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Abstract

Let T, be the translation operator by « in the space of entire functions #(C) defined by
T.(f )(z) =f(z + o). We prove that there is a residual set G of entire functions such that for
every f € G and every o€ C\{0} the sequence 7 ( /") is dense in #(C), that is, G is a residual set
of common hypercyclic vectors (functions) for the family {7,:0eC\{0}}. Also, we prove
similar results for many families of operators as: multiples of differential operator, multiples of
backward shift, weighted backward shifts.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

During the first half of the last century, Birkhoff [B] and MacLane [M] showed
that certain entire functions can approximate any entire one under a suitable limiting
process. Specifically, Birkhoff constructed an entire function f so that any entire one
can be obtained as the limit (uniformly on compact sets) of translates f(z + ¢,) for
some sequence c¢,; and MacLane proved the existence of an entire function so
that the sequence of its derivatives is dense in the space #(C)=
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{f :C—C holomorphic} endowed with the usual topology of uniform convergence
on compact sets.

Both results can be regarded as examples of a phenomenon that has been a
concern of operator theorists during the last decades, namely the notion of
hypercyclicity. Let recall the definition: a continuous linear operator 7: X —» X
acting on a topological vector space X is called hypercyclic provided there is a vector
x whose orbit {7T"(x), n=1,2, ...} is dense in X, and such a vector x is said to be a
hypercyclic vector for T'. It turns out, by a simple Baire’s categorical argument that
the set of hypercyclic vectors (denoted by #€(T)) for a hypercyclic operator T is
residual, i.e. is Gs-dense (see the survey [G]).

From the above point of view, Birkhoff and MacLane’s theorems can be restated
as follows: the translation operator T, : #(C)— #(C), a0 defined by 7,(f )(z) =
f(z+a) and the differentiation operator D: #(C)—#(C), D(f)=/f are
hypercyclic (let us point out that hypercyclic functions—vectors—for these operators
are also called universal functions).

In particular, in case of Birkhoff’s result, we have a noncountable family of
operators {7y : # (C)— #(C), aeC\{0}} where each one of these operator is
hypercyclic. A natural question is whether this family share a hypercyclic vector. In
other words: does there exist an entire function f so that {77(f), n>1} is dense in
A (C) for every ae C\{0}? The next theorem gives a positive answer. Moreover, it
says that the set of functions enjoying this property is in fact generic (i.e. contains a
Gs-dense set).

Theorem 1. There is a Gs-dense set G A (C) such that G HE(T,) for every
ae C\{0}.

Let us observe that any function feG has a “wild behavior at o™ in any
direction, more precisely any entire function g can be approximated on any compact
set by translating f/ in any direction. Furthermore, by Hurwitz’s theorem, it holds
that f({w+z: 0 —e<arg(z)<8+¢}) =C for every weC,0<60<2n and ¢>0 (in
particular every ray is a Julia ray). Also, the range of any half line is dense in C and
the sequence {f(z+na);n=0} is dense in the complex plane for every
zeC,aeC\{0} as well.

Motivated by the above theorem, we may ask if a similar phenomenon can occur
in case of other noncountable families of hypercyclic operators. As we mentioned
before, MacLane’s theorem says that the differentiation operator D : #(C)— #(C)
is hypercyclic. It turns out that the operators AD: #(C)— #(C) defined by
AD(f )(z) = Af'(z) are hypercyclic for 2 C\{0} as well (see [GoS]). We will show
that the above family 4D of differentiation operators admits a Gs-dense set of
common hypercyclic vectors. However, we would like to view it from another
perspective. Consider the family of modulations on #(C) defined by
Ry : #(C)->A#(C), R;(f)(z) =f(Az) and we ask if there is an entire function f
so that R;(f) is universal (hypercyclic) for the operator D for every Ae C\{0}. In
other words, is there a function /" so that the sequence {D"-R,(f ) : n>1} is dense in
H(C) for every AeC\{0}? We will provide a positive answer to this question but
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before let us introduce some notation. A vector xe X will be called universal for a
sequence of operators 7, : X — X, if the sequence {7,(x), n = 1,2, ...} is dense in X.
The set of universal vectors will be denoted by #({T, : n>1}).

Theorem 2. For every AeC\{0} consider the sequence of operators T,, = D"°R,.
Then, there is a Gs-dense set Fc A (C) such that F<U({T,, :n=1}) for any
7.€C\{0}. In other words for any .€ C\{0} and f € F the sequence of (entire) functions
hy(z) = 2"f"(Jz) is dense in #(C).

We observe that any automorphism R in #(C) sends a dense set to a dense one.
Therefore a G5 dense set of common hypercyclic vectors for the family of operators
2D is obtained from the above theorem and the identity (AD)" = R;'eD"<R;. It is
also interesting to note that a common hypercyclic entire function f for the family of
operators AD has the next property: not only the sequence { /" (z)} is dense in the
complex plane for any point z, but the sequence {1/ (z)} is dense in C for any
7.eC\{0} as well.

Notice that if f is hypercyclic for 2D (respec. T,) then f” is also hypercyclic for AD
(respec. T,). Therefore, by Baire’s category theorem and the above two theorems we
conclude the following corollary about genericity of “wild entire functions’”:

Corollary 3. There is a Gs dense set G #(C) so that for any feG and any jeN
we have

fUe ﬂ HEC(T,) N HE(AD).
o,AeC\{0}

Equivalently, for any f € G, for any A,0.€ C\{0} and every jeN the following hold:

(D {fO)(z+na) : n=0} = #(C).
Q) (G (z) : n=0} = #(C).

Although the proofs of Theorems 1 and 2 share some similar ideas, they are based
in quite different tools. A basic tool in the proof of Theorem 1 is Runge’s theorem.
On the other hand, to prove Theorem 2 we use essentially the fact that the family
shares a common set where the hypercyclicity criterion applies (see [GS] for a
statement of this criterion). In fact, we will derive Theorem 2 from a more general
theorem that can be applied to other families of operators in order to obtain
common hypercyclic vectors. For instance, we will apply it to families of multiples
backward shift (see Theorem 4 below) and weighted backward shifts (see Section 6).
However, for the sake of clarity and simplicity of the introduction, we postpone the
statement of it to Section 3.

