ON THE APPROXIMATION OF TIME ONE MAPS OF ANOSOV FLOWS BY AXIOM A DIFFEOMORPHISMS

NANCY GUELMAN

ABSTRACT. Let M be a smooth compact Riemannian manifold without boundary, and $\phi: M \times I\!\!R \to M$ a transitive Anosov flow.

In 1975, Palis and Pugh wondered whether the time one map of a transitive Anosov flow could be approximated by hyperbolic or Axiom A diffeomorphisms.

It is a well known fact that in the case when the flow arises from the suspension of an Anosov diffeomorphism $g: N \to N$ such an approximation can be carried out with Axiom A diffeomorphisms.

In the case of dim(M) = 3 or 4, we prove that if the time one map of a transitive Anosov flow is C^1 -approximated by Axiom A diffeomorphisms, then it is flow equivalent to a suspension of an Anosov diffeomorphism.

INTRODUCTION

Throughout this paper M denotes a smooth compact Riemannian manifold without boundary, and $\phi : M \times \mathbb{R} \to M$ a C^r flow, with $r \geq 1$.

Let us consider that ϕ is an Anosov flow (see Definition 1.1) and let $f_{\tau}(x) = \phi(x, \tau), \ \forall x \in M$ be the flow ϕ at time τ . Although f_{τ} is not an Anosov diffeomorphism (see Definition 1.2), there exists a Df_{τ} -invariant splitting of TM

$$TM = E^s \oplus E^c \oplus E^u,$$

such that $Df_{\tau}|E^s$ is uniformly contracting, $Df_{\tau}|E^u$ is uniformly expanding, and E^c is a nonhyperbolic central direction, i.e. f_{τ} is a partially hyperbolic diffeomorphism.

The object of our study are *transitive* Anosov flows (i.e. the case when the non-wandering set is the whole manifold).

An interesting question is what kind of dynamical system can appear under perturbations of a time one map of a transitive Anosov flow.

Palis and Pugh (see [8]) wondered whether the time one map of a transitive Anosov flow could be approximated by hyperbolic or Axiom A diffeomorphisms.

NANCY GUELMAN

We shall give a precise answer to this problem in case dim(M) = 3 or 4.

It is a well known fact that in the case when the flow arises from the suspension of an Anosov diffeomorphism $g : N \to N$ such an approximation can be carried out with Axiom A diffeomorphisms. Let us explain it:

The suspension manifold N_g is obtained from the direct product $N \times [0, 1]$ by identifying pairs of points of the form (x, 0) and (g(x), 1) for $x \in N$. The suspension flow $\varphi(x, t)$ is determined by the vector field $\frac{\partial}{\partial t}$. We have that the suspension of an Anosov diffeomorphism is an Anosov flow in the corresponding manifold. Besides, if the diffeomorphism is transitive; so is its suspension.

The manifold N_g is fibered over S^1 and the projection of the time one map onto S^1 is the identity map. Let f be a diffeomorphism preserving fibers, C^1 - close to $\varphi(x, 1)$ such that the projection of f over S^1 is a Morse-Smale map. We have that f is an Axiom A diffeomorphism.

On the other hand, Bonatti and Díaz (see [1]) proved that if τ is a period of a periodic orbit of a transitive Anosov flow, then there exist an open set \mathcal{U} of nonhyperbolic and transitive diffeomorphisms, and a sequence $(g_n)_{n \in \mathbb{N}}, g_n \in \mathcal{U}$ such that $g_n \to f_{\tau}$.

Recall that two flows ρ and ψ are conjugated if there exists a homeomorphism H such that H maps orbits of the flow ρ onto orbits of the flow ψ preserving the orientation given by the positive time direction. Both flows are flow equivalent if H preserves the time, i.e. $\rho_t(x) = H^{-1} \circ \psi_t \circ H(x) \ \forall x, \ \forall t \in \mathbb{R}.$

Our main result is:

Theorem 1. Let M be a smooth compact riemannian manifold without boundary, $\dim(M) = 3$ or 4. If the time one map of a transitive Anosov flow is C^1 -approximated by Axiom A diffeomorphisms, then it is flow equivalent to a suspension of an Anosov diffeomorphism.

A codimension one Anosov flow defined on an *n*-manifold M is an Anosov flow such that for all $x \in M$, $dimE^s(x) = 1$ or $dimE^u(x) = 1$. It is worthwhile to note that Verjovsky (see [10]) proved that if n > 3any codimension one Anosov flow is transitive (see [3] for a counterexample in dimension 3). Then we have the following

Corollary 0.1. Let dim(M) = 4. The time one map of an Anosov flow ϕ can be approximated by Axiom A diffeomorphisms if and only if ϕ is flow equivalent to a suspension of an Anosov diffeomorphism.

In a previous work we have proved that if the time one map of a transitive codimension one Anosov flow is C^{1} -approximated by Axiom

 $\mathbf{2}$

A diffeomorphisms verifying a technical property related to periodic points, then the flow is conjugated to a suspension of an Anosov diffeomorphism (see [4]).

Now we can remove this technical property asked for the Axiom A diffeomorphism before.

Besides, we prove flow equivalence now, instead of conjugacy showed earlier.

Let us give a rough outline of the proof of our theorem. The basic idea is that if the time one map of the flow can be approximated by Axiom A diffeomorphisms, then we can find a (topological) global section. This is done through the following steps:

We study attractors of Axiom A diffeomorphism close to the time one map of a transitive Anosov flow (see Section 1).

We examine the projection along the central foliation to conclude the following fact:

Let \mathcal{A} be an attractor set of f and let $W^{s}(\mathcal{A})$ be its stable set, then there exists a residual set Q of $W^{s}(\mathcal{A})$ such that $\forall x \in Q, \forall y \in W^{s}(x)$ there exists y_{x} in the connected component of the central leaf of y intersection $W^{s}(\mathcal{A})$ verifying that $y_{x} \in \mathcal{A}$, i.e. $\forall y \in W^{s}(x)$, the connected component of $(W^{c}(x) \cap W^{s}(\mathcal{A})) \cap \mathcal{A} \neq \emptyset$ (see Section 2).

We use this fact to construct, in Section 3, a connected and closed set, E, included in the universal covering of M, \widetilde{M} , satisfying that $\mathcal{A} \subset \Pi(E)$, where $\Pi : \widetilde{M} \to M$ is the canonical projection. We prove that E is Γ -invariant or $\Gamma(E) \cap E = \emptyset$, for every covering transformation Γ and $\Pi(E)$ is a compact set in M.

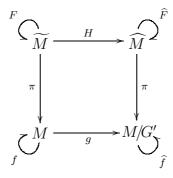
In Section 4, we define an equivalence relation in M, \sim , and we deduce that E/\sim is a closed hypersurface and $\Pi(E/\sim)$ is a compact hypersurface in M.

Let $M = M / \sim$

Besides there exists $\widehat{F} : \widehat{M} \to \widehat{M}$, the canonical projection of F, where F is a lifting of f, and it holds that the central foliation of $\widehat{F}, \mathcal{F}_{\widehat{F}}^c$ is topologically transversal to E/\sim . Analogously there exists $\widehat{f} : M/G' \to M/G'$, the canonical projection of f, where M/G' is the projection of \widehat{M} , and it holds that the central foliation of $\widehat{f}, \mathcal{F}_{\widehat{f}}^c$ is topologically transversal to $\Pi(E/\sim)$.

The key of this section is to find a homeomorphism $H : \widetilde{M} \to \widehat{M}$ satisfying that H is Γ -invariant, for every covering transformation Γ and $H(W_F^c(x)) = W_{\widehat{F}}^c(H(x)).$

Hence, we obtain the existence of a homeomorphism $g: M \to M/G'$ verifying $g(W_f^c(x)) = W_{\widehat{f}}^c(g(x)).$ We have the following diagram:



Therefore \mathcal{F}_f^c is topologically transversal to the compact hypersurface $g^{-1}(\Pi(E/\sim))$.

From this fact, we can find a global section for the flow and we show that the flow is topologically conjugated to a suspension of a codimension one Anosov diffeomorphism.

The flow equivalence is proved in Section 5. This proof is based on the rotation numbers of f restricted to periodic orbits.

1. Properties of basic sets.

Some of the statements of the present and the following sections have already appeared in ([4]).

We include them for completeness and because some of their proofs have been simplified.

We begin recalling some basic definitions about flows and diffeomorphisms.

Definition 1.1. A compact ϕ_t -invariant set, $\Lambda \subset M$, is called a hyperbolic set for the flow ϕ if there exist a Riemannian metric on an open neighborhood \mathcal{U} of Λ , and $\lambda < 1 < \mu$ such that for all $x \in \Lambda$ there is a decomposition

$$T_x(M) = E_x^s \oplus E_x^u \oplus E_x^0$$

such that $\partial_t \phi(x,t)|_{t=0} \in E^0_x - \{0\}, \ \dim(E^0(x)) = 1, \ D_x \phi_t(x)(E^i_x) \subset E^i_{\phi(x,t)}, \ \text{with } i = s, u, \ and$

$$\|D_x\phi(x,t)\|_{E^s(x)}\| \le \lambda^t \text{ with } t \ge 0$$

$$||D_x\phi(x,t)|_{E^u(x)}|| \le \mu^{\iota} \text{ with } t \le 0.$$

A C^r flow $\phi : M \times \mathbb{R} \to M$, is called an **Anosov flow** if M is a hyperbolic set for ϕ .

Let $f: M \to M$ be a C^r diffeomorphism .

Definition 1.2. An *f*-invariant set Λ is called hyperbolic if there exists a D*f*-invariant decomposition of $T_{\Lambda}M$ such that

$$T_{\Lambda}M = E^s \oplus E^u$$

and $Df|E^s$ is uniformly contracting and $Df|E^u$ is uniformly expanding. More precisely, there are c > 0, λ , with $0 < \lambda < 1$ such that for all $x \in \Lambda$

$$||D_x f^n| E^s(x)|| < c\lambda^n$$

and

$$\|D_x f^{-n} | E^u(x) \| < c\lambda^n.$$

A diffeomorphism $f: M \to M$ is called an Anosov diffeomorphism if M is a hyperbolic set for f.

Let $f_1: M \to M$, the time one diffeomorphism of ϕ defined as

$$f_1(x) = \phi(x, 1), \, \forall x \in M$$

where $\phi: M \times \mathbb{R} \to M$ is a codimension one Anosov flow if dim(M) > 3(In the case that dim(M) = 3, codimension one property is replaced by transitivity.) Without loss of generality we may assume $dim E_x^s = n - 2$ and $dim E_x^u = 1$ for all $x \in M$.

