̂ , the canonical projection of F ,
where F is a lifting of f , and it holds that the central foliation of

F̂ , F c
F̂

is topologically transversal to E/ ∼. Analogously there exists

f̂ : M/G′ → M/G′, the canonical projection of f , where M/G′ is the

projection of M̂ , and it holds that the central foliation of f̂ , F c
f̂

is

topologically transversal to Π(E/ ∼).

The key of this section is to find a homeomorphism H : M̃ → M̂
satisfying that H is Γ-invariant, for every covering transformation Γ
and H(W c

F (x)) = W c
F̂
(H(x)).

Hence, we obtain the existence of a homeomorphism g : M →M/G′

verifying g(W c
f (x)) = W c

f̂
(g(x)).
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We have the following diagram:

M̃

F

** H //

π

��

M̂

F̂

tt

π

��

M

f

44
g

//M/G′

f̂

dd

Therefore F c
f is topologically transversal to the compact hypersurface

g−1(Π(E/ ∼)).
From this fact, we can find a global section for the flow and we

show that the flow is topologically conjugated to a suspension of a
codimension one Anosov diffeomorphism.

The flow equivalence is proved in Section 5. This proof is based on
the rotation numbers of f restricted to periodic orbits.

1. Properties of basic sets.

Some of the statements of the present and the following sections have
already appeared in ([4]).

We include them for completeness and because some of their proofs
have been simplified.

We begin recalling some basic definitions about flows and diffeomor-
phisms.

Definition 1.1. A compact φt−invariant set, Λ ⊂M , is called a hy-

perbolic set for the flow φ if there exist a Riemannian metric on
an open neighborhood U of Λ, and λ < 1 < µ such that for all x ∈ Λ
there is a decomposition

Tx(M) = Es
x ⊕ Eu

x ⊕ E0
x

such that ∂tφ(x, t)|t=0 ∈ E0
x − {0}, dim(E0(x)) = 1, Dxφt(x)(E

i
x) ⊂

Ei
φ(x,t), with i = s, u, and

‖Dxφ(x, t)|Es(x)‖ ≤ λt with t ≥ 0

‖Dxφ(x, t)|Eu(x)‖ ≤ µt with t ≤ 0.

A Cr flow φ : M × IR → M , is called an Anosov flow if M is a
hyperbolic set for φ.

Let f : M →M be a Cr diffeomorphism .



APPROXIMATION OF ANOSOV FLOWS 5

Definition 1.2. An f -invariant set Λ is called hyperbolic if there
exists a Df -invariant decomposition of TΛM such that

TΛM = Es ⊕ Eu

and Df |Es is uniformly contracting and Df |Eu is uniformly expanding.
More precisely, there are c > 0 , λ, with 0 < λ < 1 such that for all
x ∈ Λ

‖Dxf
n|Es(x)‖ < cλn

and

‖Dxf
−n|Eu(x)‖ < cλn.

A diffeomorphism f : M →M is called an Anosov diffeomorphism

if M is a hyperbolic set for f .

Let f1 : M →M, the time one diffeomorphism of φ defined as

f1(x) = φ(x, 1), ∀x ∈M,

where φ : M×IR →M is a codimension one Anosov flow if dim(M) > 3
(In the case that dim(M) = 3, codimension one property is replaced
by transitivity.) Without loss of generality we may assume dimEs

x =
n− 2 and dimEu

x = 1 for all x ∈M.
Since φ has no singularities, it follows that there exist f1-invariant

foliations F cs, F cu, F ss, Fuu and F c. Notice that the leaf of F c through
x is the same as the φ-orbit of x, and we denote it by F c(x) or W c

φ(x)
or Oφ(x).

By well known properties of transitive Anosov flows, we have that

{F c(x)|F c(x) is a closed set } is dense in M.

{F c(x)|F c(x) is dense in M} is a residual set.

If O is a periodic orbit of φ, then W s(O) consists of all points whose
foward φ orbits never stay far from O and W u(O) of all points whose
reverse φ orbits never stay far from O. Both of them are dense in M ,
and so are F cs(x) and F cu(x) ∀x ∈ O.
Since f1 is Cr, we have that the leaves of F cs, F cu and F c are Cr.
Let f : M → M be a diffeomorphism C1-close to f1. The map f
is plaque expansive (see [6] ), there exist F cs

f , F cu
f and F c

f and there
is a homeomorphism h : M → M close to the identity such that if
h(x) = x′, then F c

f (x
′) is C1-close to F c

f1
(x) in compact sets and the

manifolds F cs
f (x′) and F cs

f1
(x) are C1-close in compact sets. In addition,

hof1(F
c
f1

(x)) = foh(F c
f1

(x)).
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Therefore every leaf of F c
f is invariant and every periodic point of f is

in a closed leaf of F c
f .

According to what was mentioned above we have that

{F c
f (x)|F

c
f (x) is a closed set} is dense in M

and

{F c
f (x)|F

c
f (x) is dense in M} is a residual set.

Let us denote by F c
f (x) or by W c(x) the leaf of the central foliation

through the point x.
The metric induced by the Riemannian metric on the leaves of F c

f

will be denoted dc. Analogously we define ds and du.
We recall that a diffeomorphism f : M → M satisfies Axiom A if

the non-wandering set Ω(f) is hyperbolic and the set of periodic points
is dense in Ω(f).

From now on we will assume that f is an Axiom A diffeomorphism
C1− close to f1.

Let O = F c
f (x) where F c

f (x) is a closed curve.
The rotation number of f must be rational, because if it were irra-

tional, there would be an hyperbolic minimal set I ⊂ O and it would
be included in a basic set Λ.
If O ⊂ Ω(f) then O would be in a basic set and f |O would be expansive
which leads to a contradiction with the nonexistence of one dimensional
expansive diffeomorphism. Let y ∈ O then α(y) = ω(y) = I, hence

y ∈ W s(I) ∩W u(I) ⊂ W s(Λ) ∩W u(Λ) ⊂ Λ,

therefore y ∈ Ω(f) which is a contradiction.
Furthermore, there exist at least two periodic orbits in O because

f is an Axiom A diffeomorphism. All the points in Ω(f) ∩ O must
be periodic because if there were a nonperiodic point, x ∈ Ω(f) ∩ O
then the invariance of Ω(f) ∩ O implies that α(x) and ω(x) would be
periodic points of different indices so they would be in different basic
sets. Summarizing we have proved

Lemma 1.1. If O = F c
f (x) is a closed curve then

• the rotation number is rational
• there exists at least two periodic orbits in O.

From now on, we choose an orientation for F c, and denote Ca
b the

curve included in a central foliation leaf, between a and b.
We will consider the connected component of F c(a) between a and

b in the positive direction from a, in the case that F c(a) is a closed
curve.
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We will assume that Cx
f(x) is the connected component of W c(x)

between x and f(x), in such a way that length of Cx
f(x) is close to the

length of the φ-orbit of x, between x and φ(x, 1). This implies that in
finitely many cases of closed central manifold, Cx

f(x) winds around itself
more than once. Notice that in these cases the definition of Cx

f(x) does
not agree with the previous one.