In the context of linear operators in Banach spaces, Rolewicz [R] was the first who
realized that hypercyclic operators exist in this setting. Although the backward shift
T acting on /> = /?(N) (the Hilbert space of square summable sequences), defined
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by T'(xi,x2,x3,...) = (x2,X3,...) is not hypercyclic, Rolewicz proved that the
multiple of the backward shift AT, |4|> 1 is indeed hypercyclic. Salas [S] asked if this
family admits a common hypercyclic vector. Recently Abakumov and Gordon [AG]
settled this question. Their proof consists of a clever construction of a common
hypercyclic vector for this class of operators (A. Peris informed us that this result has
been obtained independently by him—unpublished—][P]). As a consequence of our
methods we give a nonconstructive proof of this fact by showing that the set of
common hypercyclic vectors is residual. Let us point out an interesting aspect of the
proof: if x is hypercyclic for AT then it is also hypercyclic for 1e™/T for every 0 (see
Theorem 16).

Theorem 4. There is a Gs-dense set R=/” such that Rc #%(\T) for every complex
number 1, |A]>1.

Let us turn our attention back to entire functions. In view of Theorem 1 above, the
function f described in the following theorem can be considered ‘““pathological’:

Theorem 5. Let T,:#(C)—>#(C) be the translation operator by 1, that is
Ti(f)(z) =f(z+1). Then, there exists an entire function f' € # (C) hypercyclic for
T\ which also satisfies

lim f(z4re®™) =0 V6, 0<0<1, VzeC.

F— o0

Moreover, the above limit holds uniformly on {0 : e<0<1 — ¢} and z in a compact set.

We may ask if a function as in the above theorem can be universal for the
differentiation operator. We conjecture that this is not the case. Moreover we ask if a
universal (i.e. hypercyclic) entire function for the operator D can be bounded on a
sector. Also, does there exist a universal function for D for which not every ray is a
Julia ray?

However, in the opposite direction we can specify the behavior along a “large” set
of rays:

Theorem 6. Denote by S' the unit circle. Given any closed nowhere dense set ECS',
such that 1¢ E, there exists an entire function f € # (C) which is hypercyclic for both
T, and D and satisfies

lim f(re®™) =0 for every ™ cE.

F— o0

The paper is organized as follows: Theorem 1 is proved in Section 2; a sufficient
criterion for the existence of common hypercyclic vectors is given in Section 3; in
Section 4 we prove Theorem 2; in Section 5 we include the proof of Theorem 4 and in
Section 6 we deal with families of weighted backward shifts. Theorems 5 and 6 are
proved in Section 7. In the last section we show that the set of common hypercyclic
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vectors for a wide class of families is either empty or residual and we also provide
some remarks and problems.

2. Proof of Theorem 1

The proof of Theorem 1 consists of two steps. First, by using categorical
arguments we show that there is a Gs-dense set of common hypercyclic functions for
a “one dimensional” subfamily. Secondly, we show that the above Gj-dense set
satisfies the conclusion of Theorem 1. This is done by an argument which is
interesting by itself and a main tool is the minimality of the irrational rotation.
Indeed, we will prove the following two theorems:

Theorem 7. There is a Gs-dense set G H(C) such that G HEC (T o) for every
0,0<0<1.

Theorem 8. Let [ be hypercyclic for T for some 0. Then f is also hypercyclic for
T, om0 for any positive real number r.

Before proving these two theorems, let us explain how to obtain Theorem 1. In
fact, the set G provided by Theorem 7 satisfies the conclusion of Theorem 1, since
any function f € G is hypercyclic for T, for every 0,0<0<1 and, by Theorem 8, it
is also hypercyclic for T,,.0 where r is any real positive number, that is, f is
hypercyclic for T, for any ae C\{0}.

2.1. Proof of Theorem 7

Let {¢; : j>1} be dense in #(C). Consider the set

E(s,j k,m) = {fe%(@) :V0,0<0<1 Im=n(0)<m

so that sup |f(z 4 ne*™?) — q,'>j(z)|<l .
|z|<k s

The proof of Theorem 7 will be based on the following two lemmas:
Lemma 9. The set E(s,j,k,m) is open in #(C) for every s,j, k,m.
Lemma 10. The set | J,,, E(s,j,k,m) is dense in #(C) for every s,j, k.

Before proving these two lemmas, let us explain how to conclude Theorem 7. It
follows, by Baire’s category theorem, that the set

G= N U EGjkm)
s J k m
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is Gs-dense in #(C). It is easy to see that G satisfies the conclusion of Theorem 7.
However, for the sake of completeness we include the proof. Let fe G and fix
0, 0<0<1. We want to show that /" is hypercyclic for T,o. Thus, let any ge #°(C),
a compact set L and ¢>0 be given. Take s=>1,1<% and k such that L<{|z[<k}.
Moreover, choose ¢; so that sup. < lg(z) —¢;(z)| <5 Since feG then
f€E(s,j, k,m) for some m. Therefore, there is n = n(0) <m such that

sup | T (f)(2) = g(2)| = sup | f(z +ne*™) — g(2)|

|zl <k |z] <k

< sup | f(z+ne*™) —</§,(Z)|+|§‘11<13€ |¢;(2) —g(2)| <.

|z|<k

Let us proceed with the proof of the lemmas.