Since ϕ has no singularities, it follows that there exist f_1 -invariant foliations \mathcal{F}^{cs} , \mathcal{F}^{cu} , \mathcal{F}^{ss} , \mathcal{F}^{uu} and \mathcal{F}^c . Notice that the leaf of \mathcal{F}^c through x is the same as the ϕ -orbit of x, and we denote it by $F^c(x)$ or $W^c_{\phi}(x)$ or $\mathcal{O}_{\phi}(x)$.

By well known properties of transitive Anosov flows, we have that

 $\{F^{c}(x)|F^{c}(x) \text{ is a closed set }\}$ is dense in M.

 $\{F^{c}(x)|F^{c}(x) \text{ is dense in } M\}$ is a residual set.

If \mathcal{O} is a periodic orbit of ϕ , then $W^s(\mathcal{O})$ consists of all points whose foward ϕ orbits never stay far from \mathcal{O} and $W^u(\mathcal{O})$ of all points whose reverse ϕ orbits never stay far from \mathcal{O} . Both of them are dense in M, and so are $F^{cs}(x)$ and $F^{cu}(x) \forall x \in \mathcal{O}$.

Since f_1 is C^r , we have that the leaves of \mathcal{F}^{cs} , \mathcal{F}^{cu} and \mathcal{F}^c are C^r . Let $f: M \to M$ be a diffeomorphism C^1 -close to f_1 . The map f is plaque expansive (see [6]), there exist \mathcal{F}_f^{cs} , \mathcal{F}_f^{cu} and \mathcal{F}_f^c and there is a homeomorphism $h: M \to M$ close to the identity such that if h(x) = x', then $F_f^c(x')$ is C^1 -close to $F_{f_1}^c(x)$ in compact sets and the manifolds $F_f^{cs}(x')$ and $F_{f_1}^{cs}(x)$ are C^1 -close in compact sets. In addition,

$$hof_1(F_{f_1}^c(x)) = foh(F_{f_1}^c(x)).$$

NANCY GUELMAN

Therefore every leaf of \mathcal{F}_{f}^{c} is invariant and every periodic point of f is in a closed leaf of \mathcal{F}_{f}^{c} .

According to what was mentioned above we have that

 $\{F_f^c(x)|F_f^c(x) \text{ is a closed set}\}$ is dense in M

and

 $\{\mathcal{F}_{f}^{c}(x)|F_{f}^{c}(x) \text{ is dense in } M\}$ is a residual set.

Let us denote by $F_f^c(x)$ or by $W^c(x)$ the leaf of the central foliation through the point x.

The metric induced by the Riemannian metric on the leaves of \mathcal{F}_f^c will be denoted d^c . Analogously we define d^s and d^u .

We recall that a diffeomorphism $f : M \to M$ satisfies Axiom A if the non-wandering set $\Omega(f)$ is hyperbolic and the set of periodic points is dense in $\Omega(f)$.

From now on we will assume that f is an Axiom A diffeomorphism C^{1} - close to f_{1} .

Let $\mathcal{O} = F_f^c(x)$ where $F_f^c(x)$ is a closed curve.

The rotation number of f must be rational, because if it were irrational, there would be an hyperbolic minimal set $I \subset \mathcal{O}$ and it would be included in a basic set Λ .

If $\mathcal{O} \subset \Omega(f)$ then \mathcal{O} would be in a basic set and $f|_{\mathcal{O}}$ would be expansive which leads to a contradiction with the nonexistence of one dimensional expansive diffeomorphism. Let $y \in \mathcal{O}$ then $\alpha(y) = \omega(y) = I$, hence

$$y \in W^{s}(I) \cap W^{u}(I) \subset W^{s}(\Lambda) \cap W^{u}(\Lambda) \subset \Lambda,$$

therefore $y \in \Omega(f)$ which is a contradiction.

Furthermore, there exist at least two periodic orbits in \mathcal{O} because f is an Axiom A diffeomorphism. All the points in $\Omega(f) \cap \mathcal{O}$ must be periodic because if there were a nonperiodic point, $x \in \Omega(f) \cap \mathcal{O}$ then the invariance of $\Omega(f) \cap \mathcal{O}$ implies that $\alpha(x)$ and $\omega(x)$ would be periodic points of different indices so they would be in different basic sets. Summarizing we have proved

Lemma 1.1. If $\mathcal{O} = F_f^c(x)$ is a closed curve then

- the rotation number is rational
- there exists at least two periodic orbits in \mathcal{O} .

From now on, we choose an orientation for \mathcal{F}^c , and denote C_b^a the curve included in a central foliation leaf, between a and b.

We will consider the connected component of $\mathcal{F}^{c}(a)$ between a and b in the positive direction from a, in the case that $\mathcal{F}^{c}(a)$ is a closed curve.

We will assume that $C_{f(x)}^x$ is the connected component of $W^c(x)$ between x and f(x), in such a way that length of $C_{f(x)}^x$ is close to the length of the ϕ -orbit of x, between x and $\phi(x, 1)$. This implies that in finitely many cases of closed central manifold, $C_{f(x)}^x$ winds around itself more than once. Notice that in these cases the definition of $C_{f(x)}^x$ does not agree with the previous one.

Let us recall that there exists a finite number of attractors (repellers) whose basin of attraction (repulsion) are open since f is Axiom A. Let us show some elementary properties of attractor basic sets.

Let \mathcal{A} denote an attractor basic set of the spectral decomposition of f. Notice that $\mathcal{A} \neq M$ because f can not be an Anosov diffeomorphism. There is no loss of generality if we consider that \mathcal{A} is connected.

Lemma 1.2. $Dim(W^s(x)) = n - 1, \forall x \in \mathcal{A}$

We have assumed that $\dim(E^s_{\phi}) = n - 2$, then as f is C^1 -close to f_1 we have that $\dim(W^s(x)) = n - 1$ or $\dim(W^s(x)) = n - 2$ for all $x \in \Omega(f)$.

Let $x \in \mathcal{A} \cap per(f)$, where per(f) is the set of f-periodic points.

Suppose that $dim(W^s(x)) = n - 2$. Since \mathcal{A} is an attractor, $W^u(x) \subset \mathcal{A}$; hence $F_{loc}^c(x) \subset W^u(x) \subset \mathcal{A}$. The set \mathcal{A} is closed and f-invariant so there exists $x' \in F^c(x) \cap \mathcal{A} \cap per(f)$. But $dim(W^s(x')) = n - 1$ since $dim(W^s(x)) = n - 2$. It follows that there exist two periodic points of different indices in \mathcal{A} , which is impossible.

Lemma 1.3. For every closed curve \mathcal{O} in \mathcal{F}^c there exists a periodic point $p \in \mathcal{A} \cap \mathcal{O}$.

Since \mathcal{O} is closed, $W^{s}(\mathcal{O})$ is dense in M and $W^{s}(\mathcal{A})$ is an open set, there exist y in $W^{s}(\mathcal{O}) \cap W^{s}(\mathcal{A})$ and $y' \in W^{ss}(y) \cap \mathcal{O}$ such that $y' \in W^{s}(\mathcal{A})$.

As $y' \in \mathcal{O}, y' \in W^s(p)$ for a periodic point $p \in \mathcal{O}$. Then $p \in \mathcal{A} \cap \mathcal{O}$.

Remark 1.1. Let $K = \max_{x \in M} length(C^x_{f(x)})$. K is finite because M is compact and the map $g: M \to \mathbb{R}$ such that every $x \in M$ is mapped into the length of $C^x_{f(x)}$ is continuous.

The previous lemma implies that in every segment γ of central closed curve with length $(\gamma) \geq K$, there exists a periodic point $p \in \gamma \cap A$.

Analogously we have that in every segment γ of central closed curve with length(γ) $\geq K$, there exists a periodic point $p \in \gamma \cap \Lambda$, where Λ is a repeller set.

Corollary 1.1. Every leaf of \mathcal{F}^c intersects \mathcal{A} .

Let $\gamma \subset \mathcal{F}^c$ with $length(\gamma) \geq K$. Since $\{F_f^c(x)|F_f^c(x) \text{ is a closed set}\}$ is dense in M,

we can choose arcs γ_n such that γ_n are included in closed leaves of \mathcal{F}^c , $\gamma_n \to \gamma$, and length $(\gamma_n) \geq K$. Then, there exists a sequence (p_n) such that $p_n \in \mathcal{A} \cap \gamma_n$, and any of its limit points $p \in \gamma \cap \mathcal{A}$.

Lemma 1.4. In every leaf of \mathcal{F}_f^c there exists at least one point outside of $W^s(\mathcal{A})$.

If $F_f^c(x)$ is closed, by the remark of lemma 1.3 we have that in every segment γ of central closed curve with length $(\gamma) \geq K$, there exists a periodic point $p \in \gamma$ such that $p \notin W^s(\mathcal{A})$.

Suppose that there exists a curve $\gamma \subset F_f^c(x)$ such that $\gamma \subset W^s(\mathcal{A})$ and $length(\gamma) \geq K+1$.

Then there exists an open set $V, V \subset W^s(\mathcal{A})$ and $\gamma \subset V$. There exists $y \in V$ such that $W^c(y)$ is closed, and $W^c(y) \cap V$ has length greater or equal than K. This gives the existence of a point $p \in W^c(y) \cap V$, such that $p \notin W^s(\mathcal{A})$ which is a contradiction.

Note that we have proved that every leaf of the central foliation "goes away" from the basin of attraction of any attractor.

Lemma 1.5. No arc γ , γ included in $F_f^c(x)$ for any x, satisfies $\gamma \subset \mathcal{A}$.

Suppose the statement is false, i.e. there exists $\gamma \subset W_{loc}^c(x)$ such that $\gamma \subset \mathcal{A}$. Since $\gamma \subset \mathcal{A} \subset W^s(\mathcal{A})$, then the negative iterates of γ are included in \mathcal{A} and the length of them grow exponentially.

Let $z \in \alpha(x)$ then $z \in \mathcal{A}$ and by the proof of lemma 1.4, $W^{c}(z)$ has to intersect $\partial(W^{s}(\mathcal{A}))$, but $W^{c}(z) \subset \mathcal{A} \subset W^{s}(\mathcal{A})$, which yields a contradiction.

Remark. All the above lemmas admit versions for repeller basic sets and the proofs are analogous. In fact, if Λ is a repeller basic set, then for $x \in \Lambda$, $Dim(W^s(x)) = n-2$, every leaf of \mathcal{F}_f^c intersects Λ , in every leaf of \mathcal{F}_f^c there exists a point outside of $W^u(\Lambda)$, and no γ included in $F_f^c(x)$ satisfies $\gamma \subset \Lambda$.

