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Abstract

For continuous maps on a compact manifold M , particularly for those that do not preserve
the Lebesgue measure m, we define the observable invariant measures as a generalization of
the Sinai-Ruelle-Bowen (SRB) measures. We prove that any continuous map has observable
measures and characterize those that are SRB in terms of the observability.

We also define the generalized ergodic attractors and construct a decomposition in up to
countable many of them, such that their basins are pairwise m-almost disjoint and cover m-
almost all points in M .

1 Introduction

Let f : M 7→ M be a continuous map in a compact, finite-dimensional manifold M . Let m be the
Lebesgue measure normalized to verify m(M) = 1, and not necessarily f -invariant. We denote P
the set of all Borel probability measures in M , provided with the weak∗ topology, and a metric
structure inducing this topology.

For any point x ∈ M we denote pω(x) to the set of the Borel probabilities in M that are the
partial limits of the (not necessarily convergent) sequence 1

n

n−1∑
j=0

δfj(x)


n∈IN

[1]

where δy is the Delta de Dirac probability measure supported in y ∈ M .
The set pω(x) ⊂ P is the collection of the spatial probability measures describing the asymp-

totic time average (given by (1)) of the system states, provided the initial state is x. If the sequence
[1] converges then the set pω(x) has a unique element µx. But we shall consider also the case in
which it does not converge. There exist maps such that, for Lebesgue a.e. x ∈ M , the sequence
[1] is not convergent. (We provide the example 4.6 in Section 4.)

It is unknown how large is the family of maps for which [1] does not converge for a positive
Lebesgue set of initial states x ∈ M . There is some evidence that it may be a small family,
because all known examples are not robust and form a negligible part of the known scenario of
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dynamical systems. The phenomena exhibited when [1] is not convergent are similar to the time-
delayed specification properties studied by Bowen in ([BR75]), but here they are seen on the time
average probabilities, instead on the points along the orbit. If the time average sequence [1] is not
convergent, it still seems to stabilize on a certain spatial probability measure µ, and maintains the
approach to µ for a long period of time, say T . But then it changes, through very slow variations,
to a different spatial distribution ν 6= µ, that shall be seen from a time scale much larger than
T . (See Theorem 2.4 and its proof in Appendix 7.3.) These changes should occur aperiodically,
slower each time, and infinitely many times in the future.

To include those cases for which the sequence [1] is not convergent we consider, for a given
measure µ, the set of points x ∈ M such that the minimum distance between µ and the tail of
the sequence [1] is small, instead of considering the maximum distance. We define:

Definition 1.1 (Observable measures.) A probability measure µ ∈ P is observable if for all
ε > 0 the set Aε = {x ∈ M : dist (pω(x), µ) < ε} has positive Lebesgue measure m(Aε) > 0.

We note that the definition above is independent of the choice of the distance in P, provided
that the metric structure induces its weak∗ topology. We also remark that observable measures
are f -invariant, and that usually at most a few part of the space of invariant measures for f are
observable measures (see the examples in Section 4).

In paragraph 7.1 of Section 7, we explain the mathematical and physical reasons that lead us
to use the ε > 0 condition in Definition 1.1 instead of using ε = 0 at once. Be aware that this
condition must be verified not only for some but for all ε > 0 at each observable measure µ.

In our opinion the results about the observable measures that we state in this paper may be for
use mostly on Lebesgue non preserving maps, to study the asymptotic behavior of time averages
from a wide viewpoint.

The Sinai-Ruelle-Bowen (SRB) measures ([BR75], [R76], [S72]), also the usually known as
physical or nature measures, are widely studied occupying a relevant interest in the ergodic theory
of dynamical systems. ([A67], [PS82], [PS04], [V98], [BV00]).

In this paper we characterize the SRB measures as a particular class of observable measures
and study the relations between them.

For further uses we call generalized ergodic attractors, not to the support in M of a SRB
measure ν as done by Pugh and Shub in [PS89], but to the set {ν} ⊂ {P}. This is a kind of
Milnor attractor [Mi85], in the space of probability measures instead of the manifold M .

Definition 1.2 (SRB measures and ergodic attractors.) A Borel probability measure ν
in M is a SRB measure if the set C = {x ∈ M : pω(x) = {ν}} has positive Lebesgue measure
m(C) > 0. The set C = C(ν) ⊂ M is called the basin of attraction of ν.

The set {ν} ⊂ P is an ergodic attractor if ν is a SRB measure (even when ν is not ergodic).

From the definitions above note that SRB measures and observable measures are f -invariant. All
SRB measure is observable but not all observable measure is SRB (we provide examples in Section
4).

The following open question refers to the existence and finiteness of SRB measures and to the
convergence of the sequence [1] of time averages of the system for a set of initial states with total
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Lebesgue measure. It is possed in [P99] and leads to a global understanding of the dynamics from
an ergodic viewpoint:

1.3 Palis Conjecture Most dynamical systems have up to finitely many SRB measures (or
ergodic attractors) such that their basins of attraction cover Lebesgue almost all points.

This conjecture admits the following equivalent statement, that seems weaker. (In fact, the
definition 1.1 of observability is certainly weaker than the definition 1.2 of SRB measures.)

1.4 Equivalent formulation of Palis Conjecture: Most dynamical systems have some and
up to finitely many observable measures.

Note: To prove the equivalence of statements 1.3 and 1.4 it is enough to join the thesis of
Theorem 2 in Theorem 2.4 in section 2 of this paper.

We prove the following starting results:

THEOREM 1 (Existence of observable measures and SRB measures.)
For any continuous map f , the space O of all observable measures for f is non-empty and

weak∗-compact.
Even more, O (or some proper reduction of O, as defined in 1.7) has finite or countably infinite

many elements if and only if there exist SRB measures for f .

The first statement of this theorem is proved in paragraph 2.6 and the second one in paragraph
5.1.

Due to the second assertion of Theorem 1, if the map f (or the restriction of f to an invariant
set with positive Lebesgue measure) does not have a SRB measure, then there exist non-countable
infinitely many observable measures. They are dense in some region O1 ⊂ O ⊂ P.

Recalling the ideas of Mañé to state the ergodic closing lemma in [M82]; and working with
the partial limits of the sequence [1] of time averages in P (instead the orbits in M): is it possible
to perturb the map f to get a SRB measure, i.e. to “close” some part of such abundant set of
observable measures into an isolated measure? We do not have an answer, and it seems a difficult
question.

Notice the following consequence of the first part of Theorem 1:

Corollary 1.5 (Observable measures for families of maps.)
Given any continuous k-parameter family of maps fy : M 7→ M, y ∈ Y ⊂ IRk, there exist

observable measures in M × Y for F : M × Y 7→ M × Y , defined as F (x, a) = (fa(x), a).

Therefore, for all ε > 0, there exists a positive Lebesgue set of parameter values y ∈ Y such
that the fy-invariant sets Aε,fy ⊂ M defined in 1.1, all have positive Lebesgue measure.

On the other hand, the pω(x) limit sets may have many different partial limit measures.
Nevertheless, we prove that pω(x) is formed only with observable measures, for Lebesgue almost
all x ∈ M .

Definition 1.6 (Basin of attraction.)
The basin of attraction C(K) of a compact subset K of the space P of all the Borel probability

measures in M , is the (maybe empty) subset of M defined as:

{x ∈ M : pω(x) ⊂ K}
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If the purpose is to study the asymptotic to the future time average behaviors of Lebesgue
almost all points in M , then the set O of all observable measures for f is enough and besides the
minimal compact subset of probability measures to be considered. In fact we have the following:

THEOREM 2 (Attracting property of the set of observable measures.)
The set O of all observable measures for f is the minimal compact subset of the space P whose

basin of attraction has total Lebesgue measure.