Proof of Lemma 9. Let /'€ E(s,j, k,m) and denote by S' the unit circle. Consider the
sets

C = {oceSl, so that sup f(z+l<x)—¢j(z)|<l}, I=1,...,m.

lzZ|<k

It is easy to see that C; is open and S'< (J, C; (since f€E(s,j,k,m)). That is,
UL, C is an open and finite covering of S'. Hence, there are compact sets [, = C;
such that S'< (JiL, I;. We will find & so that the set {ge #(C) : SUp|;j<xim l9(2) —
f(z)|<e} (which is open in #°(C)) is contained in E(s,j,k,m). Foreach /=1, ...,m,
since [; is compact we may find ¢ >0 so that

if sup |g(z) —f(z)|<é& and ael; then sup |g(z + la) — ¢j(z)\<§.

|z <k+m |z] <k
So, choosing e<min{e;, | </<m} the proof of Lemma 9 is finished. O

Proof of Lemma 10. Let s,/, k be fixed. And let ge #°(C), a compact set C and ¢>0
be given. We want to show that there is f € #(C) and m>1 such that

JEE(s,j k,m) (1)
and
sup |f(2) —g(2)[ <e. (2)
zeC
Without loss of generality we may assume that C < {|z|<k}. In order to simplify the
notation, set ¢ = ¢;. Let us choose 5<% such that

if |z|]<k and |z — w| < then |¢(z) — ¢(W)|<2ls (3)
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Consider a partition 0 = 0y <60; < --- <0; = 1 (to be chosen later). Set t = 2k + 1 and
B={|z|<k+0}. Ford =0,1, ...,/ define the sets

By = B+ &0 (d + 1)t

Notice that B, By, By, ..., B; are pairwise disjoint. Define the function /% on the
compact set R = Bu Ufi:o B; (having connected complement) by

he) = g(z) zZ€B, (4)
¢(z— e (d+1)t) zeB;d=0,1,...,1

By Runge’s theorem, there is an entire function f (polynomial) such that

(1
sup | f(z) — h(z2)] <m1n{—, a} (5)
zeR 25

We will choose / and the partition 0 = 0y<0; < --- <0; = 1 so that f is the desired
function. First, by (4) and (5) we get

sup [ f(z) — g(z)|< sup |f(2) — g(2)| <,
zeC zeB

which implies (2) (no matter the length of the partition and the partition itself are). It
remains to show (1). To this end, we will find / and 0 = 6y <0, < --- <8; = 1 such that
for 0, 0,<0<0,4,,, we get that

sup [f(z + (d + 1)) — ()| < (6)

lz|<k s

If this is the case, setting m = (/+ 1)t we get (1). In order to establish (1) let
0,0,<0<0,,, and assume for the moment that

| e27‘[1'0(,ur 1 ezni()([

(d+ 1)t<o. (7)
Then, for |z| <k, it follows that z + (d + 1)te*™ € B;. Hence, for |z| <k,
|/ (z+ (d + 1)ie™) = §(2))|
<|f(z+ (d+ 1)te*™) — ¢(z + (d + 1)te*™ — (d + 1)te*™)]
+1p(z + (d+ D™ — 7)) — §(2)].

Let us estimate the right-hand side of the above inequality. Firstly, by (4) and (5)
we get

1
< —

|f(z+ (d+ D)te*™) — p(z + (d + 1)te*™ — (d + 1)1*™%) o
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And secondly, by (7) and (3) we have

[b(z+ (d + De(e?™ — e04) — §(z) | <.

Thus, (6) follows. Therefore, it is only left to find / and 0 = 0y<0;<--- <0, =1 so
that (7) holds for any d = 0,1, ...,/ — 1. Observe that

27T(9d+1 - Qd)(d+ 1)[<5 (8)

implies (7). Moreover, (8) is equivalent to

0
O — Og<————. 9
A O ®)
Setting f; = 0441 — 04, (9) is transformed to
0
—. 1
bo<sma+ (10)
Thus, we need to find / positive numbers f, ..., 5;_; so that (10) holds and
Bo+ B+ -+ B =1 (11)
So, choose />1 such that
0 1 1

and, ford =0,1,...,]—1 set

b= )

Hence (10), (11) hold and the proof of Lemma 10 is finished. This completes the
proof of Theorem 7. [

2.2. Proof of Theorem 8

Let f be hypercyclic for T, for some 0 and let r>0. We shall conclude that f is
also hypercyclic for T,.m0. Let ge #(C), a compact set L and ¢>0 be given. It
suffices to prove that there is some n so that

sup | f(z + nre*™) — g(2)| <e.
zel

We shall use a result due to Ansari (Theorem 1 in [A]). We would like to state it since
we will use it repeatedly.
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Theorem 11. Let T be a hypercyclic operator and let n be any positive integer. Then T"
is also hypercyclic and moreover T, T" have the same hypercyclic vectors.

Continuing with the proof, we will distinguish two cases: r is rational or r is
irrational.
Incaser = 15’ is rational we consider sz,m). It follows from the above theorem that f

is also hypercyclic for T%,,. Thus, there exists some positive integer m so that
e

ﬂ%lf@+nwfw)—gﬁﬂ<8
A

and the result follows by the equality mgre*™ = mpe*™.
Now, assume that r is irrational.
Let 6 be such that
if |z|leL and |z — w|<J then |g(z) — g(w)|<§. (13)

Set Ls = {z:d(z,L)<J}, and choose an integer k>2sup,, |z|. In the sequel we
denote by [x] the integer part of the real number x and by {x} =x— [x] the
fractional part of x. It follows by the minimality of the irrational rotation by r/k [E]
that there is a sequence of positive integers n; <, < --- such that

ry o
< P —
0\{wk}<k (14)
and
sup |mj1 — | < 0. (15)

Set m; = [n; 7], the integer part of n; 7. Then,

0<nr —mik <9 (16)
and
sup |mjy1 —mj|<m for some integer m. (17)
Set L, = Ls + lke*™, [ =1,...,m — 1 and consider the compact set

_ 1 m—1
K=LsuLsu---OLj .