2. Properties of the projection along the central foliation.

Let us introduce the following maps:

Definition 2.1. Let $S_A : W^s(\mathcal{A}) \to \partial W^s(\mathcal{A})$ be a map such that, for every x in the basin of the attractor \mathcal{A} , $S_A(x)$ is the nearest point in its central leaf in the positive direction verifying that it is not in the basin of attraction of \mathcal{A} . **Definition 2.2.** Let $\hat{S}_A : W^s(\mathcal{A}) \to \partial W^s(\mathcal{A})$ be the map analogous to S_A , but in the negative direction of the central foliation.

Definition 2.3. Let $S : \mathcal{A} \to \partial W^s(\mathcal{A})$ be the restriction of S_A to \mathcal{A} and $\tilde{S} : \mathcal{A} \to \partial W^s(\mathcal{A})$ the restriction of \tilde{S}_A to \mathcal{A} .

By lemma 1.4 we have that the previous maps are well defined.

Let $\widetilde{W^c(x)} = C_{S_A(x)}^{\tilde{S}_A(x)}$ denote the connected component of $W^c(x) \cap W^s(\mathcal{A})$ which contains x.

Let $l : \mathcal{A} \to \mathbb{R}, \ l(x) = length(C^x_{S(x)}).$

Lemma 2.1. *l* is lower semicontinuous.

We have that $C_{S(x)}^{x} - \{S(x)\} \subset W^{s}(\mathcal{A})$ and $W^{s}(\mathcal{A})$ is an open set. The central foliation is a C^{1} - lamination because f is C^{1} -close to the time one map of an Anosov flow (see [6]), hence for all $\epsilon > 0$ there exists a neighborhood U_{x} of x such that if $y \in U_{x}$ then the curve $C_{y'}^{y}$ included in $\mathcal{F}^{c}(y)$ with length $(C_{y'}^{y}) = l(x) - \epsilon$ is included in $W^{s}(\mathcal{A})$. Then $l(y) \geq l(x) - \epsilon$ which proves that l is a semicontinuous map.

Since $l: \mathcal{A} \to \mathbb{R}$ is semicontinuous, the set R of points of continuity of l is a residual set. Let $\Phi: M \times \mathbb{R}_{\geq 0} \to M$ such that $\Phi(x, l) = z$, if $z \in W^c(x)$, z is in the positive direction of $W^c(x)$ and $length(C_z^x) = l$. Φ is a continuous map then

$$S(x) = \Phi(x, l(x))$$

is continuous over R.

Without loss of generality we can assume that R is a residual set of continuity for both S and \tilde{S} .

Analogously there exists a residual set Q in $W^s(\mathcal{A})$ such that Q is a set of continuity for S_A and \tilde{S}_A .

Let us prove some properties of the map S. They are verified by \tilde{S} and the proofs are analogous.

Lemma 2.2. S(R) is f-invariant.

Let $x \in R$, y = S(x). For all $z \in C_y^x - \{y\}$, we have that $z \in W^s(\mathcal{A})$, $f(z) \in W^c(f(x))$ and $f(z) \in W^s(\mathcal{A})$. Since $f(y) \in \partial W^s(\mathcal{A})$ it follows that f(y) = S(f(x)). Replacing f by f^{-1} we conclude that

$$f(S(R)) = S(R).$$

Lemma 2.3. $\overline{S(R)}$ is transitive and $\overline{S(R)} \subseteq \Omega(f)$.

NANCY GUELMAN

Since the set of dense orbits is a residual set in \mathcal{A} , we have that there exists $x \in R$ such that its orbit is dense in R.

By continuity of \mathcal{F}^c , we conclude that the image of a dense orbit is dense in S(R) therefore $\forall y \in S(R)$ we have that $y \in w(S(x))$ then $y \in \Omega(f)$.

We have proved that $S(R) \subseteq \Omega(f)$.

Corollary 2.1. From the above properties we conclude that S(R) is included in Λ , a basic set of the spectral decomposition of f.

Lemma 2.4. For all $y \in S(R)$, $dim(W^{s}(y)) = n - 2$.

Let y = S(x) with $x \in \mathcal{A}$; since $\dim(W^{ss}(y)) = n-2$ and $\dim(W^{uu}(y)) = 1$, $\dim(W^s(y)) = n-1$ or n-2, but by lemma 1.2 if $z \in C_y^x - \{y\}$ then $z \in W^s(x)$. Then

$$W^c_{\epsilon}(y) = \{z \in W^c(y) \text{ such that } d^c(z, y) < \epsilon\}$$

can not be included in $W^{s}(y)$ and we can assert that $\dim(W^{s}(y)) = n-2$.

Lemma 2.5. The set of periodic points in $\mathcal{A} \setminus R$ is nowhere dense in \mathcal{A} .

In order to prove the lemma it is enough to prove:

Let $(p_n)_{n \in \mathbb{N}}$ be a sequence of periodic points such that S is not continuous at p_n and $p_n \to x$. Then S is not continuous at x. Let $q_n = S(p_n)$.

Since p_n is a point of discontinuity, there exist $\alpha > 0$ and $(r_{n_k}) \subset \mathcal{A}$ such that $\lim_{k\to\infty} r_{n_k} = p_n$ and

$$length(C^{r_{n_k}}_{S(r_{n_k})}) > length(C^{p_n}_{S(p_n)}) + \alpha$$

and for any ϵ with $0 < \epsilon < \frac{\alpha}{2}$ there exist $(s_{n_k}) \subset R$ such that $\lim_{k \to \infty} s_{n_k} = p_n$ and

$$length(C_{S(s_{n_k})}^{s_{n_k}}) \geq length(C_{S(r_{n_k})}^{r_{n_k}}) - \epsilon > length(C_{S(p_n)}^{p_n})$$

It follows that there exists a periodic limit point of $S(s_{n_k})$, q'_n , in $W^c(p_n)$.

Both q_n and q'_n are in $W^c(p_n) \cap \overline{S(R)}$, are periodic and $\dim(W^s(q_n)) = \dim(W^s(q'_n)) = n-2$. Since q_n and q'_n are in the same closed leaf of \mathcal{F}^c , it follows that there exists a periodic point p'_n , such that $p'_n \in C^{q_n}_{q'_n}$ and $\dim(W^s(p'_n)) = n-1$.

Suppose, contrary to our claim, that S is continuous at x. From $p_n \to x$ we conclude that $q_n \to S(x)$ by the continuity of S at x. (See Figure 1)

Besides $q'_n \to S(x)$ because there exist $(s_{n_k}) \subset R$ such that $\lim_{k\to\infty} s_{n_k} = p_n$ and $\lim_{k\to\infty} S(s_{n_k}) = q'_n$. Letting a convenient subsequence k(n), we can assert that

$$\lim_{k \to \infty} s_{n_{k(n)}} = x \text{ and } \lim_{n \to \infty} S(s_{n_{k(n)}}) = S(x)$$

by the continuity of S at x. This gives $q'_n \to S(x)$.

Then $dist(q_n, q'_n) \to 0$ when $n \to \infty$ and $d^c(q_n, q'_n) \to 0$ when $n \to \infty$.

But $d^{c}(q_{n}, q'_{n}) > \min\{d^{c}(p'_{n}, q'_{n}), d^{c}(p_{n}, q'_{n})\}\$ and this leads to a contradiction because p'_{n} and q'_{n} (or p_{n} and q'_{n}) are in different basic sets because they have different indices.

We have proved that S is not continuous at x.

Observe that as a consequence we have that for all $x \in \mathcal{A}$ there exists a sequence of periodic points $(p_n)_{n \in \mathbb{N}} \subset R$ such that $p_n \to x$.

Lemma 2.6. $S(W^s(x)) \subset W^s(S(x))$.

Let $x \in \mathcal{A}$, $y \in W^{s}(x) \cap \mathcal{A}$. Suppose that $S(y) \notin W^{s}(S(x))$. Since $S(y) \in F^{cs}(x)$ there exists $z = W^{s}(S(y)) \cap W^{c}(x)$. We have that $\forall w \in \partial(W^{s}(\mathcal{A})), W^{s}(w) \subset \partial(W^{s}(\mathcal{A}))$, then $W^{s}(S(x)) \subset \partial(W^{s}(\mathcal{A})) \forall x \in \mathcal{A}$, and $z \in \partial(W^{s}(\mathcal{A}))$, but this contradicts the definition of S.

Lemma 2.7. If x is a point of continuity of S, then all the points in $W^{s}(x) \cap \mathcal{A}$ are continuity points of S.

Let x be a point of continuity of S, $y \in W^s_{loc}(x) \cap \mathcal{A}$. We first prove that y is a continuity point of S.

Let $\{y_n\}_{n\in\mathbb{N}} \subset \mathcal{A}$, such that $\lim_{n\to\infty} y_n = y$. There exists $x_n = W^s_{loc}(y_n) \cap W^u(x)$ and $y_n \in W^s(x_n)$. By continuity of the stable foliation, we have $\lim_{n\to\infty} x_n = x$, and by continuity of S at x we conclude that $\lim_{n\to\infty} S(x_n) = S(x)$.

From $y_n \in W^s(x_n)$, and the above lemma, it follows that $S(y_n) \in W^s(S(x_n))$, hence $S(y_n) = W^s_{loc}(S(x_n)) \cap W^c(y_n)$.

By the continuity of W^s and W^c we have that:

 $\lim_{n\to\infty} W^s_{loc}S(x_n) = W^s_{loc}S(x)$ and $\lim_{n\to\infty} W^c(y_n) = W^c(y)$; hence

$$\lim_{n \to \infty} S(y_n) = W^s_{loc} S(x) \cap W^c(y) = S(y).$$

We have proved that $\forall y \in W^s_{loc}(x) \cap \mathcal{A}$, S is continuous at y i.e. $S|_{W^s_{loc}(x) \cap \mathcal{A}}$ is continuous.

Now, if $z \in W^s(x) \cap \mathcal{A}$ there is N > 0 such that $f^N(z) \in W^s_{loc}(f^N(x)) \cap \mathcal{A}$ and the previous argument still applies.

Remark. Note that lemmas 2.6 and 2.7 are verified not only by S and \tilde{S} but also by S_A and \tilde{S}_A . The proofs are analogous.

Lemma 2.8. If $x \in A$, then x is a point of continuity of S if and only if x is a point of continuity of S_A .

We only have to prove that if $x \in \mathcal{A}$ is a point of continuity of Sthen it is a continuity point of S_A . Let y be a point close to x, then $y' = W^u_{loc}(x) \cap W^s_{loc}(y)$ is a point in \mathcal{A}

$$S_A(y) = W^s(S(y')) \cap W^c(y)$$
 is close to $S_A(y') = S(y')$.