Let us recall that there exists a finite number of attractors (repellers)
whose basin of attraction (repulsion) are open since f is Axiom A.
Let us show some elementary properties of attractor basic sets.
Let A denote an attractor basic set of the spectral decomposition of f .
Notice that A 6= M because f can not be an Anosov diffeomorphism.
There is no loss of generality if we consider that A is connected.

Lemma 1.2. Dim(W s(x)) = n− 1,∀x ∈ A

We have assumed that dim(Es
φ) = n − 2, then as f is C1-close to

f1 we have that dim(W s(x)) = n − 1 or dim(W s(x)) = n − 2 for all
x ∈ Ω(f).

Let x ∈ A ∩ per(f), where per(f) is the set of f -periodic points.
Suppose that dim(W s(x)) = n− 2.

Since A is an attractor, W u(x) ⊂ A; hence F c
loc(x) ⊂ W u(x) ⊂ A. The

set A is closed and f -invariant so there exists x′ ∈ F c(x)∩A∩ per(f).
But dim(W s(x′)) = n − 1 since dim(W s(x)) = n − 2 . It follows
that there exist two periodic points of different indices in A, which is
impossible.

Lemma 1.3. For every closed curve O in F c there exists a periodic
point p ∈ A ∩O.

Since O is closed, W s(O) is dense in M and W s(A) is an open
set, there exist y in W s(O) ∩W s(A) and y′ ∈ W ss(y) ∩ O such that
y′ ∈ W s(A).
As y′ ∈ O, y′ ∈W s(p) for a periodic point p ∈ O. Then p ∈ A∩O.

Remark 1.1. Let K = maxx∈M length(Cx
f(x)). K is finite because M

is compact and the map g : M → IR such that every x ∈ M is mapped
into the length of Cx

f(x) is continuous.
The previous lemma implies that in every segment γ of central closed

curve with length(γ) ≥ K, there exists a periodic point p ∈ γ ∩ A.
Analogously we have that in every segment γ of central closed curve

with length(γ) ≥ K, there exists a periodic point p ∈ γ ∩ Λ, where Λ
is a repeller set.

Corollary 1.1. Every leaf of F c intersects A.
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Let γ ⊂ F c with length(γ) ≥ K. Since

{F c
f (x)|F

c
f (x) is a closed set} is dense in M,

we can choose arcs γn such that γn are included in closed leaves of F c ,
γn → γ, and length(γn) ≥ K. Then, there exists a sequence (pn) such
that pn ∈ A ∩ γn, and any of its limit points p ∈ γ ∩ A.

Lemma 1.4. In every leaf of F c
f there exists at least one point outside

of W s(A).

If F c
f (x) is closed, by the remark of lemma 1.3 we have that in every

segment γ of central closed curve with length(γ) ≥ K, there exists a
periodic point p ∈ γ such that p /∈W s(A).

Suppose that there exists a curve γ ⊂ F c
f (x) such that γ ⊂ W s(A)

and length(γ) ≥ K + 1.
Then there exists an open set V , V ⊂ W s(A) and γ ⊂ V . There exists
y ∈ V such that W c(y) is closed, and W c(y) ∩ V has length greater or
equal than K. This gives the existence of a point p ∈ W c(y) ∩ V , such
that p /∈ W s(A) which is a contradiction.

Note that we have proved that every leaf of the central foliation ”goes
away ” from the basin of attraction of any attractor.

Lemma 1.5. No arc γ, γ included in F c
f (x) for any x, satisfies γ ⊂ A.

Suppose the statement is false, i.e. there exists γ ⊂ W c
loc(x) such

that γ ⊂ A. Since γ ⊂ A ⊂ W s(A), then the negative iterates of γ are
included in A and the length of them grow exponentially.
Let z ∈ α(x) then z ∈ A and by the proof of lemma 1.4, W c(z) has to
intersect ∂(W s(A)), but W c(z) ⊂ A ⊂ W s(A), which yields a contra-
diction.

Remark. All the above lemmas admit versions for repeller basic sets
and the proofs are analogous. In fact, if Λ is a repeller basic set, then
for x ∈ Λ, Dim(W s(x)) = n−2, every leaf of F c

f intersects Λ, in every
leaf of F c

f there exists a point outside of W u(Λ), and no γ included in
F c
f (x) satisfies γ ⊂ Λ.

2. Properties of the projection along the central

foliation.

Let us introduce the following maps:

Definition 2.1. Let SA : W s(A) → ∂W s(A) be a map such that, for
every x in the basin of the attractor A, SA(x) is the nearest point in its
central leaf in the positive direction verifying that it is not in the basin
of attraction of A.
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Definition 2.2. Let S̃A : W s(A) → ∂W s(A) be the map analogous to
SA, but in the negative direction of the central foliation .

Definition 2.3. Let S : A → ∂W s(A) be the restriction of SA to A
and S̃ : A → ∂W s(A) the restriction of S̃A to A.

By lemma 1.4 we have that the previous maps are well defined.

Let W̃ c(x) = C
S̃A(x)
SA(x) denote the connected component of W c(x) ∩

W s(A) which contains x.
Let l : A → IR, l(x) = length(Cx

S(x)).

Lemma 2.1. l is lower semicontinuous.

We have that Cx
S(x) − {S(x)} ⊂ W s(A) and W s(A) is an open set.

The central foliation is a C1- lamination because f is C1-close to the
time one map of an Anosov flow (see [6] ), hence for all ε > 0 there
exists a neighborhood Ux of x such that if y ∈ Ux then the curve Cy

y′

included in F c(y) with length(Cy
y′) = l(x) − ε is included in W s(A).

Then l(y) ≥ l(x) − ε which proves that l is a semicontinuous map.
Since l : A → IR is semicontinuous, the set R of points of continuity

of l is a residual set. Let Φ : M × IR≥0 → M such that Φ(x, l) = z, if
z ∈ W c(x), z is in the positive direction of W c(x) and length(Cx

z ) = l.
Φ is a continuous map then

S(x) = Φ(x, l(x))

is continuous over R.
Without loss of generality we can assume that R is a residual set of

continuity for both S and S̃ .
Analogously there exists a residual set Q in W s(A) such that Q is a set
of continuity for SA and S̃A.

Let us prove some properties of the map S. They are verified by S̃
and the proofs are analogous.

Lemma 2.2. S(R) is f -invariant.

Let x ∈ R, y = S(x). For all z ∈ Cx
y −{y}, we have that z ∈W s(A),

f(z) ∈ W c(f(x)) and f(z) ∈ W s(A). Since f(y) ∈ ∂W s(A) it follows
that f(y) = S(f(x)). Replacing f by f−1 we conclude that

f(S(R)) = S(R).

Lemma 2.3. S(R)is transitive and S(R) ⊆ Ω(f).
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Since the set of dense orbits is a residual set in A, we have that there
exists x ∈ R such that its orbit is dense in R.

By continuity of F c, we conclude that the image of a dense orbit is
dense in S(R) therefore ∀y ∈ S(R) we have that y ∈ w(S(x)) then
y ∈ Ω(f).

