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Abstract

Let Ta be the translation operator by a in the space of entire functions HðCÞ defined by

Tað f ÞðzÞ ¼ f ðz þ aÞ: We prove that there is a residual set G of entire functions such that for

every fAG and every aAC\f0g the sequence Tn
a ð f Þ is dense inHðCÞ; that is, G is a residual set

of common hypercyclic vectors ( functions) for the family fTa : aAC\f0gg: Also, we prove

similar results for many families of operators as: multiples of differential operator, multiples of

backward shift, weighted backward shifts.
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1. Introduction

During the first half of the last century, Birkhoff [B] and MacLane [M] showed
that certain entire functions can approximate any entire one under a suitable limiting
process. Specifically, Birkhoff constructed an entire function f so that any entire one
can be obtained as the limit (uniformly on compact sets) of translates f ðz þ cnÞ for
some sequence cn; and MacLane proved the existence of an entire function so
that the sequence of its derivatives is dense in the space HðCÞ ¼
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f f :C-C holomorphicg endowed with the usual topology of uniform convergence
on compact sets.
Both results can be regarded as examples of a phenomenon that has been a

concern of operator theorists during the last decades, namely the notion of
hypercyclicity. Let recall the definition: a continuous linear operator T : X-X

acting on a topological vector space X is called hypercyclic provided there is a vector
x whose orbit fTnðxÞ; n ¼ 1; 2;yg is dense in X ; and such a vector x is said to be a
hypercyclic vector for T : It turns out, by a simple Baire’s categorical argument that
the set of hypercyclic vectors (denoted by HCðTÞ) for a hypercyclic operator T is
residual, i.e. is Gd-dense (see the survey [G]).
From the above point of view, Birkhoff and MacLane’s theorems can be restated

as follows: the translation operator Ta :HðCÞ-HðCÞ; aa0 defined by Tað f ÞðzÞ ¼
f ðz þ aÞ and the differentiation operator D : HðCÞ-HðCÞ; Dð f Þ ¼ f 0 are
hypercyclic (let us point out that hypercyclic functions—vectors—for these operators
are also called universal functions).
In particular, in case of Birkhoff’s result, we have a noncountable family of

operators fTa :HðCÞ-HðCÞ; aAC\f0gg where each one of these operator is
hypercyclic. A natural question is whether this family share a hypercyclic vector. In
other words: does there exist an entire function f so that fTn

a ð f Þ; nX1g is dense in
HðCÞ for every aAC\f0g? The next theorem gives a positive answer. Moreover, it
says that the set of functions enjoying this property is in fact generic (i.e. contains a
Gd-dense set).

Theorem 1. There is a Gd-dense set GCHðCÞ such that GCHCðTaÞ for every

aAC\f0g:

Let us observe that any function fAG has a ‘‘wild behavior at N’’ in any
direction, more precisely any entire function g can be approximated on any compact
set by translating f in any direction. Furthermore, by Hurwitz’s theorem, it holds
that f ðfw þ z : y	 eoargðzÞoyþ egÞ ¼ C for every wAC; 0pyp2p and e40 (in
particular every ray is a Julia ray). Also, the range of any half line is dense in C and
the sequence f f ðz þ naÞ; nX0g is dense in the complex plane for every
zAC; aAC\f0g as well.
Motivated by the above theorem, we may ask if a similar phenomenon can occur

in case of other noncountable families of hypercyclic operators. As we mentioned
before, MacLane’s theorem says that the differentiation operator D :HðCÞ-HðCÞ
is hypercyclic. It turns out that the operators lD :HðCÞ-HðCÞ defined by
lDð f ÞðzÞ ¼ lf 0ðzÞ are hypercyclic for lAC\f0g as well (see [GoS]). We will show
that the above family lD of differentiation operators admits a Gd-dense set of
common hypercyclic vectors. However, we would like to view it from another
perspective. Consider the family of modulations on HðCÞ defined by
Rl :HðCÞ-HðCÞ; Rlð f ÞðzÞ ¼ f ðlzÞ and we ask if there is an entire function f

so that Rlð f Þ is universal (hypercyclic) for the operator D for every lAC\f0g: In
other words, is there a function f so that the sequence fDn

3Rlð f Þ : nX1g is dense in
HðCÞ for every lAC\f0g? We will provide a positive answer to this question but
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before let us introduce some notation. A vector xAX will be called universal for a
sequence of operators Tn : X-X ; if the sequence fTnðxÞ; n ¼ 1; 2;yg is dense in X :
The set of universal vectors will be denoted by UðfTn : nX1gÞ:

Theorem 2. For every lAC\f0g consider the sequence of operators Tn;l ¼ Dn
3Rl:

Then, there is a Gd-dense set FCHðCÞ such that FCUðfTn;l : nX1gÞ for any

lAC\f0g: In other words for any lAC\f0g and fAF the sequence of (entire) functions

hnðzÞ ¼ lnf ðnÞðlzÞ is dense in HðCÞ:

We observe that any automorphism R in HðCÞ sends a dense set to a dense one.
Therefore a Gd dense set of common hypercyclic vectors for the family of operators

lD is obtained from the above theorem and the identity ðlDÞn ¼ R	1
l 3Dn

3Rl: It is

also interesting to note that a common hypercyclic entire function f for the family of

operators lD has the next property: not only the sequence f f ðnÞðzÞg is dense in the

complex plane for any point z; but the sequence flnf ðnÞðzÞg is dense in C for any
lAC\f0g as well.
Notice that if f is hypercyclic for lD (respec. Ta) then f 0 is also hypercyclic for lD

(respec. Ta). Therefore, by Baire’s category theorem and the above two theorems we
conclude the following corollary about genericity of ‘‘wild entire functions’’:

Corollary 3. There is a Gd dense set GCHðCÞ so that for any fAG and any jAN

we have

f ð jÞA
\

a;lAC\f0g
HCðTaÞ-HCðlDÞ:

Equivalently, for any fAG; for any l; aAC\f0g and every jAN the following hold:

(1) f f ð jÞðz þ naÞ : nX0g ¼ HðCÞ:
(2) flnf ð jþnÞðzÞ : nX0g ¼ HðCÞ:

Although the proofs of Theorems 1 and 2 share some similar ideas, they are based
in quite different tools. A basic tool in the proof of Theorem 1 is Runge’s theorem.
On the other hand, to prove Theorem 2 we use essentially the fact that the family
shares a common set where the hypercyclicity criterion applies (see [GS] for a
statement of this criterion). In fact, we will derive Theorem 2 from a more general
theorem that can be applied to other families of operators in order to obtain
common hypercyclic vectors. For instance, we will apply it to families of multiples
backward shift (see Theorem 4 below) and weighted backward shifts (see Section 6).
However, for the sake of clarity and simplicity of the introduction, we postpone the
statement of it to Section 3.
In the context of linear operators in Banach spaces, Rolewicz [R] was the first who

realized that hypercyclic operators exist in this setting. Although the backward shift

T acting on c2 ¼ c2ðNÞ (the Hilbert space of square summable sequences), defined
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by Tðx1; x2; x3;yÞ ¼ ðx2; x3;yÞ is not hypercyclic, Rolewicz proved that the
multiple of the backward shift lT ; jlj41 is indeed hypercyclic. Salas [S] asked if this
family admits a common hypercyclic vector. Recently Abakumov and Gordon [AG]
settled this question. Their proof consists of a clever construction of a common
hypercyclic vector for this class of operators (A. Peris informed us that this result has
been obtained independently by him—unpublished—[P]). As a consequence of our
methods we give a nonconstructive proof of this fact by showing that the set of
common hypercyclic vectors is residual. Let us point out an interesting aspect of the

proof: if x is hypercyclic for lT then it is also hypercyclic for le2piyT for every y (see
Theorem 16).