Hence $S_A(y)$ is close to $S_A(x) = S(x)$. Let us prove the next lemma

such that S(y') is close to S(x) and

Lemma 2.9. Let x be a continuity point of S_A and \tilde{S}_A , (i.e. $x \in Q$) then for all $y \in W^s(x)$, $\widetilde{W^c(y)} \cap \mathcal{A} \neq \emptyset$.

Recall that $W_{\epsilon}^{s}(x) = \{y \in W^{s}(x) \text{ such that } d^{s}(x,y) < \epsilon\}$. Let $\epsilon > 0$ be such that $\bigcup_{x \in \mathcal{A}} W_{\epsilon}^{s}(x) \subset W^{s}(\mathcal{A})$. Let $x \in Q$ and U_{x} be a neighborhood of x such that for all $y \in U_{x}$ we have that $\operatorname{length}(\widetilde{W^{c}(y)})$ is close enough to $\operatorname{length}(\widetilde{W^{c}(x)})$, and let $y \in U_{x} \cap W^{s}(x)$. Since $\widetilde{W^{c}(y)} \subset W^{s}(\mathcal{A})$ and $W^{s}(\mathcal{A})$ is open, there exists a neighborhood of $\widetilde{W^{c}(y)}$, \mathcal{V} , such that $\mathcal{V} \subseteq W^{s}(\mathcal{A})$ and $\mathcal{V} \subset \bigcup_{z \in \mathcal{U}_{x}}(\widetilde{W^{c}(z)})$, in such a way that if $z \in \mathcal{V} \cap \mathcal{A}$ then $\operatorname{length}(\widetilde{W^{c}(z)})$ is close enough to $\operatorname{length}(\widetilde{W^{c}(y)})$.

By the density of the closed leaves in the central foliation, there exists a curve ζ in \mathcal{V} , included in a closed leaf of the central foliation, \mathcal{O} such that $\zeta = \mathcal{O} \cap W^{s}(\mathcal{A})$.

There exists a periodic point p such that $p \in \zeta \cap \mathcal{A}$, $\zeta = \widetilde{W^c(p)}$ and since S_A and \widetilde{S}_A are continuous at y by the remark of lemma 2.7, the lengths of $\widetilde{W^c(y)}$ and ζ are close; and the lengths of the curves $C_{S_A(p)}^p$, and $C_p^{\widetilde{S}_A(p)}$ are greater than the ϵ previously defined.

Then, considering open sets \mathcal{V}_n such that $\mathcal{V}_n \to W^c(y)$, we can assert that there exist curves $\zeta_n \subset \mathcal{V}_n$ and periodic points $p_n \in \zeta_n \cap \mathcal{A}$ such that the lengths of $\widetilde{W^c(y)}$ and ζ_n are close; and the lengths of the curves $C_{S_A(p_n)}^{p_n}$, and $C_{p_n}^{\tilde{S}_A(p_n)}$ are greater than ϵ .

Since ζ_n converges to $W^{c}(y)$ and the distance of p_n to $\partial(W^{s}(\mathcal{A}))$ is bounded away from 0, there exists a limit point p of p_n such that $p \in \mathcal{A} \cap \widetilde{W^{c}(y)}$. We have proved that if $x \in Q$ then

$$\forall y \in W^s_{loc}(x), \exists p \in W^c(y) \cap \mathcal{A}.$$

Successive applications of this proceeding enables us to conclude that if $x \in Q$

$$\forall y \in W^s(x), \exists p \in \widetilde{W^c(y)} \cap \mathcal{A}.$$

Remark. By this lemma we have that if $x \in \mathcal{A}$ is a continuity point of S and \widetilde{S} , then

$$\forall y \in W^s(x), \widetilde{W^c(y)} \cap \mathcal{A} \neq \emptyset.$$

Corollary 2.2. $\Lambda = \overline{S(R)}$ is a repeller set.

Let $x \in Q \cap A$, $z \in W^s(S(x))$ and $z' = W^c(z) \cap W^{ss}(x)$. Since $z' \in W^s(x)$ with $x \in Q$, then by lemma 2.9 there exists $q \in W^c(z') \cap A$; hence S(q) = z and $z \in S(R)$. Then

$$\forall x \in Q \cap \mathcal{A}, W^s(S(x)) \subseteq S(R).$$

We have proved that $\overline{S(R)}$ is included in a basic set Λ . Now, if y = S(x) with $x \in \mathcal{A} \cap Q$ then

$$W^{s}(y) \subseteq S(R) \subseteq \overline{S(R)} \subseteq \Lambda \subseteq \overline{W^{s}(y)}.$$

It follows that $\overline{S(R)}$ is a basic set, and since it contains a stable manifold we have that $\Lambda = \overline{S(R)}$ is a repeller set.

Lemma 2.10. Let Λ be a basic set and $x \in \Lambda$.

- (1) If $\dim(W^s(x)) = n-1$ then there is a finite number of points of Λ in the connected component of $W^c(x) \cap W^s(\Lambda)$ that contains x.
- (2) If $\dim(W^s(x)) = n-2$ then there is a finite number of points of Λ in the connected component of $W^c(x) \cap W^u(\Lambda)$ that contains x.

We will prove just the first statement.

Suppose that it is false. Then we can choose $\{x_i\}$ in $\Lambda \cap W^s(\Lambda) \cap W^c(x)$, such that $x_1 < x_2 < \ldots < x_l < \ldots$ in the given orientation of $W^c(x)$. There exists k > 0 such that $f^{-1}|_{W_k^c(x)}$ "expands", $\forall x \in \mathcal{A}$. Then there exists $n_1 \in \mathbb{N}$ verifying that $length(f^{-n_1}(C_{x_1}^x)) > k$, for all $n \ge n_1$. There exists $n_2 \in \mathbb{N}$ such that $length(f^{-n_2}(C_{x_2}^x)) > k$, for all $n \ge n_2$. Let l_0 such that $kl_0 > K + 1$, where $K = \max_{x \in M} length(C_{f(x)}^x)$ We continue in this way obtaining n_3, \ldots, n_{l_0} Let $N = max\{n_1, \ldots, n_{l_0}\}$, then

$$length(f^{-N}(C^{x}_{x_{l_{\alpha}}})) > kl_{0} > K+1$$

Hence, as in the proof of lemma 1.4 we conclude that there exists $p \in f^{-N}(C_{x_{l_0}}^x)$ such that $p \in \partial W^s(\Lambda)$ and therefore $f^N(p) \in \partial W^s(\Lambda)$ and $f^N(p) \in C_{x_{l_0}}^x \subseteq W^s(\Lambda)$; which is a contradiction.

We have actually proved that there are no more than $\left[\frac{K+1}{k}\right]$ points of Λ in the connected component of $W^{s}(\Lambda) \cap W^{c}(x)$.

3. Properties of the set E

If $x \in \mathcal{A}$, $f(x) \in \mathcal{A}$ then there exists $z \in W^c(x)$ such that $z \in \mathcal{A}$, and $C_z^x \cap \mathcal{A} = \{x, z\}.$

Let \widetilde{M} be the universal covering of M, and $\Pi : \widetilde{M} \to M$ the canonical projection. It is a well known fact that \widetilde{M} is homeomorphic to \mathbb{R}^n (See, for instance [11]).

Let p be a fixed point of $f(or f^k)$ verifying that p is a continuity point of S and \widetilde{S} , then by the remark of lemma 2.9 we have that $\forall y \in W^s(p)$ there exists at least $z \in W^s(p) \cap \widetilde{W^c(y)}$ such that $z \in \mathcal{A}$. Let $\widetilde{p} \in \widetilde{M}$ such that $\Pi(\widetilde{p}) = p$.

Let F be a lifting of f such that $F(\tilde{p}) = \tilde{p}$.

Let $q, q' \in \Lambda$ where Λ is a repeller, with $p \in C_{q'}^q$, $C_{q'}^q \cap \mathcal{A} = \{p\}$ and $C_{q'}^q \cap per(f) = \{q, p, q'\}$. We will call $\widetilde{\mathcal{A}} \subset \widetilde{M}$ the set such that $\Pi(\widetilde{\mathcal{A}}) = \mathcal{A}$ and $\widetilde{\Lambda} \subset \widetilde{M}$ the set such that $\Pi(\widetilde{\Lambda}) = \Lambda$.

Let D a Riemannian metric in M induced by d, where d is the Riemannian metric in M. We define

$$W_F^s(\psi) = \{\eta \in \widetilde{M} | D(F^n(\eta), F^n(\psi)) \to 0, \text{ for } n \to \infty\}$$

and

$$W^s_{F,\epsilon}(\psi) = \{ \eta \in \overline{M} | D(F^n(\eta), F^n(\psi)) < \epsilon, \text{ for } n \ge 0 \}$$

Analogously we define $W_F^u(\psi)$ and $W_{F,\epsilon}^u(\psi)$. We denote by $W_F^c(x')$ the connected component of $\Pi^{-1}(W_f^c(x))$ that contains x' and by $W_{F,\epsilon}^c(x') = \{y \in W_F^c(x') | D(y,x') < \epsilon\}.$

We will call $\overline{C_b^a}$ the connected component of $W_F^c(a)$ that contains a such that $\Pi(\overline{C_b^a}) = C_{\Pi(b)}^{\Pi(a)}$.

Let $\widetilde{q'}, \widetilde{q} \in W_F^c(\widetilde{p})$ verifying $\Pi(\widetilde{q'}) = q'$ and $\Pi(\widetilde{q}) = q$. Let

$$B(\widetilde{q}) = \bigcup_{x \in W^s_F(\widetilde{q})} W^c_{F,\delta}(x),$$

let $D_{\widetilde{p}}$ be the connected component of $\Pi^{-1}(W^s(p))$ that contains \widetilde{p} , and $D_{\widetilde{p}}^n = D_{\widetilde{p}} \setminus \bigcup_{k=0}^n F^k(B(\widetilde{q}) \cup B(\widetilde{q'}))$ (see Figure 2).

Since $W_F^s(\widetilde{q}), W_F^s(\widetilde{q}') \subset \Lambda$ and the local central manifold is expanding on Λ by the last remark of section 1, we have that there exists a sequence $((n_i))$ such that $((D_{\widetilde{p}}^{n_i}))$ is a sequence of decreasing closed and connected sets, then we define $C(\widetilde{p}) = \bigcap_{n \in \mathbb{N}} D_{\widetilde{p}}^n$.

It follows that $C(\tilde{p})$ is an *F*-invariant, closed and connected set.