Define the function /# on K by

hz) = g(2), zeLs,
g(z — lke®™), zelLl I=1,....m—1.
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By Runge’s theorem, there is an entire function £(z) so that

€
sup [£(2) — h(z)l <4 (18)
zeK

Since " is hypercyclic for T, then, by Theorem 11, is also hypercyclic for szﬂ,(,.
That is, there exists some integer n so that

sup | £ (z + nke0) — ¢(z)| <. (19)
zeK 4
By (17) there is j such that nk<mjk<nk + (m — 1)k. Moreover, there is some
1,0<I<m—1 such that mjk = nk + lk. Set w = (nr — m;k)e*™. Notice that, by
(16), |w|<d. Using (13), (18) and (19), for ze L we have

|/ (z + mre™) — g(2)]
= | f(z+ (mr — mik)e™ + mke’™) — g(z)|
<|f(z 4w+ (Ik + nk)e¥™0) — E(z + w + lke?™)|
+ |E(z + w + ke*™™) — g(z + w)|

+lg(z+w) —g(2)]

<8—|—8—|—8—F
474 27"

This completes the proof of Theorem 8.

3. A common universality criterion

Let /cR™ be an open interval of the positive real line. Recall that a F-space is a
topological vector space whose topology is induced by a complete invariant metric p.
Although, in general, p is not induced by a norm, in order to simplify the notation we
write ||x|| = p(x,0). In the next theorem we give conditions that guarantee the existence
of common universal (hypercyclic) vectors for some families of (sequences of ) operators.

Theorem 12. Let X be a separable F-space and let {T, ; : neN, Ael} be a family of
operators acting on X, such that for fixed n the map I>.— T, is continuous. Assume
that there is a dense set {x; : j>0} in X and a family of operators {S,; : neN, Lel}
such that T, ;0Sy; = Id and

(1) Given x; and a compact set K < I there is a sequence of positive numbers ¢y such that

(@) > <o,
) || TsieioSna(x)|| <k for any n,k=0 and A, 0€K,
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©) |Tn0Sntka(X))||<ck for any n,k=0 and 2,0€ K, A<o.
Notice in particular that ||T, ;(x)|| =0 and ||S, 1 (x)|| = 1,0 (and uniformly
on K).
(2) Given ¢, x; and a compact set K1, there exists 0<C(e)<1 such that, for
A, a€eK the following holds:

W 1
if 122> Cleyn then ||T,08,4(x) — xi|| <e.
a , .

Then, there exists a residual set G= X such that
{Tw;(x);n=0} =X Viel, VxeG.
In other words, G U({T, ;(x);n=0}) Viel.

Proof. Let K = [A1, ;] =I. Define the set

1
Ex(s,j,m) = {xeX:VieK In = n(4)<m so that ||T,,(x) —xj||<§}.

It is enough to show that Ex(s,j,m) is open and |J,, Ex(s,j,m) is dense, because
then write I as a countable union of compact intervals K, and the set

G=1 1N U Ex(ssm)
n s J m

satisfies the conclusion of the Theorem 12.

The openness of Ex(s,/,m) can be established along the same lines as in the proof
of Lemma 9 and we leave it to the reader. It remains to prove the density of
U,» Ex(s,j,m). Let w = x,, for some positive integer p and 6 >0. We will find some m
and ye Ek(s,j,m) so that ||y — w|| <.

Fix k large enough such that

1
1T wll<g. Vn=k, Viek (20)

and
Z cn<min{5,4i}. (21)
n=k §

Consider a partition A, = aqp<oy <--- <oy = 4, of the interval [4;,4;] and define
the vector

V=W Sk (X)) + Sokeon (X5) + -+ Sk (X5)- (22)
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We will choose [/, and A =oy<oy<---<oay=/74, so that ||y —w|/<d and
y€Ek(s,j,m) for some m. In fact, we will show that if ;) <A<oy, i=1,...,1
then || i1y, (v) — xj|| <2 (for o just take Ty,). Thus, if m = (/4 1)k we get that

yEEK(S,j,m).
Let us first estimate ||y — w||:

1Y = Wil = 1Sk (x7) + Sao (%) + -+ + Sanyiea (3]

St okt Ok S Z n <0,

n=k

where the last inequality holds by (21).
Let A, a1 <A<a;. Then,

T(i 1) (V) = Ty, (W) 4 Ty, oSk (X) + -+
+ Tk 22S (i )k () + 0+ Tl 1)r,208 141k (X5) -
We proceed estimating || T{;; 1y, () — Xj|I:
T i1k (0) — x|
ST a0 s W+ 1T i 10k,29Sk00 (%) + -+ + Ty 29k (%)
+ TG0k oS 1)k (X7) — X5
F N T 1r,20S (2 ke (7)) + -+ Tl 1)k, iS4 1k (35|

Firstly, notice that by (20) ||T(;+1.(w)||<4 holds. Secondly, using (21) and
assumption (b) we get

T (i 1)k, ke (X7) + -+ T(ig1yk,i0Sik iy (X5)]

ST 1)k,22Sk oo )+ -+ [ T 1)k,29S k0, (X5) ]

1
SCik + Climtyke o Gk Iy

Similarly, by (21) and assumption (c) the following holds:
T 1)k 2082k o (X5) + -+ Tl 298 (1 1)k (3) ]

ST 0r20S 2k oo DN+ =+ T (i 1)k,29S (14 1k (35

< < —
Ck+ ok + -+ Cu—ik s
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Therefore, we only have to find / and 4 =op<o;<--- <oy =4, so that for
}v, OC,',1</1<OC,‘,

1
T (i 1y,20S (4 1) (X7) — X I (23)

holds for every i =1, ...,/. Set ¢ = ﬁ and let C(e) be as in item (2) of the theorem.
Thus, (23) holds provided

= > C(e) Tk, (24)

Since o; | <A< it is enough to show that

1

Aol Ce) DR, i=1,...,1. (25)

Ol
Setting f§; = =L, (25) is equivalent to

B> CE)FE, =1, .. (26)