Theorem 4. There is a Gd-dense set RCc2 such that RCHCðlTÞ for every complex

number l; jlj41:

Let us turn our attention back to entire functions. In view of Theorem 1 above, the
function f described in the following theorem can be considered ‘‘pathological’’:

Theorem 5. Let T1 :HðCÞ-HðCÞ be the translation operator by 1, that is

T1ð f ÞðzÞ ¼ f ðz þ 1Þ: Then, there exists an entire function fAHðCÞ hypercyclic for

T1 which also satisfies

lim
r-N

f ðz þ re2piyÞ ¼ 0 8y; 0oyo1; 8zAC:

Moreover, the above limit holds uniformly on fy : epyp1	 eg and z in a compact set.

We may ask if a function as in the above theorem can be universal for the
differentiation operator. We conjecture that this is not the case. Moreover we ask if a
universal (i.e. hypercyclic) entire function for the operator D can be bounded on a
sector. Also, does there exist a universal function for D for which not every ray is a
Julia ray?
However, in the opposite direction we can specify the behavior along a ‘‘large’’ set

of rays:

Theorem 6. Denote by S1 the unit circle. Given any closed nowhere dense set ECS1;
such that 1eE; there exists an entire function fAHðCÞ which is hypercyclic for both

T1 and D and satisfies

lim
r-N

f ðre2piyÞ ¼ 0 for every e2piyAE:

The paper is organized as follows: Theorem 1 is proved in Section 2; a sufficient
criterion for the existence of common hypercyclic vectors is given in Section 3; in
Section 4 we prove Theorem 2; in Section 5 we include the proof of Theorem 4 and in
Section 6 we deal with families of weighted backward shifts. Theorems 5 and 6 are
proved in Section 7. In the last section we show that the set of common hypercyclic
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vectors for a wide class of families is either empty or residual and we also provide
some remarks and problems.

2. Proof of Theorem 1

The proof of Theorem 1 consists of two steps. First, by using categorical
arguments we show that there is a Gd-dense set of common hypercyclic functions for
a ‘‘one dimensional’’ subfamily. Secondly, we show that the above Gd-dense set
satisfies the conclusion of Theorem 1. This is done by an argument which is
interesting by itself and a main tool is the minimality of the irrational rotation.
Indeed, we will prove the following two theorems:

Theorem 7. There is a Gd-dense set GCHðCÞ such that GCHCðTe2piyÞ for every

y; 0pyp1:

Theorem 8. Let f be hypercyclic for Te2piy for some y: Then f is also hypercyclic for

Tre2piy for any positive real number r:

Before proving these two theorems, let us explain how to obtain Theorem 1. In
fact, the set G provided by Theorem 7 satisfies the conclusion of Theorem 1, since
any function fAG is hypercyclic for Te2piy for every y; 0pyp1 and, by Theorem 8, it
is also hypercyclic for Tre2piy where r is any real positive number, that is, f is
hypercyclic for Ta for any aAC\f0g:

2.1. Proof of Theorem 7

Let ffj : jX1g be dense in HðCÞ: Consider the set

Eðs; j; k;mÞ ¼ fAHðCÞ : 8y; 0pyp1 (n ¼ nðyÞpm

(

so that sup
jzjpk

j f ðz þ ne2piyÞ 	 fjðzÞjo
1

s

)
:

The proof of Theorem 7 will be based on the following two lemmas:

Lemma 9. The set Eðs; j; k;mÞ is open in HðCÞ for every s; j; k;m:

Lemma 10. The set
S

mX1 Eðs; j; k;mÞ is dense in HðCÞ for every s; j; k:

Before proving these two lemmas, let us explain how to conclude Theorem 7. It
follows, by Baire’s category theorem, that the set

G ¼
\

s

\
j

\
k

[
m

Eðs; j; k;mÞ
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is Gd-dense in HðCÞ: It is easy to see that G satisfies the conclusion of Theorem 7.
However, for the sake of completeness we include the proof. Let fAG and fix
y; 0pyp1: We want to show that f is hypercyclic for Te2piy : Thus, let any gAHðCÞ;
a compact set L and e40 be given. Take sX1; 1

s
oe

2
and k such that LCfjzjpkg:

Moreover, choose fj so that supjzjpk jgðzÞ 	 fjðzÞjoe
2
: Since fAG then

fAEðs; j; k;mÞ for some m: Therefore, there is n ¼ nðyÞpm such that

sup
jzjpk

jTn
e2piyð f ÞðzÞ 	 gðzÞj ¼ sup

jzjpk

j f ðz þ ne2piyÞ 	 gðzÞj

p sup
jzjpk

j f ðz þ ne2piyÞ 	 fjðzÞj þ sup
jzjpk

jfjðzÞ 	 gðzÞjoe:

Let us proceed with the proof of the lemmas.

Proof of Lemma 9. Let fAEðs; j; k;mÞ and denote by S1 the unit circle. Consider the
sets

Cl ¼ aAS1; so that sup
jzjpk

j f ðz þ laÞ 	 fjðzÞjo
1

s

( )
; l ¼ 1;y;m:

It is easy to see that Cl is open and S1C
Sm

l¼1 Cl (since fAEðs; j; k;mÞÞ: That is,Sm
l¼1 Cl is an open and finite covering of S1: Hence, there are compact sets IlCCl

such that S1C
Sm

l¼1 Il : We will find e so that the set fgAHðCÞ : supjzjpkþm jgðzÞ 	
f ðzÞjoeg (which is open in HðCÞ) is contained in Eðs; j; k;mÞ: For each l ¼ 1;y;m;
since Il is compact we may find el40 so that

if sup
jzjpkþm

jgðzÞ 	 f ðzÞjoel and aAIl then sup
jzjpk

jgðz þ laÞ 	 fjðzÞjo
1

s
:

So, choosing eominfel ; 1plpmg the proof of Lemma 9 is finished. &

Proof of Lemma 10. Let s; j; k be fixed. And let gAHðCÞ; a compact set C and e40
be given. We want to show that there is fAHðCÞ and mX1 such that

fAEðs; j; k;mÞ ð1Þ

and

sup
zAC

j f ðzÞ 	 gðzÞjoe: ð2Þ

Without loss of generality we may assume that CCfjzjpkg: In order to simplify the

notation, set f ¼ fj : Let us choose do1
2
such that

if jzjpk and jz 	 wjod then jfðzÞ 	 fðwÞjo 1

2s
: ð3Þ
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Consider a partition 0 ¼ y0oy1o?oyl ¼ 1 (to be chosen later). Set t ¼ 2k þ 1 and
B ¼ fjzjpk þ dg: For d ¼ 0; 1;y; l define the sets

Bd ¼ B þ e2piyd ðd þ 1Þt:

Notice that B;B0;B1;y;Bl are pairwise disjoint. Define the function h on the

compact set R ¼ B,
Sl

d¼0 Bd (having connected complement) by

hðzÞ ¼
gðzÞ zAB;

fðz 	 e2piyd ðd þ 1ÞtÞ zABd d ¼ 0; 1;y; l:

(
ð4Þ

By Runge’s theorem, there is an entire function f (polynomial) such that

sup
zAR

j f ðzÞ 	 hðzÞjomin
1

2s
; e

� �
: ð5Þ

We will choose l and the partition 0 ¼ y0oy1o?oyl ¼ 1 so that f is the desired
function. First, by (4) and (5) we get

sup
zAC

j f ðzÞ 	 gðzÞjp sup
zAB

j f ðzÞ 	 gðzÞjoe;

which implies (2) (no matter the length of the partition and the partition itself are). It
remains to show (1). To this end, we will find l and 0 ¼ y0oy1o?oyl ¼ 1 such that
for y; ydpyoydþ1; we get that

sup
jzjpk

j f ðz þ ðd þ 1Þte2piyÞ 	 fðzÞjo1

s
: ð6Þ

If this is the case, setting m ¼ ðl þ 1Þt we get (1). In order to establish (1) let
y; ydpyoydþ1 and assume for the moment that

je2piydþ1 	 e2piyd jðd þ 1Þtod: ð7Þ

Then, for jzjpk; it follows that z þ ðd þ 1Þte2piyABd : Hence, for jzjpk;

j f ðz þ ðd þ 1Þte2piyÞ 	 fðzÞj

pj f ðz þ ðd þ 1Þte2piyÞ 	 fðz þ ðd þ 1Þte2piy 	 ðd þ 1Þte2piyd Þj

þ jfðz þ ðd þ 1Þtðe2piy 	 e2piyd ÞÞ 	 fðzÞj:

Let us estimate the right-hand side of the above inequality. Firstly, by (4) and (5)
we get

j f ðz þ ðd þ 1Þte2piyÞ 	 fðz þ ðd þ 1Þte2piy 	 ðd þ 1Þte2piyd Þjo 1

2s
:
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And secondly, by (7) and (3) we have

jfðz þ ðd þ 1Þtðe2piy 	 e2piyd ÞÞ 	 fðzÞjo 1

2s
:

Thus, (6) follows. Therefore, it is only left to find l and 0 ¼ y0oy1o?oyl ¼ 1 so
that (7) holds for any d ¼ 0; 1;y; l 	 1: Observe that

2pðydþ1 	 ydÞðd þ 1Þtod ð8Þ

implies (7). Moreover, (8) is equivalent to

ydþ1 	 ydo
d

2pðd þ 1Þt: ð9Þ

Setting bd ¼ ydþ1 	 yd ; (9) is transformed to

bdo
d

2pðd þ 1Þt: ð10Þ

Thus, we need to find l positive numbers b0;y; bl	1 so that (10) holds and

b0 þ b1 þ?þ bl	1 ¼ 1: ð11Þ

So, choose lX1 such that

Z ¼ d
2pt

1þ 1

2
þ?þ 1

l

� 	
41 ð12Þ

and, for d ¼ 0; 1;y; l 	 1 set

bd ¼ 1

Z
d

2pðd þ 1Þt

� 	
:

Hence (10), (11) hold and the proof of Lemma 10 is finished. This completes the
proof of Theorem 7. &

2.2. Proof of Theorem 8

Let f be hypercyclic for Te2piy for some y and let r40: We shall conclude that f is
also hypercyclic for Tre2piy : Let gAHðCÞ; a compact set L and e40 be given. It
suffices to prove that there is some n so that

sup
zAL

j f ðz þ nre2piyÞ 	 gðzÞjoe:

We shall use a result due to Ansari (Theorem 1 in [A]). We would like to state it since
we will use it repeatedly.
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Theorem 11. Let T be a hypercyclic operator and let n be any positive integer. Then Tn

is also hypercyclic and moreover T ; Tn have the same hypercyclic vectors.

Continuing with the proof, we will distinguish two cases: r is rational or r is
irrational.

In case r ¼ p
q
is rational we consider T

p

e2piy : It follows from the above theorem that f

is also hypercyclic for T
p

e2piy : Thus, there exists some positive integer m so that

sup
zAL

j f ðz þ mpe2piyÞ 	 gðzÞjoe

and the result follows by the equality mqre2piy ¼ mpe2piy:
Now, assume that r is irrational.
Let d be such that

if jzjAL and jz 	 wjod then jgðzÞ 	 gðwÞjoe
2
: ð13Þ

Set Ld ¼ fz : dðz;LÞpdg; and choose an integer k42 supzALd
jzj: In the sequel we

denote by ½x the integer part of the real number x and by fxg ¼ x 	 ½x the
fractional part of x: It follows by the minimality of the irrational rotation by r=k [E]
that there is a sequence of positive integers n1on2o? such that

0p nj

r

k

n o
o

d
k

ð14Þ

and

sup jnjþ1 	 njjoN: ð15Þ

Set mj ¼ ½nj
r
k
; the integer part of nj

r
k
: Then,

0pnjr 	 mjkod ð16Þ

and

sup jmjþ1 	 mjjom for some integer m: ð17Þ

Set Ll
d ¼ Ld þ lke2piy; l ¼ 1;y;m 	 1 and consider the compact set

K ¼ Ld,L1
d,?,Lm	1

d :

Define the function h on K by

hðzÞ ¼
gðzÞ; zALd;

gðz 	 lke2piyÞ; zALl
d; l ¼ 1;y;m 	 1:

(
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By Runge’s theorem, there is an entire function xðzÞ so that

sup
zAK

jxðzÞ 	 hðzÞjoe
4
: ð18Þ

Since f is hypercyclic for Te2piy ; then, by Theorem 11, is also hypercyclic for Tk
e2piy :

That is, there exists some integer n so that

sup
zAK

j f ðz þ nke2piyÞ 	 xðzÞjoe
4
: ð19Þ

By (17) there is j such that nkpmjkpnk þ ðm 	 1Þk: Moreover, there is some

l; 0plpm 	 1 such that mjk ¼ nk þ lk: Set w ¼ ðnjr 	 mjkÞe2piy: Notice that, by

(16), jwjod: Using (13), (18) and (19), for zAL we have

j f ðz þ njre2piyÞ 	 gðzÞj

¼ j f ðz þ ðnjr 	 mjkÞe2piy þ mjke2piyÞ 	 gðzÞj

pj f ðz þ w þ ðlk þ nkÞe2piyÞ 	 xðz þ w þ lke2piyÞj

þ jxðz þ w þ lke2piyÞ 	 gðz þ wÞj

þ jgðz þ wÞ 	 gðzÞj

o
e
4
þ e
4
þ e
2
¼ e:

This completes the proof of Theorem 8.

3. A common universality criterion

Let ICRþ be an open interval of the positive real line. Recall that a F -space is a
topological vector space whose topology is induced by a complete invariant metric r:
Although, in general, r is not induced by a norm, in order to simplify the notation we
write jjxjj ¼ rðx; 0Þ: In the next theorem we give conditions that guarantee the existence
of common universal (hypercyclic) vectors for some families of (sequences of ) operators.