Besides, we have that if $y \in D_{\widetilde{p}} \cap \mathcal{A}$ then $y \in C(\widetilde{p})$ and $\forall y \in W_F^s(\widetilde{q})$, if $y' = W_F^c(y) \cap W_F^s(\widetilde{q'})$ then there exists at least $\overline{z} \in \overline{C_{y'}^y} \cap \widetilde{\mathcal{A}}$. It follows that $\forall y \in D_{\widetilde{p}}, W_F^c(y) \cap W_F^s(\widetilde{p}) \cap C(\widetilde{p})$ is a point in $\widetilde{\mathcal{A}}$, or it is a segment with end points in $\widetilde{\mathcal{A}}$.

Let us denote by E the F-invariant set

$$E = \bigcup_{x \in C(\widetilde{p})} W^u_F(x).$$

Notice that E is a connected and closed set.

The interior of $C(\tilde{p})$ is empty; so is the interior of E.

Lemma 3.1. Let $\Gamma : \widetilde{M} \to \widetilde{M}$ be a covering transformation. Then, either $\Gamma(E) \cap E = \emptyset$ or E is Γ -invariant.

Suppose that there exist $x, y \in E$ such that $\Gamma(x) = y$. Since Γ preserves \mathcal{F}_F^u , we have that $\Gamma(W_F^u(x)) = W_F^u(y)$.

Let a be a point in E such that a is close to x, then there exists $\alpha \in C(\tilde{p})$ such that $a \in W_F^u(\alpha)$. Therefore $\Gamma(a) \in \Gamma(W_F^u(\alpha)) = W_F^u(\Gamma(a))$ and since $W_F^u(\Gamma(a))$ is close to $W_F^u(y)$, it follows that $W_F^u(\Gamma(a)) \cap D_{\tilde{p}} \neq \emptyset$. Let $z = W_F^u(\Gamma(a)) \cap D_{\tilde{p}}$.

In the case that $a \in \mathcal{A}$ we will prove that $\Gamma(a) \in E$.

Suppose that $z \notin C(\tilde{p})$, then there exists $n \in \mathbb{N}$ such that $F^{-n}(z) \in B(\tilde{q}) \cup B(\tilde{q}')$ and $z \in W_F^u(\Lambda)$. It follows that $\Gamma(a) \in W_F^u(\tilde{\Lambda})$, but $\Pi(\Gamma(a)) = \Pi(a) \in \mathcal{A}$, which is a contradiction.

In the case that $a \notin \widetilde{\mathcal{A}}$, there exist $\mu, \nu \in C(\widetilde{p}) \cap \widetilde{\mathcal{A}}$, such that $\alpha \in \overline{C_{\nu}^{\mu}}$, and $a \in \overline{C_{\nu'}^{\mu'}}$ with $\mu' \in W_F^u(\mu)$ and $\nu' \in W_F^u(\nu)$. Since Γ preserves \mathcal{F}_F^c , we have that $\Gamma(a) \in \overline{C_{\Gamma(\nu')}^{\Gamma(\mu')}}$, and from $\Gamma(\mu'), \Gamma(\nu') \in \widetilde{\mathcal{A}}$ we conclude that $z \in C(\widetilde{p})$ and finally $\Gamma(a) \in E$.

We have proved that $E_{\Gamma} = \{x \in E \text{ such that } \Gamma(x) \in E\}$ is an open set.

Let (x_n) be a sequence of points in E such that $\Gamma(x_n) \in E$ and $x_n \to x$. Since Γ is continuous we have that $\Gamma(x_n) \to \Gamma(x)$ and from the closedness of E we have that $\Gamma(x) \in E$. We have proved that E_{Γ} is an open and closed set, then the connectedness of E implies that $E_{\Gamma} = E$ or $E_{\Gamma} = \emptyset$.

Proposition 3.1. $\Pi(E)$ is a compact set.

Since $C_{q'}^q \cap \mathcal{A} = \{p\}$, we have that there exist γ , $\delta > 0$, such that if $y \in \mathcal{A} \cap W^s(p)$ and $d(\widetilde{W^c(p)}, \widetilde{W^c(y)}) < \gamma$ then $d(p, y) < \delta$. Let $B(p, \gamma, \delta) = \{x \in W^s(\mathcal{A}) | d(\widetilde{W^c(p)}, \widetilde{W^c(x)}) < \gamma, d(p, x) < \delta\}.$

Let us prove that there exists L > 0 such that for all $x \in \Pi(E)$, $W_{f,L}^{uu}(x) \cap B(p,\gamma,\delta) \neq \emptyset$, where $W_{f,L}^{uu}(x) = \{y \in W_f^{uu}(x) | d^u(y,x) \leq L\}$.

We begin by proving that there exists L > 0 such that for all $x \in \mathcal{A}$, $W_{f,L}^{uu}(x) \cap B(p,\gamma,\delta) \neq \emptyset$. Suppose that for all L_n there exist $x_n \in \mathcal{A}$ such that $W_{f,L_n}^{uu}(x_n) \cap B(p,\gamma,\delta) = \emptyset$. Then there exists a limit point of x_n, y , such that $y \in \mathcal{A}$ and $W_f^{uu}(y) \cap B(p,\gamma,\delta) = \emptyset$. This contradicts the density of $W_f^{uu}(y)$.

Let $x \in \Pi(E)$ such that $x \notin \mathcal{A}$. Then there exist $a, b \in \mathcal{A}$ such that $x \in C_b^a$. We have proved that there exists $a' \in W_{f,L}^{uu}(a) \cap B(p,\gamma,\delta)$. Let $b' = W_{f,L}^{uu}(b) \cap W_{f,loc}^c(a')$. We claim that $C_{b'}^{a'} \subset B(p,\gamma,\delta)$. We have that $b' \in \mathcal{A}$, and $b' \in W^s(p)$ because if not, there were $w \in C_{b'}^{a'} \cap \Lambda$ then there were $\widetilde{w} \in C(\widetilde{p}) \cap \widetilde{\Lambda}$ which is absurd. Since $d(W^c(p), W^c(a')) = d(W^c(p), W^c(b')) < \gamma$ then $d(b', p) < \delta$, hence $b' \in B(p, \gamma, \delta)$; therefore $W_{f,L}^{uu}(x) \cap C_{b'}^{a'} \in B(p, \gamma, \delta)$.

We have proved that there exists L > 0 such that for all $x \in \Pi(E)$, $W_{f,L}^{uu}(x) \cap B(p,\gamma,\delta) \neq \emptyset$. In fact, there exists L > 0 such that for all $x \in \Pi(E)$, $W_{f,L}^{uu}(x) \cap B(p,\gamma,\delta) \cap W_{loc}^{s}(p) \neq \emptyset$. Then

$$\Pi(E) \subset \bigcup_{x \in \overline{B(p,\gamma,\delta)}} W^{uu}_{f,L}(x),$$

where $\overline{B(p,\gamma,\delta)}$ is the closure of $B(p,\gamma,\delta)$. In fact,

$$\Pi(E) \subset \bigcup_{x \in \overline{B(p,\gamma,\delta)} \cap \Pi(C(\tilde{p}))} W^{uu}_{f,L}(x),$$

and since $C(\tilde{p})$ is closed and Π is a local homeomorphism, we have that $\Pi(E)$ is included in a compact set. Besides

$$\bigcup_{x\in\overline{B(p,\gamma,\delta)}\cap\Pi(C(\widetilde{p}))}W^{uu}_{f,L}(x)\subseteq\Pi(E),$$

then $\Pi(E)$ is a compact set.

4. Existence of a global section of ϕ

We will define an equivalence relation on M in the following way: If $x, y \in E$, we say that $x \sim y$ if $x, y \in \overline{C_b^a} \subset E$, where $a, b \in \widetilde{\mathcal{A}}$. If $x', y' \in \Gamma(E)$ then $x' = \Gamma(x)$ and $y' = \Gamma(y)$, we say that $x' \sim y'$ if $x \sim y$.

Since $C(\tilde{p})/\sim$ is connected and for all $y \in D_{\tilde{p}}$ we have that $(W_F^c(y) \cap C(\tilde{p}))/\sim$ is a point, it follows that $C(\tilde{p})/\sim$ is a curve if $\dim(M) = 3$, or $C(\tilde{p})/\sim$ is a surface if $\dim(M) = 4$.

Hence
$$E/\sim$$
 is homeomorphic to $\mathbb{R}\times\mathbb{R}$ or $\mathbb{R}^2\times\mathbb{R}$ respectively.

Let $[x] = \{y \in \widetilde{M} | x \sim y\}$, and $G = \{[x]/x \in \widetilde{M}\}$. Let $\widehat{M} = \widetilde{M}/\sim$. There exists $\widehat{F} : \widehat{M} \to \widehat{M}$, the canonical projection of F, such that \widehat{F} preserves the dynamical properties of F. We claim that G is an upper semicontinuous decomposition of \widetilde{M} .

We have that $\forall x \in M$, [x] = x or [x] is a closed arc $\overline{C_b^a}$, then [x] is a compact set. Let U be an open set in \widetilde{M} such that $[x] \subset U$.

In the case that $x \in E$, we suppose, contrary to our claim, that there exists a sequence $(y_n)_{n \in \mathbb{N}}$ such that $y_n \to x$ and $[y_n]$ is not included in U, then there exist $a_{n_k} \in [y_{n_k}] \cap \widetilde{\mathcal{A}} \cap E$ verifying $a_{n_k} \notin U$ and $a_{n_k} \to a$ because lengths of $[y_{n_k}]$ are locally bounded.

It follows that $a \in W_F^c(x) \cap \mathcal{A} \cap E$, but $a \notin U$ and therefore $a \notin [x]$ which is a contradiction.

The case that $x \in \Gamma(E)$ is equivalent because Γ is a homeomorphism; otherwise there exists a neighbourhood V of x such that for all $y \in$ V, [y] = y. So, we have proved that there exists an open set, V, such that $[x] \subset V \subset U$, verifying that $\forall y \in V$, $[y] \subset U$.

We have proved that G is an upper semicontinuous decomposition of \widetilde{M} then $\widehat{M} = \widetilde{M}/G$ is metrizable (therefore there exists a distance \widetilde{D} compatible with the quotient topology \widetilde{M}/G). Besides $\Pi_1 : \widetilde{M} \to \widehat{M}$ is a closed map, then $\Pi_1(E) = E/\sim$ is a closed hypersurface.

Let $G' = \{\Pi[x] / [x] \in G\}$. By abuse of notation, we continue to write $\Pi : \widehat{M} \to M/G'$, for a covering projection.

Since Π_1 is Γ -invariant, if Γ is a covering transformation, we can consider $\Pi_1 : M \to M/G'$ to simplify notation.

It holds that $\Pi \circ \Pi_1(x) = \Pi_1 \circ \Pi(x), \ \forall x \in M.$

It follows that $\Pi(\Pi_1(E)) = \Pi(E/\sim) = \Pi_1(\Pi(E))$ is a compact set in M/G' because Π_1 is continuous and $\Pi(E)$ is compact.