We prove this theorem in paragraph 3.1.

Due to the conjecture in 1.3 and Theorem 1, we are interested in partitioning the set O of
observable measures, or to reduce it as much as possible, into different compact subsets whose
basins of attractions have positive Lebesgue measure. (But due to Theorem 2, no proper compact
part of O shall have a total Lebesgue basin). We define:

Definition 1.7 (Generalized Ergodic Attractors - Reductions of the space O.)
A generalized ergodic attractor, (or a reduction of the space O of all observable measures for

f), is a compact subset A of the space O of observable measures such that its basin of attraction
C(A) has positive Lebesgue measure.

Remark 1.8 We refer to them as ergodic because the attraction is on the time averages dis-
tributions and not in the phase space, but these generalized ergodic attractors are not formed
necessarily with ergodic measures. (We provide the example 4.6 in Section 4.)

From Definition 1.7 we note that a generalized ergodic attractor A is an ergodic attractor
(according to Definition 1.2) if and only if its diameter is zero, and in this case the (unique)
measure in A is a SRB measure.

1.9 Generalized Pugh-Shub Ergodic Attractors.
In [PS89] Pugh and Shub call Ergodic Attractor to (A,µ) where µ is a SRB measure and

A = supp(µ) ⊂ M .
We observe that it is enough to give the SRB measure µ (in fact the Pugh-Shub ergodic

attractor is its support in M). This is the first reason of our Definition 1.2 of ergodic attractor
in P instead M . Other reasons are related to the difference between topological and measurable
supports of a measure, as follows:

We could define the support of µ as the compact support (i.e. the minimal compact subset
A in M such that µ(A) = 1). But in a measurable sense, (for instance to look at some ergodic
attractors as supported on the non-compact unstable manifold of a hyperbolic set, as in [Pe77] and
[PS89]), we will define the support of µ as the equivalent class of Borel measurable sets in M that
have total µ-measure. The equivalence relation is defined as follows: a pair of Borel measurable
sets are µ-equivalent if their symmetric difference has zero µ-measure. This last definition of
support avoids some misunderstandings between topological and ergodic attractors.

Along this paper we will work, for reasons of simplicity, only with generalized ergodic attractors
that live in the space P (i.e. in the sense of Definition 1.7), without reference to its support in M .

In spite a system could not exhibit a SRB measure, still the reductions of the space of observable
measures divide the manifold in the basins of generalized ergodic attractors. Each reduction A
has a basin C = C(A) with positive Lebesgue measure and is minimal respect to C. We state
this result as follows:
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THEOREM 3 (Minimality of generalized ergodic attractors.)
Any generalized ergodic attractor A is the minimal compact set of observable measures attract-

ing its basin C(A). More precisely

m(C(A) \ C(K)) > 0

for all compact subset K ⊂ A.

We prove Theorem 3 in paragraph 3.6.

The following result is much weaker but related with the Palis’ conjecture stated in paragraph
1.3:

THEOREM 4 (Decomposition Theorem)
For any continuous map f : M 7→ M there exist a collection of (up to countable infinitely many)

generalized ergodic attractors whose basins of attraction are pairwise Lebesgue-almost disjoint and
cover Lebesgue- almost all M .

We prove the last theorem in paragraph 5.9.

In Theorem 5.7 and Corollary 5.8 we characterize those maps whose generalized ergodic at-
tractors (as in the thesis of Theorem 4) are ergodic attractors (i.e. SRB measures), as asked in
the statement of Palis conjecture.

Generalized ergodic attractors and observable measures, due to Theorems 1 and 4, do always
exist for continuous maps.

On the other hand, SRB measures and ergodic attractors do not always exist.It is largely known
the difficulties to characterize, or just find, non hyperbolic maps that do have SRB measures. This
is a very difficult problem even in some systems whose iterated topological behavior is known.
([C93], [E98], [H00], [HY95]).

The difficulties appear when applying the known techniques for constructing the SRB measures
in a hyperbolic setting ([Pe77], [S72], [A67]). The main obstruction when having a weak hyperbolic
setting usually resides in the irregularity of the invariant manifolds, which technically translate
the non trivial relations between topologic, measurable and differentiable properties of the system
([PS04]).

In fact, these difficulties appear for non-hyperbolic maps, even for maps possed in a very regular
setting as Lewowicz maps in the two-torus (see [Le80]) For them, the differentiable regularity of
the given transformation, (they are analytic maps), and the topological known behavior of the
iterated system (they are conjugated to Anosov maps), are not enough to prove the existence of
SRB measures and ergodic attractors [CE01].

1.10 Observability and ergodicity for maps preserving the Lebesgue measure.

For systems preserving the Lebesgue measure the main question is their ergodicity, and most
results of this work translate, for those systems, as equivalent conditions to be ergodic. In fact we
prove the following:
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THEOREM 5 (Observability and ergodicity.)
If f preserves the Lebesgue measure m then the following assertions are equivalent:
(i) f is ergodic respect to m.
(ii) There exists a unique observable measure µ for f .
(iii) There exists a unique SRB measure ν for f attracting Lebesgue a.e.
Besides, if the assertions above are verified, then m = µ = ν

We prove this theorem in paragraphs 6.2, 6.4 and 6.5 of Section 6.

Given a map f that preserves the Lebesgue measure, the question if f has a SRB measure
is mostly open even for differentiable maps that do not have some kind of uniform hyperbolicity
[V98].

For Lebesgue preserving maps the existence of a SRB measure attracting Lebesgue a.e. is
equivalent to the ergodicity of the map. The ergodicity of most maps that preserve the Lebesgue
measure is also an open question. ([PS04], [BMVW03]).

Due to Theorem 5 both open questions above are equivalent to the unique observability.

Definition 1.11 Irreducibility
A generalized ergodic attractor A ⊂ P is irreducible if it does not contain proper compact

subsets that are also generalized ergodic attractors.
It is trivial or trivially irreducible if its diameter in P is zero , or in other words, if A has a

unique observable measure µ.
Note that SRB measures are trivially irreducible and conversely.

THEOREM 6 (Irreducible generalized ergodic attractors.)
Let f : M 7→ M be a continuous map that preserves the Lebesgue measure m in M .
Any generalized ergodic attractor A for f is irreducible if and only if it is trivial.
Thus, the unique measure µ ∈ A is a SRB measure.
Besides, all SRB measures for f are ergodic components of m.

We prove this theorem in paragraph 6.7.

1.12 Generalized Ergodic Attractors and Milnor Attractors.

Definition 1.13 Milnor attractor. [Mi85]
A Milnor attractor is a compact set A ⊂ M such that its basin of attraction

C(A) = {x ∈ M : ω(x) ⊂ A}

has positive Lebesgue measure, and for any compact proper subset K ⊂ A the set

C(A) \ C(K) = {x ∈ M : ω(x) ⊂ A, ω(x) 6⊂ K}

also has positive Lebesgue measure.
Note: Here ω(x) is the ω-limit set in M of the orbit of x, i.e. the set of limit points in M of

the orbit with initial state x.
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The generalized ergodic attractors are defined in P instead of M , but were inspired in definition
1.13. They play in P a similar topological role that Milnor attractors play in M .