Theorem 12. Let X be a separable F -space and let fTn;l : nAN; lAIg be a family of

operators acting on X ; such that for fixed n the map I{l-Tn;l is continuous. Assume

that there is a dense set fxj : jX0g in X and a family of operators fSn;l : nAN; lAIg
such that Tn;l3Sn;l ¼ Id and

(1) Given xj and a compact set KCI there is a sequence of positive numbers ck such that

(a)
P

k ckoN;

(b) jjTnþk;l3Sn;aðxjÞjjpck for any n; kX0 and l; aAK ;
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(c) jjTn;l3Snþk;aðxjÞjjpck for any n; kX0 and l; aAK ; lpa:
Notice in particular that jjTn;lðxÞjj-n0 and jjSn;lðxÞjj-n0 (and uniformly

on KÞ:
(2) Given e; xj and a compact set KCI ; there exists 0oCðeÞo1 such that, for

l; aAK the following holds:

if 1X
l
a
4CðeÞ

1
n then jjTn;l3Sn;aðxjÞ 	 xjjjoe:

Then, there exists a residual set GCX such that

fTn;lðxÞ; nX0g ¼ X 8lAI ; 8xAG:

In other words, GCUðfTn;lðxÞ; nX0gÞ 8lAI :

Proof. Let K ¼ ½l1; l2CI : Define the set

EKðs; j;mÞ ¼ xAX : 8lAK (n ¼ nðlÞpm so that jjTn;lðxÞ 	 xjjjo
1

s

� �
:

It is enough to show that EKðs; j;mÞ is open and
S

m EKðs; j;mÞ is dense, because
then write I as a countable union of compact intervals Kn and the set

G ¼
\

n

\
s

\
j

[
m

EKn
ðs; j;mÞ

satisfies the conclusion of the Theorem 12.
The openness of EKðs; j;mÞ can be established along the same lines as in the proof

of Lemma 9 and we leave it to the reader. It remains to prove the density ofS
m EKðs; j;mÞ: Let w ¼ xp for some positive integer p and d40:We will find some m

and yAEKðs; j;mÞ so that jjy 	 wjjod:
Fix k large enough such that

jjTn;lðwÞjjo
1

4s
8nXk; 8lAK ð20Þ

and

X
nXk

cnomin d;
1

4s

� �
: ð21Þ

Consider a partition l1 ¼ a0oa1o?oal ¼ l2 of the interval ½l1; l2 and define
the vector

y ¼ w þ Sk;a0ðxjÞ þ S2k;a1ðxjÞ þ?þ Sðlþ1Þk;al
ðxjÞ: ð22Þ
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We will choose l; and l1 ¼ a0oa1o?oal ¼ l2 so that jjy 	 wjjod and
yAEKðs; j;mÞ for some m: In fact, we will show that if ai	1olpai; i ¼ 1;y; l;

then jjTðiþ1Þk;lðyÞ 	 xjjjo1
s
(for a0 just take Tk;a0 ). Thus, if m ¼ ðl þ 1Þk we get that

yAEKðs; j;mÞ:
Let us first estimate jjy 	 wjj:

jjy 	 wjj ¼ jjSk;a0ðxjÞ þ S2k;a1ðxjÞ þ?þ Sðlþ1Þk;al
ðxjÞjj

p ck þ c2k þ?þ cðlþ1Þkp
X
nXk

cnod;

where the last inequality holds by (21).
Let l; ai	1olpai: Then,

Tðiþ1Þk;lðyÞ ¼Tðiþ1Þk;lðwÞ þ Tðiþ1Þk;l3Sk;a0ðxjÞ þ?

þ Tðiþ1Þk;l3Sðiþ1Þk;ai
ðxjÞ þ?þ Tðiþ1Þk;l3Sðlþ1Þk;al

ðxjÞ:

We proceed estimating jjTðiþ1Þk;lðyÞ 	 xjjj:

jjTðiþ1Þk;lðyÞ 	 xj jj

pjjTðiþ1Þk;lðwÞjj þ jjTðiþ1Þk;l3Sk;a0ðxjÞ þ?þ Tðiþ1Þk;l3Sik;ai	1ðxjÞjj

þ jjTðiþ1Þk;l3Sðiþ1Þk;ai
ðxjÞ 	 xjjj

þ jjTðiþ1Þk;l3Sðiþ2Þk;aiþ1ðxjÞ þ?þ Tðiþ1Þk;l3Sðlþ1Þk;al
ðxjÞjj:

Firstly, notice that by (20) jjTðiþ1Þk;lðwÞjjo 1
4s

holds. Secondly, using (21) and

assumption (b) we get

jjTðiþ1Þk;l3Sk;a0ðxjÞ þ?þ Tðiþ1Þk;l3Sik;ai	1ðxjÞjj

pjjTðiþ1Þk;l3Sk;a0ðxjÞjj þ?þ jjTðiþ1Þk;l3Sik;ai	1ðxjÞjj

pcik þ cði	1Þk þ?þ cko
1

4s
:

Similarly, by (21) and assumption (c) the following holds:

jjTðiþ1Þk;l3Sðiþ2Þk;aiþ1ðxjÞ þ?þ Tðiþ1Þk;l3Sðlþ1Þk;al
ðxjÞjj

pjjTðiþ1Þk;l3Sðiþ2Þk;aiþ1ðxjÞjj þ?þ jjTðiþ1Þk;l3Sðlþ1Þk;al
ðxjÞjj

pck þ c2k þ?þ cðl	iÞko
1

4s
:
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Therefore, we only have to find l and l1 ¼ a0oa1o?oal ¼ l2 so that for
l; ai	1olpai;

jjTðiþ1Þk;l3Sðiþ1Þk;ai
ðxjÞ 	 xjjjo

1

4s
ð23Þ

holds for every i ¼ 1;y; l: Set e ¼ 1
4s
and let CðeÞ be as in item (2) of the theorem.

Thus, (23) holds provided

l
ai

4CðeÞ
1

ðiþ1Þk: ð24Þ

Since ai	1olpai it is enough to show that

ai	1
ai

4CðeÞ
1

ðiþ1Þk; i ¼ 1;y; l: ð25Þ

Setting bi ¼ ai	1
ai
; (25) is equivalent to

bi4CðeÞ
1

ðiþ1Þk; i ¼ 1;y; l: ð26Þ

Hence, it is enough to find l positive numbers b1;y; blo1 such that (26) holds and
such that

Yl

i¼1
bi ¼

l1
l2

ð27Þ

because, if this is the case, define

al ¼ l2; ai ¼ l2
Yl

r¼iþ1
br; i ¼ 0;y; l 	 1

and we get the desired partition verifying (25).
Choose lX1 such that

Z ¼ l1
l2

ðCðeÞÞ	
1
k
ð1
2
þ1
3
þ?þ 1

lþ1Þ41

and setting N ¼ 1
k
ð1
2
þ 1

3
þ?þ 1

lþ1Þ; define

bi ¼ Z
N

ðiþ1ÞkðCðeÞÞ
1

ðiþ1Þk:

Therefore (26) and (27) are satisfied and this completes the proof of the
theorem. &
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4. Proof of Theorem 2

Recall that the usual metric in HðCÞ is given by

rð f ; gÞ ¼
X
nX1

supjzjpn j f ðzÞ 	 gðzÞj
1þ supjzjpn j f ðzÞ 	 gðzÞj

 !
1

2n

for f ; gAHðCÞ: We will write jj f jj ¼ rð f ; 0Þ as we did in the previous section.
We will pursue an argument similar to the proof of Theorem 1. In fact, Theorem 2

is a consequence of the next two theorems as we already did in the proof of
Theorem 1.

