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Abstract

We consider piecewise continuous maps on a compact region of a finite dimensional man-
ifold, that separates the distances between the different continuity pieces but are locally con-
tractive. We prove that generically those maps are assympthotically periodic, having a finite
number of persistent limit cycles. We apply this result to prove that a generic network of
more than two inhibitory neurons phase lock to a periodic behaviour that persists under small
perturbations of the set of parameter values.

1 Introduction

We study the mathematical model of a network composed with n ≥ 3 inhibitory neurons. We
consider each neuron’s dynamic modelled as an integrate and fire cell [SFH 1972]. The neuron
acts as a relaxation oscillator in which the internal variable V = V (t) describing its potential
evolves linearly, increasing on time t with a constant slope. This means that V (t) is linear with
positive first derivative V ′(t) > 0 that is constant. When the potential reaches a given threshold
value, fixed as 1, the neuron produces an action potential which, through inhibitory synapses, acts
on the other n− 1 neurons producing sudden negative changes of their respective potentials. The
amplitude s of each change is an increasing function of the phase f of the respective neuron on
which it acts.

In [BCRG 1996] we reduced networks of n inhibitory neuron cells, modelled as relaxation oscil-
lators of the integrate and fire type [SFH 1972], to the dynamic of its Poncaré map, a contractive
piecewise continuous map in a compact set of n − 1 dimensions. For a seek of completeness we
include an overview of the steps of this reduction in section 2 of this paper.

The dynamical system modelling the network is translated mathematically to a system of
iterates of a map F in a compact connected set B of IRn. This map F is discontinuous but
piecewise continuous, i.e. the phase space can be partitioned into a finite number of pieces such
that the map F restricted to each piece is continuous (and differentiable, if desired, of class C r).
The map F is also locally contractive, i.e. when restricted to each continuous piece F contracts
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distances in the space. If besides the n neurons of the network are not very different, then F
verifies the separation property, i.e. the images of the compact pieces are pairwise separated
by a positive minimum distance. In the last section of this paper we prove the main abstract
mathematical result (Theorem 3.7) in which is based the rest of the paper:

Contractive piecewise continuous maps with the separation property generically exhibit an

asymptotic periodic behavior with limit cycles that are persistent under small perturbations of

the map.

As a consequence we obtain the following applied result:

Generic neuron networks composed by n ≥ 3 inhibitory cells of the integrate and fire type, which
are not very different each from the others, phase lock to a periodic behavior that is persistent under

small perturbations of the set of parameter values.

This is a result generalizing the conclusions obtained for two neurons networks in [BTCE 1991]
and [CB 1992].

2 The mathematical model of the inhibitory neurons network.

We include here an overview of the mathematical reduction of the model of the n inhibitory
neurons network to a piecewise continuous contractive map F : B 7→ B with the separation
property, as shown in [BCRG 1996].

The state of the system at time t is described as a point

v(t) = (V1(t), . . . , Vn(t)) ∈ Q

depending on t, where Vi(t) is the potential level at time t of the i-th. neuron, and Q = [0, 1]n is
the n-dimensional cube.

Let B be the set of points in the n faces of the cube Q where at least one of the potentials Vi

is zero. Analogously, let us call A the set of points in the n faces of the cube Q where at least
one of the potentials Vi is one. Each of the sets A and B are compact and described with n − 1
variables, so are n− 1 dimensional sets in Q.

From an initial state v(0) = v0 in B the system evolves linearly through trajectories inside Q
that are parallel lines, until they reach (may be each trajectory at a different time) the set A. We
define the transformation

ρ : B 7→ A, ρ(v0) = v1 : v(0) = v0 ∈ B, v(t1) = v1 ∈ A,

where t1 is the first non negative time such that v(t1) ∈ A.

Definition 2.1 We define the metric (i.e. distance) d(v0, w0), d(v1, w1) between points v0, w0 in
B, or v1, w1 in A, as the distance between the parallel line trajectories v(t) and w(t) such that
v(0) = v0 and w(0) = w0.

For three neurons this distance is the usual distance in the proyection of the three dimensional
cube along a fixed direction. This projection is the hexagon of figure 1. In other words the distance
is the usual one in the hexagon.

With this definition we have
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Remark 2.2 The transformation ρ : B 7→ A is an isometry, i.e.

d(ρ(v0), ρ(w0)) = d(ρ(v0, w0))

Definition 2.3 The set B is partitioned in n subsets B1, . . . , Bn where

Bj = ρ−1({v1 = (V1, . . . , Vn) ∈ A : Vj = 1})

In other words, the subset Bj ⊂ B is the set of initial states in the faces B of the cube Q, such
that the first neuron to reach the threshold level 1 (when the trajectory evolves to reach the faces
A) will be the j-th. neuron.