We look at a SRB measure as a trivially irreducible generalized ergodic attractor, or a reduction
with null diameter in the space of the observable measures. It is in P the limit of the convergent
time average sequence [1], for a set of initial states with positive Lebesgue measure.

On the other hand, a sink in M is the limit of the convergent orbits for a set of initial states
with positive Lebesgue measure. Roughly speaking, the SRB measures in P play the role that sinks
do in M , those first considered as punctual attractors of time averages, and these last considered
as punctual attractors of the orbits in M .

The supports and basins of attraction of the generalized ergodic attractors, and those of the
Milnor attractors in M , are related as follows:

For any given Milnor attractor A in M with basin C, there exists a (unique minimal respect
to C) generalized ergodic attractor A in P whose basin contains Lebesgue a.e. the basin C of A.
This A is constructed as the space of all observable measures of the map f restricted to C (see
Proposition 3.5).

On the other hand (but not conversely) for any given generalized ergodic attractor A in P
with basin C, there exists a (unique minimal respect to C) Milnor attractor A in M whose basin
contains Lebesgue a.e. the basin C of A. This Milnor attractor A is constructed as the intersection
of all compact sets in M containing ω(x) for Lebesgue a.e. x ∈ C.

Besides, the Milnor attractor A such constructed from a given generalized ergodic attractor
A, supports all the probability measures µ in A in the sense that µ(A) = 1 for all µ ∈ A. This
last fact was observed by Ashwin-Terry in [AT00] for the case of existing SRB measures. But, as
remarked by Cao in [Ca04], the compact support of A and the Milnor attractor A may be very
different subsets in M , from the topological viewpoint.

The topological phenomena of riddled basins of different Milnor attractors as in [AT00], can
still be present for the basins of different generalized ergodic attractors. In Theorem 4 we prove
that the basins, for any continuous dynamical system f , form a m-a.e. partition of M , of medible
sets. But we do not say nothing about their possible topological riddling. Nevertheless, the
riddling may be present for generalized ergodic attractors as for Milnor attractors, due to the
constructions above.

2 The set of the observable invariant measures.

Definition 2.1 (Weak∗ topology in the space of probability measures.)
The weak∗ topologic structure in the space P is defined as:

µn → µ in P iff lim
∫

g dµn =
∫

g dµ for all g ∈ C(M)

where C(M) denotes the space of continuous real functions in M .

A classic basic theorem on Topology states that the space P is compact and metrizable when
endowed with the weak∗ topology. [M89]

Let us denote as Pf ⊂ P the set of the Borel probability measures in M that are f -invariant,
that is µ(f−1(B)) = µ(B) for all Borel set B ⊂ M . Note that the Lebesgue measure m does not
necessarily belong to Pf .
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Fix any metric in P giving its weak∗ topology structure. We denote as Bε(µ) to the open ball
in P centered in µ ∈ P and with radius ε > 0.

2.2 The pω- limit sets.
At the beginning of this paper we defined, for each initial state x ∈ M , the set pω(x) in the

space P. It is the set of the probabilities measures obtained as the limits, in the weak∗ topology
in P, of the convergent subsequences of the sequence [1] of time averages up to time n → +∞.

In other words:

pω(x) = {µ ∈ P : lim
1
ni

ni−1∑
j=0

g(f j(x)) =
∫

g dµ ∀ g ∈ C(M) for some ni → +∞}

Remark 2.3 Note that all µ ∈ pω(x) are f -invariant. That is pω(x) ⊂ Pf ⊂ P although the
sequence [1] contained in P may not intersect Pf . Due to the compactness of P, the set pω(x) is
compact and non-empty, for all x ∈ M .

For further uses we state here the following property for the pω-limit sets:

Theorem 2.4 Convex-like property.
For any point x ∈ M

i) If µ, ν ∈ pω(x) then for each real number 0 ≤ λ ≤ 1 there exists a measure µλ ∈ pω(x) such
that

dist (µλ, µ) = λ dist (µ, ν)

ii) The set pω(x) either has a single element or non-countable infinitely many.

Proof: See 7.3 in the appendix.

Definition 2.5 Given a real number ε > 0 we say that a (non-necessarily f -invariant) probability
measure µ in M is ε-observable if the set of points x ∈ M such that pω(x)∩Bε(µ) 6= ∅ has positive
Lebesgue measure.

Theorem 2.6 (Existence of observable measures.) Given any continuous map f , the set
Of of the probability measures that are ε-observable for all ε > 0 is a non-empty compact subset
of the (weak∗ topologic) space Pf of the f-invariant measures.

Proof: The key question is that Of is not empty, which we prove at the end.
Let us first prove that Of ⊂ Pf . In fact, given µ ∈ Of then, for any ε = 1/n > 0 there

exists some µn ∈ Bε(µ) which is the limit of a convergent subsequence of [1] for some x ∈ M . As
the limits of all convergent subsequences of [1] are f -invariant, we have that µn ∈ Pf ⊂ P for
all natural number n, and µn → µ with the weak∗ topologic structure of P. The space Pf is a
compact subspace of P with the weak∗ topologic structure, so µ ∈ Pf as wanted.

Second, let us prove that O = Of is compact. The complement Oc of O in P is the set of
all probability measures µ(not necessarily f -invariant) such that for some ε = ε(µ) > 0 the set
{x ∈ M : pω(x) ∩Bε(µ) 6= ∅} has zero Lebesgue measure. Therefore Oc is open in P, and O is a
closed subspace of P. As P is compact we deduce that O is compact as wanted.
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Third, let us prove that O is not empty. Suppose by contradiction that it is empty. Then
Oc = P, and for every µ ∈ P there exists some ε = ε(µ) > 0 such that the set A = {x ∈ M :
pω(x) ⊂ (Bε(µ))c} has total Lebesgue probability.

As P is compact, let us consider a finite covering of P with such open balls Bε(µ), say
B1, B2, . . . Bk, and their respective sets A1, A2, . . . Ak defined as above. As m(Ai) = 1 for all
i = 1, 2, . . . , k we have that the intersection B = ∩k

i=1Ai is not empty. By construction, for all
x ∈ B the pω-limit of x is contained in the complement of Bi for all i = 1, 2 . . . , k, and so it would
not be contained in P, that is the contradiction ending the proof. �

We reformulate Definition 1.1 of observability of measures, in the following equivalent terms:

Definition 2.7 (Observability revisited.) We say that µ ∈ Pf is observable for f , if it is
ε-observable (see 2.5) for all ε > 0.

We denote as Of , or simply as O, to the (compact and non empty, see Theorem 2.6) set of all
the probability measures that are observable for f .

Definition 2.8 (Observability Size.) If µ is an observable measure (see Definitions 2.5 and
2.7), we call observability size of µ to the positive real function o = oµ : IR+ 7→ IR+ defined as

oµ(ε) = m(A(ε, µ))

where m is the Lebesgue measure in M and A(ε, µ) is the set

A(ε, µ) = {x ∈ M : pω(x) ∩Bε(µ) 6= ∅}

Remark 2.9 For any observable measure µ, its observability size function o(ε) is positive and
decreasing with ε > 0.

Then o(ε) has always a non-negative limit value when ε → 0+.

3 Generalized ergodic attractors. Reductions of the set of ob-
servable measures.

The characterization of those continuous maps having SRB-measures as those whose sets of ob-
servable measures, or some reductions of them, are finite or countable infinite (Theorem 5.1),
derives the attention to try to define and find sufficient conditions to reduce as much as possible
the set of observable measures.