Theorem 13. There is a Gd-dense set FAHðCÞ such that for any fAF and any real

positive number l; the function h defined as hðzÞ ¼ f ðlzÞ belongs to HCðDÞ:

Theorem 14. If a function fAHCðDÞ then, for any y; 0pyp1 the function defined by

hðzÞ ¼ f ðe2piyzÞ also belongs to HCðDÞ:

4.1. Proof of Theorem 13

We will apply Theorem 12 for the family Tn;l ¼ Dn
3Rl where lARþ:

Define the operators Sn;l :HðCÞ-HðCÞ; by Sn;lð f ÞðzÞ ¼ f ð	nÞðz
lÞ where f ð	1Þ is

the antiderivative of f such that the value at 0 is 0 and f ð	nÞ ¼ ð f ð	ðn	1ÞÞÞð	1Þ: Let us
check that the conditions of Theorem 12 are satisfied. First, observe that

Tn;l3Sn;lð f ÞðzÞ ¼ Tn;l f ð	nÞ z

l

� �� �
¼ ln 1

ln f l
z

l

� �� �� 	
¼ f ðzÞ;

i.e., Tn;l3Sn;l ¼ Id: To verify items (1) and (2) of Theorem 12 we will use as a dense

subset inHðCÞ the set of polynomials fpng with coefficients in Qþ iQ: So, fix such a
polynomial p: Then

Tnþk;l3Sn;aðpÞ ¼ 0 for k4degðpÞ:

On the other hand

Tn;l3Snþk;aðpÞðzÞ ¼
ln

an
pð	kÞ l

a
z

� 	
:

Then for lpa;

jjTn;l3Snþk;aðpÞjjpjjpð	kÞjj

holds. Let us define ck ¼ jjpð	kÞjj and set m ¼ degðpÞ: It is not difficult to show that
there is a constant C ¼ CðpÞ (for instance, we may choose C to be the maximum of
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the modulus of the coefficients of p) so that

sup
jzjpn

jpð	kÞðzÞjpðm þ 1Þ
k!

Cnmþk:

Therefore

ckp
X
nX1

ðmþ1Þ
k! Cnmþk

1þ ðmþ1Þ
k! Cnmþk

 !
1

2n
:

We need to show that
P

k ckoN: For this, it is enough to prove that

X
k

X
nX1

ðmþ1Þ
k! Cnmþk

1þ ðmþ1Þ
k! Cnmþk

 !
1

2n
oN:

Set l ¼ ½2 log k the integer part of 2 log k: Then

ckp
X
nX1

ðmþ1Þ
k! Cnmþk

1þ ðmþ1Þ
k! Cnmþk

 !
1

2n

p
Xl

n¼1

ðmþ1Þ
k! Cnmþk

1þ ðmþ1Þ
k! Cnmþk

 !
1

2n
þ
X

nXlþ1

ðmþ1Þ
k! Cnmþk

1þ ðmþ1Þ
k! Cnmþk

 !
1

2n

p
Cðm þ 1Þ

k!
ð2 log kÞmþkþ1 þ 2

22 log k
:

Notice that
P

k
2

22 log koN: Let us show that

X
k

ðm þ 1Þ
k!

ð2 log kÞmþkþ1oN:

We apply the ratio test and we obtain

ð2 logðk þ 1ÞÞmþkþ2

ðk þ 1Þ!
k!

ð2 log kÞmþkþ1

¼ 2 logðk þ 1Þ
k þ 1

logðk þ 1Þ
log k

� 	mþkþ1
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p
2 logðk þ 1Þ

k þ 1

logðk þ 1Þ
log k

� 	mþ1
logðk þ 1Þ

log k

� 	k

p
2 logðk þ 1Þ

k þ 1

logðk þ 1Þ
log k

� 	mþ1
1þ

logð1þ 1
k
Þ

log k

� 	k

p
2 logðk þ 1Þ

k þ 1

logðk þ 1Þ
log k

� 	mþ1
1þ 1

k

� 	k

p
2 logðk þ 1Þ

k þ 1

logðk þ 1Þ
log k

� 	mþ1
e-k0:

Hence
P

k ckoN: This completes the proof of item (1).

It remains to prove item (2). Let p (polynomial) and e40 be given. Choose e1; l

and afterwards d such that

jje1pjjo
e
2
; ð28Þ

X
nXl

1

2n
o

e
4

ð29Þ

and

if jw 	 zjod; jzj; jwjpl then jpðwÞ 	 pðzÞjoe
4
: ð30Þ

Finally, let 0oCðeÞo1 be so that

0o1	 CðeÞoe1 and ð1	 CðeÞÞlod: ð31Þ

We are ready to prove item (2). Let lpa be such that 1Xl
a4CðeÞ

1
n: Set p1ðzÞ ¼ pðla zÞ:

Notice that Tn;l3Sn;aðpÞðzÞ ¼ ðlaÞ
n
p1ðzÞ: Then

jjTn;l3Sn;aðpÞ 	 pjjp jjTn;l3Sn;aðpÞ 	 p1jj þ jjp1 	 pjj

p
l
a

� 	n

p1 	 p1

����
����

����
����þ jjp1 	 pjj

p 1	 l
a

� 	n� 	
p1

����
����

����
����þ jjp1 	 pjj

p jjð1	 CðeÞÞpjj þ jjp1 	 pjjpe
2
þ jjp1 	 pjj;
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where in the last inequality we used (31) and (28). Moreover, using (31), for jzjpl we
have that

l
a

z 	 z

����
���� ¼ 1	 l

a

� 	
jzjoð1	 CðeÞÞlod:

Therefore, by (30) and (29) we conclude that

jjp1 	 pjjp sup
jzjpl

jp1ðzÞ 	 pðzÞj þ
X
nXl

1

2n

p sup
jzjpl

p
l
a

z

� 	
	 pðzÞ

����
����þ e

4
o

e
4
þ e
4
¼ e
2
:

This completes the proof of Theorem 13.

4.2. Proof of Theorem 14

Let fAHCðDÞ and fix y; 0pyp1: We want to show that the function hðzÞ ¼
f ðe2piyzÞ is also hypercyclic for the operator D:
Let gAHðCÞ; a compact set L and e40 be given. It suffices to find n so that

sup
zAL

jhðnÞðzÞ 	 gðzÞjoe:

Notice that hðnÞðzÞ ¼ e2pinyf ðnÞðe2piyzÞ: We will consider two cases: y is rational or

irrational. Assume that y ¼ p
q
is rational. Since f is hypercyclic for D; it follows by

Theorem 11 that f is also hypercyclic for Dq; that is, the sequence of functions
fDnqð f Þ; nX1g is dense in HðCÞ and so is the sequence fRe2piy3Dnqð f Þ; nX1g:
Choose n so that supzAL jRe2piy3Dnqð f ÞðzÞ 	 gðzÞjoe: Since

DnqðhÞðzÞ ¼ e2pinqyf ðnqÞðe2piyzÞ ¼ f ðnqÞðe2piyzÞ ¼ Re2piy3Dnqð f ÞðzÞ

the result follows.
Next, we treat the case y irrational. Let B1 be a closed ball centered at the origin,