In figure 1 the three sets B1, B2 and B3 are the three backward faces of the cube (the faces
that could not be seen if the cube were not transparent).

Figure 1: Model of a 3 neurons network in the 3-dimensional cube: Reaching the threshold level of neurons 1,2 and
3 corresponds to the front faces 1, 2 and 3 respectively of the cube. Points marked in black correspond to the linear
evolution from backward faces to the front faces. This is the evolution of the system between two consecutive fires
of the neurons. It is a line seen, due to perspective, as a black point. Firing of neurons 1, 2 or 3 correspond to the
return lines from the respective front face to its parallel backwards face; for instance a 7→ b, c 7→ d, e 7→ f, . . . , o 7→ p.
Due to the negative synapses the firing of each neuron produces a reduction of the voltage of the others. The
synapses effect corresponds to segments along the same backward face; for instance b 7→ c, d 7→ e, f 7→ g, . . . , p 7→ q.
The figure shows the evolution after 8 fires of the neurons 1,2,1,1,1,1,1 and 3.
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We observe that the subsets Bj have pairwise disjoint interiors but their frontiers may intersect.

Due to synapses, when v0 ∈ Bj , the state v(t) reaches A because the j-th. neuron reaches the
threshold level 1, it then suddenly changes to 0 and produces a negative change si in the other
n− 1 neurons potentials Vi (i 6= j), being si larger when the potential Vi is larger.
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Definition 2.4 We define the map

γ : A 7→ B : γ(v1) = v2, where v1 = (V1, . . . , Vj−1, 1, Vj+1, . . . , Vn) ∈ ρ(Bj) ⊂ A,

and

v2 = (V1 − s1, . . . , Vj−1 − sj−1, . . . , 0, Vj+1 − sj+1, . . . , Vn − sn)

where sj = sj(Vj) is increasing.

We note that γ is discontinuous in the frontier of each subset ρ(Bj) but is continuous in each
piece ρ(Bj).

For two different points v1, w1 in ρ(Bj) ⊂ A we have:

v1 = (V1, . . . , Vj−1, 1, Vj+1, . . . , Vn), w1 = (W1, . . . ,Wj−1, 1,Wj+1, . . . ,Wn)

To v1 6= w1 correspond two different points v2 6= w2 in B through the map γ as follows:

v2 = γ(v1) = (V1 − s1, . . . , Vj−1 − sj−1, 0, Vj+1 − sj+1, . . . , Vn − sn)

w2 = γ(w1) = (W1 − u1, . . . ,Wj−1 − uj−1, 0,Wj+1 − uj+1, . . . ,Wn − un)

where (s1, . . . , sn) and (u1, . . . , un) are the sudden changes in the n−1 neurons potentials Vi, i 6= j,
produced by the threshold level 1 changing to 0 of the firing neuron j.

Without no loose of generality we take Wi > Vi. Then ui > si and

0 < (Wi − ui)− (Vi − si) = (Wi − Vi)− (ui − si) < Wi − Vi

Then d(γ(v1), γ(w1)) < d(v1, w1) and therefore:

Remark 2.5 The map γ : A 7→ B is piecewise continuous, and in each continuity piece ρ(Bj) ⊂ A
it is contractive, i.e.

d(γ(v1), γ(w1)) < d(v1, w1), ∀v1, w1 ∈ ρ(Bj)

Definition 2.6 The Poincaré map is the first return map from B to B defined as follows:

G : B 7→ B : G = γ ◦ ρ

The second return map from B to B is

F = G ◦G

From 2.2 and 2.5 we deduce the following result:

Remark 2.7 The Poincaré map G : B 7→ B is a contractive piecewise continuous map. The
second return map F : B 7→ B is a contractive piecewise continuous map.
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The reason for considering the second return map F instead the first one G is that it may occur
that G(Bi) ∩ G(Bj) 6= ∅ for some i 6= j and so G does not necessarily verify the separation
property. Let us show that, if the neurons are not very different each from others (i.e. the
synapsis si, i = 1, 2, . . . , n are in a neighborhood of the diagonal s1 = s2 = s3 = . . . = sn), then
F = G ◦G is injective and so it verifies the separation property. As the separation property is an
open condition, it is enough to prove it when s1 = s2 = . . . = sn.