Hence, it is enough to find / positive numbers f3, ..., f; <1 such that (26) holds and
such that

/ A
II15=5 (27)

because, if this is the case, define

/
oy =ly wi=ry [[ B i=0,...,0-1

r=i+1

and we get the desired partition verifying (25).
Choose /=1 such that

1.1 1

2 (o) T

n :Z
and setting N = (5 +14 --- + 1), define

N 1
B, = ntDR(C(e)) Dk,

Therefore (26) and (27) are satisfied and this completes the proof of the
theorem. [



G. Costakis, M. Sambarino | Advances in Mathematics 182 (2004) 278-306 291
4. Proof of Theorem 2

Recall that the usual metric in 5 (C) is given by

_ Sup\z\én |f(Z) - g(Z)| 1
p(f7 g) B V; <l + sup|z|<n |f<Z) - g(2)|>§

for f,ge #(C). We will write || f|| = p(f,0) as we did in the previous section.

We will pursue an argument similar to the proof of Theorem 1. In fact, Theorem 2
is a consequence of the next two theorems as we already did in the proof of
Theorem 1.

Theorem 13. There is a Gs-dense set F e #(C) such that for any f€F and any real
positive number A, the function h defined as h(z) = f(1z) belongs to #€ (D).

Theorem 14. If a function f € #€ (D) then, for any 0, 0<0<1 the function defined by
h(z) = f(e*™z) also belongs to #E(D).

4.1. Proof of Theorem 13

We will apply Theorem 12 for the family 7, = D"-R; where AcR™.
Define the operators S, : #(C)— #(C), by Su,(f )(2) :f(—”>(§) where £ is

the antiderivative of f such that the value at 0 is 0 and (- = (f(*(”’”))(*l). Let us
check that the conditions of Theorem 12 are satisfied. First, observe that

8,00 =T (170 (3)) = (557 () ) =1 @)

e, T 08, = Id. To verify items (1) and (2) of Theorem 12 we will use as a dense
subset in #(C) the set of polynomials {p,} with coefficients in Q + iQ. So, fix such a
polynomial p. Then

Tyik;°Sns(p) =0 for k>deg(p).

On the other hand
A A
Tn,lo n+k,oc(p)(z) = _p( ) (; Z)-
Then for A<a,

1 Tz0Snsap)l| <[P

holds. Let us define ¢, = |[p~*)|| and set m = deg(p). It is not difficult to show that
there is a constant C = C(p) (for instance, we may choose C to be the maximum of
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the modulus of the coefficients of p) so that

1

|z\<n k.

Therefore

o< Z (m]:!’l) Cnm+k l
S\ gk ) 2

n=>1

We need to show that )", ¢y < co. For this, it is enough to prove that

(m]‘*l'l) Cn’"+k 1
Z Z 1 _’.Mcnnﬂrk ﬁ<00

k  nx=l k

Set / = [2log k] the integer part of 2log k. Then

o< Z (’"lzl) Cnm+k L
=\l Jr—(m,j!l) Cnmtk | 2"

- ZI: (m]:!—l) Cpntk i_|_ Z (m]:l-l) Cpntk i
X 1+ (m]:l—l) Cn’”*" on 1+ (m+1) Cn’”“‘ omn

n=1 n=I+1 Tl

2

Cim+1)
22logk”

<
= k!

(2 log k)l11+k+] +

Notice that ), 57 < . Let us show that

Z (m]:'_ 1) (210gk)m+k+l< 0.
k '

We apply the ratio test and we obtain

(2log(k + 1))+ k!
(k+1)! (2 log k)™ +!

_ 2log(k + 1) (log(k + 1) kel
 k+1 log k
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_ 2log(k +1) (log(k + 1) " Nog(k 4 1)\ *
S k+1 log k logk

k

_ 2log(k +1) (log(k + 1) el | +log(l +1)
S k+1 log k logk

m+1 k
<210g(k—i—1) log(k+1) 1+l
k+1 log k k

m+1
< 2log(k + 1) (log(k + 1) ¢ 0.
k+1 logk

Hence ), cx < co. This completes the proof of item (1).
It remains to prove item (2). Let p (polynomial) and ¢>0 be given. Choose ¢,/
and afterwards J such that

leapll <3, (28)
; %<Z (29)
and
if |w—z|<9d, |z],|w|<! then |p(w) —p(z)|<§. (30)
Finally, let 0<C(e) <1 be so that
0<1—C(e)<e and (1 — C(e))l<. (31)

1
We are ready to prove item (2). Let <o be such that 1 >2> C(e)n. Set p;(z) = p(%2).

Notice that T}, ;°8,.(p)(z) = (2)"pi(z). Then |

1T02Sn0(P) =PI Tn2Sna(p) = prll + [Ip1 = |

|-
I 6y

&
< [T =CE)pll + 1 = pll<z + llpr =PI,

-l

+ [lp1 = pl
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where in the last inequality we used (31) and (28). Moreover, using (31), for |z| </ we
have that

—Z—Z| =
o

Therefore, by (30) and (29) we conclude that

1
llp1 = pll< sup |pi(2) = p(2)[ + ) o
lz|<! nx=l
< su A (=) +8<8+8 e
< “z| —p(z <=
oo P\a) F 4537472

This completes the proof of Theorem 13.
4.2. Proof of Theorem 14

Let fe #%¢ (D) and fix 0,0<0<1. We want to show that the function A(z) =
£(e?™°z) is also hypercyclic for the operator D.
Let ge #°(C), a compact set L and ¢>0 be given. It suffices to find n so that

sup (1)) — g(2)| <.

Notice that 4" (z) = &> m0f () (¢2%02). We will consider two cases: 0 is rational or
irrational. Assume that 0 :f—i is rational. Since f is hypercyclic for D, it follows by
Theorem 11 that f is also hypercyclic for DY, that is, the sequence of functions
{D"(f),n=1} is dense in #(C) and so is the sequence {R,wsoD™(f), n=1}.
Choose n so that sup..; |ReweeD™(f)(z) — g(z)| <e. Since

D (h) (Z) _ e2ninq()f(nq) (62m‘()z) _ f(nq) (62ni()z) _ Rezmo Oan(f )(Z)

the result follows.