We have proved that S(R) ⊆ Ω(f).

Corollary 2.1. From the above properties we conclude that S(R) is
included in Λ, a basic set of the spectral decomposition of f .

Lemma 2.4. For all y ∈ S(R), dim(W s(y)) = n− 2.

Let y = S(x) with x ∈ A; since dim(W ss(y)) = n−2 and dim(W uu(y)) =
1, dim(W s(y)) = n − 1 or n − 2, but by lemma 1.2 if z ∈ Cx

y − {y}
then z ∈ W s(x). Then

W c
ε (y) = {z ∈W c(y) such that dc(z, y) < ε}

can not be included in W s(y) and we can assert that dim(W s(y)) =
n− 2.

Lemma 2.5. The set of periodic points in A \ R is nowhere dense in
A.

In order to prove the lemma it is enough to prove:
Let (pn)n∈IN be a sequence of periodic points such that S is not

continuous at pn and pn → x. Then S is not continuous at x.
Let qn = S(pn).
Since pn is a point of discontinuity, there exist α > 0 and (rnk) ⊂ A
such that limk→∞ rnk = pn and

length(C
rnk
S(rnk )) > length(Cpn

S(pn)) + α

and for any ε with 0 < ε < α
2

there exist (snk) ⊂ R such that limk→∞ snk =
pn and

length(C
snk
S(snk )) ≥ length(C

rnk
S(rnk )) − ε > length(Cpn

S(pn)).

It follows that there exists a periodic limit point of S(snk), q′n, in
W c(pn).

Both qn and q′n are in W c(pn)∩S(R), are periodic and dim(W s(qn)) =
dim(W s(q′n)) = n − 2. Since qn and q′n are in the same closed leaf of
F c, it follows that there exists a periodic point p′n, such that p′n ∈ Cqn

q′n
and dim(W s(p′n)) = n− 1.

Suppose, contrary to our claim, that S is continuous at x.
From pn → x we conclude that qn → S(x) by the continuity of S at
x.(See Figure 1)
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Besides q′n → S(x) because there exist (snk) ⊂ R such that limk→∞ snk =
pn and limk→∞ S(snk) = q′n. Letting a convenient subsequence k(n), we
can assert that

lim
n→∞

snk(n)
= x and lim

n→∞
S(snk(n)

) = S(x)

by the continuity of S at x. This gives q′n → S(x).
Then dist(qn, q

′
n) → 0 when n → ∞ and dc(qn, q

′
n) → 0 when

n→ ∞.
But dc(qn, q

′
n) > min{dc(p′n, q

′
n), d

c(pn, q
′
n)} and this leads to a contra-

diction because p′n and q′n (or pn and q′n ) are in different basic sets
because they have different indices.
We have proved that S is not continuous at x.

Observe that as a consequence we have that for all x ∈ A there exists
a sequence of periodic points (pn)n∈IN ⊂ R such that pn → x.

Lemma 2.6. S(W s(x)) ⊂ W s(S(x)).

Let x ∈ A , y ∈ W s(x) ∩ A. Suppose that S(y) /∈ W s(S(x)).
Since S(y) ∈ F cs(x) there exists z = W s(S(y))∩W c(x). We have that
∀w ∈ ∂(W s(A)), W s(w) ⊂ ∂(W s(A)), then W s(S(x)) ⊂ ∂(W s(A)) ∀x ∈
A, and z ∈ ∂(W s(A)), but this contradicts the definition of S.

Lemma 2.7. If x is a point of continuity of S, then all the points in
W s(x) ∩ A are continuity points of S.

Let x be a point of continuity of S, y ∈ W s
loc(x) ∩ A. We first prove

that y is a continuity point of S.
Let {yn}n∈IN ⊂ A, such that limn→∞ yn = y. There exists xn =
W s
loc(yn) ∩W

u(x) and yn ∈ W s(xn). By continuity of the stable folia-
tion, we have limn→∞ xn = x, and by continuity of S at x we conclude
that limn→∞ S(xn) = S(x).
From yn ∈ W s(xn), and the above lemma, it follows that S(yn) ∈
W s(S(xn)), hence S(yn) = W s

loc(S(xn)) ∩W
c(yn).

By the continuity of W s and W c we have that:
limn→∞W s

locS(xn) = W s
locS(x) and limn→∞W c(yn) = W c(y); hence

lim
n→∞

S(yn) = W s
locS(x) ∩W c(y) = S(y).

We have proved that ∀y ∈ W s
loc(x) ∩ A, S is continuous at y i.e.

S|
W s
loc

(x)∩A is continuous.

Now, if z ∈ W s(x)∩A there is N > 0 such that fN(z) ∈ W s
loc(f

N(x))∩
A and the previous argument still applies.

Remark. Note that lemmas 2.6 and 2.7 are verified not only by S
and S̃ but also by SA and S̃A. The proofs are analogous.
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Lemma 2.8. If x ∈ A, then x is a point of continuity of S if and only
if x is a point of continuity of SA.

We only have to prove that if x ∈ A is a point of continuity of S
then it is a continuity point of SA.
Let y be a point close to x, then y′ = W u

loc(x)∩W
s
loc(y) is a point in A

such that S(y′) is close to S(x) and

SA(y) = W s(S(y′)) ∩W c(y) is close to SA(y′) = S(y′).

Hence SA(y) is close to SA(x) = S(x).
Let us prove the next lemma

Lemma 2.9. Let x be a continuity point of SA and S̃A,(i.e. x ∈ Q )

then for all y ∈ W s(x), W̃ c(y) ∩ A 6= ∅ .

Recall that W s
ε (x) = {y ∈ W s(x) such that ds(x, y) < ε}. Let ε > 0

be such that ∪
x∈AW

s
ε (x) ⊂ W s(A).

Let x ∈ Q and Ux be a neighborhood of x such that for all y ∈ Ux

we have that length(W̃ c(y)) is close enough to length(W̃ c(x)), and

let y ∈ Ux ∩ W s(x). Since W̃ c(y) ⊂ W s(A) and W s(A) is open,

there exists a neighborhood of W̃ c(y), V, such that V ⊆ W s(A) and

V ⊂ ∪z∈Ux(W̃
c(z)), in such a way that if z ∈ V∩A then length(W̃ c(z))

is close enough to length(W̃ c(y)).
By the density of the closed leaves in the central foliation, there exists
a curve ζ in V, included in a closed leaf of the central foliation, O such
that ζ = O ∩W s(A).

There exists a periodic point p such that p ∈ ζ ∩ A, ζ = W̃ c(p) and
since SA and S̃A are continuous at y by the remark of lemma 2.7, the

lengths of W̃ c(y) and ζ are close; and the lengths of the curves Cp
SA(p),

and C
S̃A(p)
p are greater than the ε previously defined.

Then, considering open sets Vn such that Vn → W̃ c(y), we can assert
that there exist curves ζn ⊂ Vn and periodic points pn ∈ ζn ∩ A such

that the lengths of W̃ c(y) and ζn are close; and the lengths of the curves

Cpn
SA(pn), and C

S̃A(pn)
pn are greater than ε.