Besides, the reductions of the space of observable measures will work as Generalized Ergodic
Attractors, even in the case that this reduction can not be done as much as to obtain SRB
measures.

We first prove that the reducibility of the set O of observable measures for f must be defined
carefully, because in the following sense, this set O is minimal.

Theorem 3.1 (Reformulation of Theorem 2. Attracting property of the set of observ-
able measures.)

Let f : M 7→ M be any given continuous map in the compact manifold M .
The set Of of all its observable measures belongs to the family

ℵ = {K ⊂ P : K is compact and pω(x) ⊂ K for Lebesgue almost every point x ∈ M}
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Moreover
Of =

⋂
K∈ℵ

K

and thus Of is the unique minimal set in ℵ.

Proof: For simplicity let us denote O = Of . Given any subset K ⊂ P (this K is not necessarily
in ℵ neither is necessarily compact), let us consider:

(2) A(K) = {x ∈ M : pω(x) ∩ K 6= ∅}, C(K) = {x ∈ M : pω(x) ⊂ K}

It is enough to prove that m(C(O)) = 1 and that K ⊃ O for all K ∈ ℵ. Let us first prove the
second assertion.

To prove that K ⊃ O it is enough to show that µ 6∈ O if µ 6∈ K ∈ ℵ.
If µ 6∈ K take ε = dist (µ,K) > 0. For all x ∈ C(K) the set pω(x) ⊂ K is disjoint with the ball

Bε(µ). But almost all Lebesgue point x ∈ C(K), because K ∈ ℵ. Therefore pω(x) ⊂ K∩Bε(µ) = ∅
Lebesgue a.e. This last assertion and Definitions 1.1 and 2.7 imply that µ 6∈ O, as wanted.

Now let us prove that m(C(O)) = 1, which is the key matter of this theorem. We know O is
compact and not empty. So, for any µ 6∈ O it is defined the distance dist (µ,O) > 0. Observe
that the complement Oc of O in P can be written as the increasing union of compacts sets Kn

(not in the family ℵ) as follows:

(3) Oc =
∞⋃

n=1

Kn, Kn = {µ ∈ P : dist (µ,O) ≥ 1/n} ⊃ Kn+1

Let us take the sequence An = A(Kn) of sets in M defined in (2) at the beginning of this proof,
and denote A∞ = A(Oc). We deduce from (2)and (3) that:

A∞ =
∞⋃

n=1

An, m(An) → m(A∞), A∞ = A(Oc)

To finish the proof is thus enough to show that m(An) = 0 for all n ∈ IN .
In fact, An = A(Kn) and Kn is compact and contained in Oc. By definitions 1.1 and 2.7 there

exists a finite covering of Kn with open balls B1,B2, . . . ,Bk such that

(4) m(A(Bi)) = 0 for all i = 1, 2, . . . , k

By (2) the finite collection of sets A(Bi); i = 1, 2, . . . , k cover An and therefore (4) implies
m(An) = 0 ending the proof. �

Recall Definition 1.6 of basin of attraction and Definition 1.7 of generalized ergodic attractor
or reduction of the space O of the observable measures. Note that the basins of attraction of the
non-empty compact subsets of O, if non-empty, are f -invariant sets. They could have Lebesgue
measure zero.

In theorem 3.1 we showed that the unique compact subset K ⊂ O whose basin of attraction
has total Lebesgue probability measure is O. So is itself a generalized ergodic attractor.

But there may exist other compact subsets of O still having basins of attractions with positive
Lebesgue measure. If they exist, they are the proper reductions or generalized ergodic attractors
properly contained in O.
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3.2 Reducible, irreducible and trivially irreducible attractors. Let us recall Definitions
1.7 and 1.11. The space O of the observable measures for f is reducible if there exists some proper
reduction of it. If O1 is a generalized ergodic attractor (i.e. a reduction of O), then O1 is reducible
if there exists some reduction properly contained in O1.

Then, O1 is irreducible, if there does not exist proper reductions of O1. In other words, O1 is
irreducible if for all proper compact subset K of O1 the basin of attraction of K has zero Lebesgue
measure.

We say that a generalized ergodic attractor O1 is trivially irreducible if its diameter is zero,
i.e. it has a single element.

From Definition 1.2 the trivially irreducible generalized ergodic attractors, if there exist some,
are the ergodic attractors, or in brief, the SRB measures.

As shown in the examples of Section 4, there exist maps whose spaces O of observable measures
are irreducible and maps for which they are reducible. Also there exist maps that do not have
irreducible subsets in O.

In section 5.2 we define chains and co-chains of reductions. Those systems having SRB mea-
sures can be characterized also according to the existence of adequate chains of generalized ergodic
attractors, each one containing the following.

Let O be the set of the observable measures for f . Let O1 be a reduction or generalized ergodic
attractor of O (see definition 1.7). For further uses we define:

Definition 3.3 (Attracting size.)
The diameter of O1 is max{dist(µ, ν) : µ, ν ∈ O1}.
The attracting size of O1 is m(C(O1)), where C(O1) is the basin of attraction of O1 (see

definition 1.6).

If the purpose is to find the generalized ergodic attractors and classify the phase space according
to which basin each point belongs to, then we should try to know when a given compact subset of
the space of observable measures is a reduction. That is why we state, for a seek of completeness
and for further use, some results that characterize the reductions.

If the basin of attraction C of some compact subspace of O has positive Lebesgue measure,
then there exists a compact set K ⊂ C with positive Lebesgue measure. Thus we obtain the
following characterization of all the reductions of O, as a consequence of Egoroff Theorem:

Proposition 3.4 (Generalized ergodic attractors and uniform convergence.)
The subspace O1 is a reduction of the space O of the observable measures for f , (i.e. O1 is

a generalized ergodic attractor for f), if and only if there exists a positive Lebesgue measure set
K ⊂ M such that

dist

 1
n

n−1∑
j=0

δfj(x), O1

 → 0 uniformly in x ∈ K

Note: The set K ⊂ M is not necessarily f -invariant.

Proof: Let us call C to the basin of attraction of O1 (see definition 1.6). We have m(C) > 0
and therefore, the sequence in 3.4 converges to 0 m-a.e. x ∈ C. The direct result is now a
straightforward consequence of Egoroff Theorem and its converse is obvious. �
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The following is other characterization of the reductions of the space of observable measures
for f : M 7→ M , in terms of the invariant subsets in M that have positive Lebesgue measure:

Proposition 3.5 (Restricting the map to reduce the set of observable measures.)
The subspace O1 is a reduction of the space Of of the observable measures for f (i.e. O1 is a

generalized ergodic attractor for f) if and only if O1 = Of1, where Of1 is the set of all observable
measures of the map f1 = f |C , obtained when f is restricted to some invariant set C ⊂ M that
has positive Lebesgue measure.

Besides C can be chosen as the basin attraction C(O1) of O1.

Proof: This Theorem is a corollary of Theorem 3.1. In fact, to prove the converse statement
apply Theorem 3.1 to f |C instead of f , taking C = C(O1) where O1 is the given reduction of Of .
To prove the direct result apply also Theorem 3.1 to fC , but now taking C as the given invariant
subset in M with positive Lebesgue measure.�

3.6 - Proof of Theorem 2:

By Proposition 3.5 and Theorem 3.1 applied to f |C where C = C(O1), we have that Lebesgue
almost all x ∈ C verifies pω(x) ⊂ O1, and any µ ∈ O1 is observable for fC . Take any µ ∈ O1 \ K.
There exists a open ball Bε(µ) that does not intersect K. As µ is observable for f |C, (see Definition
1.1), pω(x) is not contained in K for a set of x ∈ C with positive Lebesgue measure. Therefore
m(C \ C(K)) > 0 as wanted. �

4 Examples.

Example 4.1 For a map with a single periodic point x0, being a topological sink whose topo-
logical basin is M almost all point, the set O has a unique measure that is the δ-Dirac measure
supported on x0.