Consider Bi and Bj with i 6= j, two continuity pieces of G such that G(Bi) ∩ G(Bj) 6= ∅.
This fact can occur only if, from some initial state v0 the neuron j reaches the threshold level 1
when other neuron i has a potential level Vi too low (smaller than the negative change si that
the negative synapses will produce on its level). Then, immediatly after change, the neuron i will
exhibit a negative potential Vi− si < 0. One should wait until it reaches potential 0 to see a point
G(v0) ∈ B with Vi = 0 and Vj > 0. On the other hand there could be some other initial state
w0 ∈ Bi (the first neuron to fire is the i-th.) such that G(v0) = G(w0) with Vi = 0 and Vj > 0.

The situation described above occurs only if we start with an initial state

v0 = (V1, . . . , Vi−1, 0, Vi+1, . . . , Vj , . . . , Vn) ∈ Bj

such that 1− Vj is small, say

0 ≤ 1− Vj ≤ ε = min{si(Vi) : 0 ≤ Vi ≤ 1} for some i 6= j [1]

Therefore neuron j will reach its threshold level 1 without giving enough time to neuron i potential
increase more than ε. As the negative change in neuron i potential is si, greater in absolute value
than ε, its potential will be negative immediately after the firing of neuron j. In resume

Remark 2.8 G is non injective only for the initial states v0 ∈ Bj verifying [1].

On the other hand, the state v1 = G(v0) after the first return map to B verifies

v1 = (V1 − s1, . . . , Vj−1 − sj−1, 0, Vj+1 − sj+1, . . . , Vn − sn) ∈ G(Bj)

So for all i 6= j :

V +
i = Vi − si, 1− V +

i = (1− Vi) + si > min{si(Vi) : 0 ≤ Vi ≤ 1} = ε

Therefore, the first return point v1 = G(v0) is not an initial position verifying [1]. Using 2.8 we
obtain that F = G ◦G is injective, so it verifies the separation property.

We conclude:

The second return map F : B 7→ B is a contractive piecewise continuous map with the separa-

tion property.

We shall study abstract contractive piecewise continuous maps with the separation property
in n − 1 dimensions, to apply the general results obtained in the next section to the model of n
inhibitory neurons networks.
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3 The abstract dynamical system.

Let M be a C∞ Riemannian n-dimensional manifold. We call B a compact region of M if B ⊂M
is compact, connected and B = int B (i.e. B is the closure of its interior in M).

We say that P is a finite partition of B if P = {Bi}1≤i≤m is a finite collection of compact
regions Bi of B, such that

⋃

1≤i≤m Bi = B and int Bi ∩ int Bj = ∅, for i 6= j. We denote
S = δP =

⋃

i6=j Bi ∩Bj .

Definition 3.1 Given a finite partition P = {Bi}1≤i≤m of B, we call F a Cr (r ≥ 0) piecewise
continuous map on (B,P) with the separation property if F is a finite family F = {fi}1≤i≤m of
Cr maps fi : Bi 7→ B, such that fi(Bi) ∩ fj(Bj) = ∅ if i 6= j. We note that F is multidefined on
δP.

Definition 3.2 We say that F is locally contractive if dist (fi(P ), fi(Q)) < dist (P,Q), for all P
and Q in the same Bi, for all 1 ≤ i ≤ m . We note that, due to compacity, there exists a positive
real number λ < 1, independent of i, such that dist (fi(P ), fi(Q)) ≤ λ dist (P,Q), for all P and Q
in the same Bi.

Given a point P ∈ B, take its image set F (P ) = {fi(P ) : P ∈ Bi}. If H ⊂ B, its image set is
F (H) =

⋃

P∈H F (P ). We have that B ⊃ F (B) ⊃ . . . F k(B) ⊃ . . ..

Definition 3.3 For any natural number k, we call atom of generation k to the image of Bi1 by
fik ◦ . . . ◦ fi2 ◦ fi1 where (i1, i2, . . . , ik) ∈ {1, 2, . . . ,m}

k.

We note that each atom of generation k is a compact, not necessarily connected set, whose
diameter is smaller than λkdiamB. The set F k(B) is a compact set, formed by the union of all
(at most mk) atoms of generation k.

A point Q is in the limit set of a point P ∈ B if there exists nj → ∞ and Qj ∈ Fnj (P ) such
that Qj → Q. The limit set L+(F ) is the union of the limit sets of all points P ∈ B.

We say that a point P is periodic of period p if there exists a first natural number p ≥ 1 such
that F p(P ) = {P}. In this case we call the orbit of P (i.e.

⋃

F j(P ), j = 1, . . . , p) a periodic orbit
with period p.

The limit set L+(F ) is contained in the compact, totally disconnected set K =
⋂

k≥1 F
k(B).