Next, we treat the case 6 irrational. Let By be a closed ball centered at the origin,
Lc By and set g1(z) = g(e™?™0z).

Let p be a polynomial satisfying

¢
sup |p(z) —gi1(2)[<g- (32)
ZEB[
Choose />deg(p) so that
n €
> suplp ()< (33)

n>1 €B
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Let >0 be such that for any 0< <0

. &
1] sup g1 ()| < (34
ZEB[

le

By the minimality of the rotation by /0, there is a sequence of positive integers
ny<np<... such that

0< {ml0} <o (35)

and

sup |mgr1 —ng|<m for some integer m. (36)
k

Let B be a closed ball so that B; — B°. By Cauchy estimates, we can find ¢; >0 so that

if £&,yeA#(C) and sup |E(z) — ¥ (z)| <& then
zeB

sup [€0(2) =y () <5, J=0,1,comi. (37)
ZEBl

Set &(z) = p(z) + p(2) + p=H(z) + -+ + p==UD(z). As before, by Theorem 11
the sequence {D"(f),n=0} is dense in #(C). It follows that for some n
we have

sup ID"(f)(2) = &)l <en.

Since the sequence {ny; k> 1} satisfies (36), we may find n; so that ny/ = nl + i for
some j,0<j<(m — 1). By (37), (32), (33) and the definition of ¢ we get

Sup /D@ 2) — g1(2)] = sup ID™(f)(2) = g1(2)]

< sup 1D (f)(z) = e ()] + sup E0(2) = g1(2)]

= sup [D"(f)(z) = ()| + sup [€)(2) - g1(2)]

zeB zeB)

+Sup p(2) = g1+ sup P

4 zeB) n>1 zel
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Finally, by using the above estimate, (35) and (34) we conclude, setting w = >0z,

that

sup | D™ (h)(z) — g(2)| = sup [ f D (&270z) — g(2))|
zel zel

< sup ‘eZninlef(nkl)(eZni()Z) _ e2m’nA10 ( )| + sup |e2nmk10 ( )_ g<2)‘
ZEB] AEB]

i 3¢ ¢
< sup 179 (w) = g1 ()| + sup [~ lgr (W) <5+ =&
we By we B

The proof of Theorem 14 is completed.

5. Proof of Theorem 4

For the proof of Theorem 4 we rely on the next two theorems, as we did in
previous sections.

Theorem 15. There is a Gs-dense set Ge/? such that G< #%(AT) for every real
number A, A>1.

Theorem 16. Let x be hypercyclic for AT for some 1> 1. Then x is also hypercyclic for
20T for any 0,0<0<1.

5.1. Proof of Theorem 15

We will derive it from Theorem 12. Let 7,,, = (AT)" and S, = (4S)" where S is
the forward shift S(xi,x2, ...) = (0,x1,x2, ...). Notice that T}, ;0S, ; = Id. Consider
the following denumerable and dense set on /°:

D = {(x,)el*: x,€Q +iQ and x, = 0 eventually}.

Let us check item (1) of Theorem 12. Fix x = {x,}€D and a compact interval
[41,42] = (1, o). Let kg be such that x; = 0 for k =ky. Observe that T}, 4 ;oS .(x) =0
for k>=ky. Secondly, for A<a we get

AN
ITueSuratli< (2) ISl

1 1
< g Il <z il

1
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Hence, setting ¢, = )lk [|x||, k= ko, conditions (a)-(c) of item (1) hold. We proceed by
1
verifying item (2) of Theorem 12. Let ¢>0 be given. Then,

N\
n,A°%n,o - = - -1
170800 - 1 = |(2)

Choose C(z), 0<C(e)<1 so that C(e)>1 — . Therefore, it is straightforward to
obtain item (2). This completes the proof of Theorem 15.

1]

5.2. Proof of Theorem 16

Let x be hypercyclic for AT and fix 0, 0<0<1. We want to show that the orbit of
x under 2e>™ T is dense. If 0 = Lis rational it follows that the sequence (2> 0T (x)

is dense. Indeed, by Theorem 11, the sequence {(AT)"!(x),n>=0} is dense and the
result follows since (1e>™T)"(x) = (AT)"(x).

Assume that 0 is irrational and let z be any point in /> and &> 0 be given. Let 6 >0
be such that

if ||y—z||<§ and 0<f<d then [[e*Py — z||<e. (38)

Let y = {);}€/? be such that ||y — z||<£ and y; is eventually zero. Take a positive
integer / satisfying

: ; €
»i=0 for;j>/ and Z()LS)-’(y)<g.

>l
There is a sequence of positive integers n; <np < --- such that

0<{nl0} <o and sup|mey; — ng|<m. (39)

Let w=y+ (AS)'(y) + - + (48)" V' (y). Let & be such that if ||v — u||<&, then
(AT (v) = (AT (u)|] <¢ 0<j<ml. Using Theorem 11, choose some 7 so that

1T (x) = wl| <.
There is some 7y so that ngl = nl 4 jl for some j,0<j< (m — 1). Therefore,
IGTY™ () = 2l < G (%) = (7))
+(1GAT) (w) =yl + [y = 2]l

&
<gtet

N
N »
N9}
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Hence, by (39) and (38) we get
S0TY M (x) 2| = (|20 (7)™ (x) = =] <.

The proof of Theorem 16 is completed.