LCB1 and set g1ðzÞ ¼ gðe	2piyzÞ:
Let p be a polynomial satisfying

sup
zAB1

jpðzÞ 	 g1ðzÞjo
e
4
: ð32Þ

Choose l4degðpÞ so that

X
nXl

sup
zAB1

jpð	nÞðzÞjoe
4
: ð33Þ
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Let d40 be such that for any 0pbpd

je2pib 	 1j sup
zAB1

jg1ðzÞjo
e
4
: ð34Þ

By the minimality of the rotation by ly; there is a sequence of positive integers
n1on2oy such that

0pfnklygod ð35Þ

and

sup
k

jnkþ1 	 nkjom for some integer m: ð36Þ

Let B be a closed ball so that B1CB1: By Cauchy estimates, we can find e140 so that

if x;cAHðCÞ and sup
zAB

jxðzÞ 	 cðzÞjoe1 then

sup
zAB1

jxð jÞðzÞ 	 cð jÞðzÞjoe
4
; j ¼ 0; 1;y;ml: ð37Þ

Set xðzÞ ¼ pðzÞ þ pð	lÞðzÞ þ pð	2lÞðzÞ þ?þ pð	ðm	1ÞlÞðzÞ: As before, by Theorem 11

the sequence fDnlð f Þ; nX0g is dense in HðCÞ: It follows that for some n

we have

sup
zAB

jDnlð f ÞðzÞ 	 xðzÞjoe1:

Since the sequence fnk; kX1g satisfies (36), we may find nk so that nkl ¼ nl þ jl for
some j; 0pjpðm 	 1Þ: By (37), (32), (33) and the definition of x we get

sup
zAB1

j f ðnklÞðe2piyzÞ 	 g1ðzÞj ¼ sup
zAB1

jDnklð f ÞðzÞ 	 g1ðzÞj

p sup
zAB1

jDnklð f ÞðzÞ 	 xð jlÞðzÞj þ sup
zAB1

jxð jlÞðzÞ 	 g1ðzÞj

¼ sup
zAB1

jDnlþjlð f ÞðzÞ 	 xð jlÞðzÞj þ sup
zAB1

jxð jlÞðzÞ 	 g1ðzÞj

p
e
4
þ sup

zAB1

jpðzÞ 	 g1ðzÞj þ
X
nXl

sup
zAL

jpð	nÞðzÞj

o
e
4
þ e
4
þ e
4
¼ 3e

4
:
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Finally, by using the above estimate, (35) and (34) we conclude, setting w ¼ e2piyz;
that

sup
zAL

jDnklðhÞðzÞ 	 gðzÞj ¼ sup
zAL

je2pinklyf ðnklÞðe2piyzÞ 	 gðzÞj

p sup
zAB1

je2pinklyf ðnklÞðe2piyzÞ 	 e2pinklygðzÞj þ sup
zAB1

je2pinklygðzÞ 	 gðzÞj

p sup
wAB1

j f ðnkÞðwÞ 	 g1ðwÞj þ sup
wAB1

je2pinky 	 1jjg1ðwÞjo
3e
4
þ e
4
¼ e:

The proof of Theorem 14 is completed.

5. Proof of Theorem 4

For the proof of Theorem 4 we rely on the next two theorems, as we did in
previous sections.

Theorem 15. There is a Gd-dense set GCc2 such that GCHCðlTÞ for every real

number l; l41:

Theorem 16. Let x be hypercyclic for lT for some l41: Then x is also hypercyclic for

le2piyT for any y; 0pyp1:

5.1. Proof of Theorem 15

We will derive it from Theorem 12. Let Tn;l ¼ ðlTÞn and Sn;l ¼ ðlSÞn where S is

the forward shift Sðx1; x2;yÞ ¼ ð0; x1; x2;yÞ: Notice that Tn;l3Sn;l ¼ Id: Consider

the following denumerable and dense set on c2:

D ¼ fðxnÞAc2 : xnAQþ iQ and xn ¼ 0 eventuallyg:

Let us check item (1) of Theorem 12. Fix x ¼ fxngAD and a compact interval
½l1; l2Cð1;NÞ: Let k0 be such that xk ¼ 0 for kXk0: Observe that Tnþk;l3Sn;aðxÞ ¼ 0

for kXk0: Secondly, for lpa we get

jjTn;l3Snþk;aðxÞjjp
l
a

� 	n
1

ak
jjSkðxÞjj

p
1

ak
jjxjjp 1

lk
1

jjxjj:
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Hence, setting ck ¼ 1
lk
1

jjxjj; kXk0; conditions (a)–(c) of item (1) hold. We proceed by

verifying item (2) of Theorem 12. Let e40 be given. Then,

jjTn;l3Sn;aðxÞ 	 xjj ¼ l
a

� 	n

	1
����

����jjxjj:
Choose CðeÞ; 0oCðeÞo1 so that CðeÞ41	 e

jjxjj: Therefore, it is straightforward to

obtain item (2). This completes the proof of Theorem 15.

5.2. Proof of Theorem 16

Let x be hypercyclic for lT and fix y; 0pyp1: We want to show that the orbit of

x under le2piyT is dense. If y ¼ p
q
is rational it follows that the sequence ðle2piyTÞnðxÞ

is dense. Indeed, by Theorem 11, the sequence fðlTÞnqðxÞ; nX0g is dense and the

result follows since ðle2piyTÞnqðxÞ ¼ ðlTÞnqðxÞ:
Assume that y is irrational and let z be any point in c2 and e40 be given. Let d40

be such that

if jjy 	 zjjoe
2
and 0pbod then jje2piby 	 zjjoe: ð38Þ

Let y ¼ fyjgAc2 be such that jjy 	 zjjoe
6
and yj is eventually zero. Take a positive

integer l satisfying

yj ¼ 0 for jXl and
X
jXl

ðlSÞ jðyÞoe
6
:

There is a sequence of positive integers n1on2o? such that

0pfnklygod and supjnkþ1 	 nkjom: ð39Þ

Let w ¼ y þ ðlSÞlðyÞ þ?þ ðlSÞðm	1ÞlðyÞ: Let e1 be such that if jjv 	 ujjoe1 then

jjðlTÞ jðvÞ 	 ðlTÞ jðuÞjjoe
6
; 0pjpml: Using Theorem 11, choose some n so that

jjðlTÞnlðxÞ 	 wjjoe1:

There is some nk so that nkl ¼ nl þ jl for some j; 0pjpðm 	 1Þ: Therefore,

jjðlTÞnklðxÞ 	 zjjp jjðlTÞnlþjlðxÞ 	 ðlTÞ jlðwÞjj

þ jjðlTÞ jlðwÞ 	 yjj þ jjy 	 zjj

p
e
6
þ e
6
þ e
6
¼ e
2
:
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Hence, by (39) and (38) we get

jjðle2piyTÞnklðxÞ 	 zjj ¼ jje2pinklyðlTÞnklðxÞ 	 zjjoe:

The proof of Theorem 16 is completed.