Example 4.2 For an ergodic Anosov diffeomorphism preserving the Lebesgue probability mea-
sure m the set O is irreducible containing uniquely the measure m. But there are also infinitely
many other ergodic and non ergodic invariant probabilities, that are not observable (for instance
the equally distributed Dirac delta measures combination supported on a periodic orbit). For any
ergodic Anosov diffeomorphism the unique SRB measure µ is the unique observable measure.

Example 4.3 In [HY95] it is studied the class of diffeomorphisms f in the two-torus obtained
from an Anosov when the unstable eigenvalue of a fixed point x0 is weakened to be 1, maintaining
its stable eigenvalue strictly smaller than 1 and uniform hyperbolicity outside a neighborhood of
the fixed point. It is proved that f has a single SRB measure that is the Dirac delta supported on
x0 and that its basin has total Lebesgue measure. Therefore this is the single observable measure
for f , although there are infinitely many other ergodic invariant measures.

Example 4.4 The diffeomorphism f : [0, 1]2 7→ [0, 1]2; f(x, y) = (x/2, y) has the set O of
observable measures as the set of Dirac delta measures δ(0,y) for all y ∈ [0, 1]. In this case
O coincides with the set of all ergodic invariant measures for f , it is infinitely reducible (i.e.
O is reducible and any reduction of O is also reducible). Not all f -invariant measure µ for f

12



is observable: for instance, the one-dimension Lebesgue measure on the interval [0] × [0, 1] is
invariant and is not observable. This example shows that the set O is not necessarily closed on
convex combinations.

Example 4.5 The maps exhibiting infinitely many simultaneous hyperbolic sinks, constructed
from Newhouse’s theorem ([N74])has a space O of observable measures that is reducible. But
is has infinitely many reductions (the Dirac delta supported on the hyperbolic sinks) that are
irreducible. Also the maps exhibiting infinitely Hénon-like attractors, constructed by Colli in
[Co98]has a space of observable measures that is reducible, having infinitely many reductions (the
SRB measures supported on the Hénon-like attractors) that are irreducible.

Example 4.6 The following example due to Bowen shows that the space of observable measures
may be formed by measures that are partial limits of the sequences of time averages of the system
states and that this sequence may be non convergent for Lebesgue almost all points. Consider
a diffeomorphism f in a ball of IR2 with two hyperbolic saddle points A and B such that the
unstable global manifold W u(A) of A is a embedded arc that coincides (except for A and B) with
the stable global manifold W s(B) of B, and the unstable global manifold W u(B) of B is also an
embedded arc that coincides with the stable manifold W s(A) of A. Let us take f such that there
exists a source C in the open ball U with boundary W u(A)∪W u(B), and all orbits in that ball U
have α-limit set C and ω-limit set W u(A)∪W u(B). If the eigenvalues of the derivative of f at A
and B are well chosen, then one can get that the time average sequences of the orbits in U \ {C}
are not convergent, have at least one subsequence convergent to the Dirac delta δA on A and have
other subsequence convergent to the Dirac delta δB on B.

Due to Theorem 2.4, for each x ∈ U \{C} there are non countably many probability measures
which are the limit measures of the time average sequence of the future orbit starting on x. All
these measures are invariant under f and therefore, due to Poincaré Recurrence Theorem (see
[M89]), all of them are supported on {A}∪{B}. Due to this last observation and due to Theorem
2.4 all the convex combinations of δA and δB are limit measures of the sequence of time averages
of any orbit starting at U \ {C} and conversely.

Therefore the set O of observable measures for f coincides with the set of convex combinations
of δA and δB. The set O is irreducible and formed by non-countable many probability measures.
It is not the set of all invariant measures; in fact the measure δC is not observable.

This example also shows that the observable measures are not necessarily ergodic.

5 Relations between observability and SRB measures.

In this section we state some results that characterize the maps having SRB measures, in terms
of the set of its observable measures.

Theorem 5.1 Cardinality of O and SRB measures.
Let f : M 7→ M be any continuous map in the compact manifold M .
If the set O of the observable measures for f , or some proper reduction O1 of O, is finite or

countable infinite then there exists a SRB measure µ for f .
Conversely, if there exists a SRB measure for f then, either the space O has a single element,

or it is reducible and there exists a proper reduction O2 of O with a single element.
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Proof: The converse assertion is immediate. In fact, if µ is SRB then the basin of attraction
of µ has positive Lebesgue measure, and thus {µ} is a trivial reduction of O. It is either a proper
reduction or not. If not then O = {µ}.

Let us prove the direct assertion. Denote extensively as {µn : n ∈ N} the finite or countable
infinite reduction O1 (proper or not) that is given in the hypothesis. (If it has only a finite
cardinality, then repeat one or more of its elements in the extensive notation, but include all of
them at least once).

By Proposition 3.5 the space O1 is the set of all observable measures for the restriction f |C
of f to some invariant set C with positive Lebesgue measure, say m(C) > 0. Rename if necessary
f |C as f , O1 as O, and rename as m the Lebesgue measure in C, (i.e: the restriction to C of the
Lebesgue measure in M , which is then renormalized to be a probability measure in C). Resuming:

[7] m-almost every x ∈ C : pω(x) ⊂ O = {µn : n ∈ IN}

Let us define Cn ∈ C to be candidates of the basins of attraction for the measures µn, and relate
their respective Lebesgue measures m(Cn) as follows:

[8] Cn = {x ∈ C : µn ∈ pω(x)}; C =
∞⋃

n=1

Cn;
∞∑

n=1

m(Cn) ≥ m(C) = 1

So m(Cn) > 0 for some n ∈ IN .
To end the proof we shall show that for all x ∈ Cn : {µn} = pω(x). Due to [7] and [8], it is

enough to prove that Cn ∩ Ck = ∅ if µn 6= µk.
By contradiction, suppose that for some µn 6= µk there exists a point x ∈ Cn ∩Ck ⊂ C. Then,

from [8] we have µn, µk ∈ pω(x). Now we apply Theorem 2.4 and [7] to conclude that the space
O is non-countably infinite. �

Definition 5.2 (Chains of reductions.) A chain of reductions of the space O of the observable
measures for f is a (finite or countable infinite) sequence {On}n∈I⊂IN of reductions or generalized
ergodic attractors (see Definition 1.7) such that Oi ⊂6= Oj if i > j in the set I of natural indexes.

We call length of the chain to its finite or countable infinite cardinality #I.

For any chain {On; }n∈I⊂IN of reductions of the space of observable measures for f , let

dn = diam(On); sn = attrSize(On)

where diam and attrSize denote respectively the diameter and the attracting size, defined in 3.3.
We define limn→sup I dn either to limn→+∞ dn if the chain length is infinite (in this case we

assume I = IN), or to dsup I when the chain has a finite length.
Analogously we define lim sn.

Theorem 5.3 (SRB measures and chains.) There exists a SRB measure for f if and only
if there exists a chain On of reductions of the space O of the observable measures of f , such that
the sequence of its diameters converges to zero and the sequence of its attracting sizes converges
to some α > 0.