Since ζn converges to W̃ c(y) and the distance of pn to ∂(W s(A))
is bounded away from 0, there exists a limit point p of pn such that

p ∈ A ∩ W̃ c(y).
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We have proved that if x ∈ Q then

∀y ∈ W s
loc(x),∃p ∈ W̃ c(y) ∩ A.

Successive applications of this proceeding enables us to conclude that
if x ∈ Q

∀y ∈ W s(x),∃p ∈ W̃ c(y) ∩ A.

Remark. By this lemma we have that if x ∈ A is a continuity point

of S and S̃, then

∀y ∈W s(x), W̃ c(y) ∩ A 6= ∅.

Corollary 2.2. Λ = S(R) is a repeller set.

Let x ∈ Q ∩ A, z ∈ W s(S(x)) and z′ = W c(z) ∩ W ss(x). Since

z′ ∈W s(x) with x ∈ Q, then by lemma 2.9 there exists q ∈ W̃ c(z′)∩A;
hence S(q) = z and z ∈ S(R). Then

∀x ∈ Q ∩ A,W s(S(x)) ⊆ S(R).

We have proved that S(R) is included in a basic set Λ. Now, if y = S(x)
with x ∈ A ∩Q then

W s(y) ⊆ S(R) ⊆ S(R) ⊆ Λ ⊆ W s(y).

It follows that S(R) is a basic set, and since it contains a stable mani-

fold we have that Λ = S(R) is a repeller set.

Lemma 2.10. Let Λ be a basic set and x ∈ Λ.

(1) If dim(W s(x)) = n−1 then there is a finite number of points of
Λ in the connected component of W c(x) ∩W s(Λ) that contains
x.

(2) If dim(W s(x)) = n−2 then there is a finite number of points of
Λ in the connected component of W c(x)∩W u(Λ) that contains
x.

We will prove just the first statement.
Suppose that it is false. Then we can choose {xi} in Λ∩W s(Λ)∩W c(x),
such that x1 < x2 < . . . < xl < . . . in the given orientation of W c(x).
There exists k > 0 such that f−1|W c

k
(x) ”expands”, ∀x ∈ A. Then there

exists n1 ∈ IN verifying that length(f−n1(Cx
x1

)) > k, for all n ≥ n1.
There exists n2 ∈ IN such that length(f−n2(Cx1

x2
)) > k, for all n ≥ n2.

Let l0 such that kl0 > K + 1, where K = maxx∈M length(Cx
f(x))
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We continue in this way obtaining n3, . . . , nl0
Let N = max{n1, . . . , nl0}, then

length(f−N(Cx
xl0

)) > kl0 > K + 1

Hence, as in the proof of lemma 1.4 we conclude that there exists p ∈
f−N(Cx

xl0
) such that p ∈ ∂W s(Λ) and therefore fN(p) ∈ ∂W s(Λ) and

fN(p) ∈ Cx
xl0

⊆ W s(Λ); which is a contradiction.

We have actually proved that there are no more than [K+1
k

] points of Λ
in the connected component of W s(Λ) ∩W c(x).

3. Properties of the set E

If x ∈ A, f(x) ∈ A then there exists z ∈ W c(x) such that z ∈ A,
and Cx

z ∩ A = {x, z}.

Let M̃ be the universal covering of M , and Π : M̃ →M the canonical

projection. It is a well known fact that M̃ is homeomorphic to IRn (
See, for instance [11] ).

Let p be a fixed point of f(or f k) verifying that p is a continuity point

of S and S̃, then by the remark of lemma 2.9 we have that ∀y ∈ W s(p)

there exists at least z ∈ W s(p) ∩ W̃ c(y) such that z ∈ A. Let p̃ ∈ M̃
such that Π(p̃) = p.

Let F be a lifting of f such that F (p̃) = p̃.
Let q, q′ ∈ Λ where Λ is a repeller, with p ∈ Cq

q′, C
q
q′ ∩ A = {p}

and Cq
q′ ∩ per(f) = {q, p, q′} . We will call Ã ⊂ M̃ the set such that

Π(Ã) = A and Λ̃ ⊂ M̃ the set such that Π(Λ̃) = Λ.

Let D a Riemannian metric in M̃ induced by d, where d is the Rie-
mannian metric in M . We define

W s
F (ψ) = {η ∈ M̃ |D(F n(η), F n(ψ)) → 0, for n→ ∞}

and

W s
F,ε(ψ) = {η ∈ M̃ |D(F n(η), F n(ψ)) < ε, for n ≥ 0}

Analogously we define W u
F (ψ) and W u

F,ε(ψ). We denote by W c
F (x′) the

connected component of Π−1(W c
f (x)) that contains x′ and by W c

F,ε(x
′) =

{y ∈W c
F (x′)|D(y, x′) < ε}.

We will call Ca
b the connected component of W c

F (a) that contains a

such that Π(Ca
b ) = C

Π(a)
Π(b) .

Let q̃′, q̃ ∈W c
F (p̃) verifying Π(q̃′) = q′ and Π(q̃) = q.

Let

B(q̃) = ∪x∈W s
F

(q̃)W
c
F,δ(x),
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let Dp̃ be the connected component of Π−1(W s(p)) that contains p̃, and

Dn
p̃ = Dp̃\ ∪

n
k=0 F

k(B(q̃) ∪B(q̃′)) (see Figure 2).

Since W s
F (q̃),W s

F (q̃′) ⊂ Λ̃ and the local central manifold is expanding
on Λ by the last remark of section 1, we have that there exists a sequence
((ni)) such that ((Dni

p̃ )) is a sequence of decreasing closed and connected

sets, then we define C(p̃) = ∩n∈IND
n
p̃ .

It follows that C(p̃) is an F -invariant, closed and connected set.

Besides, we have that if y ∈ Dp̃ ∩ Ã then y ∈ C(p̃) and ∀y ∈ W s
F (q̃),

if y′ = W c
F (y)∩W s

F (q̃′) then there exists at least z ∈ Cy
y′ ∩Ã . It follows

that ∀y ∈ Dp̃, W
c
F (y)∩W s

F (p̃)∩C(p̃) is a point in Ã, or it is a segment

with end points in Ã.
Let us denote by E the F -invariant set

E = ∪x∈C(p̃)W
u
F (x).

Notice that E is a connected and closed set.
The interior of C(p̃) is empty; so is the interior of E.

Lemma 3.1. Let Γ : M̃ → M̃ be a covering transformation. Then,
either Γ(E) ∩ E = ∅ or E is Γ-invariant.

Suppose that there exist x, y ∈ E such that Γ(x) = y. Since Γ
preserves Fu

F , we have that Γ(W u
F (x)) = W u

F (y).
Let a be a point in E such that a is close to x, then there exists α ∈ C(p̃)
such that a ∈ W u

F (α). Therefore Γ(a) ∈ Γ(W u
F (α)) = W u

F (Γ(a)) and
since W u

F (Γ(a)) is close to W u
F (y), it follows that W u

F (Γ(a)) ∩Dp̃ 6= ∅.
Let z = W u

F (Γ(a)) ∩Dp̃.