Moreover, $\Pi(E/\sim)$ is a hypersurface because Π is a local homeomorphism and $\Gamma(E) \subset E$ or $\Gamma(E) \cap E = \emptyset$. **Proposition 4.1.** There exists a homeomorphism $H : \widetilde{M} \to \widehat{M}$ such that $H(W_F^c(x)) = W_{\widehat{F}}^c(H(x))$

For every covering map $\Gamma : \widetilde{M} \longrightarrow \widetilde{M}$, there exists $\widetilde{\Gamma} : \widehat{M} \longrightarrow \widehat{M}$, the canonical projection of Γ .

Let $\Gamma_E = \{\widetilde{\Gamma} : \widehat{M} \longrightarrow \widehat{M} \text{ such that } \widetilde{\Gamma} \text{ is a covering map verifying that } \widetilde{\Gamma}(E/\sim) \subset E/\sim\}.$

Since $\Pi(E/\sim)$ is a compact manifold, then Γ_E is finitely generated (see [9])

Let $\{\widetilde{g}_1, ..., \widetilde{g}_k\}$ be generators of Γ_E . Note that \widetilde{g}_i is the canonical projection of a covering map $g_i : \widetilde{M} \to \widetilde{M}$.

Since $\Pi(E/\sim)$ is a compact hypersurface in M, and $\dim(M) = 3$ or 4, we have that there exists E', a compact differential manifold homeomorphic to $\Pi(E/\sim)$.

Let $j: E' \to \Pi(E/\sim)$ be a homeomorphism, $\widetilde{E'}$ the universal covering of E' and $\Pi': \widetilde{E'} \to E'$ the canonical projection.

We will prove that there exists a fundamental domain \overline{D} of $\Pi'|_{E'}$ (i.e. $\widetilde{\Gamma}(D) \cap D = \emptyset$, for all $\widetilde{\Gamma}$, where $\widetilde{\Gamma} : \widetilde{E'} \to \widetilde{E'}$ is any covering map different from the identity. Besides, $\Pi'(\overline{D}) = \Pi'(\widetilde{E'})$ and $\widetilde{E'} = \bigcup_{\widetilde{\Gamma}} \widetilde{\Gamma}(\overline{D})$, such that \overline{D} is a simplicial complex.

Since every differential manifold is triangulable, there exist a finite simplicial complex K and a homeomorphism $\rho: K \to E'$.

We can subdivide $\rho(K)$ in such a way that if K_i is a simplex of K, $J_i = \rho(K_i)$, and \tilde{J}_i is a connected component of $\Pi'^{-1}(J_i)$, then $\Pi' : \tilde{J}_i \to J_i$ is a homeomorphism. Since E' is connected, we can denote by $J_1, ..., J_m$ the simplexes of $\rho(K)$ verifying $J_i \cap J_{i+1} \neq \emptyset$, for i = 1, m - 1.

Let $\overline{J_1}$ be a simplex in $\widetilde{E'}$ such that $\Pi'(\overline{J_1}) = J_1$, let $\overline{J_2}$ be a simplex in $\widetilde{E'}$ such that $\Pi'(\overline{J_2}) = J_2$, and $\overline{J_1} \cap \overline{J_2} \neq \emptyset$. This is possible because $J_1 \cap J_2 \neq \emptyset$. We continue in this fashion obtaining $\overline{J_3} \dots \overline{J_m}$.

Then $\overline{D} = \bigcup_{i=1}^{m} \overline{J_i}$ is a fundamental domain of $\Pi'|_{E'}$ and it is a simplicial complex.

Let $\tilde{j}: \widetilde{E'} \to E/\sim$ be a lifting of j and let $\overline{P} = \tilde{j}(\overline{D})$. We have that P is a finite simplicial complex and it is a fundamental domain of $\Pi|_{E/\sim}$.

It follows that

$$E/\sim=\cup_{\widetilde{\Gamma}\in\Gamma_E}\widetilde{\Gamma}(\overline{P})$$

We will define an open neighborhood U of \overline{P} by

$$U = \bigcup_{x \in \overline{P}} W^c_{\widehat{F}, loc}(x),$$

where $\widetilde{g}_i(W^c_{\widehat{F},loc}(x)) = W^c_{\widehat{F},loc}(\widetilde{g}_i(x))$, in the case that $x, \widetilde{g}_i(x) \in \overline{P}$ for i = 1, ..., k.

We begin by defining $W^{c}_{\widehat{F},loc}(x)$ in such a way that $\widetilde{g}_{i}(W^{c}_{\widehat{F},loc}(x)) = W^{c}_{\widehat{F},loc}(\widetilde{g}_{i}(x))$, in the case that $x, \widetilde{g}_{i}(x)$ are vertices (0- dimensional simplexes) of \overline{P} , then we define $W^{c}_{\widehat{F},loc}(x)$ verifying that $\widetilde{g}_{i}(W^{c}_{\widehat{F},loc}(x)) = W^{c}_{\widehat{F},loc}(\widetilde{g}_{i}(x))$, in the case that $x, \widetilde{g}_{i}(x)$ are in an edge (1- dimensional simplex) of \overline{P} , and so on.

By construction we have that there exists a homeomorphism $j_1: \overline{U} \to \overline{P} \times [0,1]$ such that $j_1(W^c_{\widehat{F},loc}(x) \cap \overline{U}) = \{x\} \times [0,1] \quad \forall x \in \overline{P}.$

Let $V = \bigcup_{\widetilde{\Gamma} \in \Gamma_E} \widetilde{\Gamma}(U)$. We have that V is an open neighborhood of E/\sim and V is \widetilde{g}_i -invariant for i = 1, ..., k and then V is $\widetilde{\Gamma}$ -invariant, $\forall \widetilde{\Gamma} \in \Gamma_E$.

Since Π_1 is a continuous map, we have that $W = \Pi_1^{-1}(V)$ is an open neighborhood of E. Besides $W = \bigcup_{x \in E} \overline{C_{\beta_x}^{\alpha_x}}$, where $\Pi_1(\overline{C_{\beta_x}^{\alpha_x}}) = W_{\widehat{F}loc}^c(\pi_1(x)) \cap V$.

Let us define a continuous map $H: \widetilde{M} \to \widehat{M}$, in the following way: In the case that $y \in \Pi_1^{-1}(U)$, there exists $x \in W^c_{F,loc}(y) \cap E$, and $y \in \overline{C^{\alpha_x}_{\beta_x}}$, where Π_1 maps $\overline{C^{\alpha_x}_{\beta_x}}$ in $W^c_{\widehat{F},loc}(\pi_1(x)) \cap U$.

Besides, $\forall z \in W_F^c(x) \cap \Pi_1^{-1}(U)$ we have that $\alpha_z = \alpha_x$ and $\beta_z = \beta_x$. It follows that $\Pi_1^{-1}(U) = \bigcup_{x \in E \cap \Pi_1^{-1}(\overline{P})} \overline{C_{\beta_x}^{\alpha_x}}$.

Let

$$\alpha = \bigcup_{x \in E \cap \Pi_1^{-1}(\overline{P})} \alpha_x \text{ and } \beta = \bigcup_{x \in E \cap \Pi_1^{-1}(\overline{P})} \beta_x.$$

Since $\alpha_x, \beta_x \notin E$ we have that $\Pi_1(\alpha) = \alpha$ and $\Pi_1(\beta) = \beta$.

Let $L_{\alpha} : \alpha \to \overline{P}$ be the map such that $L_{\alpha}(\alpha_x) = \Pi_1(x)$.

We have that L_{α} is well defined and if $\alpha_x \neq \alpha_y$, then there exist $x, y \in E$, with $x \in \overline{C_{\beta_x}^{\alpha_x}}$ and $y \in \overline{C_{\beta_y}^{\alpha_y}}$; therefore $[x] \neq [y]$, i.e. $L_{\alpha}(\alpha_x) \neq L_{\alpha}(\alpha_y)$. Besides, $\forall z \in \overline{P}$, $\exists y \in E$ verifying $\Pi_1(y) = z$. Then $L_{\alpha}(\alpha_y) = z$. We have proved that L_{α} is a biyective map and we will prove that it is a homeomorphism.

Suppose that $\alpha_{x_n} \to \alpha_x$, then there exist $x_n \in \overline{C_{\beta_{x_n}}^{\alpha_{x_n}}} \cap E$ and $x \in \overline{C_{\beta_x}^{\alpha_x}} \cap E$. Let y be a limit point of x_n then $\Pi_1(x_{n_k}) \to \Pi_1(y)$, but $y \in E \cap [x]$, therefore $\Pi_1(x_{n_k}) \to \Pi_1(x)$ and the continuity of L_α follows. Suppose that $p_n, p \in \overline{P}$ with $p_n \to p$. There exist $x_n, x \in E$ satisfying $\Pi_1(x_n) = p_n$ and $\Pi_1(x) = p$, we dont know if $x_n \to x$, but we have that

 $\Pi_1(x_n) = p_n$ and $\Pi_1(x) = p$, we dont know if $x_n \to x$, but we have that $W^c_{\widehat{F}, loc}(p_n)) \cap U$ is close to $W^c_{\widehat{F}, loc}(p) \cap U$, and their end points are close. Since the end points of $W^c_{\widehat{F}, loc}(\Pi_1(x_n)) \cap U$ are $\Pi_1(\alpha_{x_n})$ and $\Pi_1(\beta_{x_n})$, and α_{x_n} and β_{x_n} are in $\Pi_1^{-1}(U) - E$, it follows that $\Pi_1(\alpha_{x_n}) = [\alpha_{x_n}] = \alpha_{x_n}$ and $\Pi_1(\beta_{x_n}) = [\beta_{x_n}] = \beta_{x_n}.$

Analogously the end points of $W^{c}_{\widehat{F},loc}(\Pi_{1}(x)) \cap U$ are α_{x} and β_{x} ; hence $\alpha_{x_n} \to \alpha_x \text{ and } \beta_{x_n} \to \beta_x.$

Then, we have proved that L_{α} is a homeomorphism.

Analogously we prove that $L_{\beta}: \beta \to \overline{P}$, defined in the obvious way is a homeomorphism.