14



Proof: The converse statement is immediate defining the length 1-chain {{µ}}, where µ is
the given SRB measure. The direct result is also immediate if the length of the given chain
is finite. Let us see now the case when the chain On; n ∈ IN is infinite. As the sequence of
its diameters converges to zero, then ∩n∈INOn = {µ} for some µ. It is enough to show that
the attracting size of µ is positive. Note that from the construction of such µ we have that
C({µ}) = ∩n∈INCn where Cn denotes the basins of attractions C(On). These basins are a
countably infinite decreasing family of sets in M with positive Lebesgue measures sn. Therefore,
attrSize({µ}) = m(C({µ})) = lim sn = α > 0, as wanted. �

Definition 5.4 (Independence of generalized ergodic attractors and chains.) We say
that two generalized ergodic attractors or reductions of the space of observable measures are
independent if the basin of attraction of their intersection has zero Lebesgue measure.

We note from Definition 1.6 that the basin of attractions of two reductions O1 and O2 intersect
exactly in the basin of attraction of O1 ∩ O2. Therefore:

Two ergodic attractors are independent if and only if the intersection of their basins has zero
Lebesgue measure.

We say that two chains of reductions are independent if each one of the chains has a reduction
that is independent with some reduction of the other chain.

Definition 5.5 (Co-chains of reductions.) A co-chain of reductions of the space O of the
observable measures for f is a (finite or countable infinite) family {On; n ∈ I ⊂ IN} of reductions
or generalized ergodic attractors (see Definition 3.2) that are pairwise independent.

We call length of the co-chain to its finite or countable infinite cardinality #I.
Remark: If the space O of all the observable measures for f is irreducible, then {O} is the

unique chain of reductions and also the unique co-chain.

Now we state a slightly generalized version of a known result in the theory of Discrete Math-
ematics, the Theorem of Dilworth ([Li95]), applied to the chains and co-chains of generalized
ergodic attractors:

Theorem 5.6 (Reformulation of Dilworth Theorem.) For any continuous map f the supreme
k of the lengths of the co-chains of reductions in the space of observable measures for f , is equal
to the supreme h of the number of pairwise independent chains.

Moreover: for any co-chain of length l there is a family of l pairwise independent chains, and
conversely.

Proof: Any co-chain {Oj , j ∈ J} with length l = #J can be seen as a collection {{Oj}, j ∈
J} of l pairwise independent chains Pj = {Oj}, each chain Pj with length one. So k ≤ h.

Conversely, given any collection {Pj , j ∈ J} of pairwise independent chains, take a reduction
O1 ∈ P1 independent to some Ô2 ∈ P2, and take Ŏ2 ∈ P2 independent with Ô3 ∈ P3. As both
reductions Ô2 and Ŏ2 belong to the chain P2, one of them must be contained in the other; thus
their intersection, say O2, is also a reduction of the chain P2. Besides O2 is independent with
O1 ∈ P1 and with Ô3 ∈ P3. Analogously construct by induction a (finite or infinite) sequence
{Oj : j ∈ J} of pairwise independent reductions, such that Oj ∈ Pj . This sequence of reductions
is by definition a co-chain. Therefore, h ≤ k. �
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Theorem 5.7 (Co-Chains and SRB measures.) A map f : M 7→ M has (up to countable
infinitely many) SRB measures whose basins of attraction cover Lebesgue almost all point in M
if and only if there exist a co-chain of reductions of the space O of the observable measures for f
such that all of its diameters are zero and the (finite or countable infinite) sum of its attracting
sizes is 1.

Moreover, the (finite or countable infinite) number of such SRB measures is equal to the
supreme k of the lengths of the co-chains of reductions for f and to the supreme h of the number
of independent chains for f .

Proof: From Definitions 1.2 and 3.3 we obtain that f has SRB measures whose basins cover
Lebesgue almost all points if and only if the following statement holds:

(9): There exist (up to countable many) µn ∈ O such that sn = attrSize({µn}) > 0 and∑
sn = 1.
Note that two different trivial reductions of O are always mutually independent. Therefore,

(9) is equivalent to the following:
(10): The family {{µn}} is a co-chain of trivial reductions such that

∑
sn = 1.

This last assertion is equivalent to the assertion of the fist part of Theorem 5.7, as wanted.
To prove the second part of Theorem 5.7 first observe that each reduction of any co-chain must

contain at least one of the SRB measures µn because
∑

sn = 1, and that two different reductions
of the same co-chain can not contain the same SRB measure because they must be independent.
Then k is smaller or equal than the number of SRB measures. On the other hand, the set of all
the different SRB measures form itself a co-chain, so k is greater or equal than the number of SRB
measures. Finally apply Theorem 5.6 to show that the number of SRB measures is also equal to
h. �

Corollary 5.8 A map f : M 7→ M has (up to countable infinitely many) SRB measures whose
basins of attraction cover Lebesgue almost all point in M if and only if there exist a (finite or
infinite) family

{Oj
i , i ∈ I ⊂ IN, j ∈ J ⊂ IN}

of generalized ergodic attractors Oj
i for f such that for all i ∈ I and j, k ∈ J, j 6= k:

Oj
i+1 ⊂ Oj

i , lim
i→sup I

dj
i = 0 lim

i→sup I
sj,k
i = 0 and lim

i→sup I

∑
j∈J

sj
i ≥ 1

where dj
i and sj

i denote respectively the diameter and attracting size of Oj
i and sj,k

i is the Lebesgue
measure of the basin of attraction of Oj

i ∩ Ok
i .

Proof: If there exist such SRB measures µj for j ∈ J ⊂ N , simply define the family Oj
i = {µj}

for i = 1 and j ∈ J . This family of ergodic attractors verify all stated conditions.
To prove the converse statement let us first apply Theorem 5.5 to the chains {Oi, i ∈ Î ⊂ I},

for each fixed j ∈ J such that limi→supI sj
i > 0. Then each of such chains has a intersection {µj}

where µj is a SRB measure.
For j 6= k the basins of attraction of µj and µk are Lebesgue almost disjoint, because its

Lebesgue measure is lim sj,k
i = 0. Thus µj 6= µk. Finally consider the co-chain {{µj}, j ∈ J} and

apply Theorem 5.7. �
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5.9 Proof of Theorem 4. We shall prove Theorem 4 in the following complete version, that
gives an upper bound to the number of generalized independent ergodic attractors in which the
space P can be decomposed, and besides states a sufficient condition for the decomposition be
unique:

Theorem 5.10 (Decomposition into generalized independent ergodic attractors.)
Any continuous map f : M 7→ M has a collection S formed by (up to countable many) pairwise

independent generalized ergodic attractors (that are not necessarily irreducible) whose basins of
attraction cover Lebesgue almost all points in M .

The supreme a of the number of such generalized ergodic attractors verifies a ≤ k (where k is
the supreme of the lengths of the co-chains of reductions in the space of the observable measures
for f).

If there exists such a collection S whose generalized ergodic attractors are besides all irreducible,
then such S is unique and besides a = k = l, where l is the cardinality of S.

Proof: To prove the first and second statements note that, by definition of the independence
of the reductions, any co-chain P of reductions of the space O of the observable measures, verifies∑

sj ≤ 1, where sj denotes the attracting size of the reduction Oj ∈ P . Now take the family F
of all the co-chains S such that

∑
sj = 1. (There exists always at least one such co-chain: in

fact the length-1 co-chain {O} verifies
∑

sj = s(O) = 1, due to Theorem 3.1). By construction
each S ∈ F verifies the wanted conditions. As the family F is a subfamily of all the co-chains of
reductions, we obtain a ≤ k.