In the case that a ∈ Ã we will prove that Γ(a) ∈ E.
Suppose that z /∈ C(p̃), then there exists n ∈ IN such that F−n(z) ∈

B(q̃) ∪ B(q̃′) and z ∈ W u
F (Λ). It follows that Γ(a) ∈ W u

F (Λ̃), but
Π(Γ(a)) = Π(a) ∈ A, which is a contradiction.

In the case that a /∈ Ã, there exist µ, ν ∈ C(p̃)∩Ã, such that α ∈ Cµ
ν ,

and a ∈ Cµ′

ν′ with µ′ ∈ W u
F (µ) and ν ′ ∈ W u

F (ν). Since Γ preserves F c
F ,

we have that Γ(a) ∈ C
Γ(µ′)
Γ(ν′) , and from Γ(µ′),Γ(ν ′) ∈ Ã we conclude that

z ∈ C(p̃) and finally Γ(a) ∈ E.
We have proved that EΓ = {x ∈ E such that Γ(x) ∈ E} is an open

set.
Let (xn) be a sequence of points in E such that Γ(xn) ∈ E and xn →
x. Since Γ is continuous we have that Γ(xn) → Γ(x) and from the
closedness of E we have that Γ(x) ∈ E. We have proved that EΓ is an
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open and closed set, then the connectedness of E implies that EΓ = E
or EΓ = ∅.

Proposition 3.1. Π(E) is a compact set.

Since Cq
q′ ∩ A = {p}, we have that there exist γ, δ > 0, such that if

y ∈ A ∩W s(p) and d(W̃ c(p), W̃ c(y)) < γ then d(p, y) < δ.

Let B(p, γ, δ) = {x ∈ W s(A)|d(W̃ c(p), W̃ c(x)) < γ, d(p, x) < δ}.
Let us prove that there exists L > 0 such that for all x ∈ Π(E),

W uu
f,L(x)∩B(p, γ, δ) 6= ∅, where W uu

f,L(x) = {y ∈ W uu
f (x)|du(y, x) ≤ L}.

We begin by proving that there exists L > 0 such that for all x ∈ A,
W uu
f,L(x) ∩ B(p, γ, δ) 6= ∅. Suppose that for all Ln there exist xn ∈ A

such that W uu
f,Ln

(xn)∩B(p, γ, δ) = ∅. Then there exists a limit point of
xn, y, such that y ∈ A and W uu

f (y) ∩ B(p, γ, δ) = ∅. This contradicts
the density of W uu

f (y).
Let x ∈ Π(E) such that x /∈ A. Then there exist a, b ∈ A such that
x ∈ Ca

b . We have proved that there exists a′ ∈W uu
f,L(a)∩B(p, γ, δ). Let

b′ = W uu
f,L(b)∩W c

f,loc(a
′). We claim that Ca′

b′ ⊂ B(p, γ, δ). We have that

b′ ∈ A, and b′ ∈ W s(p) because if not, there were w ∈ Ca′

b′ ∩ Λ then

there were w̃ ∈ C(p̃) ∩ Λ̃ which is absurd. Since d(W̃ c(p), W̃ c(a′)) =

d(W̃ c(p), W̃ c(b′)) < γ then d(b′, p) < δ, hence b′ ∈ B(p, γ, δ); therefore
W uu
f,L(x) ∩ Ca′

b′ ∈ B(p, γ, δ).
We have proved that there exists L > 0 such that for all x ∈ Π(E),

W uu
f,L(x) ∩ B(p, γ, δ) 6= ∅. In fact, there exists L > 0 such that for all

x ∈ Π(E), W uu
f,L(x) ∩B(p, γ, δ) ∩W s

loc(p) 6= ∅. Then

Π(E) ⊂
⋃

x∈B(p,γ,δ)

W uu
f,L(x),

where B(p, γ, δ) is the closure of B(p, γ, δ). In fact,

Π(E) ⊂
⋃

x∈B(p,γ,δ)∩Π(C(p̃))

W uu
f,L(x),

and since C(p̃) is closed and Π is a local homeomorphism, we have that
Π(E) is included in a compact set. Besides

⋃

x∈B(p,γ,δ)∩Π(C(p̃))

W uu
f,L(x) ⊆ Π(E),

then Π(E) is a compact set.
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4. Existence of a global section of φ

We will define an equivalence relation on M̃ in the following way:

If x, y ∈ E, we say that x ∼ y if x, y ∈ Ca
b ⊂ E, where a, b ∈ Ã.

If x′, y′ ∈ Γ(E) then x′ = Γ(x) and y′ = Γ(y), we say that x′ ∼ y′ if
x ∼ y.

Since C(p̃)/ ∼ is connected and for all y ∈ Dp̃ we have that (W c
F (y)∩

C(p̃))/ ∼ is a point, it follows that C(p̃)/ ∼ is a curve if dim(M) = 3,
or C(p̃)/ ∼ is a surface if dim(M) = 4.
Hence E/ ∼ is homeomorphic to IR× IR or IR2 × IR respectivelly.

Let [x] = {y ∈ M̃ |x ∼ y}, and G = {[x]/x ∈ M̃}. Let M̂ = M̃/ ∼.

There exists F̂ : M̂ → M̂ , the canonical projection of F , such that F̂
preserves the dynamical properties of F . We claim that G is an upper

semicontinuous decomposition of M̃ .

We have that ∀x ∈ M̃, [x] = x or [x] is a closed arc Ca
b , then [x] is

a compact set. Let U be an open set in M̃ such that [x] ⊂ U .
In the case that x ∈ E, we suppose, contrary to our claim, that there

exists a sequence (yn)n∈IN such that yn → x and [yn] is not included in

U , then there exist ank ∈ [ynk ] ∩ Ã ∩ E verifying ank /∈ U and ank → a
because lengths of [ynk ] are locally bounded.

It follows that a ∈ W c
F (x) ∩ Ã ∩ E, but a /∈ U and therefore a /∈ [x]

which is a contradiction.
The case that x ∈ Γ(E) is equivalent because Γ is a homeomorphism;

otherwise there exists a neighbourhood V of x such that for all y ∈
V, [y] = y. So, we have proved that there exists an open set, V , such
that [x] ⊂ V ⊂ U , verifying that ∀y ∈ V, [y] ⊂ U .

We have proved that G is an upper semicontinuous decomposition of

M̃ then M̂ = M̃/G is metrizable (therefore there exists a distance D̃

compatible with the quotient topology M̃/G) . Besides Π1 : M̃ → M̂ is
a closed map, then Π1(E) = E/ ∼ is a closed hypersurface.

Let G′ = {Π[x] / [x] ∈ G}. By abuse of notation, we continue to

write Π : M̂ →M/G′, for a covering projection.
Since Π1 is Γ-invariant, if Γ is a covering transformation, we can

consider Π1 : M →M/G′ to simplify notation.