6. Weighted backward shifts

In this section we will make use of Theorem 12 to obtain common hypercyclic
vectors for families of weighted backward shifts. Theorem 12 can be applied for a
wide class of such operators. However, conditions (1) and (2) of Theorem 12 must be
checked in each particular case. In the sequel we just deal with a specific family of
weighted backward shifts. Recall that a weighted backward shift with weighted

sequence fai; iX1g (bounded and positive) is the (bounded) operator T : c2-c2

defined by

Tðx1; x2; x3;yÞ ¼ ða1x2; a2x3;yÞ:

Salas [S1] proved that such an operator is hypercyclic if and only if supn

Qn
j¼1 ai ¼

N: Our family of weighted sequence is aiðlÞ ¼ 1þ l
i
where lAR; l41: Let us

denote by Tl the weighted backward shift with weighted sequence faiðlÞ : i ¼
1; 2;yg:

Theorem 17. There is a Gd-dense set RCc2 such that RCHCðTlÞ for every real

number l; l41:

Proof. As we already mentioned, we shall verify items (1) and (2) of Theorem 12.

As before, consider the following denumerable and dense set on c2:

D ¼ fðxnÞAc2 : xnAQþ iQ and xn ¼ 0 eventuallyg:

For each l41 define the weighted forward shift Sl by

Slðx1; x2;yÞ ¼ 0;
x1

a1ðlÞ
;

x2

a2ðlÞ
;y

� 	
:

Also, set Tn;l ¼ Tn
l and Sn;l ¼ Sn

l : It follows that Tn;l3Sn;l ¼ Id: Fix x ¼ fxlgAD and

a compact interval ½l1; l2Cð1;NÞ: Then, there is k0 such that Tk;lðxÞ ¼ 0

8kXk0; 8l41: For kXk0 set ck ¼ 1Qk

i¼1 aiðl1Þ
jjxjj: Let feng be the canonical basis
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of c2: Now, for lpa we have

jjTn;l3Snþk;aðxÞjj ¼
Xkþk0

j¼k

Qnþj
i¼jþ1 aiðlÞQnþj

i¼1þj	k aiðaÞ

 !
x1þj	kejþ1

�����
�����

�����
�����

¼
Xkþk0

j¼k

Qnþj
i¼jþ1 aiðlÞQ j

i¼1þj	k aiðaÞ
Qnþj

i¼1þj aiðaÞ

 !
x1þj	kejþ1

�����
�����

�����
�����

p
Xkþk0

j¼k

1Q j
i¼1þj	k aiðaÞ

 !
x1þj	kejþ1

�����
�����

�����
�����

p
1Qk

i¼1 aiðaÞ

Xkþk0

j¼k

x1þj	kejþ1

�����
�����

�����
�����

p
1Qk

i¼1 aiðl1Þ
jjxjj ¼ ck:

We have to prove that
P

k ckoN: In what follows anBbn means limn
an

bn
¼ 1: By

standard calculus [K] we get

log
Yk

i¼1
aiðl1Þ

 !
¼
Xk

i¼1
log 1þ l1

i

� 	
B
Xk

i¼1

l1
i
Bl1 logðkÞ;

so ckB 1
kl1

jjxjj and
P

k ckoN follows. Therefore, items (a), (b) and (c) of (1) are

satisfied.
Let us verify item (2). Notice that

jjTn;l3Sn;aðxÞ 	 xjjp
Qn

i¼1 aiðlÞQn
i¼1 aiðaÞ

	 1

����
����jjxjj:

Let e40 and fix a; 0oao1: Observe that limn ð1	 a1=nÞ log n ¼ 0: Hence, for n

large enough

jnl2ð1	a1=nÞ 	 1jo e
jjxjj:

Thus, if n is large enough and l; aA½l1; l2 satisfy 14l
a4a1=n then

nl

na 	 1

����
����p na

nl 	 1

����
���� ¼ nað1	l

aÞ 	 1

����
����o e

jjxjj:

Since
Qn

i¼1 aiðlÞBnl it follows that item (2) holds for n large enough (say nXn0) with

14CðeÞ4a: Therefore, choose CðeÞ such that item (2) also holds for npn0:
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7. Proofs of Theorems 5 and 6

We shall use the following powerful approximation theorem due to Arakeljan (see
[Ga, p. 161]):

Theorem 18. Denote by %C ¼ C,fNg the extended complex plane. Let FCC be a

closed set such that %C\F is connected and locally connected at N: Suppose that eðtÞ is a

continuous and positive function for tX0 and satisfiesZ
N

1

t	
3
2 log eðtÞ dt4	N: ð40Þ

Then for every function g : F-C; continuous on F and holomorphic in its interior, there

is an entire function f such that

j f ðzÞ 	 gðzÞjoeðjzjÞ; 8zAF :

For instance, we will use the ‘‘error’’ function eðtÞ ¼ expð	t
1
4Þ which satisfies (40).

Observe that limt-þN eðtÞ ¼ 0: In particular, if the set F in the above theorem is
unbounded, then the approximation function f for a given function g on F is
‘‘tangent to g at N through F :’’

7.1. Proof of Theorem 5

We start by defining a set S that eventually contains any ray emanating from any
point z except the one in the direction of the positive real line:

S ¼ C\fz ¼ x þ iy : x41; 	 log xoyolog xg:

Denote by Bk ¼ fjzjpkg: Let n1 be such that B1
1 ¼ B1 þ n1 does not intersect S; that

is B1
1-S ¼ | (for instance take n1 ¼ 4Þ: For kX2 let nk be such that Bk

k ¼ Bk þ nk

does not intersect S,B1
1,?,Bk	1

k	1: Define the set

F ¼ S,
[

k

Bk
k:

It is not difficult to see that F satisfies the conditions of Theorem 18, that is, F is

closed and %C\F is connected and locally connected at N:
Let fpk : kX1g be an enumeration of the polynomials with coefficients in Qþ iQ:

Consider a function h : S-C continuous on S and holomorphic in the interior of
S; such that

lim
z-N;zAS

hðzÞ ¼ 0
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(for instance take hðzÞ ¼ 0Þ: Finally let g : F-C defined by

gðzÞ ¼
hðzÞ zAS;

pkðz 	 nkÞ zABk
k:

(

By Theorem 18, there is an entire function f such that

j f ðzÞ 	 gðzÞjoeðjzjÞ; 8zAF :

One can easily check that the function f satisfies the conclusion of Theorem 5.

7.2. Proof of Theorem 6

Let ECS1 be a closed nowhere dense (for instance any Cantor set) such that 1eE:
First, we claim that there is an entire function f which is hypercyclic for T1 and
satisfies

lim
r-N

fðre2piyÞ ¼ 0 where e2piyAE: ð41Þ

This can be done in a similar way as the proof of Theorem 5 by making some minor
modifications. Indeed, let

S ¼ fre2piy : rX0; e2piyAEg

(observe that S has empty interior) and for each Bk ¼ fjzjpkg let nk be such that

Bk
k ¼ Bk þ nk does not intersect S,B1

1,?,Bk	1
k	1: Define the set

F ¼ S,
[

k

Bk
k:

As before, define g : F-C by

gðzÞ ¼
0 zAS;

pkðz 	 nkÞ zABk
k:

(

Applying Theorem 18 with the error function eðtÞ ¼ expð	t
1
4Þ we get a function f;

which is hypercyclic for T1 and satisfies (41). This proves our claim. Now we will find
a function f which is hypercyclic for D and it is close enough to f so that it is also
hypercyclic for T1 and satisfies (41). In order to do this, consider the set

A ¼ fgAHðCÞ : jgðzÞ 	 fðzÞjoeðjzjÞ for zAFg:

Notice that any function gAA is hypercyclic for T1 and satisfies (41). Thus, our aim
is to find a function fAA which is also hypercyclic for D:
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The set A is a Gd nonempty set, because fAA and A ¼
T

n An where

An ¼
\

n

fgAHðCÞ : jgðzÞ 	 fðzÞjoeðjzjÞ for zAF-fjzjpngg:

This means that A is a Baire space and we can apply Baire’s category arguments.
Although An-UðDÞ is residual in An (since An is open) it is not true, a priori, that
A-UðDÞ is even nonempty. However, we will show that this is not the case, in fact
the set A-UðDÞ is residual in A: For this, it is enough to prove that the set

Eðs; j;mÞ ¼ gAA : for some nX0; sup
jzjpm

jgðnÞðzÞ 	 pjðzÞjo
1

s

( )

is open and dense in A: It is straightforward to check that is open. We shall prove the
denseness. In other words, given a function g1AA; a compact set L and d40 we must
find n and an entire function cAA so that

sup
zAL

jcðzÞ 	 g1ðzÞjod and sup
jzjpm

jcðnÞðzÞ 	 pjðzÞjo
1

s
: ð42Þ

We may assume without loss of generality that LCfjzjpmg: Let d; Z be positive

numbers so that d 	 Z4m and fd 	 Zpjzjpd þ Zg-Bk
k ¼ | 8k: Let g and b be as

follows:

g ¼ inf
jzjpdþZ

feðjzjÞ 	 jg1ðzÞ 	 fðzÞjg; ð43Þ

0obomin inf
jzjpdþZ

eðjzjÞ; d; g
� �

: ð44Þ

Notice that, by the definitions of b and g; the following holds:

if yAHðCÞ and jyðzÞ 	 g1ðzÞjob; jzjpd þ Z then jyðzÞ 	 fðzÞjoeðjzjÞ: ð45Þ

By using Runge’s theorem, we may find a polynomial q1 such that

sup
jzjpd

jq1ðzÞ 	 g1ðzÞjo
b
4
: ð46Þ

Let n0 ¼ degðq1Þ and fix n4n0 so that supjzjpd jp
ð	nÞ
j ðzÞjob

4
: Set q ¼ q1 þ p

ð	nÞ
j and

observe that qðnÞ ¼ pj and

sup
jzjpd

jqðzÞ 	 g1ðzÞjo
b
2
: ð47Þ
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Using Cauchy estimates, we may find a positive number b1 such that

if yAHðCÞ and sup
jzjpd

jyðzÞ 	 qðzÞjob1

then sup
jzjpd	Z

jyðnÞðzÞ 	 qðnÞðzÞjo1

s
: ð48Þ

Consider the set S1 ¼ fjzjpdg,S: Let k0 be such that Bk
k-S1 ¼ | for kXk0 and set

F1 ¼ S1,
S

kXk0
Bk

k: It follows that F1 satisfies the condition of Theorem 18. Let

x : F-C be the function

xðzÞ ¼

qðzÞ jzjpd;

fðzÞ zABk
k; kXk0;

fðzÞ fjzjXd þ Zg-S1;

ð1	 tÞqðzÞ þ tfðzÞ fjzj ¼ d þ tZg-S1; 0ptp1:

8>>>><
>>>>:

Observe that x is continuous on F1 and holomorphic in its interior.
Let e1ðtÞ; tX0 be a continuous positive function such that

e1ðtÞpeðtÞ 8tX0; e1ðtÞomin
b
2
; b1

� �
for 0ptpd þ Z ð49Þ

and satisfying (40). Applying Theorem 18 to F1; e1 and x we obtain an entire function
c so that

jcðzÞ 	 xðzÞjoe1ðjzjÞ; zAF1: ð50Þ

Let us check that c satisfies (42) and cAA: By (47), (49) and (50) we get

sup
zAL

jcðzÞ 	 g1ðzÞjp sup
jzjpd

jcðzÞ 	 qðzÞj þ sup
jzjpd

jqðzÞ 	 g1ðzÞj

o sup
jzjpd

e1ðjzjÞ þ
b
2
obod

and using (48) and (50) it follows that

sup
jzjpm

jcðnÞðzÞ 	 pjðzÞjp sup
jzjpd	Z

jcðnÞðzÞ 	 pjðzÞj

¼ sup
jzjpd	Z

jcðnÞðzÞ 	 qðnÞðzÞjo1

s
:

Thus, (42) is valid.
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Let us verify that cAA: For zAF and jzjXd þ Z we have

jcðzÞ 	 fðzÞj ¼ jcðzÞ 	 xðzÞjoe1ðjzjÞpeðjzjÞ:

For zAF and jzjpd; as before

jcðzÞ 	 g1ðzÞjob

which, by (45), implies jcðzÞ 	 fðzÞjoeðjzjÞ: Finally, for zAF and dpjzjpd þ Z;
using (43), (44) and (49) we get

jcðzÞ 	 fðzÞjp jcðzÞ 	 xðzÞj þ jxðzÞ 	 fðzÞj

p e1ðjzjÞ þ jð1	 tÞqðzÞ þ tfðzÞ 	 fðzÞj

p
b
2
þ ð1	 tÞjqðzÞ 	 fðzÞj

p
b
2
þ ð1	 tÞjqðzÞ 	 g1ðzÞj þ ð1	 tÞjg1ðzÞ 	 fðzÞj

p
b
2
þ b
2
þ jg1ðzÞ 	 fðzÞjogþ jg1ðzÞ 	 fðzÞj

o eðjzjÞ:

Therefore, cAA and the proof is finished.

8. Final remarks

(1) As we mentioned in the introduction, let us now show that the set of common
universal vectors for a ‘‘wide’’ class of families of sequence of operators is either
residual or empty. Indeed, let fTn;g : nX1 gAGg be a family of sequence of operators
acting on a separable F -space X ; where G is a locally compact metric separable space
and the map G{g-Tn;g is continuous for every nX1: For a compact set KCG define

the set EKðs; j;mÞ as in Section 3. The same proof as in Lemma 9 shows that
EKðs; j;mÞ is open (in fact, the crucial point is that any open set in the topological
space G can be written as an exhaustive sequence of compact sets). Assume that the
set of common universal vectors for the family Tn;g is nonempty. Then, it follows

trivially that
S

mX1 EKðs; j;mÞ is dense, and our assertion follows as in the conclusion
of Theorem 12.
(2) Theorem 12 gives sufficient conditions in order to obtain common universal

vectors for families indexed by real numbers. If one might want to prove a similar
theorem for families indexed by an open set of Rp; pX2 then condition (2) should be
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replaced by one of the form

if 14jl	 aj4CðeÞ
1

n1=p then jjTn;l3Sn;aðxjÞ 	 xjjjoe:

However, none of the families treated in our paper satisfy this kind of
condition.
(3) The family of weighted backward shifts Tl we dealt in Section 6 satisfies

lim
n-N

Yn

i¼1
aiðlÞ ¼ N

and

lim
n-N

anðlÞ ¼ 1:

In [LM] it is proved that the above conditions imply the existence of an
infinite dimensional closed subspace of hypercyclic vectors for Tl: We ask
if there is a common infinite dimensional closed subspace of hypercyclic vectors
for all Tl:
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