Let us prove now the last assertions of the theorem. If there exists in F a co-chain S = {Ôh :
h ∈ H ⊂ IN} with cardinality l = #H and whose reductions Ôh are all irreducible, to prove that
a = k = l it is enough to show than l ≥ k.

Take any co-chain P = {Oj , j ∈ J ⊂ IN} (P is not necessarily in F).
It is enough to exhibit a injective application from each j ∈ J to some h ∈ H.
In fact, let us fix any j ∈ J and consider the basin of attraction C(Oj). By definition of

reduction, this basin has positive Lebesgue measure m(C(Oj)). But S ∈ F , so
∑

h∈H m(C(Ôh)) =
1. Then we deduce that

0 < m(C(Oj)) =
∑
hinH

m
(
C(Oj) ∩ C(Ôh)

)
=

∑
hinH

m
(
C(Oj ∩ Ôh)

)
Therefore some of the intersections in the sum above at right has positive Lebesgue measure. We
obtain that for all j ∈ J there exist some h = h(j) ∈ H such that Oj ∩ Ôh is a reduction. But as
Ôh is irreducible then Oj ⊃ Ôh.

To end the proof it remains to show that for j 6= i ∈ J the sets Ôh(i) and Ôh(j) in S are
different reductions. By contradiction, if they were the same reduction in S, they both would
be contained in two different reductions Oi and Oj in the chain P and therefore these two last
reductions would not be independent and P would not be a co-chain.

Let us prove now the unicity of S, if there exists one, such that S = {Ôh : h ∈ H ⊂ IN} ∈ F
and Oh are all irreducible. If there were two such collections S1 and S2, then repeating the
construction above in this proof with S = S1 and P = S2 we conclude any Oj ∈ S2 contains one
and only one Ôh(j) ∈ S1. But as all Oj ∈ S2 are irreducible we must have Ôh(j) = Oj ∈ S1. So
S2 ⊂ S1. The symmetric relation is obtained taking S = S2 and P = S1. �
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6 Observable measures for Lebesgue preserving maps.

Let us consider f : M 7→ M preserving the Lebesgue measure m. We will prove Theorem 5.

Lemma 6.1 If the Lebesgue measure m is f-invariant then µ ∈ P is observable if and only for
any ε > 0 the set of points x ∈ M such that pω(x) = {µx} ⊂ Bε(µ) has positive Lebesgue measure.

Proof: If the Lebesgue measure m is f -invariant, due to Birkhoff theorem and separability
of the space C(M), the sequence [1] is convergent to some measure µx for m-almost every point
x ∈ M : in other words pω(x) = {µx} ⊂ P. Then pω(x) ∩Bε(µ) 6= ∅ if and only if pω(x) ⊂ Bε(µ).
�

Theorem 6.2 (Ergodicity and observability I)
The Lebesgue measure m is f-invariant and ergodic if and only if m is the unique observable

probability measure.

Proof: Due to the Theorems of Birkhoff and of Ergodic decomposition of invariant measures
(see [M89]), the Lebesgue measure m is ergodic if and only if the sequence [1] converges to m for
m-almost every point x ∈ M . This last condition occurs, due to Definition 2.5 and Lemma 6.1, if
and only if m is the unique measure that is ε-observable for all ε > 0. �

Remark 6.3 In Section 3 we give the example 4.3 that does not preserve the Lebesgue measure
m, but for which there exists a unique observable measure µ, that is singular respect to m. When
f preserves the Lebesgue measure the situation of the example 4.3 can not occur. In fact, we have
the following result:

Theorem 6.4 (Ergodicity and observability II)
If f : M 7→ M is continuous, preserves the Lebesgue probability measure m, and has a unique

observable measure µ, then µ = m (and thus m is ergodic due to Theorem 6.2).

Proof: From Lemma 6.1, Definitions 2.5 and 2.7 and Theorem 3.1 we deduce that pω(x) =
{µ} m-a.e..

The Ergodic Decomposition Theorem of invariant measures (see [M89]) applied to m states
that

(6)
∫

g dm =
∫

x∈M
dm(x)

∫
y∈M

g(y) dµx(y) for all g ∈ L1(m),

(in particular for all g ∈ C(M)), where µx = lim 1
n

∑n−1
j=0 δfj(x) with the weak∗ topology of the

space P of Borel probabilities in M .
In our case µx = µ m-a.e. and m(M) = 1. Therefore the integral at right in (6) is constantly

m-a.e. equal to
∫

g dµ. Therefore, from (6) we deduce:∫
g dm =

∫
g dµ for all g ∈ C(M)

from where we deduce g = µ. �
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6.5 End of the proof of Theorem 5:
It is a direct consequence of joining Definition 1.2 and Theorems 6.2 and 6.4. �

The following is a straightforward characterization of SRB measures in terms of its observ-
ability size, which coincides in the case of Lebesgue-preserving maps with the attracting size (see
Definitions 2.8 and 3.3):

Theorem 6.6 (Observability size and SRB measures.)
Let f be a continuous map in a compact manifold M preserving the Lebesgue measure m.
A probability measure µ is a SRB measure for f if and only if it is observable and its observ-

ability size function o(ε) verifies
lim

ε→0+
o(ε) > 0.

Besides, the limit above is the attracting size of {µ}.

Proof: The converse assertion is immediate from Definitions 1.1, 2.8, 1.2 and 3.3.
To prove the direct result let us call α = limε→0+ o(ε) > 0. Note that

m{x ∈ M : µ ∈ pω(x)} = α > 0 [7]

Then, by Lemma 6.1, a given µ verifies µ ∈ pω(x) if and only if pω(x) = {µ}. Now from Definition
1.2 and from [7] we deduce that µ is a SRB measure. �

6.7 Proof of Theorem 6:
The SRB measures, if there exist some, are by Definition 3.2, (trivially) irreducible generalized

ergodic attractors. Let us see that for Lebesgue preserving maps the converse assertion is also
true: all irreducible attractors are trivial, and thus SRB measures.

If A is irreducible, then any proper compact subset K ⊂ A verifies m(C(K)) = 0, where C(K)
denotes the basin of attraction of K. Let us call C to the basin of attraction of A and apply 3.5:
It is not restrictive to suppose that m(C) = 1 and that A is the space of all observable measures
for f (if not, substitute f by f |C and rescale properly the measure m).

Take µ and ν in A. We shall prove that µ = ν. By contradiction, suppose that ε =
(1/2) dist (µ, ν) > 0. Then, by the definition of observability (see 2.5 and 2.7) and applying
Lemma 6.1 and Proposition 3.5, we construct the following set C(ε, µ) with positive Lebesgue
measure:

C(ε, µ) = {x ∈ C : pω(x) = {µx} ⊂ Bε(µ)} ; m(C(ε, µ)) > 0

Let us consider the compact set K ⊂ A defined as: K = A∩Bε(µ). We have that ν 6∈ K, and thus
K is a compact proper subset of A. Besides, the basin of attraction C(K) verifies:

C(K) = {x ∈ A : pω(x) = {µx} ⊂ A ∩Bε(µ)} = C ∩ C(ε, µ) = C(ε, µ),

which implies m(C(K)) > 0 contradicting that A is irreducible.
To prove that the unique µ ∈ A is SRB and an ergodic component of m, just apply Proposition

3.5 and then, taking f |C instead of f , apply Theorems 6.2 and 6.4.�
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7 Appendix.