It holds that Π ◦ Π1(x) = Π1 ◦ Π(x), ∀x ∈ M̃ .
It follows that Π(Π1(E)) = Π(E/ ∼) = Π1(Π(E)) is a compact set

in M/G′ because Π1 is continuous and Π(E) is compact.
Moreover, Π(E/ ∼) is a hypersurface because Π is a local homeo-

morphism and Γ(E) ⊂ E or Γ(E) ∩ E = ∅.
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Proposition 4.1. There exists a homeomorphism H : M̃ → M̂ such
that H(W c

F (x)) = W c
F̂
(H(x))

For every covering map Γ : M̃ −→ M̃ , there exists Γ̃ : M̂ −→ M̂ ,
the canonical projection of Γ.

Let ΓE = {Γ̃ : M̂ −→ M̂ such that Γ̃ is a covering map verifying that

Γ̃(E/ ∼) ⊂ E/ ∼}.
Since Π(E/ ∼) is a compact manifold, then ΓE is finitely generated

(see [9])
Let {g̃1, ..., g̃k} be generators of ΓE. Note that g̃i is the canonical

projection of a covering map gi : M̃ → M̃ .
Since Π(E/ ∼) is a compact hypersurface in M , and dim(M) =

3 or 4, we have that there exists E ′, a compact differential manifold
homeomorphic to Π(E/ ∼).

Let j : E ′ → Π(E/ ∼) be a homeomorphism, Ẽ ′ the universal cover-

ing of E ′ and Π′ : Ẽ ′ → E ′ the canonical projection.
We will prove that there exists a fundamental domain D of Π′|E′

(i.e. Γ̃(D) ∩ D = ∅, for all Γ̃, where Γ̃ : Ẽ ′ → Ẽ ′ is any covering

map different from the identity. Besides, Π′(D) = Π′(Ẽ ′) and Ẽ ′ =⋃
Γ̃ Γ̃(D)), such that D is a simplicial complex.
Since every differential manifold is triangulable, there exist a finite

simplicial complex K and a homeomorphism ρ : K → E ′.
We can subdivide ρ(K) in such a way that if Ki is a simplex of

K, Ji = ρ(Ki), and J̃i is a connected component of Π′−1(Ji), then

Π′ : J̃i → Ji is a homeomorphism. Since E ′ is connected, we can
denote by J1, ...Jm the simplexes of ρ(K) verifying Ji ∩ Ji+1 6= ∅, for
i = 1,m− 1.

Let J1 be a simplex in Ẽ ′ such that Π′(J1) = J1, let J2 be a simplex

in Ẽ ′ such that Π′(J2) = J2, and J1 ∩ J2 6= ∅. This is possible because
J1 ∩ J2 6= ∅. We continue in this fashion obtaining J3....Jm.

Then D = ∪m1 Ji is a fundamental domain of Π′|E′ and it is a sim-
plicial complex.

Let j̃ : Ẽ ′ → E/ ∼ be a lifting of j and let P = j̃(D). We have
that P is a finite simplicial complex and it is a fundamental domain of
Π|E/∼.

It follows that

E/ ∼= ∪Γ̃∈ΓE
Γ̃(P )

We will define an open neighborhood U of P by

U = ∪x∈PW
c
F̂ ,loc

(x),
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where g̃i(W
c
F̂ ,loc

(x)) = W c
F̂ ,loc

(g̃i(x)), in the case that x, g̃i(x) ∈ P for

i = 1, ..., k.
We begin by defining W c

F̂ ,loc
(x) in such a way that g̃i(W

c
F̂ ,loc

(x)) =

W c
F̂ ,loc

(g̃i(x)), in the case that x, g̃i(x) are vertices (0- dimensional sim-

plexes) of P , then we define W c
F̂ ,loc

(x) verifying that g̃i(W
c
F̂ ,loc

(x)) =

W c
F̂ ,loc

(g̃i(x)), in the case that x, g̃i(x) are in an edge (1- dimensional

simplex) of P , and so on.
By construction we have that there exists a homeomorphism j1 : U →

P × [0, 1] such that j1(W
c
F̂ ,loc

(x) ∩ U) = {x} × [0, 1] ∀x ∈ P .

Let V = ∪Γ̃∈ΓE
Γ̃(U). We have that V is an open neighborhood of

E/ ∼ and V is g̃i-invariant for i = 1, ..., k and then V is Γ̃-invariant,

∀Γ̃ ∈ ΓE.
Since Π1 is a continuous map, we have that W = Π−1

1 (V ) is an
open neighborhood of E. Besides W = ∪x∈EC

αx
βx

, where Π1(C
αx
βx

) =
W c
F̂ ,loc

(π1(x)) ∩ V .

Let us define a continuous map H : M̃ → M̂ , in the following way:
In the case that y ∈ Π−1

1 (U), there exists x ∈ W c
F,loc(y) ∩ E, and

y ∈ Cαx
βx

, where Π1 maps Cαx
βx

in W c
F̂ ,loc

(π1(x)) ∩ U .

Besides, ∀z ∈ W c
F (x) ∩ Π−1

1 (U) we have that αz = αx and βz = βx.
It follows that Π−1

1 (U) =
⋃
x∈E∩Π−1

1 (P )C
αx
βx

.

Let
α =

⋃

x∈E∩Π−1
1 (P )

αx and β =
⋃

x∈E∩Π−1
1 (P )

βx.

Since αx, βx /∈ E we have that Π1(α) = α and Π1(β) = β.
Let Lα : α → P be the map such that Lα(αx) = Π1(x).
We have that Lα is well defined and if αx 6= αy, then there exist

x, y ∈ E, with x ∈ Cαx
βx

and y ∈ C
αy
βy

; therefore [x] 6= [y], i.e. Lα(αx) 6=

Lα(αy). Besides, ∀z ∈ P , ∃y ∈ E verifying Π1(y) = z. Then Lα(αy) =
z. We have proved that Lα is a biyective map and we will prove that it
is a homeomorphism.

Suppose that αxn → αx, then there exist xn ∈ C
αxn
βxn

∩ E and x ∈

Cαx
βx

∩ E. Let y be a limit point of xn then Π1(xnk) → Π1(y), but
y ∈ E∩[x], therefore Π1(xnk) → Π1(x) and the continuity of Lα follows.

Suppose that pn, p ∈ P with pn → p. There exist xn, x ∈ E satisfying
Π1(xn) = pn and Π1(x) = p, we dont know if xn → x, but we have that
W c
F̂ ,loc

(pn))∩U is close to W c
F̂ ,loc

(p)∩U , and their end points are close.

Since the end points of W c
F̂ ,loc

(Π1(xn))∩U are Π1(αxn) and Π1(βxn), and
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αxn and βxn are in Π−1
1 (U) − E, it follows that Π1(αxn) = [αxn ] = αxn

and Π1(βxn) = [βxn ] = βxn.
Analogously the end points of W c

F̂ ,loc
(Π1(x))∩U are αx and βx; hence

αxn → αx and βxn → βx.
Then, we have proved that Lα is a homeomorphism.
Analogously we prove that Lβ : β → P , defined in the obvious way is

a homeomorphism.
The lengths of Cαx

βx
vary continuously, then we can define a map

j2 : Π−1
1 (U) → P × [0, 1] in the following way : ∀y ∈ Π−1

1 (U), there
exists x ∈ W c

F,loc(y) ∩ E, so let

j2(y) = (p, λ) where p = Lα(αx) and λ =
length(Cαx

y ))

length(Cαx
βx

)

We have that j2(W
c
F (y) ∩ Π−1

1 (U)) = {Π1(x)} × [0, 1] ∀y ∈ Π−1
1 (U).