The lengths of $\overline{C_{\beta_r}^{\alpha_x}}$ vary continuously, then we can define a map $j_2: \Pi_1^{-1}(\overline{U}) \to \overline{P} \times [0,1]$ in the following way : $\forall y \in \Pi_1^{-1}(\overline{U})$, there exists $x \in W^c_{F,loc}(y) \cap E$, so let

$$j_2(y) = (p, \lambda)$$
 where $p = L_{\alpha}(\alpha_x)$ and $\lambda = \frac{length(\overline{C}_y^{\alpha_x}))}{length(\overline{C}_{\beta_x}^{\alpha_x})}$

We have that $j_2(W_F^c(y) \cap \underline{\Pi}_1^{-1}(\overline{U})) = \{\Pi_1(x)\} \times [0,1] \quad \forall y \in \Pi_1^{-1}(\overline{U}).$ It follows that $j_2: \Pi_1^{-1}(\overline{U}) \to \overline{P} \times [0,1]$ is a homeomorphism. We define $H: \Pi_1^{-1}(\overline{U}) \to \overline{U}$ by

$$H = j_1^{-1} \circ j_2$$

H is a homeomorphism and H satisfies

$$H(W_F^c(y) \cap \Pi_1^{-1}(\overline{U})) = W_{\widehat{F}}^c(\Pi_1(y)) \cap \overline{U}$$

We extend $H: \widetilde{M} \to \widehat{M}$ in the following way: If $z = \Gamma(y) \in W$ then $z \in \overline{C_{\beta_{\Gamma(x)}}^{\alpha_{\Gamma(x)}}}$; since $\widetilde{\Gamma}(W_{\widehat{F},loc}^c(\pi_1(x))) \cap V = \widetilde{\Gamma}(W_{\widehat{F},loc}^c(\pi_1(x)))$ $W^c_{\widehat{F},loc}(\widetilde{\Gamma}(\pi_1(x))) \cap V$, we define $H(z) = \widetilde{\Gamma}(H(y))$. It follows that $H \circ \Gamma =$ $\widetilde{\Gamma} \circ H.$

If $y = \Gamma(x)$ with $x \in W$, we define $H(y) = \widetilde{\Gamma}(H(x))$; and H(y) = [y]otherwise.

By construction we have that $H(W_F^c(x)) = W_{\widehat{E}}^c(H(x))$.

It is easy to see that H is a biyective map and by construction we have that H is a homeomorphism.

The previous proposition implies that \mathcal{F}_F^c is homeomorphic to $\mathcal{F}_{\widehat{F}}^c$ and M is homeomorphic to M.

We have that $\mathcal{F}_{\widehat{F}}^c$ is topologically transversal to E/\sim .

Recall that $G' = \{\Pi[x] / [x] \in G\}.$

There exists $f: M/G' \to M/G'$, the canonical projection of f, such that \widehat{f} preserves the dynamical properties of f. We have that $\Pi(\mathcal{F}_{\widehat{F}}^c) =$ $\mathcal{F}^{c}_{\widehat{f}}$ is topologically transversal to the compact hypersurface $\Pi(E/\sim)$.

Since $H \circ \Gamma = \widetilde{\Gamma} \circ H$, we have that there exists a map $g : M \to \mathbb{C}$ M/G' verifying that $g(W_f^c(x)) = W_{\widehat{f}}^c(g(x))$. We have that g is a homeomorphism. Therefore there exists a compact hypersurface $\Sigma = g^{-1}(\Pi(E/G))$ such that \mathcal{F}_f^c is topologically transversal to Σ .

Proposition 4.2. The flow ϕ is conjugated to a suspension of an Anosov diffeomorphism.

We have proved that $\{F_f^c(x)\}_{x\in M}$ is topologically transversal to Σ .

Recall that as f is C^1 close to f_1 , where $f_1(x) = \phi(x, 1)$ there exists a homeomorphism $h: M \to M$ close to the identity such that h(x) = x', and $F_f^c(x')$ is C^1 -close to $F_{f_1}^c(x)$ in compact sets. Moreover

$$h(F_{f_1}^c(x)) = F_f^c(x').$$

Since $h^{-1}(\Sigma)$ is a topological hypersurface we have that $\{F_{f_1}^c(x)\}_{x\in M}$ is topologically transversal to $h^{-1}(\Sigma)$, i.e. $\forall x \in M$ there exists $T_x > 0$ such that $\phi(x, T_x) \cap h^{-1}(\Sigma)$ "transversally".

Then ϕ , may be reparametrized in such a way that it becomes a suspension, i.e. the Anosov flow is conjugated to a suspension which is an Anosov flow, too.

Remark 4.1. The flow ϕ is conjugate to the suspension of an Anosov diffeomorphism and the hypersurface $\Pi(E/G)$ is homeomorphic to the torus T^{n-1} .

Let $l: h^{-1}(\Sigma) \to h^{-1}(\Sigma)$ be the map defined by $l(x) = \phi(x, T_x)$.

For every $x \in h^{-1}(\Sigma)$ there exist an *l*-stable and an *l*-unstable sets of x, where the *l*- stable (unstable) set of x is the intersection of the ϕ stable (unstable) manifold of x with $h^{-1}(\Sigma)$. Since ϕ is a transitive flow, it follows that *l* is an transitive diffeomorphism.

We have that $l|h^{-1}(\Sigma)$ is a hyperbolic diffeomorphism. If $h^{-1}(\Sigma)$ were a smooth manifold, $l|h^{-1}(\Sigma)$ would be an Anosov codimension one diffeomorphism and we could apply Franks result to conclude that $l|h^{-1}(\Sigma)$ is topologically conjugated to a hyperbolic toral automorphism (See [2]). Although $h^{-1}(\Sigma)$ is just a topological manifold, the Franks proof remains valid but, in this case we need to use a C^0 version of the classical theorem of Haefliger. This can be found in Chapter 7 of [5].

Let $A: T^{n-1} \to T^{n-1}$ be an Anosov diffeomorphism such that $l \mid h^{-1}(\Sigma)$ is conjugated to $A \mid T^{n-1}$; it follows that $h^{-1}(\Sigma)$ and $\Pi(E/\sim)$ are homeomorphic to T^{n-1} . Besides, if ψ is the suspension of A, ϕ is conjugated to ψ . Hence the flow ϕ is conjugated to the suspension of an Anosov diffeomorphism A under a function ρ . Then there exists a homeomorphism $\overline{H}: M \to (T^{n-1})_A^{\rho}$, such that

$$\overline{H}(\mathcal{O}_{\phi}(x)) = \mathcal{O}_{X_{A,\rho}}(\overline{H}(x))$$

where $X_{A,\rho}$ is the flow under a function ρ built over $A: T^{n-1} \to T^{n-1}$ on the manifold $(T^{n-1})^{\rho}_{A}$ (See [7]).

5. FLOW EQUIVALENCE

Let y be a k-periodic point of f with $y \in \Pi(E)$. There exists $\widetilde{y} \in E$ such that $\Pi(\widetilde{y}) = y$. Let x be a periodic point, verifying that $x \in W_f^c(y)$. Let $\eta_f(x)$ be the rotation number of x. We have that $\eta_f(x) = \eta_f(y)$. Suppose that there exist $\widetilde{z} \neq \widetilde{w}$ such that $\Pi(\widetilde{z}) = z$, $\Pi(\widetilde{w}) = w$ and $[\widetilde{y}] = \overline{C_{\widetilde{z}}^{\widetilde{w}}}$. The points z and w are periodic ones.

We claim that for all $n \in \mathbb{N}$, $F^n(\widetilde{w}) \neq \widetilde{z}$.

Suppose that there exists $k \in \mathbb{N}$ such that $F^k(\widetilde{w}) = \widetilde{z}$, then $\overline{C_{F^{lk}(\widetilde{z})}^{\widetilde{w}}} \subset [\widetilde{y}], \forall l \in \mathbb{N}$, hence $W_{\widehat{f}}^c(w)$ consist of only one point, but $W_{\widehat{F}}^c(\widetilde{w}) = \Pi^{-1}(W_{\widehat{f}}^c(w))$ is homeomorphic to $W_F^c(\widetilde{w})$ which is homeomorphic to \mathbb{R} . This is a contradiction.

The same argument shows that $F^n(\widetilde{w}) \notin \overline{C^{\widetilde{w}}_{\widetilde{z}}}, \forall n \in \mathbb{N}$.

Let x be a periodic point in $C^{z}_{f(w)}$ such that $\Pi^{-1}(x) \notin [F^{n}(\widetilde{y})], \forall n \in \mathbb{N}$ (This point exists because f is hyperbolic and $z, f(w) \in \mathcal{A}$ and $W^{c}_{\widehat{f}}$ is homeomorphic to \mathbb{R}).

Then the f-period of x is equal to the \hat{f} -period of x, hence $\eta_f(x) = \eta_{\hat{f}}(x)$.

So there is no loss of generality if we consider the rotation numbers of \hat{f} instead of those of f.

This is advantageous because $\mathcal{F}_{\widehat{f}}^c$ is topologically transversal to $\Pi(E/G)$ and $\Pi(E/G)$ is a hypersurface \widehat{f} -invariant.

From now on, we will suppose that $G = \widetilde{M}$, then $\widehat{F} = F$, $\widehat{f} = f$. In the same way that every leaf of \mathcal{F}_f^c verifies that $F^c(x) \cap \mathcal{A} \neq \emptyset$, we have that $F^c(x) \cap \Pi(E) \neq \emptyset$ because $\Pi(E)$ is a connected component of \mathcal{A} . Therefore, \mathcal{F}_f^c is topologically transversal to the hypersurface $\Pi(E)$.

Since $\phi : M \times \mathbb{R} \to M$ is an Anosov flow with a global transversal section, ϕ is conjugated to a suspension of the first return map,

 $l: h^{-1}(\Sigma) \to h^{-1}(\Sigma)$. Since l is conjugated to an Anosov diffeomorphism $A: T^{n-1} \to T^{n-1}$, we have that there exists $y \in h^{-1}(\Sigma)$ such that l(y) = y and $card\{u \in \mathcal{O}_{\phi}(y) \cap h^{-1}(\Sigma)\} = 1$. Let y' = h(y), we have that $y' \in \Pi(E)$ and \mathcal{F}_{f}^{c} is topologically transversal to the hypersurface $\Pi(E)$. Besides, $card\{u \in F_{f}^{c}(y') \cap \Pi(E)\} = 1$.

Let k = period(y') and let $G(x) = f^k(x)$. We have that $\Pi(E)$ is G-invariant.

Let $c: \Pi(E) \to \mathbb{N}$ be the map given by

 $c(x) = card\{v \in \widetilde{M} | v \in connected \ component \ of \ (\Pi^{-1}(C^x_{G(x)})) \cap \Pi^{-1}(\Pi(E))\}$

Let $x \in \Pi(E)$ and $\overline{x} \in \Pi^{-1}(\Pi(E))$ such that $\Pi(\overline{x}) = x$. We have that the connected component of $\Pi^{-1}(C^x_{G(x)})$ is included in $W^c_F(\overline{x})$; the "end points" of the connected component of $\Pi^{-1}(C^x_{G(x)})$ are in different connected components of $\Pi^{-1}(\Pi(E)) \subset \widetilde{M}$, and $\Pi^{-1}(\Pi(E))$ is topologically transversal to \mathcal{F}^c_F .