7.1 A physical meaning of observable and SRB measures.

For any open region V ⊂ M in the phase space, the sequence of exact average time of staying
in V in the future, from the initial state x is:

(2)
#{0 ≤ j < n : f j(x) ∈ V }

n
=

1
n

n−1∑
j=0

δfj(x)(V ) =

=
1
n

n−1∑
j=0

χV (f j(x)), for any open set V ⊂ M

where χV denotes the characteristic function of V , i.e. χV (y) = 1 if y ∈ V and χV (y) = 0 if
y 6∈ V .

To take the weak∗ limit of the sequence [1] of time average distributions, stated at the beginning
of this paper, we should integrate that sequence, not on the characteristic functions χV as done
in (2), but on the continuous functions g : M 7→ R. In fact, the limit in the weak∗ topology of the
sequence [1] is given by the limits, when n → +∞, of the following sequence:

(3)
1
n

n−1∑
j=0

g(f j(x)) for any real continuous function g ∈ C(M)

The sequence (2) of exact time average (average staying time in the region V of the space) gives
the physical or nature meaning to SRB measures. But the exact sequence (2) is different from
the sequence (3). And to define SRB measure (and also observable measure) is used the limit of
(3), instead that of (2).

The problem above is usually irrelevant to the physical understanding of the SRB measures
µ as nature measures, because of the following basic theorem of Measure Theory, that allows
approximate χV with a continuous function g:

Theorem 7.2 (Regularity of the measures.) For any given open set V ⊂ M (where M is
for instance a finite dimensional manifold with Lebesgue measure m), and for any given ε > 0,
there exists a continuous function g : M 7→ [0, 1] such that:

g(x) = 0 if x 6∈ V , g(x) = 1 if x ∈ K for some compact subset K ⊂ V such that the interior
of K is not empty, and

m({x ∈ M : |g(x)− χV (x)| < ε}) > 1− ε

Proof: See Urysohn Lemma 4.32 and Theorem 7.8 of the book in [F84].

The inequality of Theorem 7.2 implies:

(4) m({x ∈ M : |g(f j(x))− χV (f j(x))| < ε}) > 0 for all j ≥ 0

because the function g and χV are both equal to 1 in the non-empty interior of some compact set
K ⊂ V .
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Therefore, the set

Cε,V,n =

x ∈ M :

∣∣∣∣∣∣ 1n
n−1∑
j=0

g(f j(x))− 1
n

n−1∑
j=0

χV (f j(x))

∣∣∣∣∣∣ < ε


has positive Lebesgue measure m(Cε,V,n) > 0 for all ε > 0. This is the mean reason to override
the difference between sequences (2) and (3) and provide a nature or physical meaning to SRB
measures as average time of staying in the regions V of the space.

But even when existing a SRB measure µ it may be verified that

m(Cε,V,n) → 0+ when ε → 0

In fact, if the topological boundary of V supports the measure µ, then µ(V ) may be very different
from the limit of the exact sequence (2) of the time average staying in V , for Lebesgue almost
all initial states x ∈ M . In example 4.3 the SRB measure is δP0 , supported in a point P0. If
V is a open set whose boundary contains P0 then the sequence (2) converges to 1 for Lebesgue
almost all points, while the sequence (3) converges to 0 (anyhow chosen the continuous map g
approximating χV as in Theorem 7.2).

In resume: the set Cε,V,n certainly has a positive Lebesgue measure for all ε > 0, and this is
the mathematical reason to assign a physical or nature meaning to the limit probability µ, in spite
that may m(Cε,V,n) → 0 when ε → 0.

Inspired on these arguments, we defined the observable measures in 1.1 using the m(Aε) > 0
condition for all ε > 0 (instead m(A0) > 0 for ε = 0+ at once). We think that the definition 1.1 of
the observable measures generalizes the definition 1.2 of the SRB measures preserving the essence
of their physical or nature meaning.

7.3 Proof of Theorem 2.4.
We shall prove the following: (i) If µ, ν ∈ pω(x) then for each real number 0 ≤ λ ≤ 1 there

exists a measure µλ ∈ pω(x) such that

dist (µλ, µ) = λ dist (µ, ν)

(ii) The set pω(x) either has a single element or non-countable infinitely many.

Proof: First let us deduce (ii) from (i): Suppose that pω(x) has at least two different values µ
and ν. It is enough to note that the application λ ∈ [0, 1] 7→ µλ ∈ pω(x) that verifies thesis (i), is
injective. Therefore pω(x) has non-countable infinitely many elements.

To prove (i) consider the sequence [1] µn =
{

1
n

∑n−1
j=0 δfj(x)

}
n∈IN

of time averages. Either

it is convergent, or has at least two convergent subsequences, say µmj → µ and µnj → ν, with
µ 6= ν.

(iii)It is enough to exhibit in the case µ 6= ν a convergent subsequence of [1] whose limit µλ

verifies the thesis (i).
Assertion A: For any given ε > 0 and K > 0 there exists a natural number h = h(ε,K) > K

such that
|dist (µh, µ)− λ dist (ν, µ)| ≤ ε
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Let us first prove that Assertion A implies thesis (i): Take in assertion A: h0 = 1 and by
induction, for j ≥ 1 take hj given εj = 1/j and Kj = hj−1. Then we obtain a sequence µhj

,
subsequence of (1), that verifies dist (µhj

, µ) → λ( dist (ν, µ)). Any convergent subsequence of µhj

(that do exist P is compact in the weak∗ topology) verify (iii).
Now, let us prove Assertion A:
As µmj → µ and µnj → ν let us choose first mj and then nj such that

mj > K;
1

mj
< ε/4; dist (µ, µmj ) < ε/4; nj > mj ; dist (ν, µnj ) < ε/4

To exhibit the computations let us explicit some metric structure giving the weak∗ topology of P.
We will use for instance the following distance:

dist (ρ, δ) =
∞∑
i=1

1
2i

∣∣∣∣∫ gi dρ−
∫

gi dδ

∣∣∣∣
for any ρ, δ ∈ P, where {gi}i∈IN is a countable set of functions gi ∈ C(M) such that |gi| ≤ 1,
dense in the unitary ball of C(M).

Note from the sequence (1) that |
∫

g dµn −
∫

g dµn+1| ≤ (1/n)||g|| for all g ∈ C(M) and all
n ≥ 1. Then in particular for n = mj + k, we obtain

(∗) dist (µmj+k, µmj+k+1) ≤
1

mj
< ε/4 for all k ≥ 0

Now let us choose a natural number 0 ≤ k ≤ nj −mj such that∣∣ dist (µmj , µmj+k)− λ dist (µmj , µnj )
∣∣ < ε/4 for the given λ ∈ [0, 1]

Such k does exist because inequality (*) is verified for all k ≥ 0 and besides:

If k = 0 then dist (µmj , µmj+k) = 0 and if k = nj −mj then dist (µmj , µmj+k) = dist (µmj , µnj )

Now renaming h = mj +k, joining all the inequalities above, and applying the triangular property,
we deduce:

|dist (µh, µ)− λ dist (ν, µ)| ≤
∣∣ dist (µh, µmj )− λ dist (µmj , µnj )

∣∣ +

+
∣∣ dist (µh, µ)− dist (µh, µmj )

∣∣ +

+λ
∣∣ dist (µmj , µnj )− dist (µmj , ν)

∣∣ + λ
∣∣ dist (µmj , ν)− dist (µ, ν)

∣∣ < ε �
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