It follows that j2 : Π−1
1 (U) → P × [0, 1] is a homeomorphism.

We define H : Π−1
1 (U) → U by

H = j−1
1 ◦ j2

H is a homeomorphism and H satisfies

H(W c
F (y) ∩ Π−1

1 (U)) = W c
F̂
(Π1(y)) ∩ U

We extend H : M̃ → M̂ in the following way:

If z = Γ(y) ∈ W then z ∈ C
αΓ(x)

βΓ(x)
; since Γ̃(W c

F̂ ,loc
(π1(x))) ∩ V =

W c
F̂ ,loc

(Γ̃(π1(x)))∩V , we define H(z) = Γ̃(H(y)). It follows that H◦Γ =

Γ̃ ◦H.
If y = Γ(x) with x ∈ W , we define H(y) = Γ̃(H(x)) ; and H(y) = [y]

otherwise.
By construction we have that H(W c

F (x)) = W c
F̂
(H(x)).

It is easy to see that H is a biyective map and by construction we
have that H is a homeomorphism.

The previous proposition implies that F c
F is homeomorphic to F c

F̂

and M̂ is homeomorphic to M̃ .
We have that F c

F̂
is topologically transversal to E/ ∼.

Recall that G′ = {Π[x] / [x] ∈ G}.

There exists f̂ : M/G′ → M/G′, the canonical projection of f , such

that f̂ preserves the dynamical properties of f . We have that Π(F c
F̂
) =

F c
f̂

is topologically transversal to the compact hypersurface Π(E/ ∼).

Since H ◦ Γ = Γ̃ ◦ H, we have that there exists a map g : M →
M/G′ verifying that g(W c

f (x)) = W c
f̂
(g(x)). We have that g is a
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homeomorphism. Therefore there exists a compact hypersurface Σ =
g−1(Π(E/G)) such that F c

f is topologically transversal to Σ.

Proposition 4.2. The flow φ is conjugated to a suspension of an
Anosov diffeomorphism.

We have proved that {F c
f (x)}x∈M is topologically transversal to Σ.

Recall that as f is C1 close to f1, where f1(x) = φ(x, 1) there exists a
homeomorphism h : M →M close to the identity such that h(x) = x′,
and F c

f (x
′) is C1-close to F c

f1
(x) in compact sets.

Moreover
h(F c

f1
(x)) = F c

f (x
′).

Since h−1(Σ) is a topological hypersurface we have that {F c
f1

(x)}x∈M is

topologically transversal to h−1(Σ), i.e. ∀x ∈ M there exists Tx > 0
such that φ(x, Tx) ∩ h

−1(Σ) “transversally ”.
Then φ, may be reparametrized in such a way that it becomes a sus-

pension, i.e. the Anosov flow is conjugated to a suspension which is an
Anosov flow, too.

Remark 4.1. The flow φ is conjugate to the suspension of an Anosov
diffeomorphism and the hypersurface Π(E/G) is homeomorphic to the
torus T n−1.

Let l : h−1(Σ) → h−1(Σ) be the map defined by l(x) = φ(x, Tx).
For every x ∈ h−1(Σ) there exist an l-stable and an l-unstable sets

of x, where the l- stable (unstable) set of x is the intersection of the
φ stable (unstable) manifold of x with h−1(Σ). Since φ is a transitive
flow, it follows that l is an transitive diffeomorphism.

We have that l| h−1(Σ) is a hyperbolic diffeomorphism. If h−1(Σ)
were a smooth manifold, l| h−1(Σ) would be an Anosov codimension
one diffeomorphism and we could apply Franks result to conclude that
l| h−1(Σ) is topologically conjugated to a hyperbolic toral automorphism
(See [2]). Although h−1(Σ) is just a topological manifold, the Franks
proof remains valid but, in this case we need to use a C0 version of the
classical theorem of Haefliger. This can be found in Chapter 7 of [5].

Let A : T n−1 → T n−1 be an Anosov diffeomorphism such that l| h−1(Σ)
is conjugated to A|T n−1; it follows that h−1(Σ) and Π(E/ ∼) are home-
omorphic to T n−1. Besides, if ψ is the suspension of A, φ is conjugated
to ψ. Hence the flow φ is conjugated to the suspension of an Anosov
diffeomorphism A under a function ρ. Then there exists a homeomor-
phism H : M → (T n−1)ρA, such that

H(Oφ(x)) = OXA,ρ(H(x))
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where XA,ρ is the flow under a function ρ built over A : T n−1 → T n−1

on the manifold (T n−1)ρA ( See [7]).

5. Flow equivalence

Let y be a k-periodic point of f with y ∈ Π(E). There exists ỹ ∈ E
such that Π(ỹ) = y. Let x be a periodic point, verifying that x ∈ W c

f (y).
Let ηf (x) be the rotation number of x. We have that ηf (x) = ηf (y).
Suppose that there exist z̃ 6= w̃ such that Π(z̃) = z, Π(w̃) = w and

[ỹ] = Cw̃
z̃ . The points z and w are periodic ones.

We claim that for all n ∈ IN , F n(w̃) 6= z̃.

Suppose that there exists k ∈ IN such that F k(w̃) = z̃, then C w̃
F lk(z̃)

⊂

[ỹ], ∀ l ∈ IN , hence W c
f̂
(w) consist of only one point, but W c

F̂
(w̃) =

Π−1(W c
f̂
(w)) is homeomorphic to W c

F (w̃) which is homeomorphic to

IR. This is a contradiction.
The same argument shows that F n(w̃) /∈ Cw̃

z̃ , ∀n ∈ IN .
Let x be a periodic point in Cz

f(w) such that Π−1(x) /∈ [F n(ỹ)], ∀n ∈

IN ( This point exists because f is hyperbolic and z, f(w) ∈ A and W c
f̂

is homeomorphic to IR).

Then the f -period of x is equal to the f̂− period of x, hence ηf (x) =
ηf̂ (x) .

So there is no loss of generality if we consider the rotation numbers

of f̂ instead of those of f .
This is advantageous because F c

f̂
is topologically transversal to Π(E/G)

and Π(E/G) is a hypersurface f̂ -invariant.

From now on, we will suppose that G = M̃ , then F̂ = F , f̂ = f . In
the same way that every leaf of F c

f verifies that F c(x)∩A 6= ∅, we have
that F c(x) ∩ Π(E) 6= ∅ because Π(E) is a connected component of A.
Therefore, F c

f is topologically transversal to the hypersurface Π(E).
Since φ : M × IR → M is an Anosov flow with a global transversal

section, φ is conjugated to a suspension of the first return map,
l : h−1(Σ) → h−1(Σ). Since l is conjugated to an Anosov diffeomor-
phism A : T n−1 → T n−1, we have that there exists y ∈ h−1(Σ) such that
l(y) = y and card{u ∈ Oφ(y) ∩ h

−1(Σ)} = 1 . Let y′ = h(y), we have
that y′ ∈ Π(E) and F c

f is topologically transversal to the hypersurface
Π(E). Besides, card{u ∈ F c

f (y
′) ∩ Π(E)} = 1.