6. Weighted backward shifts

In this section we will make use of Theorem 12 to obtain common hypercyclic
vectors for families of weighted backward shifts. Theorem 12 can be applied for a
wide class of such operators. However, conditions (1) and (2) of Theorem 12 must be
checked in each particular case. In the sequel we just deal with a specific family of
weighted backward shifts. Recall that a weighted backward shift with weighted
sequence {a;, i>1} (bounded and positive) is the (bounded) operator T :/*— />
defined by

T(Xl,XZ,X3, ) = (d]X2702X3, )

Salas [S1] proved that such an operator is hypercyclic if and only if sup, H;:1 a;i =
. Our family of weighted sequence is a;(1) =1 +% where AeR, 2>1. Let us

denote by 7, the weighted backward shift with weighted sequence {a;(1):i=
1,2,...}.

Theorem 17. There is a Gs-dense set Rc/? such that Rc AE6(T;) for every real
number A, A>1.

Proof. As we already mentioned, we shall verify items (1) and (2) of Theorem 12.
As before, consider the following denumerable and dense set on /%

D ={(x,)el*: x,eQ +iQ and x, = 0 eventually}.

For each 4>1 define the weighted forward shift S, by

Also, set T, ; = T/ and S, ; = S7. It follows that T}, ;S,; = Id. Fix x = {x;} €D and
a compact interval [4;,42]<=(1,00). Then, there is ko such that Ty ,;(x)=0
Vk=ky, VA>1. For k=ky set ¢, = ﬁ [|x||. Let {e,} be the canonical basis

Hi:l ai(Z
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of /2. Now, for 2<o we have

k+ko "+/+1 ()
T w0 Snskea(X)]] = Z Hnﬂj () X14j—k€jit1

Jj= i=14j— kal
+
s k0< Hz ]]+1 (i) )x e
; ; N ias
HiJ:IJrjfk a;i(or) i;rl/+jai(°‘)

J
k+kn< 1 >
< —— | X1+j—k€j+1
=k zjw y ai(%)
k+ko
S—F—— leﬂ k€j+1
Hz lal
<
<—|x|| = c.
[T ai(2)

We have to prove that ), ¢y <co. In what follows a, ~b, means llmn 4 — 1, By
standard calculus [K] we get

k k 17 k )
41 A1,
log ai(l) | = 10g<1 +—,> ~ —~ A1 log(k),
([Tee) = 35 wme(1 )~ 35 ot
SO ¢k~
satisfied.
Let us verify item (2). Notice that

|x|| and >, cx < oo follows. Therefore, items (a), (b) and (c) of (1) are

‘ I,

Let >0 and fix @, 0<a<]1. Observe that lim, (I — a'/")logn = 0. Hence, for n
large enough

| Ja(1—a'/m)

Thus, if 7 is large enough and 2,0 €[4y, 4] satisfy 1>2>4!/" then

nl

nOf

(-2 _ 1‘<8

A | .
1]

n

IE

n* '

Since [[7, a;(4) ~n* it follows that item (2) holds for 7 large enough (say n>np) with
1 > C(&) >a. Therefore, choose C(&) such that item (2) also holds for n<n.



300 G. Costakis, M. Sambarino | Advances in Mathematics 182 (2004) 278-306
7. Proofs of Theorems 5 and 6

We shall use the following powerful approximation theorem due to Arakeljan (see
[Ga, p. 161]):

Theorem 18. Denote by C = Cu{w} the extended complex plane. Let F<=C be a
closed set such that C\F is connected and locally connected at oo . Suppose that &(t) is a
continuous and positive function for t=0 and satisfies

© 3
/ t2loge(t)dt> — o0. (40)
1

Then for every function g : F — C, continuous on F and holomorphic in its interior, there
is an entire function [ such that

|f(z) —g(2)<e(lz]), VzeF.

For instance, we will use the “error” function &(¢) = exp(—t%) which satisfies (40).
Observe that lim,_, ;, ¢(¢) = 0. In particular, if the set F in the above theorem is
unbounded, then the approximation function f for a given function g on F is
“tangent to g at oo through F.”

7.1. Proof of Theorem 5

We start by defining a set S that eventually contains any ray emanating from any
point z except the one in the direction of the positive real line:

S=C{z=x+iy:x>1, —logx<y<logx}.

Denote by By = {|z|<k}. Let n; be such that B} = B + n; does not intersect S, that
is B} NS = 0 (for instance take n; = 4). For k>2 let n; be such that BY = By + n;
does not intersect SUB} U -+ UBL~L. Define the set

F:SUUB;

k

It is not difficult to see that F satisfies the conditions of Theorem 18, that is, F is
closed and C\F is connected and locally connected at oo.

Let {py : k=1} be an enumeration of the polynomials with coefficients in Q + iQ.
Consider a function % : S— C continuous on S and holomorphic in the interior of
S, such that

lim h(z)=0

z—>ow,zeS
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(for instance take A(z) = 0). Finally let g : F - C defined by
h(z) ze S,
z) =
pi(z — ng) zeB,’i.
By Theorem 18, there is an entire function f such that

|f(z) —g(2)l<e(lz]), VzeF.

One can easily check that the function f satisfies the conclusion of Theorem 5.
7.2. Proof of Theorem 6

Let EcS' be a closed nowhere dense (for instance any Cantor set) such that 1¢ E.
First, we claim that there is an entire function ¢ which is hypercyclic for 77 and
satisfies

lim ¢(re™) =0 where ¥ cE. (41)

r— o0

This can be done in a similar way as the proof of Theorem 5 by making some minor
modifications. Indeed, let

S = {re*™ :r>0, ek}

(observe that S has empty interior) and for each By = {|z| <k} let n; be such that
B = By + ny does not intersect SUB} U -+ U B{~L. Define the set

F=Sul ] B
k

As before, define g: F—C by

0 ze§,
ma={

pk(Z - nk) ZEB%.

Applying Theorem 18 with the error function &(z) = exp(—t%) we get a function ¢,
which is hypercyclic for 7} and satisfies (41). This proves our claim. Now we will find
a function f* which is hypercyclic for D and it is close enough to ¢ so that it is also
hypercyclic for T and satisfies (41). In order to do this, consider the set

A= {ge#(C) : lg(z) — d(2)| <e(|2]) for ze F}.