From transversality we have the continuity of c, then there exists $m \in \mathbb{N}$ such that c(x) = m for all $x \in \Pi(E)$.

We can assert that the segment of the central curve between y' and G(y') "winds around itself" m times.

Hence, the rotation number of $G|W^c(y')$,

$$\eta_G(W^c(y')) = \frac{m}{1} \cong 1 \mod z$$

and the rotation number of $f|W^c(y')$,

$$\eta_f(W^c(y')) = \frac{m}{k}$$

If $x \in \Pi(E)$ is an *f*-periodic point, then there exists l > 0 verifying $G^{l}(x) = x$, and we define $j(x) = card\{u \in C^{x}_{G^{l}(x)} \cap \Pi(E)\}$.

Since $\Pi(E)$ is a connected component of \mathcal{A} , we have that $F^c(x) \cap \Pi(E) \neq \emptyset$. Therefore, it will cause no confusion if we use j(x) for any *l*-periodic point of G.

We claim the following

Proposition 5.1. Let x be a periodic point of f, then the rotation number of x,

(1)
$$\eta_f(W^c(x)) = \frac{m}{kj(x)},$$

where m, k, and j(x) are the above defined.

Let $x \in \Pi(E)$ a periodic point of G, and suppose that there exists $n \in \mathbb{N}$ such that j(x) = mn. It follows that $period_G(x) = n$ and

$$\eta_G(W^c(x)) = \frac{1}{n}$$

and

$$\eta_f(W^c(x)) = \frac{1}{nk} = \frac{m}{j(x)k}$$

In the case of j(x) = mn + r with 0 < r < m, let $s = \min\{l \in \mathbb{N}/rl = m\}$ and let $\alpha \in \mathbb{N}$ such that $rs = m\alpha$. We have that

$$sj(x) = smn + sr = m(sn + \alpha)$$

NANCY GUELMAN

then $period_G(x) = sn + \alpha$ and the segment of the central curve between x and $G^{sn+\alpha}(x)$ "winds around itself" s times, it follows that

$$\eta_G(W^c(x)) = \frac{s}{sn+\alpha} = \frac{1}{n+\frac{r}{m}} = \frac{m}{mn+r} = \frac{m}{j(x)}$$

Hence

$$\eta_f(W^c(x)) = \frac{m}{j(x)k}$$

Then every periodic point in $\Pi(E)$ has rotation number of the form (1), and since every closed central leaf of \mathcal{F}_f^c intersects $\Pi(E)$ then every f-periodic point of M has rotation number of the form (1).

Let x' be a f-periodic point, and $h^{-1}(x') = x$, we have that $F_f^c(x')$ is C^1 -close to $F_{f_1}^c(x)$ and $\mathcal{F}_{f_1}^c$ is topologically transversal to $h^{-1}(\Pi(E)) = h^{-1}(\Sigma)$. We have proved that for every Axiom A diffeomorphism, f, C^1 -close to f_1 , there exists $\Sigma_f = h^{-1}(\Sigma)$ such that $\mathcal{F}_{f_1}^c$ is topologically transversal to Σ_f .

Recall that $\forall x \in \Sigma_f$ there exists $T_x > 0$ such that

$$T_x = \min\{t > 0 | \phi(x, t) \in \Sigma_f\}$$

Let Λ be a transversal section of $\mathcal{F}_{f_1}^c$. For every $x \in \Sigma_f$ let

$$e(x) = card\{v | v \in \phi(x, t) \cap \Lambda \text{ with } 0 \le t < T_x\}$$

Since ϕ is topologically transversal to Λ and Σ_f is connected we have that there exists $e \in \mathbb{N}$ such that e(x) = e for all $x \in \Sigma_f$.

It follows that $e.j(x') = j_{f_1}(x)$, where $j_{f_1}(x) = card\{u|u \in \mathcal{O}_{\phi}(x) \cap \Lambda\}$. Hence

$$\eta_f(W^c(x')) = \frac{m.e}{j_{f_1}(x)k}$$

By the continuity of the rotation number, it follows that the rotation numbers of f_1 are of the form

(2)
$$\eta_{f_1}(W^c(x)) = \frac{\beta}{j_{f_1}(x)}$$

where $j_{f_1}(x)$ is the above defined.

Proposition 5.2. If the flow ϕ is conjugated to a suspension of an Anosov diffeomorphism A under a function ρ , and the rotation numbers of $f_1(x) = \phi(x, 1)$ are of the form (2), then ϕ is flow equivalent to the suspension of A.(Here the time of the first returned map is constant).

Since

$$period(\phi(x,t)) = \frac{1}{\eta_{f_1}(W^c(x))},$$

and

$$\eta_{f_1}(W^c(x)) = \frac{\beta}{j_{f_1}(x)},$$

we have that

$$period(\phi(x,t)) = \frac{j_{f_1}(x)}{\beta},$$

and if $y \in M$ is such that $j_{f_1}(y) = 1$ then $period(\phi(y,t)) = \frac{1}{\beta}$.

Since $\phi: M \times \mathbb{R} \to M$ is an Anosov flow conjugated to the suspension of an Anosov diffeomorphism A, there exists a homeomorphism $\overline{H}: M \to (T^{n-1})_A^{\rho}$, such that

$$\overline{H}(\mathcal{O}_{\phi}(x)) = \mathcal{O}_{X_{A,\rho}}(\overline{H}(x)).$$

Let $\psi: T^{n-1} \to \mathbb{R} > 0$ be the map such that $\psi(x) \equiv \frac{1}{\beta}$.

Let $X_{A,\psi}$ be the flow under a function ψ built over $A : T^{n-1} \to T^{n-1}$ on the manifold $(T^{n-1})_A^{\psi}$.

We have that $X_{A,\psi}$ is conjugated to $X_{A,\rho}$ and therefore to ϕ . Let $\underline{H}: M \to (T^{n-1})^{\psi}_A$ be the homeomorphism such that

$$\underline{H}(\mathcal{O}_{\phi}(x)) = \mathcal{O}_{X_{A,\psi}}(\underline{H}(x))$$

It follows that if x is a l-periodic point of A we have that

$$period\mathcal{O}_{X_{A,\psi}(x)} = \frac{l}{\beta}$$

If x is a periodic point of ϕ with $period(\mathcal{O}_{\phi}(x)) = \frac{j_{f_1}(x)}{\beta}$, and $\underline{H}(\mathcal{O}_{\phi}(x))$ is a periodic orbit of $X_{A,\psi}$.

We have that

$$j_{f_1}(x) = card\{u|u \in \mathcal{O}_{\phi}(x) \cap \Lambda\} = card\{u|u \in \mathcal{O}_{X_{A,\psi}}(\underline{H}(x)) \cap \underline{H}(\Lambda)\}$$

and we claim that

$$card\{u|u \in \mathcal{O}_{X_{A,\psi}}(\underline{H}(x)) \cap \underline{H}(\Lambda)\} =$$

card{
$$u|u \in \mathcal{O}_{X_{A,\psi}}(\underline{H}(x)) \cap T^{n-1}$$
}

For every $x \in T^{n-1}$ let

$$d(x) = card\{v | v \in \eta(x, t) \cap \underline{H}(\Lambda) \text{ with } 0 \le t < \frac{1}{\beta}\}$$

where $\eta(x,t)$ is the flow defined by $\dot{\eta}(x,t) = X_{A,\psi}(\eta(x,t))$.

Since η is topologically transversal to $\underline{H}(\Lambda)$ and T^{n-1} is connected we have that there exists $d \in \mathbb{N}$ such that d(x) = d for all $x \in T^{n-1}$. If $d \geq 2$, then

$$2 \leq card\{v | v \in \eta(\underline{H}(y), t) \cap \underline{H}(\Lambda) \text{ with } 0 \leq t < \frac{1}{\beta}\} =$$

 $card\{u|u\in\mathcal{O}_{\phi}(y)\cap\Lambda\}=1$

which is a contradiction. Then

$$card\{u|u \in \mathcal{O}_{X_{A,\psi}}(\underline{H}(x)) \cap \underline{H}(\Lambda)\} =$$

$$card\{u|u \in \mathcal{O}_{X_{A,\psi}}(\underline{H}(x)) \cap T^{n-1}\} = period_A(\underline{H}(x))$$

and it follows that

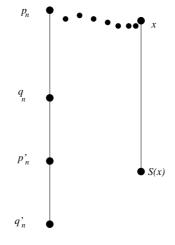
$$period(\mathcal{O}_{\phi}(x)) = period(\mathcal{O}_{X_{A,\psi}}(\underline{H}(x))).$$

Since ϕ and $X_{A,\psi}$ are conjugated and the periods of corresponding periodic orbits agree, then ϕ and $X_{A,\psi}$ are flow equivalent (See [7], Ch.19).

References

- Bonatti C., Diaz L. Persistent nonhypebolic transitive diffeomorphisms. Annals of Mathematics, vol 143 (1995)
- [2] Franks J. Anosov diffeomorphisms. Proceedings of the Symposium in Pure Math., vol 14 (1970)
- [3] Franks J., Williams R. Anomalous Anosov Flows. Global theory and dynamical systems, SLN 819, Springer-Verlag (1980)
- [4] Guelman N. On the approximation of time one map of Anosov Flows by Axiom A diffeomorphisms. Bull. Braz. Math. Soc., New Series 33 (2002)
- [5] Hector G., Hirsch U. Introduction to the Geometry of Foliations. Fiedr. Vieweg & Sohn, Braunschweig (1981)
- [6] Hirsch M., Pugh C., Shub M. Invariant manifolds. Lecture Notes in Mathematics, vol 583, Springer-Verlag (1977)
- [7] Katok A., Hasselblat B. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press. (1995)
- [8] Palis J., Pugh C. Fifty problems in dynamical systems. Lecture Notes in Mathematics, vol 468, Springer-Verlag (1975)
- [9] Sakai T. Riemannian Geometry Translations of Mathematical Monographs, vol 149, A.M.S.(1995)
- [10] Verjovsky A. Codimension one Anosov flows. Bol. Soc. Mat. Mexicana, vol 19 (1974)
- [11] Verjovsky A. Sistemas de Anosov. Monografías del IMCA, Lima (1999)

IMERL, FACULTAD DE INGENIERÍA, UNIVERSIDAD DE LA REPÚBLICA, C.C. 30, MONTEVIDEO, URUGUAY



PSfrag replacements

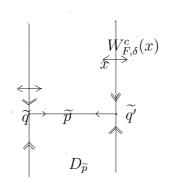


FIGURE 2