Let k = period(y′) and let G(x) = f k(x). We have that Π(E) is
G-invariant.
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Let c : Π(E) → IN be the map given by

c(x) = card{v ∈ M̃ |v ∈ connected component of (Π−1(Cx
G(x)))∩Π−1(Π(E))}

Let x ∈ Π(E) and x ∈ Π−1(Π(E)) such that Π(x) = x. We have that
the connected component of Π−1(Cx

G(x)) is included in W c
F (x); the ”end

points” of the connected component of Π−1(Cx
G(x)) are in different con-

nected components of Π−1(Π(E)) ⊂ M̃ , and Π−1(Π(E)) is topologically
transversal to F c

F .
From transversality we have the continuity of c, then there exists

m ∈ IN such that c(x) = m for all x ∈ Π(E).
We can assert that the segment of the central curve between y′ and

G(y′) ”winds around itself” m times.
Hence, the rotation number of G|W c(y′),

ηG(W c(y′)) =
m

1
∼= 1 mod Z

and the rotation number of f |W c(y′),

ηf (W
c(y′)) =

m

k
.

If x ∈ Π(E) is an f -periodic point, then there exists l > 0 verifiyng
Gl(x) = x, and we define j(x) = card{u ∈ Cx

Gl(x)
∩ Π(E)}.

Since Π(E) is a connected component of A, we have that F c(x) ∩
Π(E) 6= ∅. Therefore,it will cause no confusion if we use j(x) for any
l-periodic point of G.

We claim the following

Proposition 5.1. Let x be a periodic point of f , then the rotation
number of x,

(1) ηf (W
c(x)) =

m

kj(x)
,

where m, k, and j(x) are the above defined.

Let x ∈ Π(E) a periodic point of G, and suppose that there exists
n ∈ IN such that j(x) = mn. It follows that periodG(x) = n and

ηG(W c(x)) =
1

n
,

and

ηf (W
c(x)) =

1

nk
=

m

j(x)k

In the case of j(x) = mn+ r with 0 < r < m, let s = min{l ∈ IN/rl =
ṁ} and let α ∈ IN such that rs = mα. We have that

sj(x) = smn+ sr = m(sn+ α)
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then periodG(x) = sn+α and the segment of the central curve between
x and Gsn+α(x) ”winds around itself” s times, it follows that

ηG(W c(x)) =
s

sn+ α
=

1

n+ r
m

=
m

mn+ r
=

m

j(x)

Hence
ηf (W

c(x)) =
m

j(x)k

Then every periodic point in Π(E) has rotation number of the form
(1), and since every closed central leaf of F c

f intersects Π(E) then every
f - periodic point of M has rotation number of the form (1).

Let x′ be a f -periodic point, and h−1(x′) = x, we have that F c
f (x

′) is

C1-close to F c
f1

(x) and F c
f1

is topologically transversal to h−1(Π(E)) =

h−1(Σ). We have proved that for every Axiom A diffeomorphism, f ,
C1- close to f1, there exists Σf = h−1(Σ) such that F c

f1
is topologically

transversal to Σf .
Recall that ∀x ∈ Σf there exists Tx > 0 such that

Tx = min{t > 0|φ(x, t) ∈ Σf}

Let Λ be a transversal section of F c
f1

.
For every x ∈ Σf let

e(x) = card{v|v ∈ φ(x, t) ∩ Λ with 0 ≤ t < Tx}

Since φ is topologically transversal to Λ and Σf is connected we have
that there exists e ∈ IN such that e(x) = e for all x ∈ Σf .

It follows that e.j(x′) = jf1(x), where jf1(x) = card{u|u ∈ Oφ(x) ∩
Λ}. Hence

ηf (W
c(x′)) =

m.e

jf1(x)k

By the continuity of the rotation number, it follows that the rotation
numbers of f1 are of the form

(2) ηf1(W
c(x)) =

β

jf1(x)
,

where jf1(x) is the above defined.

Proposition 5.2. If the flow φ is conjugated to a suspension of an
Anosov diffeomorphism A under a function ρ, and the rotation numbers
of f1(x) = φ(x, 1) are of the form (2), then φ is flow equivalent to the
suspension of A.( Here the time of the first returned map is constant).

Since

period(φ(x, t)) =
1

ηf1(W
c(x))

,
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and

ηf1(W
c(x)) =

β

jf1(x)
,

we have that

period(φ(x, t)) =
jf1(x)

β
,

and if y ∈M is such that jf1(y) = 1 then period(φ(y, t)) = 1
β
.

Since φ : M×IR →M is an Anosov flow conjugated to the suspension
of an Anosov diffeomorphism A, there exists a homeomorphism H :
M → (T n−1)ρA, such that

H(Oφ(x)) = OXA,ρ(H(x)).

Let ψ : T n−1 → IR > 0 be the map such that ψ(x) ≡ 1
β
.

Let XA,ψ be the flow under a function ψ built over A : T n−1 → T n−1

on the manifold (T n−1)ψA.
We have that XA,ψ is conjugated to XA,ρ and therefore to φ.

Let H : M → (T n−1)ψA be the homeomorphism such that

H(Oφ(x)) = OXA,ψ(H(x))

It follows that if x is a l-periodic point of A we have that

periodOXA,ψ(x) =
l

β

If x is a periodic point of φ with period(Oφ(x)) =
jf1 (x)

β
, and H(Oφ(x))

is a periodic orbit of XA,ψ.
We have that

jf1(x) = card{u|u ∈ Oφ(x) ∩ Λ} = card{u|u ∈ OXA,ψ(H(x)) ∩H(Λ)}

and we claim that

card{u|u ∈ OXA,ψ(H(x)) ∩H(Λ)} =

card{u|u ∈ OXA,ψ(H(x)) ∩ T n−1}

For every x ∈ T n−1 let

d(x) = card{v|v ∈ η(x, t) ∩H(Λ) with 0 ≤ t <
1

β
}

where η(x, t) is the flow defined by η̇(x, t) = XA,ψ(η(x, t)).
Since η is topologically transversal to H(Λ) and T n−1 is connected

we have that there exists d ∈ IN such that d(x) = d for all x ∈ T n−1.
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If d ≥ 2, then

2 ≤ card{v|v ∈ η(H(y), t) ∩H(Λ) with 0 ≤ t <
1

β
} =

card{u|u ∈ Oφ(y) ∩ Λ} = 1

which is a contradiction. Then

card{u|u ∈ OXA,ψ(H(x)) ∩H(Λ)} =

card{u|u ∈ OXA,ψ(H(x)) ∩ T n−1} = periodA(H(x))

and it follows that

period(Oφ(x)) = period(OXA,ψ(H(x))).

Since φ and XA,ψ are conjugated and the periods of corresponding peri-
odic orbits agree, then φ and XA,ψ are flow equivalent (See [7], Ch.19).
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