Notice that any function g€ 4 is hypercyclic for T and satisfies (41). Thus, our aim
is to find a function f € 4 which is also hypercyclic for D.
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The set 4 is a Gs nonempty set, because ¢ €4 and 4 = (), 4, where

4, =[] {9 #(C) : |g(z) — $(2)| <(l2]) for ze F{|z|<n}}.

This means that 4 is a Baire space and we can apply Baire’s category arguments.
Although A, "% (D) is residual in A4, (since 4, is open) it is not true, a priori, that
AN (D) is even nonempty. However, we will show that this is not the case, in fact
the set An%(D) is residual in A. For this, it is enough to prove that the set

1
E(s,j,m) = {geA: for some n>=0, sup \g<”)(z) —pj(z)<s}

|z|]<m

is open and dense in A. It is straightforward to check that is open. We shall prove the
denseness. In other words, given a function g; € 4, a compact set L and 6 >0 we must
find » and an entire function € 4 so that

sup [V(z) = g1(2)] <3 and sup ()~ py(2)] <. (@2)

lz|<m

We may assume without loss of generality that L< {|z|<m}. Let d,n be positive
numbers so that d —n>m and {d — n<|z|<d +n}nBf =0 Vk. Let y and B be as
follows:

p= il Gl () - 4 3
O<ﬁ<min{zi<n(§+ﬂ s(|z|),5,y}. (44)

Notice that, by the definitions of f and 7, the following holds:
if 0e#(C) and |0(z) — g1(2)| <P, |z|<d +n then |0(z) — ¢p(2)|<e(lz]).  (45)

By using Runge’s theorem, we may find a polynomial ¢, such that

p
sup |q1(2) — g1(2)[ < (46)
lz|<d
Let ny = deg(q1) and fix n>nqy so that sup. <, |p](_—"> (2)] <§. Set g = ¢ +p_l(»_") and
observe that ¢ = p; and
B
sup |¢(2) — g1(2)| <5 (47)

|z|<d
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Using Cauchy estimates, we may find a positive number f; such that

if 0e#(C) and sup |0(z) — q(z)|<f,

lz|<d

then sup \9<">(z)—q<">(z)\<l

- 48
|zl <d—n $ ()
Consider the set S| = {|z|<d}uUS. Let ko be such that Bf 1 S| = 0 for k >k and set

F=8vu Uk;ko Bfg. It follows that F; satisfies the condition of Theorem 18. Let
£: F—C be the function

q(z) |z| <d,
He) = o(2) zeBﬁ,k}ko,
o(z) {lzIzd +n}n Sy,

(1=0)q(z)+tdp(z) {lzl=d+m}nS;, 0<r<]1.

Observe that ¢ is continuous on F; and holomorphic in its interior.
Let ¢;(¢), t=0 be a continuous positive function such that

ei(t)<e(r) Ve=0; 81(I)<min{§,ﬁl} for 0<t<d +1n (49)

and satisfying (40). Applying Theorem 18 to F, e, and & we obtain an entire function
Y so that

W(z) = (@) <e(lz]), zekr. (50)
Let us check that s satisfies (42) and € A. By (47), (49) and (50) we get

sup [(2) — g1(2)| < sup Y (2) —¢(2)[ + sup |q(z) — g1(2)]

zel lz|<d |z|<d

< sup &()z]) +§<ﬁ<5

|z|<d

and using (48) and (50) it follows that

sup (Y (2) = pi(2)l< sup [W(2) - py ()]

jzl<m |zl <d—n

n n l
= sup [Y"(z) —q G)l<

2l <dn

Thus, (42) is valid.
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Let us verify that e 4. For ze F and |z| >d +  we have
W(z2) — d(2)] = W(2) — <o)l <en(lz]) <e(|z])-
For ze F and |z|<d, as before
W (z) —g1(z)[<p

which, by (45), implies |[y(z) — ¢(z)|<e&(|z|). Finally, for ze F and d<|z|<d + 1,
using (43), (44) and (49) we get

W (2) = ¢(2)l< W (2) = <2)| + [E(2) — ¢(2)]
< a(lz]) + (1 = )q(2) + 19(2) — ¢(2)]

<L+ (1= 0l - 902)
<L -0l -0+ (1= 0lai2) - 60
<24 B 4100 — 91 <r + () - 9(6)

< ¢&(]z]).

Therefore, € A and the proof is finished.

8. Final remarks

(1) As we mentioned in the introduction, let us now show that the set of common
universal vectors for a “wide” class of families of sequence of operators is either
residual or empty. Indeed, let {7, :n>1 yeI'} be a family of sequence of operators
acting on a separable F-space X, where I' is a locally compact metric separable space
and the map I'sy— T,,, is continuous for every n>1. For a compact set K < I" define
the set Ex(s,j,m) as in Section 3. The same proof as in Lemma 9 shows that
Ek(s,j,m) is open (in fact, the crucial point is that any open set in the topological
space I' can be written as an exhaustive sequence of compact sets). Assume that the
set of common universal vectors for the family 7, ., is nonempty. Then, it follows
trivially that {J,,», Ex(s,/,m)is dense, and our assertion follows as in the conclusion
of Theorem 12.

(2) Theorem 12 gives sufficient conditions in order to obtain common universal
vectors for families indexed by real numbers. If one might want to prove a similar
theorem for families indexed by an open set of R?, p>2 then condition (2) should be
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replaced by one of the form

1
if 1>|4—a|>C(e)n" then ||T;,08,.(x;) — xj|| <e.

However, none of the families treated in our paper satisfy this kind of
condition.
(3) The family of weighted backward shifts 7, we dealt in Section 6 satisfies

and

In [LM] it is proved that the above conditions imply the existence of an
infinite dimensional closed subspace of hypercyclic vectors for 7;,. We ask
if there is a common infinite dimensional closed subspace of hypercyclic vectors
for all T;.
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