It could be a Cantor set. But generically K shall be the union of a finite number of periodic
orbits, as asserted in Theorem 3.7.

Definition 3.4 We say that F is finally periodic with period p if the limit set L+(F ) is formed
by a finite number of periodic orbits with minimum common multiple of their periods equal to p.
In this case we call limit cycles to the periodic orbits of F .

Let P = {Bi}1≤i≤m and Q = {Ai}1≤i≤m be finite partitions of the compact region B with the
same number m of subsets. We define the distance between P and Q as

d(P,Q) = max
1≤i≤m

max
x∈Ai,y∈Bi

{d(x,Bi), d(y,Ai)}

where d(z, C) denotes the usual distance from a point z ∈ B to a compact subset C ⊂ B:
d(z, C) = minc∈C d(z, c).
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Definition 3.5 Let F = {fi : Bi 7→ B}1≤i≤m and G = {gi : Ai 7→ B}1≤i≤m be Cr (r ≥ 0)
piecewise continuous maps on (B,P) and (B,Q) respectively. For a given positive real number ε
we say that G is a ε− Cr perturbation of F if

max
1≤i≤m

‖gi − fi‖Cr(Bi∩Ai) < ε, and d(P,Q) < ε

Definition 3.6 We say that the limit cycles of a finally periodic map F of period p are persistent
if there exists ε > 0 such that all ε−C0 perturbations of F are finally periodic with period p and
the same finite number of periodic orbits than F .

Theorem 3.7 Let F be a locally contractive Cr (r ≥ 0) piecewise continuous map with the

separation property. Given ε > 0 there exists a Cr − ε perturbation G of F that is finally periodic

with persistent limit cycles.

Lemma 3.8 If there exists an integer k ≥ 1 such that the compact set K =
⋂

k≥1 F
k(B) does not

intersect S, then F is finally periodic and its limit cycles are persistent.

Proof: The distance from K to S is positive. As the maximum diameter of the finite number
of atoms of generation k converges to zero when k goes to infinite, there exists sufficiently large
k such that none of the atoms of generation larger or equal to k intersect S. So their successive
images by F are single atoms. There is at least one atom of generation k that contains its whole
image, by say F p with p ≤ Mk. As distances are contracted, all points of this atom converge to
a periodic point of period p. The iterates of all the atoms of generation k are eventually in some
atom of generation k having the last property, so also converge to a periodic point. The condition
of the hypothesis and the itinerary of each atom of generation k remain unchanged with C0 small
perturbations. So the finite number of periodic orbits and their periods are persistent. ¤

Proof of Theorem 3.7. Let us take F being not necessarily finally periodic.

The contractive diffeomorphisms fi of the finite family F = {fi : Bi 7→ B}i can be Cr extended,
being still contractive diffeomorphisms, to small compact neighborhoods Ui ⊃ Bi, in such a way
that the extended map Fε, now multidefined on

⋃

i6=j Ui ∩Uj ⊃ S, still verifies fi(Ui)∩ fj(Uj) = ∅
if i 6= j. We shall be given an arbitrarily sufficiently small ε > 0, and take Ui such that the
distance from Bi to the closure of the complement of Ui is larger than ε, for all i = 1, 2, . . .m.

For a fixed ε > 0, consider the compact, totally disconnected set

K+ =
⋂

k≥1

⋃

(i1,...,ik)∈{1,2...m}k

fik ◦ . . . ◦ fi1(Ui1) ⊃ K

Observe that if there exists a point in K ∩ S then there exist a point P ∈ K+ ∩ S.

The diameters of the atoms of generations k that form K+ are all smaller that Dλk, where
D is the maximum diameter of the open sets Ui. Therefore for sufficiently large k all the atoms’
diameters are smaller that ε/2. If some of these atoms intersect S, consider a new finite partition
Q = {Ai}1≤i≤m of B such that the distance between Q and the given partition P is smaller than
ε, and in such a way that SQ =

⋃

i6=j(Ai∩Aj) does not intersect the atoms of generation k of K+.
The first condition implies that Ai ⊂ Ui and therefore the extension Fε can be restricted to Ai.
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Take G = {gi : Ai 7→ B}1≤im where gi = fi|Ai
. By construction G is a ε− Cr perturbation of

the given F . Consider the limit set KG of G as follows:

KG =
⋂

k≥1

⋃

(i1,...,ik)∈{1,2...m}k

gik ◦ . . . ◦ gi1(Ai1)

As G is a restriction of Fε to the sets Ai, we have that KG ⊂ K+, and therefore KG ∩SQ = ∅.
Then, applying lemma 3.8, G is finally periodic with persistent limit cycles. ¤
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